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Abstract

In proof-of-stake (PoS) blockchains, stakeholders that extend the chain are selected according
to the amount of stake they own. In S&P 2019 the “Ouroboros Crypsinous” system of Kerber
et al. (and concurrently Ganesh et al. in EUROCRYPT 2019) presented a mechanism that hides
the identity of the stakeholder when adding blocks, hence preserving anonymity of stakeholders
both during payment and mining in the Ouroboros blockchain. They focus on anonymizing the
messages of the blockchain protocol, but suggest that potential identity leaks from the network-
layer can be removed as well by employing anonymous broadcast channels.

In this work we show that this intuition is flawed. Even ideal anonymous broadcast channels
do not suffice to protect the identity of the stakeholder who proposes a block.

We make the following contributions. First, we show a formal network-attack against Ouroboros
Crypsinous, where the adversary can leverage network delays to distinguish who is the stakeholder
that added a block on the blockchain. Second, we abstract the above attack and show that when-
ever the adversary has control over the network delay – within the synchrony bound – loss of
anonymity is inherent for any protocol that provides liveness guarantees. We do so, by first
proving that it is impossible to devise a (deterministic) state-machine replication protocol that
achieves basic liveness guarantees and better than (1− 2f) anonymity at the same time (where f
is the fraction of corrupted parties). We then connect this result to the PoS setting by presenting
the tagging and reverse tagging attack that allows an adversary, across several executions of the
PoS protocol, to learn the stake of a target node, by simply delaying messages for the target. We
demonstrate that our assumption on the delaying power of the adversary is realistic by describing
how our attack could be mounted over the Zcash blockchain network (even when Tor is used).
We conclude by suggesting approaches that can mitigate such attacks.

1 Introduction

Lamport, Shostak, and Pease introduced the Byzantine Generals Problem with the goal of achieving
consensus among a group of known parties. In their formulation, consensus is achieved even when a
fixed fraction of the parties, called Byzantine parties, exhibit arbitrary behavior. Since the parties are
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known to each other at all points of time, these protocols are also referred to as permissioned consensus
protocols. With Bitcoin, for the first time, Nakamoto introduced a consensus protocol, or a blockchain,
where parties can participate in the protocol without having their identity known to other parties.
Such protocols where an identity is not required are called permissionless protocols. In permissionless
consensus, an adversary can introduce a large number of parties called Sybils and hence the number
of adversaries can always be greater than the fixed fraction allowable by a permissioned consensus
protocol. To address this concern, permissionless protocols rely on the use of constrained resources.
They achieve security assuming that honest parties hold a majority of the available resources. Two of
the most commonly used resources are computation and stake in the system. For instance, Bitcoin [1]
uses computation whereas protocols such as Ouroboros [2] [3] and Algorand [4] use stake. These
resources are used to elect leaders (or proposers) who are allowed to contribute to the blockchain.
The leaders produce a proof of being elected as leaders (e.g., proof-of-work, or a verifiable random
function (VRF) output sufficiently close to zero) that can be publicly verified.

Privacy in PoS blockchains. The inherent public nature of permissionless blockchains makes
privacy of transactions an important concern – a party can learn about transactions even without
participating in the blockchain protocol.

Recently, there have been multiple elegant works that have considered the goal of obtaining privacy
in these blockchains. Some of them include ZCash [5], Monero [6], ZEXE [7], based on proof-of-work,
and Ouroborous Crypsinous [8], Ganesh et al. [9], and Baldimtsi et al. [10] based on PoS. In a
PoW blockchain, at a high-level, privacy of transactions is achieved by encrypting the content of the
transactions and providing a zero-knowledge proof that the transaction has been added correctly. In
a PoS blockchain, achieving privacy is more involved since the stake of a party is used in two ways:
(i) electing leaders/committees who contribute to the extension of the blockchain, and (ii) as a part of
transactions that update the stakes of parties. Thus, in order to guarantee the privacy of transactions,
it is inherently necessary to ensure that parties’ stakes are not revealed based on the execution of the
chain extension protocol. On the other hand, for Sybil resistance, the number of times a party is
elected is proportional to its stake. This, along with the fact that a public key associated with a VRF
is used to provide a verifiable proof of leadership, directly reveals an approximation of the parties’
stake. Thus, ensuring privacy of transactions in PoS blockchains while simultaneously providing Sybil
resistance is a challenge.

Independently of whether entire transactions are private, keeping the stake private is directly
related to the security of the PoS system itself. Otherwise, an adversary can mount a selective attack
on a party with a high stake (e.g., via malware or a denial-of-service) either to steal the secret key
of the party, or to prevent this party from functioning correctly in the PoS system. In either case,
the security of the entire system is weakened since a portion of “honest” stake is prevented from
functioning correctly.

Concerns with the approach to privacy. Ouroboros Crypsinous [8] (which we will refer to as
Crypsinous) and Ganesh et al. [9], tackle this challenge in a PoS setting. In order to hide the public
key associated with a VRF, these works replace VRFs with an anonymous verifiable random function
(AVRF), where the verification of eligibility is not done using any specific public key, but the set of
all public keys in the system. An anonymous VRF guarantees that by seeing the block, no one is able
to learn the identity of the party who added the block. This, in addition to the fact that transactions
are private, guarantees that by looking at the blockchain protocol messages, no information about
the stake of a particular party can be leaked. However, Crypsinous recognizes that protocol messages
travel over a public network – modeled as an ideal functionality F∆

N−MC (see Fig.1 [11])– and the
adversary can learn information about the identity of an elected party through the leakage of the
network channel, e.g., by associating a certain block to a certain IP address. They informally claim
that if the underlying communications were carried over an anonymous broadcast channel instead,
then the network meta-data of the sender is hidden, hence breaking the link between a block and its
sender. Since this claim is informal, no particular anonymous channel functionality is provided. The
work by [9] instead explicitly describe an ideal anonymous broadcast channel functionality that they
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introduce, and use that for all the communications. We elaborate further on the meaning of ideal
anonymous broadcast channel next.

Ideal anonymous broadcast channels. An ideal anonymous broadcast channel can be described
via an ideal functionality FABC, that captures the security properties we intuitively can hope to achieve
over a network.

A perfect definition of an ideal anonymous broadcast (ABC) – Fperfect
ABC – would be one that takes

as input a message m from a party (or adversary) and adds the message m to the buffers of all parties
without allowing any influence from the adversary on the delivery of messages. Such a functionality
however is very strong, and would trivially imply consensus, since all parties receive the same messages
at the same time.

Any party can register (or deregister). Let the list of registered parties be P = {P1 . . . Pn}.
The functionality maintains a message buffer M .

– Honest sender send : Upon receiving (SEND, sid,m) from some party Ps ∈ P, where
P = {P1, . . . , Pn} denotes the current party set, do :

1. Choose n new unique message-IDs mid1, . . . ,midn

2. Initialize 2n new variables Dmid1 := DMAX
mid1

. . . Dmidn := DMAX
midn

:= 1. These are
the delays and the maximum delays of the message for each party.

3. Set M = M ||(m,midi, Dmidi , Pi) for each Pi ∈ P
4. Send (SEND,m,mid1, . . . ,midn) to the adversary.

– Honest party fetching : Upon receiving (FETCH, sid) from Pi ∈ P :

1. For all tuples (m,mid, Dmid, Pi) ∈M set Dmid := Dmid − 1.

2. Let MPi
0 denote the subvector of M including all tuples of the form

(m,mid, Dmid, Pi) with Dmid = 0 (in the same order as they appear in M). Delete
all entries in MPi

0 from M and send MPi
0 to Pi.

– Adding adversarial delays : Upon receiving (DELAY, sid, (Tmid1 ,mid1), . . . , (Tmid` ,mid`))
from the adversary, do the following for each pair (Tmidi ,midi) :

1. If DMAX
midi

+ Tmidi ≤ ∆ and mid is a message-ID registered in the current M , set

Dmidi := Dmidi + Tmidi and set DMAX
midi

:= DMAX
midi

+ Tmidi ; otherwise ignore this
pair.

– Adversarial sender (partial) multicast : Upon receiving (MSEND, (m1, P1), . . . , (m`, P`))
from the adversary with P1, . . . , P` ∈ P:

1. Choose ` new unique message-IDs mid1, . . . ,mid`

2. Initialize 2` new variables Dmid1 := DMAX
mid1

. . . Dmid` := DMAX
mid`

:= 1

3. Set M = M ||(m1,mid1, Dmid1 , P1)|| . . . ||
(m`,mid`, Dmid` , P`)

4. Send (MSEND,m1,mid1, . . . ,m`,mid`) to the adversary.

Figure 1: F∆
ABC

Anonymous Broadcast functionality : F∆
ABC
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A more realistic candidate for an ideal anonymous broadcast functionality, would be one that
follows the definition of the original broadcast functionality F∆

NMC [11] (for which there exist candidate
protocols) and slightly modify it so that the identity of the sender of a message m is not revealed to
the adversary. In such a formalization, the adversary can still influence the buffer of honest parties, by
introducing targeted delays (within the synchronous bound ∆) to the messages sent by both honest
and corrupt senders. This is the formulation of ideal anonymous broadcast channel that we use in our
paper (described in Fig. 1) and we denote by F∆

ABC.
Ganesh at al. [9] introduce a different formulation of anonymous broadcast where an adversary

is only allowed to delay messages sent by malicious parties (cf. [9], page 10). Nevertheless, the
adversary is still allowed to add messages to the buffers of targeted honest parties. Looking ahead,
this adversarial capability is sufficient to mount the attacks we propose in this paper. This is because
the crux of our attack is to ensure that honest parties have different views, which is directly allowed
in their definition since the adversary can influence the buffer of honest parties.

Our Contribution

In this work, we show that while the claim of using an anonymous broadcast channel seems reasonable
at first, this does not suffice to hide the stakes of the parties. Specifically, we have the following
contributions:

• An anonymity attack in Crypsinous* that leverages network delay. We show that
even in the presence of ideal anonymous broadcast channels, an adversary is able to leverage a
synchronous network delay to partition the views of the parties so that, when a block is published,
it reflects the view of the block proposer, hence directly linking the block to the network identity
of its proposer. Formally, we show that, in contrast with the informal claims of Crypsinous [8],
they cannot securely instantiate the ideal private-ledger functionality without leakage. We do
so, by showing an environment that always distinguishes the simulated transcript from the real
world transcript of Crypsinous* (where * here denotes the version of Crypsinous augmented with
ideal anonymous broadcast channels) with a non-negligible probability. A similar attack can be
applied to the protocol of Ganesh et al. [9], even in presence of their own ideal anonymous
broadcast functionality, since the adversary only needs to influence the buffer of the honest
parties which they allow.

• Impossibility of anonymous (deterministic) PoS blockchain protocols. We show that
when parties receive inputs at different times (due to network delays), it is impossible to devise
a PoS blockchain protocol where both liveness and anonymity are guaranteed. We do so in two
steps. First, we show a lower bound for the existence of one-shot deterministic state-machine
replication protocol that achieves both (z, t)-liveness and (1−2f)-anonymity, where (z, t)-liveness
means that if a transaction was received by a z fraction of honest parties more than t time ago,
it should be added in the block, and (1− 2f)-anonymity means that every message sent by an
honest party in the protocol is anonymous within an (1−2f) fraction of the parties participating
in the protocol. Then we map this lower bound to the PoS setting by presenting the tagging and
reverse tagging attacks. These allow an adversary, across several execution of a PoS protocol
that satisfies liveness, to learn the stake of a set of target nodes (or a specific node), by simply
delaying messages for the target and corrupting f stakeholders.

• Practicality of the attacks. Our attacks rely on the capability of the adversary to control
the network delay incurred by the targeted parties, in order to influence their local view. In
practice, messages may reach their recipient quickly and it is unclear how an adversary can
prevent a party from receiving a message from other peers.

Nonetheless, we show that this type of attack can be carried out on the Zcash blockchain even
by a low-resource adversary.

4



We chose Zcash due to its similarity with Crypsinous and because, so far, there exist no imple-
mentations of privacy-preserving PoS blockchains.

In the following subsections, we elaborate on the intuition for our attacks.

1.1 An Anonymity Attack to Crypsinous*

Before describing the intuition behind the attack, we make two observations for private PoS protocols.
First, despite the privacy guarantees, in any protocol, the sender of a transaction will need to know
whether the transaction has been committed. This is necessary for the functioning of any blockchain
protocol. This allows the adversary to obtain a mapping between a transaction it created and the block
in which it was added. Second, since these blockchain protocols assume synchrony in the network, any
message received by an honest party will be received by all honest parties within ∆ time, where ∆ is
a pessimistic bounded network delay. However, within the ∆ time delay, an adversary can choose an
arbitrary delay for its arrival time. Note that such an adversarial capability respects the threat model,
since the definition of anonymous broadcast (Fig. 1) allows this. Specifically, it can make a transaction
take 0 time for some party while it takes ∆ time for another party. Using these two properties, we
show that, even if all communications use ideal broadcast channels (that hide the identity of a sender),
the adversary can still de-anonymize messages sent by specific parties.

Specifically, the adversary can perform an attack where it is trying to judge the frequency with
which a party P proposes a block compared to the rest of the network; this is directly related to P ’s
stake. In PoS protocols such as Crypsinous, the eligible block proposers propose blocks at discrete
intervals of time. Suppose these intervals are denoted as t, t + 1, t + 2, . . .. The adversary sends a
unique transaction txn to the party P at time < t. Of course, party P will share this transaction with
the rest of the network, but due to the network delay assumption, they will not receive it before time
t+∆. Whenever a party is elected, if it includes all the transactions in its own view in the next block,
then the adversary can perform a simple test to check whether P was elected: if txn was included in
the block, then P was elected, otherwise, it was not. We stress that merely encrypting transactions
does not help since a party should always be able to learn whether its own transaction was included
in the chain. Also, the adversary succeeds only probabilistically. However, by repeating the attack
multiple times, it can learn the approximate stake of party P .

In Section 3 we present a formal attack against the UC-security of Crypsinous*. We show an
environment that is able to distinguish the protocols transcript from the transcript generated by a
simulator interacting with an ideal functionality that does not leak the identity of the block proposer.

1.2 Impossibility of Anonymous (Deterministic) PoS Protocols

We leverage the idea behind the above attack and show that when the adversary can cause parties to
have different local views there exists no PoS protocol that can guarantee anonymity of stakeholders,
if liveness must be guaranteed.

To prove this, we consider the notion of anonymous one-shot state-machine replication protocol
with (z, t)-liveness and a-anonymity for parameters z, t and f . Here, (z, t)-liveness means that if a
z fraction of honest parties have received a transaction at time ≤ t, this transaction should be given
in the output; a-anonymity means that every message sent by an honest party in the protocol is
anonymous within an a-fraction of the parties participating in the protocol. We then prove that it is
impossible to construct a deterministic protocol that guarantees both (z, t)-liveness and better than
(1−2f)-anonymity. The main idea of the lower bound is to show that any gap (e.g., delay) between the
times with which inputs arrive at the parties, must manifest in the output of the protocol – if liveness
has to be provided. The generalization with parameter t shows that simply waiting for transaction
to be old enough does not suffice to obtain anonymity. We consider an attack where n participants
are partitioned in three sets P , Q and R, where P and Q are of size f fraction of n while R is of size
(1 − 2f) fraction of n. We then construct a sequence of worlds; in each world an input v is received
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by set R, Q and P with different time configurations (e.g., R receives it first, R and Q receive it first,
etc). We show that, if the state-machine replication protocol outputs v in any of the worlds, then the
participation with input-dependent messages of a specific set of parties will be exposed, which should
not happen if (1− 2f)-anonymity must be guaranteed. Hence, anonymity demands that the protocol
does not output v in any of the worlds. However, such a protocol, while satisfying anonymity would
not satisfy liveness, since there exists a world where enough parties received v early enough, in which
case the protocol should output v. We present this ideas formally in Section 4.

We then show the implication of the strategy we used for our lower bound to violate anonymity in
the PoS setting. The key observation is that in the PoS setting, participation of a party in the protocol
is related to the amount of stake the party owns. We show that an adversary, who has no information
about the stake distribution, by simply partitioning the network and offering different views to the
parties, is able to identify sets P,Q and R and consequently learn that they hold respectively f, f
and 1 − 2f fractions of the total stake. We call this the tagging attack, which can be mounted even
without corrupting any protocol player, and present it in Section 5.1. Furthermore, we present a
reverse tagging attack where an adversary can target a specific network party and learns the stake it
owns. This attack is shown in Section 5.2. Both attacks work for any deterministic PoS protocol that
is secure against malicious parties making up f fraction of the total stake.

1.3 Practicality of our attacks

Our attacks leverage the ability of an adversary to delay messages only for a set of targeted parties,
up to the synchrony bound ∆. This is a worst-case power given to the adversary when analyzing the
robustness of a distributed protocol. In real networks, however, messages might travel much faster
than ∆, so one might wonder whether a realistic adversary – who does not control the network globally
– is able to prevent a party from receiving a message before ∆, and thus mount our attacks in practice.

Contrary to this intuition, we show that, even on a fast network, delays can be induced by an
adversary by leveraging communication-related implementation details of blockchain software. Since
there are no implementations of privacy-preserving PoS blockchains, we present our attacks on a
privacy-preserving PoW blockchain: Zcash [12]. We describe how an adversary can delay the delivery
of a transaction to a targeted Zcash node, by exploiting implementation-specific behavior in the Zcash
software. Specifically we leverage the Invblocking procedure presented by Miller et al. [13]. This attack
exploits an optimization used to advertise new transactions in the Zcash peer-to-peer network, that
we describe in Section 6. We give a high-level overview here. When a Zcash node, say Z, learns a
new transaction tx, it will first send a short digest Htx to its peers before sending tx. Each peer first
checks whether they have already seen Htx. If a peer, say A, has not received Htx before, it replies
with a GETDATA request to obtain the full transaction. At this point, A will wait to hear from Z (and
not from any other peer) the full transaction, until a timeout (2 min).1 An adversary can exploit this
implementation detail to delay A. It just needs to corrupt one Zcash node and behave like Z.

We notice that this attack is still possible even if A connects over anonymous channels (e.g., it
uses Tor [14] or [15]), since Z can still establish a connection with A and then mount the Invblocking
procedure described above. In fact, as shown by Biryukov et al. [16], we observe that when Zcash
nodes use Tor, they are even more susceptible to delay attacks, since an adversary can leverage
implementation peculiarities of both Zcash and Tor. We discuss this in details in Section 6.

1.4 Mitigations

Finally, we propose ideas to mitigate the above attacks. We note that our attacks crucially leverage
the ability to present different inputs to the parties by controlling network delays, and the fact that
the output of the protocol reflects the inputs of the participants. What if we were able to ensure that
parties do not speak based on their local view, but on a view of the network as a whole? We introduce

1See Line 2171 of https://github.com/zcash/zcash/blob/master/src/net.cpp
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the concept of view sanitization, referring to a process by which a party sanitizes its local view by
sampling a view computed collectively by the network. The sanitization process would require honest
parties distributed across the network to collaborate in crafting the sanitized view. We call these
parties sanitizers. As expected, identifying honest parties that can serve as sanitizers is a challenge.
We elaborate on these challenges in Section 7.

2 Related Work

Many attacks have been proposed in literature and they can be broadly classified as de-anonymization
attacks that do clustering of pseudonyms of parties to link transactions to the actual party [17], [18],
[19] and de-anonymization attacks that analyze the network [20] [21] [22] [23] [24] [25] that leverage
the network to de-anonymize parties in cryptocurrencies. The attack of [23] leverages the unfairness
in anonymous communication protocols. In unfair protocols the adversary is allowed to peek at the
output when all other parties observe that the protocol failed. This leads to an intersection attack. As
we shall see later, this is somewhat similar to our attack where the unfairness is the delay an adversary
is allowed to set for parties. In [26] the authors describe how a denial of service attack lowers anonymity
as messages need to get retransmitted to be delivered, presenting more opportunities for attack for
certain anonymous communication systems.

In [24], (Danaan-gift Attack) the adversary donates a small tainted amounts of Zcash to the target’s
shielded address in hope that the tainted value would remain when the value is de-shielded. Our work
differs from other works since we de-anonymize the identity of parties on PoS even if one assumes
anonymous channels. We note that network related attacks in privacy preserving blockchains have
been acknowledged in previous works such as Zerocash [5] (See Section VI-C), where they discuss a
“poison-pill” block to target a user and Quis-Quis [27] where they assume network analysis attacks
are out of scope of their paper.

In [13] the authors introduce a “decloaking” method to find influential nodes in the Bitcoin network
that are well connected to a mining pool. This attack is similar to our attacks in the sense that they
find nodes on the Bitcoin network with highest computational power, where as we find nodes that
have higher stakes. In their setting the nodes are not anonymous and communication is done over
a public network, where as we assume anonymous stakeholders as well as ideal anonymous channels.
Yet, their approach can be effectively used in our scenario as well.

In [28], the authors present an anonymity trilemma. They analyze the relationship between band-
width overhead, latency overhead, and sender anonymity or recipient anonymity against a global
passive (network-level) adversary. They show that any anonymous communication protocol can only
achieve two out of the following three properties: strong anonymity, low bandwidth overhead, and
low latency overhead. In contrast, in our work we focus on anonymous PoS protocols and prove that
there is a tension between liveness and anonymity, and present a lower bound on the anonymity one
can hope to achieve in anonymous PoS protocols.

3 An Anonymity Attack to Crypsinous*

In this section, we describe the anonymity attack that can be mounted on Crypsinous*. Specifically,
first, we describe the leakage on the proposer identity allowed by the original Crypsinous [8]’s protocol.
We then explain how [8] conjectures that this leakage can be avoided if the protocol messages of
Crypsinous are exchanged over ideal anonymous broadcast channels. We call this version Crypsinous*.
Finally, we show an anonymity attack on Crypsinous* that refutes this claim. In other words, we show
Crypsinous and anonymous broadcast do not compose in the way envisioned by the authors.

Crypsinous: Privacy for transactions only. Crypsinous provides privacy guarantees to transac-
tions by having a block contain only encryptions of the transactions along with a zero-knowledge (zk)
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Figure 2: Overview of the attack

proof stating that the block was formed correctly by an eligible stakeholder. Thus, by just observ-
ing the blocks on the blockchain, an adversary only learns that “a party P has computed a private
transaction” without learning who P is or what the transaction is about.

However, an adversary observing network packets may gain additional information – for instance,
the adversary might learn the network identity of the block proposer for a given block or the identity
of the sender of a transaction. Crypsinous acknowledges that their protocol will incur such a leakage
when not using communication channels that provide anonymity.

To model the above process, they introduce an ideal private ledger functionality GPL (see Fig.
1 in Page 7 of [8]). Privacy of transactions is captured by the functionality by only revealing a
blinded version of the transaction’s contents that were added to the chain along with the sender of the
transaction. To account for what an adversary can learn about block proposers through the network
channels, the ideal functionality provides a leakage to the adversary (denoted by Lkglead in [8]). This
informs the adversary about the parties that would be selected according to the eligibility function.

Anonymous broadcast channels provide privacy to proposers. Do they? Crypsinous states
that: “If we assumed anonymous broadcast communication channels, the submitter (i.e., the block
proposer) would not be needed to be leaked, i.e., the requirement of leaking the submitter is strictly due
to network leakage.” (see footnote at Page 7 of [8]). Thus, if we had an ideal channel to anonymously
broadcast messages, then it is not possible to link a message to any specific honest party.

We now present an explicit attack even in the presence of anonymous broadcast channels. An
overview is presented in Figure 2. The horizontal scale represents time and the different time ticks
represent slots at which “leader elections” are held, i.e., parties attempt to propose the next block.
If a party succeeds at time slot tk in winning the lottery and to mine a block Bk, then it adds all
the transaction in its view and adds it to the block. An example blockchain is represented at the
bottom. All the transactions are encrypted; however, an adversary can identify transactions produced
by itself. Thus, while all encrypted transactions are represented in black, an adversarial transaction
is represented in red. In the example, the adversary sends the red transaction at time t to a party P
but due to a network delay (which may be imposed by the adversary), all other parties receive the
transaction only at time t+ ∆. Thus, if party P is elected at time t ≤ tk < t+ ∆, then it adds the red
transaction in block Bk. Note that we still respect the threat model of Crypsinous and do not assume
that the block interval is less than the network delay. For our attack to succeed we only require that a
block be produced by P between time t and t+∆. The adversary can identify that the lottery winner
was P since (i) it can identify its own transaction in Bk, and (ii) the time slot at which the block was
mined is available in the clear. For any other party, if they are elected in this time frame, Bk will not
contain the red transaction. The attacker uses this information to distinguish between P and other
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parties. In the next sections we formalize this attack, by showing an adversary that can violate the
UC-security guarantees of Crypsinous*.

3.1 Universal Composability in Brief

Before we formally present the attack we present a quick primer on universal composability (UC) [29].
In UC security we consider the execution of the protocol in a special setting involving an environment
machine Z, in addition to the honest parties and adversary. In UC, ideal and real models are considered
where a trusted party carries out the computation in the ideal model while the actual protocol runs
in the real model. The trusted party is also called the ideal functionality. For example the ideal
functionality GPL of [8] is a trusted party maintaining an ideal private ledger. In the UC setting, there
is a global environment (the distinguisher) that chooses the inputs for the honest parties, and interacts
with an adversary who is the party that participates in the protocol on behalf of dishonest parties. At
the end of the protocol execution, the environment receives the output of the honest parties as well
as the output of the adversary which one can assume to contain the entire transcript of the protocol.
When the environment activates the honest parties and the adversary, it does not know whether the
parties and the adversary are running the real protocol –they are in the real world, or they are simply
interacting with the trusted ideal functionality, in which case the adversary is not interacting with any
honest party, but is simply “simulating” to engage in the protocol. In the ideal world the adversary
is therefore called simulator, that we denote by S.

In the UC-setting, we say that a protocol securely realizes an ideal functionality, if there exist no
environment that can distinguish whether the output he received comes from a real execution of the
protocol between the honest parties and a real adversary A, or from a simulated execution of the
protocol produced by the simulator, where the honest parties only forward date to and from the ideal
functionality.

The transcript of the ideal world execution is denoted IDEALF,S,Z(λ, z) and the transcript of
the real world execution is denoted REALΠ,A,Z(λ, z). A protocol is secure if the ideal world tran-
script and the real world transcripts are indistinguishable. That is, {IDEALF,S,Z(λ, z}λ∈N,z∈{0,1}∗ ≡
{REALΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

3.2 Formal Attack to UC-security

According to the definition of UC-security as shown in the previous section a protocol is secure if an
environment is unable to distinguish between a real world execution and an ideal world execution.
Therefore in Crypsinous*, to formally show an attack, we show an environment Z that causes every
simulator S interacting with G∗PL (i.e., GPL without leakage) in the ideal world, to generate a transcript
(denoted by IDEALG∗

PL,S,Z) that is distinguishable from the transcript the real world adversary A
generates when executing the actual protocol Crypsinous* in the real world where it still has access to
the ideal functionalities F∆

ABC (an anonymous broadcast functionality, presented in Fig 1) and FNIZK (a
zero knowledge functionality). We denote this real-world execution as REALCrypsinous*,A,Z . Towards
showing this, we should first explain the ideal functionalities G∗PL and F∆

ABC,FNIZK, describe the entire
protocol Crypsinous* and then show how the simulator S interacts with GPL and how A interacts with
the protocol and F∆

ABC, FNIZK. In the following, we will report relevant parts of G∗PL and the protocol
which are sufficient to provide a gist of the attack. The reader can consult [8] for the full specification.

Abridged Version of the Ideal functionality G∗PL without leakage The ideal functionality G∗PL
is shown in Figure 3. In the actual GPL functionality, the simulator could read the honest inputs
to the functionality, denoted - ITH and know which party was activated with the MAINTAIN-LEDGER
command. In G∗PL we hide this information. But we cannot simply omit this information from ITH,
then the simulator would have no idea if this was a party that would win the leader election in the
real world or not. And thus the simulation is trivially impossible. To this end, we have the G∗PL
functionality add a bit b that indicates if a party would win, along with the honest input command.
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The bit b is set if the party is eligible to participate according to the selection function (denoted φ).
Thus the simulator does not learn the identity of the party, but does learn if the party that sent this
input would win in the real world or not.

The functionality manages a fixed ledger state state, a buffer of unconfirmed transactions
buffer, a sequence of honest input ITH, and a ptrP for each party P indicating its local state,
i.e., the length of the prefix of state which is visible to P . ~ptr is used to refer to a vector of
all parties’ local state pointers. αP is the relative stake of the party P and φf is the slot
leader assignment function.
Honest party interaction
Upon receiving an input I from a party P at time τ

1. (Extend chain) If I is a MAINTAIN-LEDGER command, determine stake of P and toss a
coin b that outputs 1 with probability φf (αP ). Update ITH = ITH‖(I, b, τ)

2. (Add transaction) If I is a SUBMIT transaction tx, add tx to the buffer. The blinded
version of tx hides the recipient and the amount, but the sender of the transaction S is
revealed to A. ITH is updated as ITH = ITH‖(I, blind(tx), τ) and send blind(tx) to A

3. (Read chain) If I is a READ command then it receives a blinded version of the state,
tailored for P , that is stateP . (The adversary can set this state). The blinded version
ensures that P can only use transactions that are meant for itself.

Adversarial interaction

1. (Read) Upon receiving a READ command from the adversary send back the blinded
transactions and a blinded version of ITH.

2. (Delay) The adversary sends (SETSLACK, ~ptr) and the ledger updates the pointer for
each P .

3. The adversary proposes a new block NEXT-BLOCK. GPL updates the state with this
block if the block is valid, else it updates the state with a default block.

Figure 3: Informal description of the modified ledger functionality of [8].

Abridged ledger functionality with no leakage G∗PL

Relevant Protocols from Crypsinous We focus only on the implementation of MAINTAIN-LEDGER
command that allows a party P to extend the ledger.

MAINTAIN-LEDGER is executed as in Protocol ΠMAINTAIN-LEDGER in Figure 4. We describe the protocol
in a F∆

ABC hybrid world (see Fig 1), i.e. assuming an anonymous network is available. At a high-level,
each party retrieves the latest chains and transactions from the network, by sending FETCH to the
functionality F∆

ABC. This is its local view. It then checks if is is eligible to extend the chain, and if so,
picks the longest local valid chain (see [2]) and extends it with its block.
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We represent a chain using C. To each user is associated a buffer and a Cloc. st is used to
denote the transaction part of a block.

1. Execute FetchInformation - Send FETCH to F∆
ABC and receive chains C1 . . . CM and

transactions (tx1 . . . txk). Pick the longest valid chain Cloc.
Add (tx1 . . . txk) to buffer.

2. Run StakingProcedure(buffer, Cloc) as follows:

Check if eligible, by evaluating φf (αP ) and an AVRF. If eligible:

(a) For each tx ∈ buffer, add the valid tx to st.

(b) Create a zero knowledge proof π proving that the party is eligible.

(c) Create a block B← (π, st) and extend local chain Cloc ← Cloc‖B
(d) Send (SEND, Cloc) to F∆

ABC

Figure 4: Ledger Maintenance Protocol

Abridged Protocol ΠMAINTAIN-LEDGER

Attack: no UC-simulator exists if G∗PL does not leak the identity of the block proposer.
We now show an environment that is able to set up the inputs to the parties, and network delay, that
can easily distinguish the ideal world from the real world.

The environment Z creates three parties P1, P2 and P3 and registers them to the system, with
a certain stake distribution say D. Z also initializes the buffer for each of the parties as buffer1 =
buffer2 = buffer3 = φ. Once the parties are initialized, Z proceeds as in Fig 5

The real world execution REALA,Crypsinous* In the real world executions, command MAINTAIN-LEDGER
is instantiated with protocol ΠMAINTAIN-LEDGER. As shown in Figure 4, in this protocol, each party Pi
would first fetch the most updated view from the network by sending FETCH to F∆

ABC and update their
bufferi accordingly. Then, it checks if it is eligible, and if so extends the chain with transactions in
bufferi. Assume that Z activates the players with stake distribution D1 = (P1, 0.001$), (P2, 0.001$),
(P3, 1$)). In this case, P3 is the only party who might be eligible to extend the chain. Since the delay
for parties P1 and P2 is set as immediate delivery ((P1, 0), (P2, 0), (P3,∆)), both parties will have
tx∗ in their buffer, whereas P3 will not. P3 does not include tx∗ in C∗ hence Z will output 1 with
probability equal to the probability of P3 winning the leader election. We assume an eligible party
would proceed with computing a block right away. Now because of the stake distribution we can say
Pr[P3 = leader] ≈ 1. Hence, Pr[Z → 1|REALA,Crypsinous*] = Pr[P3 = leader] ≈ 1.
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1. Activate the players P1, P2, P3 with stake distribution D1 = (P1, 0.001$), (P2, 0.001$),
(P3, 1$)).

2. Let parties P1, P2, P3 make transactions for tiny transfers (e.g., 0.000001 units) in
order to populate the chain without altering their stake.

3. For each slot let all parties query MAINTAIN-LEDGER and populate the blockchain
accordingly. For each SEND, sent to F∆

ABC, the transaction is added to the buffers of
P1, P2 and P3.

4. At a certain slot sl∗, let the buffers of the parties be
buffer1 = buffer2 = buffer3 = buffer. At this point, instruct P1 to make a transaction
tx∗ addressed to P2. P1 sends (SEND, tx∗) to F∆

ABC. Instruct the adversary A to set the
following vector of delays to F∆

ABC : ((P1, 0), (P2, 0), (P3,∆))

5. In slot sl∗ + ∆, all parties are instructed to perform MAINTAIN-LEDGER. Let C∗ be the
chain sent to F∆

ABC.

6. Decision: If C∗ does not include tx∗, output 1. Else output 0.

Figure 5: The distinguishing environment

Environment Z

The ideal world execution IDEALS,G∗
PL

Now, consider the ideal world.
In the ideal world Z instructs each Pi to invoke MAINTAIN-LEDGER. Each Pi sends I = MAINTAIN-LEDGER

to G∗PL. G∗PL updates ITH and sends I to the simulator S. The simulator will prepare the block by
following protocol ΠMAINTAIN-LEDGER but leveraging the fact that it can simulate the behaviour of FNIZK

and F∆
ABC. By simulating the network functionality F∆

ABC the simulator is able to learn the transac-
tions that are sent over the network by the real world parties. Moreover S learns the delays that the
environment Z instructed the real world adversary to set.

At slot sl∗, the simulator learns that a party has been elected and attempts to run ΠMAINTAIN-LEDGER.
The first step is to retrieve the information from F∆

ABC. In this case, S learns the delay configuration
((P1, 0), (P2, 0), (P3,∆)) and computes the buffers for each party, where buffer3 does not include tx∗.
Since the simulator only knows the buffers of each party and that one of the three parties has won the
selection, but not which one. To create C∗ the simulator will be required to pick one of these buffers.
Note that S does not know the distribution of the stake, so it needs to make a decision according to its
own strategy. However, fix any strategy for choosing the block proposer, one can show an environment
that chooses different stake distributions, that would nullify that strategy.

Hence, the probability of simulating this attack corresponds to the probability p of guessing the
party that is eligible to extend the chain. Hence, Pr[Z → 1|IDEALS,G∗

PL
] = p

Thus the advantage of the environment Z in distinguishing between the two worlds is (1 − p) 6=
negl(n) implying {IDEALF,S,Z(λ, z}λ∈N,z∈{0,1}∗ 6≡ {REALΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ . Since UC security
demands that there should be a single simulator that works for any environment and input distribution,
the above protocol is insecure.
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4 A Lower Bound on the Anonymity of State Machine Repli-
cation

In this section, we describe a lower bound on the anonymity of state machine replication protocols
tolerating a f fraction of Byzantine parties. In particular, we show that there exist executions of
deterministic state machine replication protocols in a permissioned setting where an honest party
does not obtain better than (1 − 2f)-anonymity. In the following section we then show how such a
lower bound can be used by an adversary to learn whether an honest party (or a set of honest parties)
hold a stake of (1− 2f) fraction or higher.

4.1 Definitions

We start with defining terminology required for our lower bound. A state-machine replication protocol
provides clients with the same interface as that of a single non-faulty server storing a sequence of
values. Typically, these values are stored as blocks, where each block contains a set of transactions,
each signed by the clients. We model the sequence of blocks output by a party Pi via a write-once
array [Bi1, B

i
2, . . . ] (initialized to ⊥ values), where Bij indicates the j-th block output by Pi.

Definition 1 (State Machine Replication). Let Πf be a protocol executed by parties P1, . . . , Pn who
receive transactions as input and maintain a local array B as described above. We say that Πf is
an f -secure z-live state machine replication protocol if the following properties hold when up to an f
fraction of parties is Byzantine:

• Consistency: If two honest parties Pi and Pj output blocks Bik and Bjk in slot k, then Bik = Bjk.

• External validity: The output block is either ⊥ or each transaction included in the output block
is signed by a client.

• Liveness: Any transaction that is input to an honest z fraction of the n parties is eventually
output by every honest party in some block.

We want to capture the notion of anonymity with state machine replication protocols. The notion
of anonymity allows a party sending a message in the protocol execution to remain indistinguishable
from a group of other parties. In particular, we define a protocol message as a-anonymous if a party
sending a message can be anonymous among an a fraction of all parties. We will now present a
definition for a single-shot anonymous state machine replication protocol:

Definition 2 (Single-shot anonymous state machine replication). Let Πf,z,t,a be a protocol executed
by parties P1, . . . , Pn who receive transactions as input and output a block B. We say that Πf,z,t,a

is an f -secure (z, t)-live a-anonymous single-shot state machine replication protocol if the following
properties hold when up to an f fraction of parties is Byzantine:

• Consistency: If two honest parties Pi and Pj output blocks Bi and Bj, then Bi = Bj.

• External validity: The output block is either ⊥ or each transaction included in the output block
is signed by a client.

• Liveness: Any transaction that is input to at least an honest z fraction of the n parties more
than t time units before the start of the protocol is output by every honest party.

• Anonymity: The protocol obtains a-anonymity, i.e., every message sent by an honest party in
the protocol is anonymous among an a fraction of parties participating in the protocol.
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Each time unit described in this section equals ∆ time. For simplicity, in this section, we always
refer to integral time units. Note that the above definition makes the liveness constraint concrete: it
specifies a time delay before the start of the execution of the single-shot SMR protocol such that if a
z fraction of honest parties receive an input, the protocol should output it. If the value of t is large,
the liveness constraint provided by the protocol is weak — only old enough transactions are required
to be output by the parties.2 Observe that z ≤ 1− f is a trivial bound on z since a protocol needs to
be live when all honest parties receive a transaction.

4.2 A (1− 2f)-anonymity Lower Bound

An adversary can control an f fraction of Byzantine parties and can know the state of each of these
parties. Hence, (1− f)-anonymity is a trivial lower bound on the anonymity that can be obtained for
any protocol. In the following, we present a tighter lower bound of a = (1 − 2f)-anonymity for an
f -secure (z, t)-live a-anonymous single-shot state machine replication protocol Πf,z,t,a when f < 1/3.

P

R
Q

Execution starts

time

P

R
Q P

R

Q

World 1 World 2 World 3

Figure 6: Intuition for the lower bound. The figure shows three different execution worlds. In
each world, the x-axis represents time and the vertical line represents the start of execution. Parties
are split into three groups P , Q, and R of sizes f, f , and 1− 2f respectively. If a group of parties is
placed before the vertical line, then they have received an input v before the start of execution.

A B ……

i i-1 i-2 0 -1i+1

Execution starts

Figure 7: The notation World W i,i−1
A|B . A world representing the times when parties receive inputs.

The x-axis represents time units before the start of execution. While times are represented as integers,
they should be thought of as integral multiples of ∆. In this world, parties in set A and B receive
inputs i and i− 1 time units before the start of execution.

Intuition. Let us first reason why this holds for t = 0, i.e., for a protocol that guarantees an output
of v when (1 − f) fraction of honest parties have received the same input v before the start of the
protocol execution. The value of a = 1− 2f . Suppose the parties are split into three sets P , Q, and
R of sizes f , f , and (1− 2f) respectively. If the protocol starts in a world (World 2 in Figure 6) with
no faulty parties and with an input v that is sent to parties in P and R, then for the liveness property

2We assume that parties in the protocol execution have large enough bandwidth available to them and are as such
not constrained by the available bandwidth.
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to hold, all honest parties output v. Hence, if the protocol required parties in R (and also P ) to send
a message that resulted in the output to be v, then the protocol obtains anonymity no better than
1− 2f . This is because in a different world (World 1 in Figure 6), parties in P could be corrupt and
honestly following the protocol specification, and hence R does not obtain more anonymity than the
size of its set (recall that parties in Q did not obtain the input and R cannot detect that P is corrupt
if it follows the protocol specification). Thus, it remains to prove that corrupt P ’s messages alone
does not result in all honest parties to output v in World 2. Observe that if this were the case, then
in a different world (World 3 in Figure 6) where only honest P obtains the input, the output will still
have been v (since R’s contribution did not matter and the protocol is deterministic). However, in
this world, P obtains f < 1− 2f -anonymity for f < 1/3.

Formal lower bound. We now present our lower bound for a general t, z, and f < 1/3. Throughout,
we assume that the parties are split in three groups P , Q, and R that respectively contain f , f , and
1 − 2f fractions of all parties. We use the notation W i,i−1

A|B to denote the order in which an input v

arrives at sets of parties A and B in a given world (see Figure 7). Specifically, the notation W i,i−1
A|B

means that in this world, the input v is received by parties in set A and set B at i and i− 1 units of
time respectively, before the start of the protocol. To clarify, if a party receives an input i = 0 time
units before the start of the protocol, the party has received the input when the protocol starts. If
i < 0, then the party does not have access to the input at the start of the protocol. Also, observe that
due to the ∆-synchrony constraint, a group of honest parties can only receive an input at most one
time unit (∆ time) after the first honest party receives this input. This explains why the time units i
and i− 1 are always consecutive in any world.

Our lower bound results will require sending only one input to different parties at different times,
and hence, the notation W i,i−1

A|B suffices. Moreover, since only one input v is sent, the output is either

v or a ⊥. We now prove a sequence of lemmas that help us eventually prove the desired lower bound
on anonymity. Please refer to Figure 8 to aid the understanding of Lemmas 1 and 2.

Q
P ……

l l-1 0 -1l+1
R

Q
P ……

l l-1 0 -1l+1
R

Outputs ⊥ Should output ⊥

……

l l-1 0 -1l+1

Q
P ……

l l-1 0 -1l+1
R

Outputs ⊥ Should output ⊥

Q
P

R

R-anonymity P-anonymity

Figure 8: Figure representing the worlds used in Lemmas 1 and 2.

Lemma 1 (R-anonymity). Assume Πf,z,t,a provides better than (1 − 2f)-anonymity and f < 1/3.

Let 0 ≤ ` ≤ t. If the output of Πf,z,t,a in World W `,`−1
Q|P,R is ⊥ then the output of Π in World W `,`−1

Q,R|P
is also ⊥.

Proof. By assumption, the output of W `,`−1
Q|P,R is ⊥. In World W `,`−1

Q,R|P parties in Q and R receive input

v, ` time units before the start of the protocol. If the output of Πf,z,t,a in W `,`−1
Q,R|P were v then parties

in R do not obtain anonymity better than 1− 2f . This is because the protocol is deterministic, and
the only aspect that changed is the fact that parties in R received the input earlier. This must be a
result of at least one party in R sending a message based on the input v.

This contradicts the claim that Πf,z,t,a provides better that (1 − 2f)-anonymity. Therefore, the

output of Πf,z,t,a in worlds W `,`−1
Q|P,R and W `,`−1

Q,R|P must be ⊥.

Lemma 2 (P -anonymity). Assume Πf,z,t,a provides better than (1−2f)-anonymity and f < 1/3. Let

0 ≤ ` ≤ t. If the output of Πf,z,t,a in World W `,`−1
Q,R|P is ⊥ then the output of Πf,z,t,a in World W `+1,`

P |Q,R
is also ⊥.
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Proof. By assumption, the output of W `,`−1
Q,R|P is ⊥. The only difference between World W `,`−1

Q,R|P and

World W `+1,`
P |Q,R is in P receiving the input ` + 1 time units earlier instead of ` − 1 time units. If

the output of Πf,z,t,a in world W `+1,`
P |Q,R is v, then parties in P do not obtain better than f < 1 − 2f

anonymity. This is because the protocol is deterministic, and the only aspect that changed is the fact
that parties in P received the input earlier. This must be a result of at least one party in P sending a
message based on the input v. This contradicts the claim that Πf,z,t,a provides better that (1− 2f)-

anonymity. Hence, the output of Πf,z,t,a in World W `+1,`
P |Q,R must be ⊥.

Lemma 3 (Q-anonymity). Assume Πf,z,t,a provides better than (1−2f)-anonymity and f < 1/3. Let

0 ≤ ` ≤ t. If the output of Πf,z,t,a in World W `,`−1
P,R|Q is ⊥ then the output of Πf,z,t,a in World W `+1,`

Q|P,R
is also ⊥.

Proof. Follows similarly to the proof of Lemma 2.

Lemma 4 (Invariance of Anonymous Output). Assume Πf,z,t,a provides better than (1−2f)-anonymity

and f < 1/3. For any 0 ≤ ` ≤ t, the output of Πf,z,t,a in (i) World W `,`−1
Q,R|P is ⊥, and (ii) in

World W `,`−1
P,R|Q is ⊥.

Proof. We prove the statement by induction.

Base case: ` = 0. We first note that when ` = 0, the output of Πf,z,t,a in World W 0,−1
Q|P,R must be

⊥. If the output was v, Πf,z,t,a would not provide better than f < (1 − 2f)-anonymity to parties in
Q. This is because in this world, Q is the only set of parties who have received v before the start of
the execution and who could have participated with input v. Hence, the output of Πf,z,t,a in W 0,−1

Q|P,R

is ⊥. Next, it follows from Lemma 1 that the output of Πf,z,t,a in World W 0,−1
Q,R|P is also ⊥.

Starting with World W 0,−1
P |Q,R and using a similar argument, we can show that the output in

World W `,`−1
P,R|Q is ⊥.

Inductive step: ` = k.

Proposition 1. Assume Πf,z,t,a provides better than (1− 2f)-anonymity. If the output of Πf,z,t,a in

worlds W k,k−1
Q,R|P and W k,k−1

P,R|Q is ⊥, then the output of Πf,z,t,a in worlds W k+1,k
P,R|Q and W k+1,k

Q,R|P is also ⊥.

By inductive hypothesis we know that output of Πf,z,t,a in worlds W k,k−1
Q,R|P and W k,k−1

P,R|Q is ⊥. Using

this hypothesis and respectively applying Lemmas 2 and 3, we can state that the output of Πf,z,t,a

in worlds W k+1,k
P |Q,R and W k+1,k

Q|P,R is also ⊥. Next, we can apply Lemma 1 to state that the output of

Πf,z,t,a in worlds W k+1,k
P,R|Q and W k+1,k

Q,R|P is also ⊥. This proves the proposition.

Theorem 1. For any deterministic single-shot anonymous state machine replication protocol Πf,z,t,a

satisfying Definition 2, there exists an execution that cannot provide better than a = (1−2f)-anonymity
when z = 1− f and f ≤ 1/3 .

Proof. We prove by contradiction. Let Πf,z,t,a be a protocol that achieves better than (1 − 2f)-
anonymity, and (z, t)-liveness.

Consider a World W t,t−1
Q,R|P where all parties are honest, and Q and R receive input v, t time units

before the start of the protocol, while parties in P receive it t − 1 time units earlier. Due to the
liveness property, the output of the honest parties in Πf,z,t,a in World W t,t−1

Q,R|P must be v.

Now consider a different World Ŵ t,t−1
Q,R|P that is exactly the same as World W t,t−1

Q,R|P except that

parties in Q are corrupt. However, the parties in Q follow the protocol specification. Hence, for
parties in R (and P ), this world is indistinguishable from World W t,t−1

Q,R|P . Hence, the honest parties

in P and R will still output v.
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However, this contradicts Lemma 4 which states that, for a Πf,z,t,a that provides better than
(1 − 2f)-anonymity and f < 1/3, for any 0 ≤ ` ≤ t, the output of Πf,t,a in World W `,`−1

Q,R|P must be

⊥.

Interpreting the lower bound constraints. We now make a few remarks about this lower bound.
First, our lower bound statement fixes a liveness constraint, and then argues that a protocol satisfying
this constraint cannot obtain anonymity for some execution. While we do not prove the converse,
it should hold true too: if we fix an anonymity constraint (for instance, to be (1 − f)), it should be
the case that the protocol will not be live. Second, the arguments in the lower bound assume that
parties use an input during the execution only if it was available to them at the start. However, there
may exist protocols that use inputs received after the start of the execution. While our lower bound
does not directly capture such protocols, the ideas used in the lower bound should be applicable to
these protocols too. In particular, there should always exist a point in time during the execution
after which a party cannot change its input; if the adversary sends an input to some parties before
this time, and to some parties after, then similar arguments as in the lower bound should hold true.
Third, the lower bound uses integral units of time for input delivery where each unit of time can be
of ∆ duration. This is achievable since the adversary is responsible for delivering messages in the
protocol (under the ∆-delay constraint), and it can always ensure that the message is delivered at
these integral boundaries, e.g., receiving input at l = 0 implies that the input is received at exactly
the start of protocol execution. Fourth, our lower bound holds for f ≤ 1/3. For a larger f , the lower
bound can be trivially extended to obtain a bound 1− 2(1/3) = 0.34-anonymity. Improving the lower
bound at a higher f is still an open question. Fifth, while the liveness bound is parameterized with
z, the anonymity bound assumes the maximum z value of 1 − f , i.e., a protocol provides liveness
only when all honest parties receive the transaction. The bound is trivially applicable even when the
protocol provides stronger liveness guarantees, i.e., when z < 1 − f . Moreover, the lower bound can
potentially be extended to obtain an anonymity bound of min(1− 2f,max(f, z − f)) for a generic z.
Finally, the lower bound setup assumes that the start of protocol execution is synchronized among
parties. It is unlikely that a protocol that works in a generic unsynchronized setting will fail to work
only when the execution starts are perfectly synchronized.

5 Attacks on Anonymity in the PoS setting

Our lower bound in Section 4 shows that the liveness requirement can be leveraged by an adversary
to determine the participation of the parties in the protocol. In a PoS setting, the participation of a
party in the blockchain protocol is directly related to the stake it owns. In this section, we connect the
strategy used to prove the lower bound for state-machine replication in the permissioned setting to
a strategy to learn the stake distribution in any PoS blockchain protocol that achieves (z, t)-liveness,
where z = 1− f . Here, f is the fraction of the total stake owned by the malicious parties.

We assume the adversary starts with no information about the stake distribution. The adversary
aims to establish a configuration as in World Ŵ t,t−1

Q,R|P to test that parties in a set R participated,

and hence infer information about their stake. The crux of the attack is to use the (z, t)-liveness
condition to identify R and P . In the PoS setting below, we set t = 0. This is equivalent to the case
of parties receiving the input v before the start of execution of the protocol or after the execution of
the protocol.

In Section 5.1 we show how an adversary over a few executions of the protocol can learn exactly a
set of parties P and R that hold f and 1− 2f fraction of the total stake respectively. In Section 5.2
we then show how an adversary can target a specific party and estimate the stake owned by the
party. This attack can be extended over multiple executions to other parties to learn the entire stake
distribution.

Setting input configuration. Consider the case when the protocol is executed at time r. To
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emulate the input configuration of Ŵ t,t−1
Q,R|P in our attacks, the adversary needs to make sure that

every transaction quickly reaches all parties, except for a specific transaction “v”, which is delivered
to the parties in P after a delay. To capture this network capability of the adversary we define a
function Delay(v, S) that is available to the adversary. Delay takes as input a value v, and a set of
parties S. This function adds a message v to the buffer of all parties in the set P \ S, where P is the
set of all parties in the network. We assume that if an honest party has v in its buffer, then the party
plays with v in the protocol. Section 6 shows how this function can be implemented in practice.
Setting corrupted Q. For this set, the adversary will corrupt stakeholders until it gains an f fraction
of the total stake.
Assumption on stake In our attacks we require that the stake of the honest parties do not change
drastically in each execution of the protocol. For simplicity of presentation we assume that the stake
of the participants remains constant.

5.1 The Tagging Attack

Let P be the set of all parties. In this attack, the goal of the adversary is to divide the set P into sets
P,Q and R such that they have f, f and 1− 2f fractions of the total stake. As noted earlier, the set
Q is corrupt, therefore the adversary already knows a set of parties that together make up f fraction
of the total stake.

As a warm-up, let us first consider a world, where the adversary does not corrupt anyone. The
goal of the adversary here is to divide the set of parties P into two sets of P and R such that they
contain f and 1−f fraction of the total stake. Initialize R as P and P as ∅. As noted earlier using the
Delay function, an adversary is able to control the buffers of parties. More specifically, the adversary is
able to ensure that some parties receive a value v after a certain delay. The strategy of the adversary
to populate P and R is as follows: Pick a random Pi ∈ P and add it to the set P and delete it from
the set R. Create a valid input v and call the function Delay(v, P ). Let the current execution of the
protocol be for a round r. If the output includes v, the adversary knows that Pi has stake less than
f . Now the adversary picks another Pi adds it to R and repeats the above attack with a different
v. The adversary repeats this process until some sets P and R results in an output without v. The
adversary then outputs P as a set that has at least an f fraction of the total stake and R as a set
that has at most an 1− f fraction of the total stake. Why? By the definition of liveness, if a value v
is not in the output of a protocol, it must mean that v was in buffers of parties with < 1− f fraction
of the total stake.

We call this the tagging attack, since an adversary in some sense tags the inputs of parties and
observes the output to see if the tagged inputs appear or not.

We describe the attack from the point of view of the adversary. The adversary knows the
set of parties P and initializes the set R = P and P = ∅. The goal of the adversary is to
populate P and R, such that they have at least f and 1 − f fraction of the total stake. We
denote an adversarially created value with the variable vr where r is the current round.
While the output of execution at round r includes vr

1. Pick an arbitrary party Pi and do P = P ∪ {Pi} and R = R \ {Pi}

2. Create a valid input value vr and run Delay(vr, P ) and update r = r + 1

Output R and P

Figure 10: Tagging Attack with no corruption

Tagging Attack
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 r = 0

r = 1

r = 2

r = 3

r = 4

OUTPUTINPUT DIST OF  PARTIES

Figure 9: The tagging attack. Let P = {P1 . . . P10} be the set of parties and each row represent the
input distribution and the output with this distribution. If an adversarial value is in the buffer of
a party we color the box blue. One by one the adversary adds a party Pi to a set P and observes
output. Finally when output is white, the adversary knows that the set P in round r = 4 has at least
f fraction of the total stake and the rest of the parties that constitute R has less than 1− f fraction
of the total stake

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

r = 0

r = 1

r = 2

r = 3

r = 4

OUTPUTINPUT DIST OF  PARTIES

P R Q

P + R Q

P R Q

P R Q

P R Q

Figure 11: The tagging attack with corrupted parties. Let P = {P1 . . . P10} be the set of parties and
each row represent the input distribution and the output with this distribution. Let the adversary
control Q = {P8, P9, P10} (boxes with the red stripes). If a view is set by the adversary we color
the box blue. In every execution of the protocol the adversary plays with the blue view. Initially all
parties start having blue, then the output is blue. The adversary one by one adds parties to the set
P , sets the input of P as white and observes the output. If the output is white, the adversary knows
that the set R has at most 1 − 2f fraction of the total stake and set P has atleast f fraction of the
total stake.
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Now let us consider the case where the adversary manipulates the way the corrupted set Q partic-
ipates. The adversary mounts exactly the same attack as above. But in every execution it instructs
the parties in Q to play with v. Now when the output does not include v, the adversary learns that
the set R will consist of parties that have at most 1−2f fraction of the total stake. And the remaining
parties, i.e. P\{Q∪R} make up P . Why? By the definition of liveness if the output does not include
v, it implies that the set Q ∪ R does not make up 1 − f of the total stake. Since the adversary also
knows the set Q that makes up f fraction of the total stake, the adversary concludes that R is a set
with at most 1− f total stake and therefore P = P \ {Q∪R} makes up at least f fraction of the total
stake. We present a visual example of the attack in Fig 11.

5.2 The Reverse Tagging Attack

In this section we present a targeted attack where an adversary is able to precisely estimate the stake
owned by a certain party, Alice. We denote the stake owned by Alice as stakeAlice.

In this attack, the adversary’s strategy is to deliver the inputs as follows. It delivers an input
v to every party, except Alice. The adversary now observes the execution of the protocol where Q
plays with v as well. If the output is not v, the adversary can conclude that stakeAlice > f . If the
output is v the adversary learns that the stakeAlice ≤ f . The adversary now repeats the process above
except that only f −d fraction of Q play with the value v. If the output is not v, the adversary learns
that stakeAlice > f − d fraction of the total stake. Why? If the output is not v by the definition of
liveness it is implied that < 1 − f fraction of the total stake played with input v. Now this implies,
((1 − f) − stakeAlice) + (f − d) < 1 − f , which implies stakeAlice > f − d. On the other hand, if the
output is v then the adversary runs the process again in the next round with a larger d. We note
than an exponential search gives the best results in estimating the stake of Alice. We present a visual
example of the attack in Fig 12.

ALICE P1 P2 P3 P4

ALICE P1 P2 P3 P4

ALICE P1 P2 P3 P4

ALICE P1 P2 P3 P4

OUTPUT

r = 0

r = 1

r = 2

r = 3

INPUT DIST OF  PARTIES

Figure 12: Example of reverse tagging attack. Each r includes the input distribution of the honest
parties (first row: Alice and P1 . . . P4), the malicious parties (second row: boxes with the red stripes)
and an output. If a view is set by the adversary we color the box blue. The adversary wants to find
out Alice’s stake. In round r = 1, the adversary gives P1 . . . P4 the blue view. The adversary plays
in the protocol with a blue view with a smaller fraction than f . It observes the output and sees it
is blue. In this case the adversary learns nothing. The adversary repeats this until r = 3 when it
observes the output is white. Now the adversary can conclude that Alice has more stake than the
fraction of adversarial stake that played with blue.
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We note that the adversary could do this with every honest party until it learns the exact stake
distribution of all parties.

Let the current round be r. We denote the adversarially created value with a variable vr.
The adversary wants to determine stakeAlice. The adversary initializes a fraction d to 0,
where f − d is adversary’s guess of stakeAlice.
While the output of execution at round r includes vr:

1. Update d = d+ 1
totalStake and create a valid input vr and run Delay(vr,Alice).

2. Instruct parties in Q that make (f − d) fraction of total stake to play with vr. Update
r = r + 1

Output (f − d) as the estimate of stakeAlice.

Figure 13: The Reverse Tagging attack

Reverse Tagging Attack

Remark (On deterministic protocols). Our lower bound in the previous section is only for determinis-
tic protocols that guarantee (z, t)-liveness. However, protocols may use randomness for various reasons
such as cryptographic operations, efficiency, and anonymity. Since protocols such as Algorand [4] and
Ouroboros [3, 8] use randomness for efficiency purposes (e.g., deciding the next committee members),
the above described attacks work so far as the protocols guarantee liveness. In general, while our lower
bound is constrained to deterministic protocols, the ideas described may extend to randomized protocols
too unless the protocols use randomness specifically to obtain anonymity.

6 Practicality of Our attacks

In this section we describe how our attacks can be carried out on a real-world blockchain network.
There exists no implementation of a privacy-preserving PoS blockchain, therefore we describe our
attacks for a privacy-preserving proof-of-work blockchain, namely the Zcash blockchain [12].

In Section 6.1 we present an overview of how the Zcash p2p network works. We then describe
(in Section 6.2) how to implement the Delay function defined in Section 5. We note that it suffices
to show an implementation of this function to mount the tagging (Section 5.1) and reverse tagging
attacks (Section 5.2).

6.1 The Zcash peer-to-peer network

Establishing connections between nodes. When a Node joins the Zcash network it needs to
connect to existing nodes on the network. To establish these connections the Node initiates a TCP
handshake with these nodes. To achieve this, the only information the Node needs is the IP address of
the network nodes. At the end of this process the Node will have established incoming and outgoing
connections to Peer1 . . .Peerk.

Receiving and sending transactions. Nodes on the Zcash p2p network follow a three-step protocol
to propagate transactions. To send a transaction to a peer, the Node first sends just the transaction
hash to Peer1, . . . ,Peerk and will follow up with the entire transaction only if it is requested. In more
detail propagating a transaction across the Zcash p2p network involves the following steps:

• Inventory step: In this step the Node announces the knowledge of a tx to its peers Peeri. The
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Node sends an INV message which contains Htx to its peers. If this hash was observed before,
Peeri simply ignores the INV message, else it proceeds to the get data step.

• Get data step : Peeri sends a command GETDATA, Htx to Node to request the transaction tx.
Note that if a Peeri has requested GETDATA for a particular INV message from Node then it will
ignore INV messages for the same transaction from other peers for a specific amount of time (2
min in Zcash3) and simply add those INV messages to a queue This time-out serves as a window
for the Node to respond to the GETDATA message, and will be relevant to our attack.

• Send tx : In this step Node responds with the tx for the corresponding INV it sent in the first
step. The Node then adds this transaction to its buffer.

6.2 Implementing Delay

We assume that the adversary already knows the IP address of a victim, let us denote such a node by
victimNode. We assume that the victimNode allows incoming connections and the adversary connects
to the victimNode using the process described above.

Recall that in the Delay function the goal of the adversary is to deliver a message to all nodes
except the victimNode. Delay can be implemented using a procedure called Invblocking, first described
in [13] and also used in [30]. For completeness we present the strategy here: 1) Create a transaction tx
and compute (INV, Htx). 2) Send (INV, Htx) to the victimNode and all the adversary’s peers 3) Upon
receiving GETDATA from all peers, respond to all peers with tx immediately except for the victimNode

The victimNode now waits for a time-out until it requests a GETDATA from another peer who also
sent an INV with the same Htx. Thus the adversary succeeds in delaying the receipt of tx to the
victimNode. Note that if an adversary has multiple connections to the victimNode it could delay
the transaction until the victimNode sends GETDATA to an honest peer. In Zcash, a block is mined
approximately every 75 seconds. Since the time-out is 2 minutes in Zcash, the Invblocking attack
allows the adversary to ensure a transaction is not in the buffer of a victimNode for an entire round,
which is what we need to implement Delay.

Anonymous communication. The most popular anonymous communication protocols to improve
privacy of nodes in cryptocurrencies like Bitcoin, Zcash and Monero are either Tor [14] or the recently
proposed protocol Dandelion [15]. We note that as long as an adversary can connect to a victimNode
either through Tor relays or a direct connection in the case of Dandelion, the adversary can mount the
Invblocking attack described in the previous section. This is so because the victimNode running the
Zcash daemon will always wait for a time-out until it requests a GETDATA from a different peer. We
note in the case that the node is set up as Tor hidden service the attack only results in the adversary
learning the OnionCat address that is used to represent the Tor hidden service. Moreover, according
to [16], the situation might actually be worse. In their work, they present techniques to fully control
the view of a victimNode by leveraging DoS prevention mechanisms of the Bitcoin software. The same
DoS prevention mechanisms exist in Zcash as well, and could be used by an adversary to control the
victimNode’s view.

7 Suggested Mitigation

In this section we discuss strategies that could mitigate or prevent the de-anonymization attacks
described above. Recall that our attacks are based on the fact that a network adversary can provide
different views to different parties and then, based on the protocol output, determine which parties
participated in the protocol. To defend against this attack, an effective countermeasure would be
to ensure that all parties get the same view. This can be done in two ways: 1) At the application

3See Line 2171 of https://github.com/zcash/zcash/blob/master/src/net.cpp
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level, by combining views received by honest parties across the network. 2) At the network level, by
leveraging reliable anonymous broadcast.

7.1 Sanitization on the application layer

A potential idea is to introduce an external protocol, that we call sanitization protocol, that parties
can use to get a view of the network that is not poisoned by targeted delay attacks. The sanitization
protocol, would be executed by a set of parties, the sanitizers, whose role is to collect transactions from
the network and jointly compute the sanitized view. When a stakeholder wants to participate in a PoS
protocol, instead of using its local view of the network, it will use the sanitized view. This idea has
been proposed in the past. Apostolaki et al. introduced SABRE [31], a Bitcoin relay network which
relays blocks through a set of dedicated nodes, that are resilient to routing attacks. Their goal was
to prevent routing attacks on Bitcoin that allows AS-level attackers to partition the Bitcoin network.
While their work was not intended to protect the anonymity of Bitcoin players, we observe that if
the SABRE infrastructure existed, it could serve to run the sanitization protocol. In SABRE [31],
the relay nodes are trusted and fixed. To remove this trust assumption an idea would be to rely on
the honest majority of stake in a PoS blockchain and select nodes from the network. This gives us a
guarantee that a majority of the selected nodes will be honest and we will not need to make any new
trust assumptions. Unfortunately, this approach does not work. Why? Selecting sanitizers based on
stake jeopardizes the stake privacy of the sanitizers, since by participating in the “sanitization process”
they can be targets of the very same attacks we have shown in the previous sections. Moreover, if the
sanitizers are not fixed and new sanitizers are picked in every round, the adversary might even learn
information on the stake distribution of the network.

Thus, if we trust the sanitizer nodes we can circumvent the lower bound in Section 4 since the
information is always sourced from a trusted set of ndoes and an adversary is no longer able to set
inputs for specific parties. On the other hand, if we assume that the sanitizers are selected based
on stake, our attacks will still hold. We leave it to future work to investigate an implementation
of sanitization with other assumptions that can circumvent the lower bound. To summarize, our
proposed approach based on sanitization has the following properties: Pros. It protects the privacy
of the participating parties in the chain extension protocol (i.e., the block proposers). Cons. Sanitizers
lose their privacy and need to be trusted.

7.2 Reliable Broadcast Mechanisms

One way to ensure all parties have the same view is to somehow enforce that a message sent over the
network is “received” by all parties at the same time. As outlined in the introduction, such guarantee
cannot be promised by gossip protocols since an adversary can delay messages arbitrarily or block
certain messages from reaching a target party (or set of parties). Reliable broadcast [32] [33] is a
protocol that has an agreement guarantee which says that if any correct node delivers m, then every
correct node delivers m. That is, even if a malicious party “sends” a message to a party it wont
be considered “delivered” until all honest parties have received it, thereby virtually setting ∆ = 0.
If realized this functionality would circumvent our lower-bound since, with no delay, the adversary
cannot split parties into subsets with differing views.

Unfortunately, existing candidates for reliable broadcast protocols require direct connections be-
tween all parties in the protocol and hence is not scalable. Recent works, such as Blinder MPC [34]
and PowerMix [35] propose a server-client model where the direct connection is not required among
all parties; rather a client need only to be connected to a smaller number of servers.

Unfortunately, these protocols are also not scalable: for a network of N clients and n servers,
PowerMix [35])require (O(log2(N)) server-server rounds of communication, while Blinder MPC [34]
requires O(n ·

√
N) computation overhead for each client.

Furthermore, in the server-client model, a network adversary might be able to delay the communi-
cation between a client and its servers, and hence still mount the attacks described in this paper. Pros
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If implemented, reliable broadcast channel virtually sets ∆ = 0 ruling out our delay-based attacks.
Cons Existing protocols are not scalable and would not be practical in a permissionless blockchain
setting.

8 Conclusion

In this work we showed that even if a PoS blockchain protocol is designed to preserve anonymity in
the application layer, a network adversary that can control the delivery of messages can de-anonymize
parties and even learn the stake distributions of parties in the system. We suggest some countermea-
sures but each come with their own limitations and require more thought and work. We hope that
our findings lead to new discussions on technologies to preserve anonymity of stakeholders against any
network adversary.
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