

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Maximising use of population data on cardiometabolic diseases

Citation for published version:

Flood, D, Guwatudde, D, Damasceno, A, Manne-Goehler, J, Davies, JI & Jaacks, L 2022, 'Maximising use of population data on cardiometabolic diseases', The Lancet Diabetes and Endocrinology. https://doi.org/10.1016/S2213-8587(21)00328-4

Digital Object Identifier (DOI):

10.1016/S2213-8587(21)00328-4

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: The Lancet Diabetes and Endocrinology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1 Maximizing Use of Available Population-Based Data on Cardiometabolic Diseases

2

David Flood¹⁻³, David Guwatudde⁴, Albertino Damasceno⁵⁻⁷, Jennifer Manne-Goehler^{8,9*}, Justine
I. Davies^{10-12*}, for the Global Health & Population Project on Access to Care for Cardiometabolic
Diseases (HPACC)[†]

6

7 ¹Division of Hospital Medicine, Department of Medicine, University of Michigan, Ann Arbor, 8 Michigan, USA; ²Center for Indigenous Health Research, Wugu' Kawog, Tecpán, Guatemala; 9 ³Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central 10 America and Panama, Guatemala City, Guatemala; ⁴Department of Epidemiology and 11 Biostatistics, School of Public Health, Makerere University, Kampala, Uganda; ⁵Department of 12 Public and Forensic Health Sciences and Medical Education, Faculty of Medicine, University of 13 Porto, Porto, Portugal; ⁶EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal; 14 ⁷Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique; ⁸Division of 15 Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 16 USA; ⁹Medical Practice Evaluation Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ¹⁰Institute for Applied Health Research, University of Birmingham, 17 18 UK; ¹¹Centre for Global Surgery, Department of Global Health, Stellenbosch University, Cape 19 Town, South Africa; ¹²Medical Research Council/Wits University Rural Public Health and Health 20 Transitions Research Unit, Faculty of Health Sciences, School of Public Health, University of the 21 Witwatersrand, Johannesburg, South Africa 22

1

- 23 *Joint senior authors
- 24 [†]Members listed at end of paper

- 26 Corresponding author:
- 27 Justin I. Davies, MD
- 28 Institute for Applied Health Research
- 29 University of Birmingham
- 30 Birmingham, United Kingdom
- 31 B15 2TT
- 32 J.davies.6@bham.ac.uk
- 33
- 34 Word count: <u>907</u>947
- 35 References: 10

36	The absolute worldwide burden of adult cardiometabolic diseases such as hypertension,	Formatted: Condensed by 0.25 pt
37	diabetes, obesity, and dyslipidemia continues its relentless ascent. Scaling up the prevention,	
38	management, and control of cardiometabolic diseases is cost-effective but requires strong	Formatted: Condensed by 0.25 pt
39	health systems. ¹⁴ Building thesestrong health systems requires data that are accurate, timely,	Formatted: Raised by 4 pt
40	and transparent, as we have previously argued in this journal. ² In particular, data from high-	Formatted: Condensed by 1.3 pt
-10		Formatted: Superscript
41	quality population-based surveys are critical, as they reflect the spectrum of community-dwelling	Formatted: Condensed by 1.8 pt
10		Formatted: Condensed by 0.45 pt
42	adults in a particular geography, including those who are not reached by the health system.	Formatted: Condensed by 0.6 pt
43		
44	ThereOf late, there has been tremendous progress in making population-based survey data	Formatted: Condensed by 0.55 pt
45	available for cardiometabolic diseases. Emblematic of this has been the release in 2018 of the	Formatted: Condensed by 0.95 pt
46	World Health Organization (WHO) Noncommunicable Disease (NCD) Microdata Repository.	Formatted: Superscript
47	This hosts over 130 surveys conducted using the STEPwise approach to NCD surveillance	Formattade Candenaed by 0.5 st
47	This house over 150 surveys conducted using the OTEL wise approach to NOD surveillance	Formatted: Condensed by 0.5 pt
48	(STEPS) methodology that are now available <u>afterto users who submit</u> a brief application. Most	
49	STEPS surveys are conducted in low- and middle-income countries (LMICs) where a majority of	Formatted: Condensed by 0.45 pt
50	the cardiometabolic disease burden occurs. Thus, this resource fills a critical gap in openly	Formatted: Condensed by 0.6 pt
51	accessible population-based survey data on cardiometabolic risk factors and health care access	Formatted: Condensed by 0.6 pt
52	in these settings.	Formatted: Condensed by 0.15 pt
53		
54	Yet, there is more work to be done. The availability of population-based data, while necessary,	Formatted: Condensed by 0.7 pt
55	is insufficient by itself to ensure their effective use to shape programs, strategies, and policies	Formatted: Condensed by 0.6 pt
56	addressing cardiometabolic diseases. In this Comment, we highlight three other crucial actions	Formattade Condensed by 0.2 pt
50		Formatted: Condensed by 0.2 pt
57	needed to maximize the use of population data: harmonization, alignment with monitoring	Formatted: Condensed by 0.4 pt
58	indicators to benchmark health system performance, and capacity-building initiatives to	Formatted: Condensed by 0.25 pt
59	democratize data use.	

national research consortium Formatted: Condensed by 1.2 pt
ed a dynamic repository of
esenting 1.3 million individuals Formatted: Condensed by 0.5 pt
.) to address questions of
te Te

66 relevance to health system planning and evaluation for cardiometabolic diseases.

67

68	First, while population-based data-can and should be used at the national level, these data also
69	should be harmonized to maximize its use by international advocacy organizations,
70	policymakers, and researchers. Harmonization refers to the process of bringing together distinct
71	data sources into a single comparable format. Harmonized survey data are available in the area
72	of maternal and child health, to such resource exists for cardiometabolic diseases, Such
73	harmonized data allows for assessing health system effectiveness and responsiveness, as our
74	study of the state of hypertension care in 44 LMICs illustrates. ⁵⁵ Harmonization also provides
75	larger and more diverse samples, giving added power to study variations in cardiometabolic risk
76	factors, including biological measures such as blood glucose and behavioral risk factors such as
77	physical activity and diet. Understanding these variations is important, as it cannot be assumed
78	that epidemiologic patterns of clinical relevance observed in well-studied high-income countries
79	will be conserved in LMICs. Indeed, we have found that the association between diabetes and
80	body mass index (BMI) is highly variable across world regions, implying that BMI, thresholds
81	generated using European or North American data cannot simply be applied elsewherein other
82	world regions. ⁶ Harmonization also allows for the construction of sophisticated clinical and policy
83	models for the prevention, treatment, and control of cardiometabolic diseases. ^{1,76} Importantly, to
84	ensure that data are useful for cross-country comparisons, prior to data collection, time should
85	be spent ensuring survey instruments and data collection are standardized and aligned with the
86	highest priority global health metrics.

-(Formatted:	Condensed by 0.7 pt
-(Formatted:	Condensed by 0.4 pt
-(Formatted:	Condensed by 1.3 pt
-(Formatted:	Condensed by 1.15 pt
-(Formatted:	Superscript
	Formatted:	Raised by 4 pt
	Formatted:	Condensed by 1.35 pt
Ń	Formatted:	Condensed by 0.25 pt
-	Formatted:	Raised by 4 pt
-(Formatted:	Condensed by 0.55 pt
-(Formatted:	Condensed by 0.9 pt
-(Formatted:	Condensed by 0.95 pt
-(Formatted:	Condensed by 1.3 pt
-(Formatted:	Condensed by 0.4 pt
-(Formatted:	Condensed by 0.4 pt

-{	Formatted: Condensed by 1.85 pt
-{	Formatted: Condensed by 0.3 pt
-{	Formatted: Condensed by 0.25 pt

87		
88	Second, population data on cardiometabolic diseases should be harnessed to benchmark and	Formatted: Condensed by 0.45 pt
89	monitor health system performance. At present, these data are underutilized for this purpose.	Formatted: Condensed by 0.5 pt
90	Harmonized data from STEPS and similarnon-STEPS surveys can reveal progress on	Formatted: Condensed by 1 pt
91	monitoring indicators in the NCD Global Monitoring Framework ² and inform new targets such as	Formatted: Condensed by 0.35 pt
92	those proposed by the WHO Global Diabetes Compact, a recently established initiative to	Formatted: Condensed by 0.6 pt
93	improve global diabetes care. ⁸⁸ To show global variation in health system performance,	
94	harmonized data ideally should include not only LMICs but also high-income countries, though	Formatted: Condensed by 2.05 pt
95	unfortunately data from high-income countries are currently less available.	Formatted: Condensed by 1.35 pt
96		Formatted: Condensed by 0.2 pt
97	Third given limited response constituin many LMICs, there is a poor to build constitute ensure	
97	Third, given limited research capacity in many LMICs, there is a need to build capacity to ensure	Formatted: Condensed by 0.95 pt
98	the wide usability of population data on cardiometabolic diseases, most especially by those who	Formatted: Condensed by 0.7 pt
99	have collected it. Local researchers—especially those in LMICs—who design and conduct	Formatted: Condensed by 0.55 pt
100	surveys should be empowered to use harmonized data to answer their policy-relevant	Formatted: Condensed by 0.45 pt
101	questions, conduct independent analyses, and publish in lead-author roles. ⁹ In addition to this	Formatted: Condensed by 1.4 pt
102	being a step towards decolonialization of global health, these collaborators add critical	Formatted: Condensed by 0.4 pt
103	contextual interpretation that may not be fully perceived or appreciated by those outside their	Formatted: Condensed by 0.7 pt
104	settings.	
105		
106	While we focus on maximizing use of available population data on cardiometabolic diseases, it	Formatted: Condensed by 0.2 pt
107	is important to continue data-sharing efforts. Many STEPS and comparable non-STEPS	Formatted: Condensed by 0.45 pt
108	household surveys remain unavailable, as are more than two dozen nationally representative	Formatted: Condensed by 0.45 pt
109	health facility surveys conducted using the WHO Service Availability Readiness Assessment	Formatted: Condensed by 0.85 pt
110	(SARA) methodology ¹⁰ Additionally, many other data sources, for example, from subnational	Formatted: Superscript
111	research studies, remain inaccessible. Finally, cardiometabolic disease epidemiology is rapidly	Formatted: Condensed by 1.2 pt
		Formatted: Condensed by 0.25 pt
112	evolving, but data are often historical. As is done for HIV, data collection for cardiometabolic	Formatted: Condensed by 0.75 pt

113	diseases needs to be ongoing to assess temporal trends in disease prevalence and health	Formatted: Condensed by 0.6 pt
114	system performance.	
115		
116	The staggering burden of cardiometabolic diseases brings with it an imperative to maximize the	Formatted: Condensed by 0.4 pt
117	use of <u>these</u> data. Many <u>countries and individuals</u> LMICs already have invested substantial	
118	resources in producing these data, which are a global public good. However, while they are	Formatted: Condensed by 0.4 pt
119	increasingly available, in practice, they these data are still too sparse and underutilized given the	Formatted: Condensed by 0.6 pt
120	toll these diseases are taking on people worldwide. We call on funders and international health	Formatted: Condensed by 0.65 pt
121	organizations to invest in efforts to collect, harmonize and make available these data with an	Formatted: Expanded by 0.15 pt Formatted: Condensed by 0.95 pt
122	urgency befitting the magnitude of the global burden of cardiometabolic diseases.	Formatted: Condensed by 0.75 pt
123		

124 References

- 125 1. Basu S, Flood D, Geldsetzer P, et al. Estimated impact of increased diagnosis,
- 126 treatment, and control of diabetes mellitus among low-and middle-income countries: A
- 127 microsimulation model. Lancet Global Health 2021; (Accepted; in press).
- 128 2. Davies J, Yudkin JS, Atun R. Liberating data: the crucial weapon in the fight against
- 129 NCDs. Lancet Diabetes Endocrinol 2016; 4(3): 197-8.
- 130 3. World Health Organization. NCD Microdata Repository. 2021.
- 131 https://extranet.who.int/ncdsmicrodata/index.php/catalog (accessed July 19, 2021).
- IPUMS. IPUMS Global Health. 2021. <u>https://globalhealth.ipums.org/</u> (accessed October
 25, 2021).
- 134 5. Geldsetzer P, Manne-Goehler J, Marcus ME, et al. The state of hypertension care in 44
- 135 low-income and middle-income countries: a cross-sectional study of nationally representative
- 136 individual-level data from 1.1 million adults. Lancet 2019; 394(10199): 652-62.
- 137 6. Teufel F, Seiglie JA, Geldsetzer P, et al. Body-mass index and diabetes risk in 57 low-
- 138 income and middle-income countries: a cross-sectional study of nationally representative,
- 139 individual-level data in 685 616 adults. *Lancet* 2021; 398(10296): 238-48.
- 140 7. WHO. Noncommunicable Diseases Global Monitoring Framework: Indicator Definitions
- 141 and Specifications. 2014. https://www.who.int/nmh/ncd-
- 142 tools/indicators/GMF Indicator Definitions Version NOV2014.pdf (accessed September 29,
- 143 2021).
- 144 8. Hunt D, Hemmingsen B, Matzke A, et al. The WHO Global Diabetes Compact: a new
- 145 initiative to support people living with diabetes. Lancet Diabetes Endocrinol 2021; 9(6): 325-7.

146	9.	Wang W, Assaf S,	Pullum T, Kishor S.	The Demographic and H	lealth Surveys Faculty

- 147 Fellows Program: Successes, Challenges, and Lessons Learned. *Glob Health Sci Pract* 2021;
- 148 9(2): 390-8.
- 149 10. Mangipudi S, Leather A, Seedat A, Davies J. Oxygen availability in sub-Saharan African
- 150 countries: a call for data to inform service delivery. The Lancet Global Health 2020; 8(9): e1123-
- 151 e4.
- 152
- 153

154 HPACC members

155 David Flood¹⁻³, David Guwatudde⁴, Albertino Damasceno⁵⁻⁷, Krishna K. Aryal⁸, Rifat Atun^{9,10}, Till 156 W. Bärnighausen¹¹⁻¹³, Brice Wilfried Bicaba¹⁴, Pascal Bovet^{15,16}, Gary Brian¹⁷, Maria 157 Dorobantu¹⁸, Farshad Farzadfar¹⁹, Gladwell Gathecha²⁰, Pascal Geldsetzer^{11,21}, Mongal Singh 158 Gurung²², Corine Houehanou²³, Nahla Hwalla²⁴, Lindsay Jaacks²⁵, Jutta Jorgensen²⁶, Gibson 159 Kagaruki²⁷, Khem Karki²⁸, Demetre Labadarios²⁹, Nuno Lunet^{5,30}, Maja E. Marcus³¹, Joao Martins³², Mary Mayige²⁷, Omar Mwalim^{33,34}, Kibachio Joseph Mwangi^{20,35}, Bolormaa Norov³⁶, Rebekka Rühle³¹, Sahar Saeedi Moghaddam³⁷, Jacqueline A. Seiglie³⁸, Abla M. Sibai³⁹, Bahendeka Karaireho Silver⁴⁰, Andrew Stokes⁴¹, Lela Sturua⁴², Adil Supiyev⁴³, Michaela 160 161 162 163 Theilmann¹¹, Lindiwe Tsabedze⁴⁴, Sebastian Vollmer³¹, Kehinde D. Whyte-Ilori⁴⁵, Zhaxybay 164 Zhumadilov⁴⁶, Jennifer Manne-Goehler^{47,48}, Justine I. Davies⁴⁹⁻⁵¹ 165 166

167 Affiliations

168

¹Division of Hospital Medicine, Department of Medicine, University of Michigan, Ann Arbor, 169 Michigan, USA; ²Center for Indigenous Health Research, Wuqu' Kawoq, Tecpán, Guatemala; 170 171 ³Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central 172 America and Panama, Guatemala City, Guatemala; ⁴Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, Kampala, Uganda; ⁵Department of 173 174 Public and Forensic Health Sciences and Medical Education, Faculty of Medicine, University of 175 Porto, Porto, Portugal; ⁶EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal; ⁷Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique; ⁸Monitoring 176 Evaluation and Operational Research Project, Abt Associates, Kathmandu, Nepal; ⁹Department 177 of Global Health and Population, Harvard T.H. Chan School of Public Health, Harvard 178 179 University, Boston, MA, USA; ¹⁰Department of Global Health and Social Medicine, Harvard 180 Medical School, Harvard University, Boston, MA, USA; ¹¹Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; ¹²Africa Health Research Institute, Somkhele, 181 182 South Africa; ¹³Harvard Center for Population and Development Studies, Cambridge, USA; ¹⁴Institut National de Santé Publique, Burkina Faso; ¹⁵Ministry of Health, Victoria, Seychelles; 183 ¹⁶Institute of Social and Preventive Medicine, Lausanne, Switzerland; ¹⁷The Fred Hollows 184 Foundation New Zealand; ¹⁸University of Medicine and Pharmacy Carol Davila, Bucharest, 185 186 Romania; ¹⁹Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ²⁰Division of 187 Non-Communicable Diseases, Ministry of Health, Nairobi, Kenya; ²¹Division of Primary Care 188 and Population Health, Stanford University; ²²Health Research and Epidemiology Unit, Ministry of Health, Thimphu, Bhutan; ²³Laboratory of Epidemiology of Chronic and Neurological 189 190 191 Diseases, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin; ²⁴Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon; ²⁵Global 192 193 Academy of Agriculture and Food Security, The University of Edinburgh, Midlothian, United 194 Kindom; ²⁶Department of Public Health, University of Copenhagen, Copenhagen, Denmark; ²⁷National Institute for Medical Research, Dar es Salaam, Tanzania; ²⁸Department of 195 Community Medicine and Public Health, Institute of Medicine, Tribhuvan University, Kathmandu, 196 197 Nepal; ²⁹Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa; ³⁰EPIUnit Institute of Public Health, University of Porto, Porto, Portugal; ³¹Department of 198 Economics and Centre for Modern Indian Studies. University of Göttingen, Göttingen, Germany: 199 ³²Faculty of Medicine and Health Sciences, National University of East Timor, Dili, Timor-Leste; 200 201 ³³Ministry of Health and Social Welfare, Elderly, Gender and Children, Zanzibar, Tanzania; 202 ³⁴Bergen Centre for Ethics and Priority Setting (BCEPS), Department of Global Public Health and Primary Care, University of Bergen, Norway; ³⁵Faculté de Médecine, Université de Genève, 203 Geneva, Switzerland; ³⁶National Center for Public Health, Ulaanbaatar, Mongolia; 204

205 ³⁷Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical 206 Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ³⁸Diabetes Unit, Massachusetts General Hospital, Boston, United States of America; ³⁹Epidemiology and 207 Population Health Department, Faculty of Health Sciences American University of Beirut, Beirut, 208 209 Lebanon; ⁴⁰Uganda Martyrs University | Saint Francis Hospital Nsambya, Kampala, Uganda; 210 ⁴¹Department of Global Health, Boston University School of Public Health, Boston, United States of America; ⁴²Non-Communicable Disease Department, National Center for Disease 211 Control and Public Health, Tbilisi, Georgia; ⁴³Laboratory of Epidemiology and Public Health, Center for Life Sciences, Nazarbayev University, Astana, Kazakhstan; ⁴⁴Ministry of Health, 212 213 Mbabane, Eswatini; ⁴⁵School of Medicine, University of Leeds, Leeds, West Yorkshire, United 214 215 Kingdom; ⁴⁶Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan; ⁴⁷Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 216 217 USA; ⁴⁸Medical Practice Evaluation Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ⁴⁹Institute for Applied Health Research, University of Birmingham, 218 UK; ⁵⁰Centre for Global Surgery, Department of Global Health, Stellenbosch University, Cape 219 220 Town, South Africa; ⁵¹Medical Research Council/Wits University Rural Public Health and Health 221 Transitions Research Unit, Faculty of Health Sciences, School of Public Health, University of the 222 Witwatersrand, Johannesburg, South Africa;"