
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Localisable Monads

Citation for published version:
Constantin, C, Dicaire, N & Heunen, C 2022, Localisable Monads. in F Manea & A Simpson (eds), 30th
EACSL Annual Conference on Computer Science Logic (CSL 2022). 30th EACSL Annual Conference on
Computer Science Logic, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 30th EACSL Annual
Conference on Computer Science Logic, 14/02/22. https://doi.org/10.4230/LIPIcs.CSL.2022.15

Digital Object Identifier (DOI):
10.4230/LIPIcs.CSL.2022.15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
30th EACSL Annual Conference on Computer Science Logic (CSL 2022)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://doi.org/10.4230/LIPIcs.CSL.2022.15
https://doi.org/10.4230/LIPIcs.CSL.2022.15
https://www.research.ed.ac.uk/en/publications/a588da98-e856-4704-aa9a-567a79d1c49d


Localisable Monads
Carmen Constantin #

University of Edinburgh, UK

Nuiok Dicaire #

University of Edinburgh, UK

Chris Heunen # Ñ

University of Edinburgh, UK

Abstract
Monads govern computational side-effects in programming semantics. A collection of monads can
be combined together in a local-to-global way to handle several instances of such effects. Indexed
monads and graded monads do this in a modular way. Here, instead, we start with a single monad
and equip it with a fine-grained structure by using techniques from tensor topology. This provides
an intrinsic theory of local computational effects without needing to know how constituent effects
interact beforehand.

Specifically, any monoidal category decomposes as a sheaf of local categories over a base space.
We identify a notion of localisable monads which characterises when a monad decomposes as a
sheaf of monads. Equivalently, localisable monads are formal monads in an appropriate presheaf
2-category, whose algebras we characterise. Three extended examples demonstrate how localisable
monads can interpret the base space as locations in a computer memory, as sites in a network of
interacting agents acting concurrently, and as time in stochastic processes.
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1 Introduction

The computation of some desired value may influence parts of the environment in which the
computation occurs that are separate from the value itself. Rather than being accidental
byproducts, several modern programming platforms harness such computational side-effects
to structure computations in a modular way [31, 30]. The most well-known use is via
monads [28, 29], which let one analyse a computational effect apart from the rest of the
computation.

A computation may use more than one effect. The corresponding monads can then be
combined using distributive laws into a single monad [17, 3, 38]. This combination uses
the fact that the base category on which the monad lives is highly structured; usually it
is a cartesian category of presheaves. It may involve other formalisms such as Lawvere
theories [33, 32], but we focus on monads here. An especially interesting case is when many
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15:2 Localisable Monads

instances of effects of the same kind are in play [34]. A related use of monads is to have
several layers of granularity to an effect. Indexed monads and graded monads then model for
example different levels of access to a computational effect [12, 26]. Here, as in the previous
case, this is usually conceived of in a local-to-global fashion, where one specifies the behaviour
at each level and then adds interplay between the levels.

In this article we take a dual approach and start with a single monad on a category with
some structure. We then ask when and how that monad is the combination of constituent
monads. This work is a first step towards an intrinsic theory of computational effects, one
that doesn’t need to specify in detail how constituent effects have to interact in advance.
In particular, we do not postulate that the base category consists of presheaves, which is a
consequence rather than an assumption.

To do so, we follow the programme of tensor topology, by observing that any monoidal
category comes equipped with a notion of base space over which the category decomposes [10,
2, 9, 14]. This “spatial” aspect can be cleanly separated: any monoidal category embeds into
a category of global sections of a sheaf of so-called local monoidal categories (see Theorems 10
and 11 below). This is recalled in Section 2.

Our main question is when and how a monad on a monoidal category respects this
decomposition in the sense that it corresponds to a sheaf of monads on the local categories.
The answer is a localisable monad, discussed in Section 3. To connect back to the local-to-
global approach, we then characterise such monads as formal monads [35] in a (pre)sheaf
category in Section 4. This opens a way to analyse the (Kleisli) algebras for localisable
monads, which we do in Section 6. The breadth of this approach is demonstrated in Section 5,
where we work out three extended examples. They show a range of how localisable monads
may interpret the base space: as locations in a computer memory governed by a local state
monad; as sites in a network of interacting agents governed by a monad inspired by the pi
calculus; and as moments in time governed by a monad of stochastic processes. Section 7
concludes. Some proofs can be found in the extended version of this paper [5].

2 Tensor topology

This section summarises necessary notions from tensor topology. We have to be brief, and
for more details we refer the reader to [10, 2, 14, 9]. To save space we will not use the
graphical calculus for monoidal categories [16], but will not be careful in denoting coherence
isomorphisms in this section. The following notions and results hold for arbitrary monoidal
categories, but for simplicity we deal here with the symmetric monoidal case only.

▶ Definition 1. A central idempotent in a symmetric monoidal category is a morphism
u : U → I such that ρU ◦ (U ⊗ u) = λU ◦ (u ⊗ U) : U ⊗ U → U and this map is invertible.
We identify two central idempotents u : U → I and v : V → I when there is an isomorphism
m : U → V satisfying u = v ◦m. Write ZI(C) for the collection of central idempotents of C.

A central idempotent u : U → I is completely determined by its domain U . The central
idempotents always form a (meet-)semilattice. The order is defined by u ≤ v if and only if
u = v ◦m for some morphism m : U → V . The meet is given u∧ v = λI ◦ (u⊗ v) : U ⊗V → I.
The largest central idempotent is the identity 1: I → I.

▶ Example 2. Consider a (meet-)semilattice (L,∧, 1) as a symmetric monoidal category
C: objects of C are elements of L, there is a morphism u → v if and only if u ≤ v, and
u⊗ v = u ∧ v. Then ZI(C) ≃ L. In fact, ZI is a functor that is right adjoint to the inclusion
of the category of semilattices into the category of symmetric monoidal categories.
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▶ Example 3. If C is cartesian – that is, tensor products are in fact categorical products –
then central idempotents are exactly subterminal objects: objects U whose unique morphism
! : U → 1 to the terminal object is monic. In particular, if X is any topological space, the
category of sheaves over X has as central idempotent semilattice the collection of open sets
U ⊆ X under intersection.

▶ Example 4. If X is a locally compact Hausdorff topological space, the category of Hilbert
modules over C0(X) is symmetric monoidal. It is equivalent to the category of fields of
Hilbert spaces over X, and its central idempotents correspond to open subsets U ⊆ X.

Because of the previous examples, we can think of central idempotents as open subsets of
a hidden base space that any symmetric monoidal category comes equipped with. Tensor
topology develops general accompanying notions of locality, restriction, and support. For
example, we can restrict attention to the “part of the category that lives over an open set”,
as follows.

▶ Proposition 5. For every central idempotent u in a symmetric monoidal category C, there
is a symmetric monoidal category C∥u where:

objects are as in C;
morphisms A → B are morphisms A⊗ U → B in C;
composition of f : A⊗U → B and g : B⊗U → C is g◦(f⊗U)◦(A⊗U⊗u)−1 : A⊗U → C;
the identity on A is given by A⊗ u;
tensor product of objects is as in C;
tensor product of morphisms f : A ⊗ U → B and f ′ : A′ ⊗ U → B′ is (f ⊗ f ′) ◦ (A ⊗
σA′,U ⊗ U) ◦ (A⊗A′ ⊗ U ⊗ u)−1 : A⊗A′ ⊗ U → B ⊗B′. ◀

▶ Remark 6. In C∥u, any object A is isomorphic to A⊗ U : the isomorphism and its inverse
are given by the identity A⊗ U → A⊗ U in C and A⊗ u⊗ u : A⊗ U ⊗ U → A.

▶ Example 7. In the category C of sheaves over a topological space X, central idempotents
u correspond to open subsets U ⊆ X as in Example 3. The category C∥u is then equivalent
to the category of sheaves over U .

The intuition of a category C “living over” open subsets is further strengthened by the
following lemma, that says we can pass between the part of a category living over a larger
open subset and the part living over a smaller open subset.

▶ Lemma 8. If u ≤ v are central idempotents in C, with u = v ◦m, there is an adjunction:

C∥u C∥v⊥

C∥u≤v

C∥u≤v

The functor C∥u≤v is given by A 7→ A and f 7→ f ◦ (A ⊗ m) and is strict monoidal. The
functor C∥u≤v is given by A 7→ A⊗ U and f 7→ (f ⊗ U) ◦ (A⊗ u⊗ U)−1 ◦ (A⊗ U ⊗ v) and
is oplax monoidal. The unit of the adjunction is an isomorphism.

Proof. See [2, Lemmas 5.4 and 5.5]. ◀

To make the intuition built up so far completely rigorous, we now summarise a series of
results saying that any symmetric monoidal category may be regarded as a sheaf of monoidal
categories over a base topological space. To state them, we need to introduce mild conditions
on the central idempotents being respected by tensor products.

CSL 2022



15:4 Localisable Monads

▶ Definition 9. A symmetric monoidal category C is called stiff when the diagram on the
left below is a pullback for any object A and central idempotents u and v.

A⊗ U ⊗ V A⊗ V

A⊗ U A

A⊗ v
A⊗ u

A⊗ U ⊗ V A⊗ V

A⊗ U A⊗ (U ∨ V )

We say C has finite universal joins of central idempotents when it has an initial object 0
satisfying A⊗ 0 ≃ 0 for all objects A, and ZI(C) has binary joins such that the diagram on
the right above is a pullback and a pushout for all objects A and central idempotents u and v.

The following theorem says that any stiff monoidal category can be freely completed
with universal finite joins of central idempotents [2, Theorem 12.8]. Finally, Theorem 11 [2,
Theorem 8.6] says that any symmetric monoidal category C with universal finite joins has a
particularly nice form. It considers the semilattice of central idempotents ZI(C) as the basic
opens of a topological space X by taking its Zariski spectrum [2, Section 4].

▶ Theorem 10. Any stiff symmetric monoidal category allows a strict monoidal full embedding
into a symmetric monoidal category with finite universal joins of central idempotents.

▶ Theorem 11. Any symmetric monoidal category C with universal finite joins of central
idempotents is monoidally equivalent to a category of global sections of a sheaf u 7→ C∥u of
local monoidal categories over ZI(C).

Here, a monoidal category C is called local when u ∨ v = 1 implies u = 1 or v = 1 in
ZI(C). When ZI(C) is the opens of a topological space, that means there is a single focal
point that all nets in the topological space converge to – intuitively, C is local when it has
no nontrivial central idempotents. Being a sheaf of local monoidal categories means that the
stalks C∥x = colimx∈u C∥u over points x ∈ X are local monoidal categories.

It follows that any stiff symmetric monoidal category embeds into such a category of global
sections. This makes precise the intuition that a symmetric monoidal category continuously
varies over its base space of central idempotents.

3 Localisable monads

The previous section showed how any symmetric monoidal category C may be regarded as a
sheaf C∥u of local ones. In this section, we work out when a monad on C corresponds to a
sheaf of monads on C∥u. The crucial definition is as follows.

▶ Definition 12. A monad T on a monoidal category C is called localisable when there are
morphisms stA,U : T (A) ⊗U → T (A⊗U) for each object A and central idempotent u : U → I

satisfying:

T (ρA) ◦ stA,I = ρT (A) (1)
T (αA,U,V ) ◦ stA,U⊗V = stA⊗U,V ◦(stA,U ⊗V ) ◦ αT A,U,V (2)

ηA⊗U = stA,U ◦(ηA ⊗ U) (3)
µA⊗U ◦ T (stA,U ) ◦ stT (A),U = stA,U ◦(µA ⊗ U) (4)

stA,V ◦(T (A) ⊗m) = T (A⊗m) ◦ stA,U (5)
stB,U ◦

(
T (f) ⊗ U

)
= T (f ⊗ U) ◦ stA,U (6)

for any morphism f : A → B and central idempotents u : U → I and v : V → I, and where
m : U → V in (5) satisfies u = v ◦m.
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▶ Example 13. Consider a semilattice (L,∧, 1) as a symmetric monoidal category C as
in Example 2. A monad on C then is exactly a closure operator on L, that is, a function
(−) : L → L satisfying u ≤ u = u and u ≤ v =⇒ u ≤ v. This monad is localisable if and
only if u ∧ v ≤ u ∧ v for all u, v ∈ L. This is for example the case when L is the powerset of
a set X, and U is the closure of U ⊆ X in a fixed topology on X.

▶ Example 14. Strong monads [21, 18] are localisable: axioms (1)–(4) are a special case of
the axioms for a strong monad; and axioms (5)–(6) follow from naturality of strength. Hence
a monad T on a symmetric monoidal closed category is localisable if T (U ⊸ A) ≃ T (U) ⊸
T (A), namely with stA,U as follows (where coev denotes the curry of the identity on A⊗ U)

T (A) ⊗ U T
(
U ⊸ (A⊗ U)

)
⊗ T (U)

T (A⊗ U)
(
T (U) ⊸ T (A⊗ U)

)
⊗ T (U)

T (coev)⊗η

ev

▶ Example 15. It follows from Example 14 and [20] that a monad T on a cartesian closed
category is localisable as soon as T (A×B) ≃ T (A) × T (B). In particular, this applies for
any monad on the category of sheaves over a topological space X as in Example 3.

We will work out more examples in Section 5 below. Next we consider the main
consequence of a monad on C being localisable: it restricts to the categories C∥u.

▶ Proposition 16. If T is a localisable monad on C and u a central idempotent, the following
defines a monad T∥u on C∥u:

T∥u(A) = T (A) (η∥u)A = ηA ⊗ u

T∥u

(
f : A⊗ U → B

)
= T (f) ◦ stA,U (µ∥u)A = µA ⊗ u

Proof. This is mainly a matter of unwinding definitions and being careful in which category
compositions are taken. For example, the unit law (µ∥u)A ◦ (η∥u)T ∥u(A) = T (A) in C∥u

comes down to the following diagram commuting in C:

T (A) ⊗ U ⊗ U T 2(A) ⊗ U

T (A) ⊗ U T (A)

ηT A⊗U µA⊗u

ηT A⊗u⊗U

T (A)⊗u

T (A)⊗(u⊗U)−1

Similarly, naturality of η∥u, which is T∥u(f) ◦ (η∥u)A = (η∥u)B ◦ f in C∥u, comes down to
commutativity of the following diagram in C:

A⊗ U ⊗ U T (A) ⊗ U ⊗ I T (A) ⊗ U

A⊗ U ⊗ U T (A⊗ U) ⊗ I T (A⊗ U)

B ⊗ U T (B) ⊗ I T (B)

ηA⊗U⊗u ρT (A)⊗U

stA,U

T (f)

ηB⊗u ρT (B)

stA,U ⊗I

ρT (A⊗U )
f⊗U T (f)⊗I

Here the upper left square follows from (3), the right squares are naturality of unitors, and
the lower left square is naturality of η in C. The other laws are verified similarly. ◀

CSL 2022



15:6 Localisable Monads

▶ Example 17. Consider a closure operator T (u) = u on a semilattice C = L as in Example 13.
Then Tu(a) is simply a. This is a well-defined closure operator on the pre-order C∥u: if
a∧ u ≤ b, then a∧ u ≤ a ∧ u ≤ b because T is localisable. Collapsing the pre-order C∥u to a
partially ordered semilattice as in Remark 6 simply gives the downset ↓u = {a ∈ L | a ≤ u}
of u in L, and Tu just becomes the restriction of the closure operator to ↓u.

Recall that a (lax) monad morphism [35] from a monad (S, ηS , µS) on C to a monad
(T, ηT , µT ) on D consists of a functor F : C → D and a natural transformation φ : T ◦ F ⇒
F ◦ S making the following two diagrams commute:

F T ◦ F

F ◦ S

ηT
F

φF ηS

T 2 ◦ F T ◦ F ◦ S F ◦ S2

T ◦ F F ◦ S

µT
F

φ

F µS

φST φ

(7)

Monads on C and their (lax) morphisms form a category Monad(C). An oplax monad
morphism has ψ : F ◦ S ⇒ T ◦ F that respects units and multiplication instead of φ.

▶ Lemma 18. Let T be a localisable monad on C. If u ≤ v are central idempotents, then the
functor C∥u≤v from Lemma 8 is a (lax) monad morphism T∥v → T∥u with φA = T (A) ⊗ u.

Proof. Here we need to show the naturality of φ and the commutativity of the diagrams (7).
These directly follow from (5), bifunctoriality of the tensor product and a few commuting
diagrams that can be found in the extended version of this paper [5]. ◀

If F : C → D with φ : T ◦ F ⇒ F ◦ S is a (lax) monad morphism between localisable
monads S and T , and F is a (lax) monoidal functor with θA,B : F (A)⊗F (B) → F (A⊗B), we
say (F,φ, θ) is a (lax) morphism of localisable monads when the following diagram commutes:

TF (A) ⊗ F (U) T
(
F (A) ⊗ F (U)

)
TF (A⊗ U)

FS(A) ⊗ F (U) F
(
S(A) ⊗ U

)
FS(A⊗ U)

stF A,F U T (θA,U )

φA,U

θS(A),U

φA⊗F (U)

stA,U

In this sense, the monad morphism T∥v → T∥u of Lemma 18 is localisable.

▶ Corollary 19. If T is a localisable monad on C, and u ≤ v are central idempotents, then
the functor C∥u≤v from Lemma 8 is an oplax monad morphism T∥u → T∥v with ψA = stA,U .

Proof. Applying [35, Theorem 9] to Lemmas 8 and 18, we can compute ψ as follows. By
the adjunction, φA : T∥u(C∥u≤v(C∥u≤v(A))) → C∥u≤v(T∥v(C∥u≤v(A))) corresponds to a
morphism

C∥u≤v(T∥u(C∥u≤v(C∥u≤v(A)))) → T∥v(C∥u≤v(A))

and ψA : C∥u≤v(T∥u(A)) → T∥v(C∥u≤v(A)) is obtained by precomposing this morphism
with the unit A → C∥u≤v(C∥u≤v(A)) of the adjunction. Starting with φA = T (A) ⊗ u, this
gives exactly ψA = stA,U . ◀

▶ Remark 20. If T is a localisable monad on a stiff symmetric monoidal category C, and x is
a point of ZI(C) regarded as a topological space, we can go further and define a monad T∥x

on the stalk C∥x. The stalk C∥x is defined as the colimit of the diagram C∥u≤v : C∥v → C∥u
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ranging over all central idempotents u ≤ v containing the point x, taken in the category
of symmetric monoidal categories. Accordingly, T∥x is the colimit over the same diagram,
but now taken in the category of localisable monads. Using the concrete description in [2,
Definition 7.1] of these stalks, we can compute:

T∥x(A) = T (A) (η∥x)A = [1, ηA ◦ ρA]
T∥x

(
[u, f : A⊗ U → B]

)
= [u, T (f) ◦ stA,U ] (µ∥x)A = [1, µA ◦ ρT 2(A)]

If x ∈ u there is a localisable monad morphism T∥u → T∥x formed by the functor
C∥x∈u : C∥u → C∥x given by C∥x∈u(A) = A and C∥x∈u(f : A → B) = [u, f ] with the
identity natural transformation φ : T∥u ◦ C∥x∈u ⇒ C∥x∈u ◦ T∥x.

The representation of Theorems 10 and 11 is in fact functorial [2, Section 11]: a (lax)
monoidal functor T : C → C corresponds to a family of stalk functors T∥x : C∥x → C∥x that
are continuous in a certain sense. However, this notion of continuity is quite involved, and
we will not pursue it further here.

4 Formal monads, graded monads, and indexed monads

This section characterises localisable monads as formal monads in a certain presheaf category,
and connects to graded monads and indexed monads.

4.1 Formal monads
We will characterise localisable monads as formal monads in the 2-category [ZI(C)op,Cat]
with functors ZI(C)op → Cat as 0-cells, natural transformations as 1-cells, and modifications
as 2-cells [35, 25]. More precisely, we will define a formal monad on the sheaf C : ZI(C)op →
Cat that maps a central idempotent u to the category C∥u and morphisms u ≤ v to the
functors C∥u≤v : C∥v → C∥u of Lemma 8. A formal monad then consists of a natural
transformation T : C ⇒ C and two modifications µ : TT ⇛ T and η : idC ⇛ T satisfying the
usual monad laws. More precisely, the data of this formal monad consists of:

monads (T∥u, µ∥u, η∥u) on C∥u for every central idempotent u in C;
functors C∥u≤v : C∥v → C∥u for central idempotents u ≤ v in C;

such that the following equations hold in C∥u:

C∥u≤v(A) C∥u≤v(T∥v(A))

T∥u(C∥u≤v(A))

C∥u≤v((η∥v)A)

(η∥v)C∥u≤v(A)

T 2
u(C∥u≤v(A)) Tu(C∥u≤v(A))

C∥u≤v(T 2
v (A)) C∥u≤v(Tv(A))

C∥u≤v((µ∥v)A)

(µ∥u)C∥u≤v(A)

(8)

Moreover T is natural, meaning that if u = v ◦m then for any f : A → B in C∥v:

T∥u(C∥u≤vA) = C∥u≤vT∥v(A) (9)
T∥u

(
C∥u≤vf

)
= C∥u≤vT∥v(f). (10)

Given the definition of C∥u≤v, the first equation simply reads T∥u(A) = T∥v(A). The
following two lemmas follow from the definition of the adjoint functors C∥u≤v ⊣ C∥u≤v.

▶ Lemma 21. There is a comonad − ⊗ U on C for any central idempotent u of C. More
generally, there is a comonad − ⊗ U on C∥v for any central idempotents u ≤ v of C.

▶ Lemma 22. The category C∥u is the co-Kleisli category of the comonad − ⊗ U on C∥v.

CSL 2022



15:8 Localisable Monads

It follows from Lemma 22 that there is a canonical adjunction between the co-Kleisli
category C∥u and category C∥v (or the base category C for v = 1) given by adjoint functors
C∥u≤v ⊣ C∥u≤v such that −⊗U = C∥u≤v ◦C∥u≤v. These correspond to the adjoint functors
defined in Lemma 8. Further than Lemma 8, observe the following decomposition.

▶ Lemma 23. If u ≤ v ≤ w are central idempotents in C, the functors of Lemma 8 satisfy:

C∥u≤w = C∥v≤w ◦ C∥u≤v

C∥u≤w = C∥u≤v ◦ C∥v≤w

C∥u≤v = C∥v≤w ◦ C∥u≤w

C∥v

C∥w

C∥u

C∥u≤v

C∥u≤v

C∥v≤w

C∥v≤w

C∥u≤w

C∥u≤w

Proof. This follows directly from the definition of the functors. ◀

▶ Proposition 24. Let C be a stiff category. Let (T , µ, η) be a formal monad in [ZI(C)op
,Cat]

above C and let u ≤ v be central idempotents. Then the monad T∥v is a localisable monad
with the strength stA,U : T∥v(A) ⊗ U → T∥v(A⊗ U) defined as the following composition in
C∥v for any object A in C∥v:

T∥v(A) ⊗ U = C∥u≤vC∥u≤vT∥vA = C∥u≤vT∥uC∥u≤vA

C∥u≤vT∥uC∥u≤vC∥u≤vC∥u≤vA = C∥u≤vC∥u≤vT∥vC∥u≤vC∥u≤vA

T∥vC∥u≤vC∥u≤vA = T∥v(A⊗ U)

ε
u≤v

T ∥vC∥u≤vC∥u≤vA

C∥u≤vT ∥uη
u≤v

C∥u≤vA

(11)

where ηu≤v and εu≤v are the unit and counit of adjunction C∥u≤v ⊣ C∥u≤v.

Proof. We need to prove each of the axioms of Definition 12. This consist of many commut-
ating diagrams. The complete proof can be found in the extended version of this paper [5].
For simplicity, the proof is laid out for the case v = 1, but the same arguments hold for any
T∥v by using the relevant strength. ◀

▶ Proposition 25. A localisable monad T on a stiff category C induces a formal monad
on C in [ZI(C)op,Cat]. The natural transformation T : C ⇒ C has components T∥u, the
modification η : C ⇛ T has components η∥u, and the modification µ : T 2

⇛ T has components
µ∥u as in Proposition 16.

Proof. This proof consist in verifying the naturality of T , in showing that η and µ are
modifications (which follows directly from Lemma 18) and natural, and in proving that η
and µ satisfy the monad laws (which pointwise follows from Proposition 16). The complete
proof is included in the extended version of this paper [5]. ◀

▶ Theorem 26. For a stiff monoidal category C there is a bijective correspondence between
localisable monads on C and formal monads on C in [ZI(C)op,Cat] (via the constructions
of Propositions 24 and 25).

Proof. Start with a localisable monad T and follow Proposition 25 to get a formal monad T .
Then apply Proposition 24 to get a localisable monad T ′ which we claim equals the original
monad T . It is clear that T ′ equals T as a functor. It remains to check that the strength
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obtained this way on T ′ is the same as the original strength on T . To do this, note that the
strength (11) from Proposition 24 can be rewritten as follows, where st denotes the original
strength from the localisable monad:

εT ∥1F GA ◦ FT∥uη
u
GA = (T (A⊗ U) ⊗ u) ◦ (stA,U ⊗U) ⊗ (T (A) ⊗ (U ⊗ u)−1) = stA,U

Here we use the naturality of the strength and the fact that U ⊗ u is an isomorphism. We
prove similarly that using Proposition 25 then Proposition 24 gives us back the unit and the
multiplication of the starting localisable monad. To simplify the notation we used F and G

to denote C∥u≤1 and C∥u≤1.
Now start with a formal monad T , turn it into a localisable monad (T∥1, st), and then

into a formal monad T̃ . Then T̃∥u(A) = T∥u(A) and T̃∥u sends a morphism f : GA → GB

in C∥u given by f : A⊗ U → B to the morphism T∥u(A) → T∥u(B) in C∥u given by:

T∥1(A) ⊗ U
stA,U−−−→ T∥1(A⊗ U) T ∥1(f)−−−−→ T∥1(B)

We have to prove that this equals T∥u(f). To see this, first note that by the properties of the
adjunction, a map f in the coKleisi category C∥u is defined in the base category as ε ◦ F (f),
which we will denote fC. With this notation, and again using F and G to denote C∥u≤1

and C∥u≤1, we get:

T∥1(fC) ◦ stA,U = T∥1εB ◦ T∥1Ff ◦ εT ∥1F GA ◦ FT∥uηGA (12)

= εT ∥1B ◦ FGT∥1εB ◦ FGT∥1Ff ◦ FT∥uηGA (13)

= εT ∥1B ◦ FT∥uGεB ◦ FT∥uGFf ◦ FT∥uηGA (14)

= εT ∥1B ◦ FT∥uGεB ◦ FT∥uηGB ◦ FT∥uf (15)

= εT ∥1B ◦ FT∥uf (16)

= (T∥u(f))C (17)

Line (12) follows from the definition of the strength given in Equation (11) and the definition
of fC. The next three lines follow from naturality of ε used twice, Equation (10), and
naturality of η respectively. Line (16) uses the property of the adjunction and the last line
uses the definition of (T∥u(f))C.

Similarly, using Proposition 24 and then Proposition 25 gives back the unit and the
multiplication of the original formal monad. ◀

4.2 Graded monads and indexed monads
We now connect these notions to the pre-existing notions of E-indexed monads and E-graded
monads for a monoidal category E. Recall that an E-graded monad is a lax monoidal functor
E → [C,C]. It consists of functors Tu : C → C, a natural transformation ηA : A → TI(A),
and a transformation µu,v,A : Tu(Tv(A)) → Tu⊗v(A) natural in u, v, and A, satisfying some
coherence diagrams [12].

On the other hand, an E-indexed monad is a functor E → Monad(C). It also consists of
functors Tu : C → C, but now with transformations ηu,A : A → Tu(A) and transformations
µu,A : T 2

u(A) → Tu(A) natural in u and A, such that each (Tu, ηu, µu) forms a monad. The
formal monads on C as defined in Section 4 are ZI(C)-indexed monads. The next lemma
provides conditions under which indexed monads induce graded monads and vice versa.

Recall that a monoidal category has codiagonals when there is a natural transformation
A⊗A → A that respects the coherence isomorphisms [18].
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▶ Lemma 27. Let E be a monoidal category. If the tensor unit is initial, then an E-indexed
monad induces a E-graded monad. If the tensor product has codiagonals, then an E-graded
monad induces an E-indexed monad. If E is cocartesian, there is a bijective correspondence
between E-graded monads and E-indexed monads.

Proof. Suppose the tensor unit 0 in E is initial. An E-indexed monad (Tu, ηu, µu) then
induces an E-graded monad with the same Tu but ηA = η0,A and µu,v,A given by:

Tu(Tv(A)) Tu⊗0(T0⊗v(A)) T 2
u⊗v(A) Tu⊗v(A)Tu⊗!(T!⊗v(A)) µu⊗v,ATρ−1 (Tλ−1 (A))

Now suppose that E has codiagonals. An E-graded monad (Tu, η, µu,v) then induces an
E-indexed monad with the same Tu but ηu,A = ηA and µu,A given by:

T 2
u(A) Tu⊗u(A) Tu(A)µu,u,A T∇u (A)

If E is cocartesian, these two constructions are each other’s inverse. For example,
µu,A = µu,A because:

Tu+0(T0+u(A)) T 2
u+u(A) Tu+u(A)

T 2
u(A) Tu(A)

T∇u (A)

µu,A

µu+u,A

T 2
∇u

(A)

Tu+!(T!+u(A))

Tρ(Tλ(A))

Also ηA = ηA because ! : 0 → 0 is the identity. The other properties follow from naturality in
u and v. ◀

In particular, it follows that there is no difference between graded monads and indexed
monads over (join-)semilattices.

5 Examples

In this section we discuss three extended examples, showing that localisable monads may
interpret central idempotents as locations in a computer memory (Subsection 5.1), physical
locations in a network of interacting agents (Subsection 5.2), or time in extended processes
(Subsection 5.3). These examples use the following characterisation of central idempotents in
functor categories.

▶ Lemma 28. If C is a category and D is a symmetric monoidal category, then the functor
category [C,D] is again symmetric monoidal under pointwise tensor products. Regarding
ZI(D) as a full subcategory of the slice category D/I, there is an isomorphism of categories:

ZI[C,D] ≃ [C,ZI(D)]

Proof. Let u : U → I be a central idempotent in [C,D]. The functor [C,D] → D that
evaluates at a fixed object C ∈ C is strong monoidal and so preserves central idempotents.
Hence each component uC : U(C) → I represents a central idempotent in D. This is functorial
and gives one direction of the isomorphism.

Conversely, let F : C → ZI(D) be a functor. Define U : C → D by U(C) = dom(F (C))
and u : U ⇒ I by uC = F (C). This is functorial and gives the other direction of the
isomorphism. It is clear that these two assignments are inverses. ◀
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5.1 Quantum buffer
The (global) state monad on Set is a well-known monad that combines the properties of the
reader and writer monads to implement computational side-effect in functional programming.
It is defined as T (−) = S ⊸ (− × S) for a state object S ∈ Set. For example, to store one
bit, take S = {0, 1}. The central idempotents of Set are (represented by) the empty set ∅
and the singleton set 1. It follows that the (global) state monad is trivially localisable. This
example is trivial but can be expanded in several ways:
1. Expanded to the category Setn, whose objects are n-tuples of sets and morphisms are

n-tuples of functions. The state monad on some object A = (A1, . . . , An) in Setn is

T (A1, . . . , An) = (S1, . . . , Sn) ⊸
(
(A1, . . . , An) × (S1, . . . , Sn))

for a chosen state object S = (S1, . . . , Sn) ∈ Setn. For example, to store n bits, take
S1 = · · · = Sn = {0, 1}. It follows from Lemma 28 that ZI(Setn) ≃ 2n. While Setn is
symmetric monoidal closed, the state monad does not satisfy T (A⊸ U) = T (A) ⊸ T (U)
as in Example 14. There is still a strength, by currying the evaluation:

T (A1, . . . , An)×(U1, . . . , Un)×(S1, . . . , Sn) → (S1, . . . , Sn)×(A1, . . . , An)×(U1, . . . , Un)

We have not discussed commutativity yet, but note that this strength is commutative in a
sense made clear in Definition 34 below. Conceptually, this means that the computational
side-effects modelled by a state monad “over” a region (U1, . . . , Un) are independent of
those modelled by (V1, . . . , Vn), assuming that (U1, . . . , Un) × (V1, . . . , Vn) = 0.

2. The localisable state monad of the previous point does not just work for cartesian closed
categories such as Setn, but also for exponentiable objects in a symmetric monoidal
category. For example, we can replicate it in the category Hilb of Hilbert spaces and
completely positive linear maps used in quantum computation [16]. To store one qubit,
take S = C2. The monad then becomes T (−) = S∗ ⊗−⊗S, where S∗ = Hilb(S,C) is the
dual Hilbert space, which is isomorphic to T (A) = A⊗M2, where M2 is the Hilbert space
of complex 2-by-2 matrices. Similarly, to store n qubits, move to Hilbn. We can now see
a phenomenon that didn’t occur for cartesian categories: rather than a quantum memory,
this monad models a quantum buffer of n qubits, because there is no entanglement
between the different qubits. Because ZI(Hilb) = {0,C}, again ZI(Hilbn) ≃ 2n. The
strength map is yet again given by the curry of the evaluation map, which makes T (−) a
commutative localisable monad in the sense of Definition 34 below.

3. We can also promote the (global) state monad on Set in another direction, namely from
n = 1 or finite n to an arbitrary topological space X indexing the bits to be stored.
Consider the category Sh(X) of (Set-valued) sheaves on X, take S to be the constant
sheaf S(U) = {0, 1}, and define T (−) = S ⊸ (− ⊗ S). As in Example 3, the central
idempotents correspond to open subsets U ⊆ X, and this monad is still localisable. Its
stalks (as discussed in Remark 20) are the simple (global) state monads on Set storing a
single bit each.

4. Points 2 and 3 combine to model a quantum buffer over an arbitrary locally compact
Hausdorff topological space X. Consider the category HilbC0(X) of Hilbert modules over
C0(X), take S to be Hilbert module C0(X,C2) of continuous functions X → C2 that
vanish at infinity, and define T (−) = S∗ ⊗ − ⊗ S. As in Example 4, central idempotents
are open subsets U ⊆ X. Again, this monad is localisable, with T∥U = S∗

u ⊗ − ⊗ Su for
Su = C0(U,C2). In fact, this example is related to the one in point 3, as Hilbert modules
over C0(X) correspond to a Hilbert space internal to the topos Sh(X) by Takahashi’s
Theorem [2, 15].
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5.2 Concurrent processes
Suppose M1 is a monoid of actions that some agent 1 can perform, and M2 is a monoid of
actions that an agent 2 can perform. They could, for example, be free monoids over sets
of atomic actions. Then we can form the coproduct M1 + M2 of monoids, and quotient
out a congruence that specifies ab = ba for a ∈ M1 and b ∈ M2 when actions a and b are
independent, to get the monoid M of Mazurkiewicz traces [8, 37]. Now M localises to M1
by projections M → Mi that disregard actions of the other agent.

The following lemma engineers a single category with two central idempotents and a
monoid, that localises to the given ones. The idea is to take a product of categories, but to
add silent actions, that enforce the order in which both agents’ actions occur, as in the pi
calculus [27].

▶ Lemma 29. Let M1 and M2 be monoids in symmetric monoidal categories C1 and C2 that
have an initial object 0 satisfying A⊗ 0 ≃ 0 for all objects A. There is a symmetric monoidal
category C with a monoid M and central idempotents u1, u2, that allows an isomorphism
C∥ui ≃ Ci of monoidal categories under which Mi corresponds with C∥ui≤1(M).

If Ci does not yet have an initial object 0 satisfying A⊗ 0 ≃ 0, we may freely adjoin one to
obtain a well-defined symmetric monoidal category.

Proof. First construct a new category C′. Objects are pairs (A,B) of A ∈ C1 and B ∈ C2.
Morphisms (A,B) → (A′, B′) include pairs (f, g) of f ∈ C1(A,A′) and g ∈ C2(B,B′), to
which we freely adjoin morphisms τA,B : (A,B) → (A,B) for each object (A,B). Thus
morphisms are finite lists

(
(f1, g1), τ1, . . . , τn−1, (fn, gn)

)
where the domain of τn is the

codomain of fn ⊗ gn. Composition concatenates and then contracts:(
(f ′

1, g
′
1), τ ′

1, . . . , (f ′
n, g

′
n)

)
◦

(
(f1, g1), τ1, . . . , (fm, gm)

)
=

(
(f1, g1), τ1, . . . , (f ′

1 ◦ fm, g
′
1 ◦ gm), τ, . . . , (f ′

n, g
′
n)

)
Defining identity to be the trivial list (id[A], id[B]) makes C′ into a well-defined category.

Next, take the free symmetric monoidal category C′′ on C′. Objects of C′′ are finite
lists of objects of C′, and morphisms are pairs (π, h1, . . . , hn) of a permutation π of list
indices and a list of morphisms in C′; see for example [1]. Finally, consider the generalised
equivalence relation [4] on C′′ generated by

(I, 0) ⊗ τA,B ∼ (A, 0)
(0, I) ⊗ τA,B ∼ (0, B)(

π, (f1, g1), (f2, g2)
)

∼ (σ, (f1 ⊗ f2, g1 ⊗ g2))

where π is the bijection 1 7→ 2 and 2 7→ 1 on {1, 2}. This is a symmetric monoidal congruence,
so C = C′′/∼ is a well-defined symmetric monoidal category.

Because 0 is initial and A ⊗ 0 = 0 in Ci, the objects (I, 0) and (0, I) in C′ become
central idempotents u1, u2 in C, and moreover (A,B) 7→ [A]∼ is an isomorphism C∥u1 ≃ C1
and similarly for u2. Finally, M = (M1,M2) is a monoid in C, that localises to Mi by
construction. ◀

In the proof of the previous lemma, we could alternatively have described C as consisting
of formal string diagrams generated by C1 × C2 and the silent actions τA,B [6], or as terms
in a formal syntactic language [19].
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▶ Example 30. Let Mi be monoids in Ci = Set. They induce writer monads Ti(A) = Mi ⊗A
on Ci. Now the monoid M in the category C of the previous lemma induces a writer monad
T on C. The monad T is localisable by Example 14, and T∥i corresponds to Ti under
the isomorphism C∥i ≃ Ci. Thus T tracks the agents’ actions as side effects during a
(distributed) computation.

It seems possible to extend this example to a network where the communicating agents
form the points of an arbitrary topological space.

5.3 Stochastic processes
Write Meas for the category of measurable spaces and measurable functions. This is a
symmetric monoidal category, where the tensor unit is the singleton set with its unique
σ-algebra, and the tensor product of two measurable spaces is the cartesian product of the
sets with the tensor product of the σ-algebras. The monoidal category Meas has only two
central idempotents: the empty set ∅, and the tensor unit 1 itself.

Instead, consider the functor category [N,Meas], where the partially ordered set N is
considered as a category by having a morphism m → n if and only if m ≤ n. Its objects
are sequences X1, X2, X3, . . . of measurable spaces. Lemma 28 shows that this category
has many more central idempotents. It follows that central idempotents u : U ⇒ 1 in
[N,Meas] correspond to upward-closed subsets of N ∪ {∞}, or more succinctly, to elements
of n ∈ N ∪ {∞}, by

U(m) =
{

∅ if m < n

1 if m ≥ n

The Giry monad G : Meas → Meas takes a measurable space to the set of probability
measures on it [13]. It extends to a monad on [N,Meas].

▶ Example 31. The monad Ĝ = G ◦ (−) on [N,Meas] is localisable, where the maps
Ĝ(X) ⊗ U ⇒ Ĝ(X ⊗ U) can simply be taken to be identities (because G(∅) = ∅). The
restricted category [N,Meas]∥n is [{n, n+ 1, . . .},Meas], and the monad Ĝ∥n is simply the
restriction of Ĝ to {n, n+ 1, . . .}.

The adjunction between Meas and the Kleisli category Kl(G) lifts to an adjunction
between [N,Meas] and [N,Kl(G)]. The latter is not equivalent to the Kleisli category of Ĝ
because the functor [N,Meas] → [N,Kl(G)] that turns a sequence of elements of measurable
spaces into a sequence of Dirac measures is not essentially surjective [36, Theorem 9].

The objects of [N,Meas] are stochastic processes [24, 13, 11]. Instead of (N,≤), we could
equally well have taken continuous time (R≥0,≤). In fact, we could also have regarded the
monoid (N,+, 0) or (R≥0,+, 0) as a one-object category. Then [N,Kl(G)] would consist of
stationary processes, but the central idempotents would remain the same by Lemma 28:
ideals of N or R≥0 under + are also upward-closed subsets.

Rather than stochastic (Markov) processes, that depend on the history thus far (one time
step ago only), we could have taken more interesting partially ordered sets than the totally
ordered ones N and R≥0.

6 Algebras

Let C be a symmetric monoidal category. As we have seen in Section 4, a localisable
monad T : C → C is equivalently described as a formal monad T∥− in the 2-category
K = [ZI(C)op,Cat]. What are its formal (Eilenberg-Moore) algebras?
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The general answer is described in [23, 35]. The formal algebra category is an object of K
satisfying the following. For any object X ∈ K, the formal monad T∥− induces a (concrete)
monad K(X,T∥−) on the category K(X,C∥−); this monad sends a natural transformation
β : X ⇒ C∥− to the natural transformation with components T∥u ◦ βu : Xu → C∥u. This
(concrete) monad has a (concrete) Eilenberg-Moore category of algebras. Objects are pairs
of a natural transformation β and a modification θ of type

C∥u

Xu C∥u

βu T ∥u

βu

θu

(18)

satisfying the algebra laws. Morphisms are modifications φ : β ⇛ β′ satisfying:

Xu

C∥u

C∥u

βu

T ∥u

βu β′
u

θu φu =

Xu

C∥u

C∥u

βu

T ∥u

β′
u β′

u

φu

θ′
u

(19)

This defines the object-part of a 2-functor Kop → Cat. Now A ∈ K is the formal algebra
object of the formal monad T∥− when this 2-functor is naturally isomorphic to K(−, A).

▶ Proposition 32. Let T be a localisable monad on a symmetric monoidal category C. The
formal monad T∥− in [ZI(C)op,Cat] has a formal algebra object A∥− where A∥u = Alg(T∥u)
is the category of algebras of T∥u.

Proof. If u ≤ v then the monad morphism C∥u≤v of Lemma 18 induces a functor A∥v → A∥u,
so A is a well-defined object of K = [ZI(C)op,Cat]. Now, for an object X ∈ K, the hom-
category K(X,A) has as objects natural transformations βu : Xu → Alg(T∥u). But the
objects of Alg(T∥u) are themselves morphisms θu : T∥u(B) → B in C∥u, that furthermore
satisfy the algebra laws. These assemble into a modification satisfying (18). It is labour-
intensive but straightforward to verify that the morphisms of Alg(T∥u) similarly match
modifications satisfying (19), and that this in fact gives a 2-natural isomorphism to A∥−.
Thus A∥− is a formal algebra object. ◀

Similarly, a formal Kleisli algebra object of the formal monad T∥− is characterised
in [23, 35] as a formal algebra object in the 2-category [ZI(C)op,Catop], where Catop has
reversed the 1-cells but not the 2-cells of Cat.

▶ Corollary 33. Let T be a localisable monad on a symmetric monoidal category C. The
formal monad T∥− in [ZI(C)op,Cat] has a formal Kleisli object K∥− where K∥u = Kl(T∥u)
is the Kleisli category of T∥u. ◀

A Kleisli category of a commutative monad on a symmetric monoidal category is again
symmetric monoidal [7]. It would be interesting to see if there is a notion that stands to
localisability as commutativity stands to strength, that guarantees that the formal Kleisli
algebra object of the previous corollary is a monoid in K = [ZI(C)op,Cat]. We leave this for
future work, but give a tentative (re)definition now.
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▶ Definition 34. A localisable monad T on a symmetric monoidal category C is commutative
when:

T (A) ⊗ U ⊗ V T (A⊗ U) ⊗ V T (A⊗ U ⊗ V )

T (A) ⊗ V ⊗ U T (A⊗ V ) ⊗ U T (A⊗ V ⊗ U)

T (A)⊗σU,V

stA,V ⊗U stA⊗V,U

T (A⊗σV,U )

stA,U ⊗V stA⊗U,V

(20)

It follows from this definition that if u ∧ v = 0, then the computational side-effects
modeled by Tu and Tv do not influence each other. Intuitively, side-effects Tu and Tv that
act in disjoint areas must be independent of each other.

7 Further work

There are several interesting directions for further research.
We have decomposed a localisable monad into monads on local monoidal categories, but
can a monad on a local monoidal category be decomposed further? For example, the local
state monad [29] is based on the presheaf category [Inj,Set]. Its central idempotents
correspond to natural numbers, topologised by saying that a subset is open when it
is upward-closed under the usual ordering of natural numbers. This topological space
is already local: every net converges to the focal point 0. The “decomposition” using
coends of [29] relies on the base category [Inj,Set] having much more structure rather
than just a monoidal category. The successor function of natural numbers there affords
the possibility to allocate fresh locations. Our example of local states in Section 5.1
completely ignored this possibility. Can this extra structure be axiomatised – using open
sets rather than points – and used for a further decomposition?
Two monads on the same base category can be composed as soon as there is a distributive
law between them [3, 38]. When does a distributive law respect the localisable nature
of the monads, and how does it interact with their decomposition into monads on local
monoidal categories?
More generally than monads, when is a PROP localisable, and how does a localisable
PROP decompose into local ones [22, 33]?
Formal monads form a bridge between localisable monads and the local-to-global approach
to providing a fine-grained structure over monads. Can this relationship be made more
constructive? Given monads Ti on possibly different monoidal base categories Ci, can we
construct a monad T on a monoidal category C with central idempotents i such that
C∥i ≃ Ci and T∥i ≃ Ti? The free construction of Lemma 29 is an initial step in this
direction; can it be given a more elegant concrete description, and extended to arbitrary
topogical spaces?
Is there a notion that stands to localisability as commutativity stands to strength, that
guarantees that the formal Kleisli object of Corollary 33 is a monoid in [ZI(C)op,Cat]?
Does it connect to partial commutativity as in the Mazurkiewicz traces of Section 5.2?
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