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Quantum Information Effects
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We study the two dual quantum information effects to manipulate the amount of information in quantum

computation: hiding and allocation. The resulting type-and-effect system is fully expressive for irreversible

quantum computing, including measurement. We provide universal categorical constructions that semantically

interpret this arrow metalanguage with choice, starting with any rig groupoid interpreting the reversible

base language. Several properties of quantum measurement follow in general, and we translate (noniterative)

quantum flow charts into our language. The semantic constructions turn the category of unitaries between

Hilbert spaces into the category of completely positive trace-preserving maps, and they turn the category

of bijections between finite sets into the category of functions with chosen garbage. Thus they capture the

fundamental theorems of classical and quantum reversible computing of Toffoli and Stinespring.
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1 INTRODUCTION

Something is rotten in the state of quantum computing. It subsumes classical computing, which
is generally irreversible, yet it is most often formulated as a reversible quantum circuit, with an
irreversible quantum measurement as an afterthought. The conceptual status of this irreversible
measurement remains mysterious. This is known as the measurement problem.
Classical computing itself is most often formulated as composed of irreversible operations.

However, by the seminal works of Toffoli [Toffoli 1980] and Bennett [Bennett 1973], and more
recently by James and Sabry [James and Sabry 2012], we know that it can also be phrased in
terms of reversible operations, as long as we consider systems to be open and interact with an
environment that is eventually disregarded. This final part is important, as reversible computations
alone (be they classical or quantum) cannot change the amount of information (as measured by an
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2:2 Chris Heunen and Robin Kaarsgaard

appropriate notion of entropy). To understand the nature of quantum measurement in computation
requires us to close two conceptual gaps:

(i) from reversible classical computing to reversible quantum computing; and
(ii) from reversible quantum computing to irreversible quantum computing.

It may seem that much has to be added to a reversible language to make it suitable for quantum
computing. Similarly, it may seem that much less can be expressed in purely reversible quantum
computations than in arbitrary quantum computations with measurements. We argue, however,
that both gaps are smaller than they may appear.

To do this, we start with the reversible combinator language Π, which governs classical reversible
computation, and extend it with combinators for quantum phases and the quantum Hadamard
gate. We call the result UΠ (łyuppiež), because it is already approximately universal for reversible
quantum computing with unitary gates.

To address (ii) we introduce two quantum information effects ś computational effects that manip-
ulate the amount of information ś through two arrows [Hughes 2005]. The first computational
effect allows allocation of auxiliary space on a hidden heap, leading to the arrow metalanguage
UΠ𝑎 (łyuppie-až). This calculus is approximately universal for quantum computing with isome-
tries rather than unitaries. The second computational effect dually allows hiding, by disregarding
specifically marked garbage output, leading toUΠ

𝜒
𝑎 (łyuppie-chi-až). We prove that this calculus is

approximately universal for arbitrary quantum computations, including measurement.
Thus we have an arrow metalanguage that, with two simple computational effects on top of a

pure reversible model, is fully expressive for irreversible quantum computing. All the allocation
and hiding is tracked by the type system, and so allows us to compile an irreversible quantum
program into an explicit reversible quantum circuit.

We provide matching categorical semantics via surprisingly simple concrete constructions that
have very general universal properties. Vanilla Π may be interpreted in rig categories: categories
with two monoidal structures (⊗, ⊕), where the product (⊗) distributes over the sum (⊕). We
will interpret UΠ in the category Unitary of Hilbert spaces and unitaries. This is a choice of
canonical model: all that is needed is a rig category with morphisms to interpret phase gates and
the Hadamard gate (which we will see is equivalent to having a notion of superposition).

For UΠ𝑎 we provide a free construction that turns a rig category C into a new one 𝑅 [C] where
the unit for the sum becomes initial. Then 𝑅 [Unitary] is the category Isometry of Hilbert spaces
and isometries. Dually, we interpretUΠ

𝜒
𝑎 via a free construction 𝐿 making a monoidal unit terminal.

Now 𝐿[Isometry] is the category CPTP of arbitrary (irreversible) quantum channels. Classically, 𝑅
transforms the category of bijections between sets into that of injections, and in turn 𝐿 transforms
that into arbitrary functions with chosen garbage. This lets us reformulate Toffoli’s fundamental
theorem of reversible computing [Toffoli 1980] as a purely categorical statement.
Surprising mileage is obtained from these simple constructions, as we prove in general several

properties ofmeasurement that can be expressed entirely as semantic equivalences between program
fragments. For example, we show that measurement commutes with injections and projections,
and that measurement is idempotent. More generally, we show that our setting can interpret
(noniterative) quantum flow charts [Selinger 2004]. This highlights the potential of UΠ

𝜒
𝑎 not only

as a vehicle for theoretical studies, here the study of measurement, but also as an intermediate
language with a strong equational theory owing to its categorical semantics. All constructions and
translations in this paper are formalised in (heavily extended) Glasgow Haskell.

Related Work. Classical information effects are due to [James and Sabry 2012], while the characteri-
sation of Isometry and CPTP as successive completions of Unitary was first given by [Huot and
Staton 2018, 2019] (see also [Heunen and Kaarsgaard 2021]). Quantum programming languages are
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Quantum Information Effects 2:3

an active research topic [Bichsel et al. 2020; Green et al. 2013; Paykin et al. 2017; Sabry et al. 2018;
Selinger 2004]. In particular, quantummeasurement has been studied extensively as a computational
effect [Altenkirch and Green 2010; Green and Altenkirch 2008; Vizzotto et al. 2006, 2009; Westerbaan
2017] too. While proven practically useful, the precise meaning of measurement-as-an-effect has
remained unclear, perhaps partly because of the wide-spread conscription to the view łquantum
data, classical controlž [Selinger 2004].

We generalise this previous work by providing the missing origin story of measurement-as-an-
effect as a sequence of arrow constructions (semantically, categorical completions) that can be
applied (and given precise meaning) to any rig groupoid. In other words, where previous work
shows that measurement arises in this way, using facts specific to quantum theory, we show
how, using only the language of rig categories. With measurement thus defined in the abstract,
our categorical constructions eliminate the need for involved functional-analytic semantics using
operator algebras [Cho and Westerbaan 2016; Péchoux et al. 2020; Rennela and Staton 2020].
The 𝑅 [−]-construction on small categories was studied as a special case of freely adjoining

monoidal indeterminates in [Hermida and Tennent 2012]. An unquotiented, bicategorical version of
this construction was also given here, later rediscovered in [Cruttwell et al. 2021; Fong et al. 2019]
as the Para-construction. Though quotienting will be important here, a bicategorical construction
could see use to study the structure and order of dilations (see also [Houghton-Larsen 2021]).

Overview. Section 2 recalls background material. Next, Section 3 discusses Π, introduces the lan-
guagesUΠ,UΠ𝑎 , andUΠ

𝜒
𝑎 , and proves expressivity theorems. Section 4 deals with categorical

semantics: it recalls rig groupoids, introduces the 𝐿 and 𝑅 constructions, and proves that they
respect ⊗ and give the appropriate setting to interpret ⊕ as an arrow with choice. Section 5 concerns
universal properties of the 𝐿 and 𝑅 constructions, and shows that they encompass two fundamental
results: Toffoli’s fundamental theorem, and Stinespring’s dilation theorem. In Section 6 we derive
extra properties in the arrow metalanguage, generically in 𝐿[𝑅 [C]]. Finally, Section 7 concludes
and lists interesting directions for future work.

2 BACKGROUND

This section recalls the basics of quantum theory, monoidal categories, and information effects.

2.1 Quantum Theory

For more details we refer to [Nielsen and Chuang 2002; Yanofsky and Mannucci 2008].

2.1.1 Pure Quantum Theory and Bra-Ket Notation. A quantum system is captured by a complex
Hilbert space 𝐻 . For example, qubits are modelled by 𝐻 = C

2. The pure states𝜓 of 𝐻 are the vectors
of unit norm: ∥𝜓 ∥ = 1. By convention, vectors are denoted as a ket |𝜓 ⟩. This is handy, because then
the functional 𝐻 → C that maps 𝜙 to the inner product ⟨𝜓 |𝜙⟩ can be denoted as the bra ⟨𝜓 |. As a
further consequence, the outer product of 𝜙 with𝜓 (with signature 𝐻 → 𝐻 ) becomes |𝜙⟩⟨𝜓 |.
Pure dynamics of a quantum system are reversible. Evolution is given by a unitary linear map

𝑈 : 𝐻 → 𝐻 , meaning that 𝑈 is a bijection that is isometric: ⟨𝑈𝜙 |𝑈𝜓 ⟩ = ⟨𝜙 |𝜓 ⟩. More generally, any
continuous linear function 𝑓 : 𝐻 → 𝐾 has an adjoint 𝑓 † : 𝐾 → 𝐻 satisfying ⟨𝑓 𝜙 |𝜓 ⟩ =

〈

𝜙
�

�𝑓 †𝜓
〉

. An

isometry then satisfies 𝑓 † ◦ 𝑓 = id, and a unitary furthermore satisfies 𝑓 ◦ 𝑓 † = id.
Pure quantum theory subsumes reversible classical computation. Any finite set 𝐼 generates a

Hilbert space C𝐼 of linear combinations of elements of 𝐼 . Thus {|𝑖⟩ | 𝑖 ∈ 𝐼 } forms a basis of C𝐼

that is moreover orthonormal: ⟨𝑖 | 𝑗⟩ is 1 when 𝑖 = 𝑗 and vanishes otherwise. We call this basis of
C
𝑛 induced by the set {1, 2, . . . , 𝑛} the computational basis. Any bijection of {1, 2, . . . , 𝑛} induces a

unitary on C𝑛 that preserves the computational basis.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.



2:4 Chris Heunen and Robin Kaarsgaard

If two quantum systems are modelled by Hilbert spaces 𝐻 and 𝐾 , the compound system is given
by their tensor product 𝐻 ⊗ 𝐾 . For example, a 3-qubit system is modelled by C2 ⊗ C2 ⊗ C2 ≃ C8.
Similarly, if 𝐻 and 𝐾 evolve along unitaries𝑈 and 𝑉 , then 𝐻 ⊗ 𝐾 evolves along𝑈 ⊗ 𝑉 .

2.1.2 Mixed Quantum Theory. A quantum computation (in the quantum circuit model) consists of
a composition of tensor products of unitary gates, which is entirely reversible. However, reading
out the result of the computation requires a measurement, which is an irreversible operation. The
standard model therefore considers mixed states. These are given by a density matrix, which is a
linear function 𝜌 : 𝐻 → 𝐻 such that 0 ≤ ⟨𝜌 (𝜓 ) |𝜓 ⟩ ≤ 1 for all |𝜓 ⟩. Thus any pure state |𝜓 ⟩ ∈ 𝐻 is
also a mixed state |𝜓 ⟩⟨𝜓 | : 𝐻 → 𝐻 .
Mixed states no longer have reversible dynamics. Any unitary 𝑈 : 𝐻 → 𝐻 still induces a map

that takes a mixed state 𝜌 to a mixed state𝑈 † ◦𝜌 ◦𝑈 . But now the appropriate dynamics allow more
possibilities, generally given by so-called completely positive trace-preserving (CPTP) maps, also
known as quantum channels. It is not important here to set out their definition. What is important
is Stinespring’s dilation theorem, which says that any CPTP map 𝐻 → 𝐾 may be factored as a pure
evolution 𝐻 → 𝐾 ⊗𝐺 , given by 𝜌 ↦→ 𝑉 † ◦ 𝜌 ◦𝑉 for an isometry𝑉 , followed by a map 𝐾 ⊗𝐺 → 𝐾 .
That is, irreversible (mixed) quantum theory is contained within reversible (pure) quantum theory,
as long as you allow an environment to play the role of auxiliary state space but disregard it.

2.1.3 Superposition and Measurement. Superposition is the ability of a quantum state |𝜌⟩ to occupy
several classical states |𝑏1⟩ . . . |𝑏𝑛⟩ at once, so long as no measurement occurs. Each classical state
in a superposed state is weighted by a complex number 𝛼𝑖 known as an amplitude. Once a system
in superposition |𝜓 ⟩ = ∑𝑛

𝑖=1 𝛼𝑖 |𝑏𝑖⟩ is measured, it collapses to one of the classical states |𝑏𝑘⟩. The
outcome of such a measurement is probabilistic, with the probability of observing |𝑏𝑖⟩ given by
| ⟨𝑏𝑖 |𝜓 ⟩ |2; this is called the Born rule. Using density matrices, measurement with respect to {|𝑏𝑖⟩}𝑖∈𝐼
is represented by the measurement instrument channel

𝜌 ↦→
∑

𝑖∈𝐼
|𝑏𝑖⟩⟨𝑏𝑖 | 𝜌 |𝑏𝑖⟩⟨𝑏𝑖 |

that sends quantum states to their post-measurement (mixed classical) states. For example, mea-
suring a qubit |𝜓 ⟩⟨𝜓 | for |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ with respect to {|0⟩ , |1⟩} results in the mixed state
|𝛼 |2 |0⟩⟨0| + |𝛽 |2 |1⟩⟨1|.

2.1.4 Global and Relative Phase. Recall that the complex conjugate of a complex number 𝜑 = 𝑎 +𝑏𝑖
is 𝜑 = 𝑎−𝑏𝑖 . A phase is a complex number satisfying 𝜑 ·𝜑 = 1; equivalently, 𝜑 has norm 1. Quantum
states that differ only by a global phase, |𝜓 ′⟩ = 𝜑 |𝜓 ⟩, are indistinguishable, in that they have the
same measurement statistics. But the phase difference between parts of states can be incredibly
important. For example, the states |+⟩ = 1√

2
(|0⟩ + |1⟩) and |−⟩ = 1√

2
( |0⟩ − |1⟩) differ only by the

phase −1 in their amplitude for |1⟩. This difference in relative phase makes |+⟩ and |−⟩ orthogonal.

2.2 Monoidal Categories

For our semantics, we will assume that the reader is familiar with the basic notions of categories and
functors [Leinster 2016]. To set notation, recall that a category C is symmetric monoidal when it
comes equipped with a tensor product ⊗ : C×C → C, a unit object 𝐼 , isomorphisms 𝜆𝐴 : 𝐼 ⊗𝐴 → 𝐴

and 𝜌𝐴 : 𝐴 ⊗ 𝐼 → 𝐴 called unitors, isomorphisms 𝛼𝐴,𝐵,𝐶 : 𝐴 ⊗ (𝐵 ⊗ 𝐶) → (𝐴 ⊗ 𝐵) ⊗ 𝐶 called
associators, and isomorphisms 𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴 called symmetries for all objects 𝐴, 𝐵,𝐶 , that
satisfy certain coherence laws [Heunen and Vicary 2019].
A category lets one compose morphisms ‘in sequence’; a monoidal category additionally lets

one compose morphisms ‘in parallel’. This is expressed satisfyingly in the graphical calculus for
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monoidal categories. We draw a morphism as a box with an incoming wire labelled by its domain
and an outgoing wire labelled by its codomain. Composition becomes stacking boxes vertically,
whereas we draw the tensor product of boxes side by side. In particular, objects𝐴⊗𝐵 may be drawn
as a single wire labelled 𝐴 ⊗ 𝐵, or as two parallel wires labelled by 𝐴 and 𝐵, and the nullary case of
a wire labelled 𝐼 is simply not drawn. The special morphisms 𝜎𝐴,𝐵 are drawn as crossing two wires.
The coherence laws simply say that one may ignore the coherence isomorphisms graphically.

𝑓 ⊗ 𝑔
𝐴

𝐵

𝐴′

𝐵′

=

𝐴

𝐵

𝐴′

𝐵′

𝑓 𝑔

𝐴

𝐶

𝑔 ◦ 𝑓 =

𝐴

𝐵

𝑓

𝐶

𝑔

𝜎𝐴,𝐵

𝐴

𝐵

𝐵

𝐴

=

𝐵

𝐵

𝐴

𝐴

=

𝐴

𝐴

id𝐴
𝐴

𝐴

=

𝐼

𝐼

Of special interested are symmetric monoidal categories whose tensor unit is initial or terminal. If
there is a unique morphism 𝐴 → 𝐼 for any object 𝐴, the monoidal category is called affine, and if
there is a unique morphism 𝐼 → 𝐴 for any object 𝐴, it is called coaffine.
A functor 𝐹 : C → D between symmetric monoidal categories is (strong) monoidal when it is

equipped with isomorphisms 𝐹 (𝐴) ⊗ 𝐹 (𝐵) ≃ 𝐹 (𝐴 ⊗ 𝐵) and 𝐹 (𝐼 ) ≃ 𝐼 that respect the coherence
isomorphisms of C and D. It is strict monoidal when these isomorphisms are in fact identities.
Monoidal functors between (co)affine categories automatically preserve the terminal (initial) object.

2.3 Information Effects

Classical computation, embodied by functions on finite sets, is irreversible, because applying
a function in general loses information. This can be made precise via the Shannon entropy
𝐻 = −∑

𝑝𝑖 log𝑝𝑖 that measures how surprising it is when a variable takes the value 𝑖 with
probability 𝑝𝑖 . The functions that preserve Shannon entropy are precisely bijections. This direct
connection between information preservation and reversibility is a consequence of Landauer’s
principle [Landauer 1961].
The central idea of information effects [James and Sabry 2012] is that this irreversible model

of computation arises from a reversible (bijective) model of computation, together with computa-
tional effects for duplicating and erasing information. Thus irreversible programs are reversible
instructions governed by an arrow metalanguage that tracks interaction with a global environment.
Quantum theory, embodied by quantum channels between finite-dimensional Hilbert spaces,

is also irreversible. The information content of a quantum state 𝜌 can be made precise by von
Neumann entropy 𝑆 = −tr(𝜌 log 𝜌). In this case, the information-preserving maps are also the
reversible ones: those of the form 𝜌 ↦→ 𝑈 †◦𝜌 ◦𝑈 for unitary𝑈 . This mirrors the classical connection
between information preservation and reversibility.

3 THREE GENERATIONS OF YUPPIE

Π is a reversible combinator language introduced in [Bowman et al. 2011; James and Sabry 2012] to
study strongly typed reversible classical programming. Many extensions exist, such as partiality
and iteration [Bowman et al. 2011; James and Sabry 2012], fractional types [Chen et al. 2020; Chen
and Sabry 2021], negative types [Chen and Sabry 2021], and higher combinators [Carette and Sabry
2016; Kaarsgaard and Veltri 2019]. This section introduces a quantum extension to Π, and shows it
to be approximately universal for unitaries, the canonical model of pure quantum computation
(without measurement). We then use two arrow constructions to extend this with the quantum
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2:6 Chris Heunen and Robin Kaarsgaard

Syntax

𝑏 ::= 0 | 1 | 𝑏 + 𝑏 | 𝑏 × 𝑏 (base types)

𝑡 ::= 𝑏 ↔ 𝑏 (combinator types)

𝑎 ::= id | swap+ | unit+ | uniti+ | assoc+ | associ+

| swap× | unit× | uniti× | assoc× | associ×

| distrib | distribi | distribo | distriboi (primitive combinators)

𝑑 ::= midswap+ | midswap× (derived combinators)

𝑐 ::= 𝑎 | 𝑐 o
9 𝑐 | 𝑐 + 𝑐 | 𝑐 × 𝑐 (combinators)

Typing rules

id : 𝑏 ↔ 𝑏 : id
swap+ : 𝑏1 + 𝑏2 ↔ 𝑏2 + 𝑏1 : swap+

unit+ : 𝑏 + 0 ↔ 𝑏 : uniti+

assoc+ : (𝑏1 + 𝑏2) + 𝑏3 ↔ 𝑏1 + (𝑏2 + 𝑏3) : associ+

swap× : 𝑏1 × 𝑏2 ↔ 𝑏2 × 𝑏1 : swap×

unit× : 𝑏 × 1 ↔ 𝑏 : uniti×

assoc× : (𝑏1 × 𝑏2) × 𝑏3 ↔ 𝑏1 × (𝑏2 × 𝑏3) : associ×

distrib : 𝑏1 × (𝑏2 + 𝑏3) ↔ (𝑏1 × 𝑏2) + (𝑏1 × 𝑏3) : distribi
distribo : 𝑏 × 0 ↔ 0 : distriboi

midswap+ : (𝑏1 + 𝑏2) + (𝑏3 + 𝑏4) ↔ (𝑏1 + 𝑏3) + (𝑏2 + 𝑏4) : midswap+

midswap× : (𝑏1 × 𝑏2) × (𝑏3 × 𝑏4) ↔ (𝑏1 × 𝑏3) × (𝑏2 × 𝑏4) : midswap×

𝑐1 : 𝑏1 ↔ 𝑏2 𝑐2 : 𝑏2 ↔ 𝑏3

𝑐1 o
9 𝑐2 : 𝑏1 ↔ 𝑏3

𝑐1 : 𝑏1 ↔ 𝑏3 𝑐2 : 𝑏2 ↔ 𝑏4

𝑐1 + 𝑐2 : 𝑏1 + 𝑏2 ↔ 𝑏3 + 𝑏4
𝑐1 : 𝑏1 ↔ 𝑏3 𝑐2 : 𝑏2 ↔ 𝑏4

𝑐1 × 𝑐2 : 𝑏1 × 𝑏2 ↔ 𝑏3 × 𝑏4

Fig. 1. The syntax and type system of Π.

information effects of allocation and hiding to arrive at an arrow metalanguage which we prove
approximately universal for quantum channels, the canonical model of full quantum computation
(with measurement).

3.1 Reversible Classical Combinators: Π

The syntax and type system of the unextended calculus Π is shown in Fig. 1. It comprises a small
set of invertible, first-order, strongly typed polymorphic combinators on data constructed from
(classical) sum and products types, as well as their units 0 and 1. These combinators enable data
of sum and product type to be swapped (sending inl 𝑥 to inr 𝑥 and vice versa for sums, and (𝑥,𝑦)
to (𝑦, 𝑥) for products), reassociated, and have their respective units added and removed in the
usual way. Products can also be distributed over sums (and back again) as usual. Finally, these
combinators can be composed in sequence 𝑐1 o

9 𝑐2 and in parallel using both + and ×. That is, 𝑐1 × 𝑐2
takes a pair (𝑥,𝑦) and produces the pair (𝑐1 𝑥, 𝑐2 𝑥), while 𝑐1 + 𝑐2 takes inl 𝑥 to inl (𝑐1𝑥) and inr 𝑦
to inr (𝑐2𝑦).
Aside from the base combinators, a pair of useful derived combinators midswap+ : (𝑏1 + 𝑏2) +

(𝑏3 + 𝑏4) ↔ (𝑏1 + 𝑏3) + (𝑏2 + 𝑏4) and midswap× : (𝑏1 × 𝑏2) × (𝑏3 × 𝑏4) ↔ (𝑏1 × 𝑏3) × (𝑏2 × 𝑏4) can
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inv(id) = id inv(𝑐1 o
9 𝑐2) = inv(𝑐2) o

9 inv(𝑐1)
inv(𝑐1 + 𝑐2) = inv(𝑐1) + inv(𝑐2) inv(𝑐1 × 𝑐2) = inv(𝑐1) × inv(𝑐2)
inv(swap+) = swap+ inv(swap×) = swap×

inv(unit+) = uniti+ inv(uniti+) = unit+

inv(assoc+) = associ+ inv(associ+) = assoc+

inv(unit×) = uniti× inv(uniti×) = unit×

inv(assoc×) = associ× inv(associ×) = assoc×

inv(distrib) = distribi inv(distribi) = distrib
inv(distribo) = distriboi inv(distriboi) = distribo
inv(phase𝜑 ) = phase𝜑 inv(hadamard) = hadamard

Fig. 2. The inversion meta-combinator inv in (U)Π.

Syntax

𝑎 ::= · · · | phase𝜑 | hadamard (primitive combinators)

𝑑 ::= · · · | superposition (derived combinators)

Typing rules

phase𝜑 : 1 ↔ 1 : phase𝜑
hadamard : 1 + 1 ↔ 1 + 1 : hadamard

superposition : 𝑏 + 𝑏 ↔ 𝑏 + 𝑏 : superposition

Fig. 3. The syntax and typing rules ofUΠ in addition to those in Π (see Fig. 1).

be defined as

midswap+ = assoc+ o
9 (id + associ+) o

9 (id + (swap+ + 𝑖𝑑)) o
9 (id + assoc+) o

9 associ
+

midswap× = assoc× o
9 (id × associ×) o

9 (id × (swap× × 𝑖𝑑)) o
9 (id × assoc×) o

9 associ
× .

The definition and use of derived combinators, which we will make heavy use of, should be taken
as no more than aliasing, or macro definition and expansion. Recursive systems (mutually or
otherwise) of derived combinators are not permitted.

Π takes semantics in rig groupoids (see Section 4), the canonical choice being the category FinBij
of finite sets and bijective functions. Indeed, Π is universal for finite bijective functions; Fig. 4
shows the implementations of the universal gate set {𝑃𝑋,𝐶𝑁𝑂𝑇,𝑇𝑂𝐹𝐹𝑂𝐿𝐼 } [Toffoli 1980].

Inversion. Our presentation of Π differs slightly from [James and Sabry 2012]: our syntax does not
include an inversion combinator inv 𝑐; instead we derive it as a metacombinator (in Fig. 2). This
avoids some superfluous syntax ś e.g., inv(𝑐1 + 𝑐2) and (inv 𝑐1) + (inv 𝑐2) are equivalent, as are
inv(id) and id ś but results in a higher number of base combinators. Some basic well-behavedness
properties can be straightforwardly shown by induction, summarised as follows.

Proposition 1. Let 𝑐 be a (U)Π combinator. Then:

(i) 𝑐 : 𝑏1 ↔ 𝑏2 implies inv(𝑐) : 𝑏2 ↔ 𝑏1, and
(ii) inv(inv(𝑐)) = 𝑐 .

3.2 ReversibleQuantum Combinators: UΠ

UΠ (łyuppiež) extends Π with notions of phase and superposition, in the form of the phase𝜑 and

hadamard combinators. Fig. 3 shows the syntax and types of this small extension. While the types
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of UΠ remain the same as in Π, in UΠ they are entirely quantum rather than (as in Π) entirely
classical. For example, where 1 + 1 in Π is the type of bits, in UΠ it is the type of qubits (with
no way of forming the type of bits).UΠ canonically takes semantics in the category Unitary of
finite dimensional Hilbert spaces and unitaries. The full treatment of these semantics is given in
Section 4, but later in this section we will show thatUΠ is approximately universal for unitaries.

Phases correspond with unitaries C→ C. Since C is the tensor unit in Unitary, we can express
an arbitrary phase 𝜑 through the combinator phase𝜑 : 1 ↔ 1. This will allow us to form quantum

phase gates like 𝑆 and 𝑇 , and to multiply a combinator 𝑐 : 𝑏1 ↔ 𝑏2 by an arbitary phase 𝜑 as:

𝜑 • 𝑐 = uniti× o
9 𝑐 × phase𝜑

o
9 unit

×

We include all phases, yielding an uncountable number of phase combinators, even though a finite
number of phases suffice for approximate universality up to a global phase. We find including all
of them to be the more principled solution, especially when an appropriate finite subset (such as
{±𝑖,±1,± cos

(

𝜋
4

)

± 𝑖 sin
(

𝜋
4

)

}) can be chosen in a concrete implementation without detriment.
Superpositions are introduced by means of the hadamard combinator (of type 1 + 1 ↔ 1 + 1, or

Qbit ↔ Qbit), named after the Hadamard gate from which it takes its semantics:

|0⟩ ↦→ 1√
2
( |0⟩ + |1⟩) |1⟩ ↦→ 1√

2
( |0⟩ − |1⟩)

It introduces uniform superpositions of states in the computational basis. Though effective, it can
be argued that this combinator is not conceptually clean: all of the Π combinators are parametri-
cally polymorphic and pertain to structure rather than behaviour, but hadamard is monomorphic,
and pertains specifically to the behaviour of qubits. To mend this, we could instead introduce a
parametrically polymorphic combinator superposition : 𝑏 + 𝑏 ↔ 𝑏 + 𝑏 with semantics:

inl( |𝜓 ⟩) ↦→ 1√
2
(inl(|𝜓 ⟩) + inr( |𝜓 ⟩)) inr( |𝜓 ⟩) ↦→ 1√

2
(inl( |𝜓 ⟩) − inr( |𝜓 ⟩))

Now hadamard is just the superposition combinator on the type 1 + 1 ↔ 1 + 1. Interestingly, the
two are equivalent in the presence of the other combinators, as superposition can be derived:

superposition = (uniti× + uniti×) o
9 distribi o

9 (id × hadamard) o
9 distrib o

9 (unit× + unit×)

It also follows from this definition that superposition, like hadamard, is self-inverse. Whether the
hadamard or the superposition combinator is taken as primal thus comes down to preference; there
is no difference in expressivity, and one is easily derived from the other.

Expressiveness. We have taken an established combinator calculus for reversible classical computing,
and extended it only slightly with two quantum combinators modelling phase and superposition.
One may ask whether this extension is sufficient to express all of reversible quantum computing.
This question contains a number of subtleties, not least because there are systems of quantum
computing which do include concepts of both phase and superposition, but can nevertheless be
efficiently simulated by purely classical means (e.g., the Clifford gate set without 𝑇 ).

Fig. 4 shows the implementation of a variety of reversible quantum (and classical) gates inUΠ.
Note the meta-combinator ctrl, which produces a combinator for the usual controlled gate for a
combinator corresponding to a gate 𝑐 . Briefly, ctrl 𝑐 takes ( |0⟩ , |𝜓 ⟩) to ( |0⟩ , |𝜓 ⟩), and ( |1⟩ , |𝜓 ⟩) to
( |1⟩ , 𝑐 ( |𝜓 ⟩)). ThoughUΠ cannot distinguish at the type level between classical and quantum data,
it is computationally universal for reversible classical computing, with {px, cnot, toffoli} as one
example of a universal gate set [Toffoli 1980].
Returning to the quantum case, using these representations of quantum gates, it can be shown

that UΠ is approximately universal for reversible quantum computing as well: it can approximate
any unitary (on a space of dimension 2𝑛) to arbitrary precision (measured by the operator norm).
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px : Qbit ↔ Qbit py : Qbit ↔ Qbit pz : Qbit ↔ Qbit

px = swap+ py = swap+ o
9 (phase−𝑖 + phase𝑖 ) pz = id + phase−1

s : Qbit ↔ Qbit t : Qbit ↔ Qbit

s = id + phase𝑖 t = id + phase
𝑒
𝑖𝜋

4

ctrl 𝑐 : 𝑏 ↔ 𝑏 → Qbit × 𝑏 ↔ Qbit × 𝑏
ctrl 𝑐 = swap× o

9 distrib
o
9 (unit× + unit×) o

9 (id + 𝑐) o
9 (uniti× + uniti×) o

9 distribi
o
9 swap

×

cnot : Qbit2 ↔ Qbit2 toffoli : Qbit3 ↔ Qbit3 fredkin : Qbit3 ↔ Qbit3

cnot = ctrl px toffoli = ctrl cnot fredkin = ctrl swap×

Fig. 4. The implementation of a variety of quantum gates inUΠ. We use Qbit𝑛 as shorthand for the 𝑛-fold

product of the qubit type Qbit = 1 + 1 with itself.

Theorem 2. UΠ is approximately universal for unitaries: For any 2𝑛 × 2𝑛 unitary 𝑈 and 𝛿 > 0
there exists aUΠ combinator 𝑢 such that





𝑈 − J𝑢K






op
< 𝛿 .

3.3 Quantum Combinators with Allocation: UΠ𝑎

Next we extend UΠ with an allocation effect alloc : 0↣ 𝑎, yielding the language of UΠ𝑎 (łyuppie-
až ). This effect is introduced by letting combinators 𝑏1 ↣ 𝑏2 in UΠ𝑎 be given by invertible
combinators with a heap of type 𝑏3: that is, asUΠ combinators of type 𝑏1 + 𝑏3 ↔ 𝑏2. Analogous to
[James and Sabry 2012], this enables the type system to track the information effects.
This small extension will allow us to define a classical cloning combinator that clones classical

states exactly, and sends quantum states |𝜓 ⟩ to
√

|𝜓 ⟩ ⊗
√

|𝜓 ⟩; this will be crucial later on in deriving

a combinator for measurement in UΠ
𝜒
𝑎 .

UΠ𝑎 canonically takes semantics in the category Isometry of Hilbert spaces and isometries: in
Section 4, we will see how a categorical model of UΠ can be extended universally to model of
UΠ𝑎 , and Section 5 shows how this construction connects the canonical model ofUΠ to that of
UΠ𝑎 . Now we show that the approximate universality theorem for UΠ with its unitary semantics
extends to an approximate universality for UΠ𝑎 with its semantics in isometries.
Fig. 5 gives an over view of UΠ𝑎 . It is an arrow metalanguage [Hughes 2005; James and Sabry

2012; Power and Robinson 1997] built atop UΠ: it has the same base types as UΠ, but introduces
a new, irreversible combinator type 𝑏 ↣ 𝑏 (reflecting the fact that combinators in UΠ𝑎 are no
longer invertible). All combinators in UΠ𝑎 are constructed from combinators in UΠ by means of
the single primitive lift combinator, following the type rule:

𝑢 : 𝑏1 + 𝑏3 ↔ 𝑏2

lift 𝑢 : 𝑏1↣ 𝑏2

So a combinator inUΠ𝑎 corresponds to a combinator inUΠwith a hidden heap of type𝑏3. Section 4
will discuss that some quotienting is needed for this construction to behave; we defer further details
about the semantics until then, including the arrow laws.
For this to constitute an arrow, we must produce meta-combinators arr , >>>, and first. To start,

arr must lift a UΠ combinator 𝑢 to a pure UΠ𝑎 one, free of effects. To do this, we assign it the
trivial heap 0 and remove it before proceeding with 𝑢:

arr 𝑢 = lift (unit+ o
9 𝑢)

In Fig. 5, iso refers to atomic combinators ofUΠ brought intoUΠ𝑎 by applying arr to them. We
write, for example, swap+ inUΠ𝑎 to refer to arr (swap+), and so on.
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Syntax

𝑏 ::= 0 | 1 | 𝑏 + 𝑏 | 𝑏 × 𝑏 (base types)

𝑡 ::= 𝑏 ↣ 𝑏 (combinator types)

𝑐 ::= lift 𝑢 (primitive combinators)

𝑑 ::= iso | arr 𝑢 | 𝑐 >>> 𝑐 | first 𝑐 | second 𝑐 | left 𝑐 | right 𝑐
| 𝑐 ∗∗∗ 𝑐 | 𝑐 +++ 𝑐 | inhab | inl | inr | alloc | clone (derived combinators)

Typing rules

𝑢 : 𝑏1 + 𝑏3 ↔ 𝑏2

lift 𝑢 : 𝑏1↣ 𝑏2

𝑢 : 𝑏1 ↔ 𝑏2

arr 𝑢 : 𝑏1↣ 𝑏2

𝑐1 : 𝑏1↣ 𝑏2 𝑐2 : 𝑏2↣ 𝑏3

𝑐1 >>> 𝑐2 : 𝑏1↣ 𝑏3

𝑐 : 𝑏1↣ 𝑏2

first 𝑐 : 𝑏1 × 𝑏3↣ 𝑏2 × 𝑏3
𝑐 : 𝑏1↣ 𝑏2

second 𝑐 : 𝑏3 × 𝑏1↣ 𝑏3 × 𝑏2
𝑐 : 𝑏1↣ 𝑏2

left 𝑐 : 𝑏1 + 𝑏3↣ 𝑏2 + 𝑏3
𝑐 : 𝑏1↣ 𝑏2

right 𝑐 : 𝑏3 + 𝑏1↣ 𝑏3 + 𝑏2
𝑐1 : 𝑏1↣ 𝑏3 𝑐2 : 𝑏2↣ 𝑏4

𝑐1 +++ 𝑐2 : 𝑏1 + 𝑏2↣ 𝑏3 + 𝑏4
𝑐1 : 𝑏1↣ 𝑏3 𝑐2 : 𝑏2↣ 𝑏4

𝑐1 ∗∗∗ 𝑐2 : 𝑏1 × 𝑏2↣ 𝑏3 × 𝑏4
𝑏 inhabited

inhab : 1↣ 𝑏

alloc : 0↣ 𝑎 inl : 𝑎↣ 𝑎 + 𝑏 inr : 𝑏 ↣ 𝑎 + 𝑏 clone : 𝑎↣ 𝑎 × 𝑎

1 inhabited

𝑏1 inhabited 𝑏2 inhabited

𝑏1 × 𝑏2 inhabited
𝑏1 inhabited

𝑏1 + 𝑏2 inhabited
𝑏2 inhabited

𝑏1 + 𝑏2 inhabited

Fig. 5. The syntax and type system of the arrow metalanguageUΠ𝑎 .

To compose combinators lift (𝑢1) : 𝑏1 ↣ 𝑏2 and lift (𝑢2) : 𝑏2 ↣ 𝑏3 with heaps of type 𝑏4 and 𝑏
′
4,

we must track both heaps. The result will be a liftedUΠ combinator of type 𝑏1 + (𝑏4 + 𝑏 ′4) ↔ 𝑏3
which permit 𝑢1 and 𝑢2 access to their parts of the heap accordingly:

lift (𝑢1) >>> lift (𝑢2) = lift (associ+ o
9 (𝑢1 + id) o

9 𝑢2)
The final combinator related to lift defining an arrow is first, allowing two arrows (each with their
own information effects) to be executed in parallel. We define

lift (𝑢1) ∗∗∗ lift (𝑢2) = lift (associ+ o
9 distribi + distribi o

9 swap
× + swap× o

9 distribi o
9 swap

× o
9 𝑢1 × 𝑢2)

and derive first 𝑐 = 𝑐 ∗∗∗ arr (id) and second 𝑐 = arr (id) ∗∗∗ 𝑐 as usual. That is, given lift (𝑢1) and
lift (𝑢2) with 𝑢1 :𝑏1 +𝑏3 ↔ 𝑏2 and 𝑢2 :𝑏

′
1 +𝑏 ′3 ↔ 𝑏 ′2, this defines their product by choosing the heap

to be (𝑏3 × 𝑏 ′1) + ((𝑏1 × 𝑏 ′3) + (𝑏3 × 𝑏 ′3)), as we then have:

(𝑏1 × 𝑏 ′1) + ((𝑏1 × 𝑏 ′3) + ((𝑏3 × 𝑏 ′1) + (𝑏3 × 𝑏 ′3))) � ((𝑏1 × 𝑏 ′1) + (𝑏1 × 𝑏 ′3)) + ((𝑏3 × 𝑏 ′1) + (𝑏3 × 𝑏 ′3))
� (𝑏1 × (𝑏 ′1 + 𝑏 ′3)) + (𝑏3 × (𝑏 ′1 + 𝑏 ′3))
� (𝑏1 + 𝑏3) × (𝑏 ′1 + 𝑏 ′3)

Make lift an arrow with choice by defining a combinator 𝑐1 +++ 𝑐2 giving a choice between 𝑐1 and 𝑐2:
lift (𝑢1) +++ lift (𝑢2) = lift ((𝑢1 + 𝑢2) o

9 midswap+)
From this we can derive left 𝑐 = 𝑐 +++ arr (id) and right 𝑐 = arr (id) +++ 𝑐 .

What can we do with this arrow metalanguage? Firstly, we can construct the promised allocation
combinator 0↣ 𝑎 by lifting the UΠ map 0 + 𝑎 ↔ 𝑎 that removes the additive unit on the left, i.e.,
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alloc = lift (swap+ o
9 unit

+). From this we can recover injections inl and inr as

inl = arr (uniti+) >>> right (alloc)

and analogously for inr , though we can also define them equivalently as inl = lift (id) and inr =
lift (swap+). Another crucial application of allocation is classical cloning.

3.3.1 Classical Cloning. Classical data can be copied, quantum data cannot. While there is a
program that inputs a piece of classical data and outputs two copies of that data, no such program
exists for quantum data; this is the no cloning theorem [Heunen and Vicary 2019; Nielsen and
Chuang 2002].

In light of this, it may come as a bit of a surprise that we can derive a combinator clone satisfying
JcloneK( |0⟩) = |00⟩ and JcloneK(|1⟩) = |11⟩. After all, wouldn’t that imply JcloneK( |𝜙⟩) = |𝜙⟩ ⊗ |𝜙⟩
for a qubit |𝜙⟩? Fortunately not! To see this, consider a superposed state |𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩.

JcloneK( |𝜙⟩) = JcloneK(𝛼 |0⟩ + 𝛽 |1⟩) = JcloneK(𝛼 |0⟩) + JcloneK(𝛽 |1⟩)
= 𝛼 JcloneK(|0⟩) + 𝛽 JcloneK( |1⟩) = 𝛼 |00⟩ + 𝛽 |11⟩

Now, |00⟩ and |11⟩ are shorthands for |0⟩ ⊗ |0⟩ and |1⟩ ⊗ |1⟩, and the tensor product of Hilbert
spaces satisfies 𝑠 ( |𝑢⟩ ⊗ |𝑣⟩) = (𝑠 |𝑢⟩) ⊗ |𝑣⟩ = |𝑢⟩ ⊗ (𝑠 |𝑣⟩) for all scalars 𝑠 and vectors |𝑢⟩ ⊗ |𝑣⟩ in
𝑈 ⊗𝑉 . This means for example that 𝛼 |00⟩ = (

√
𝛼 |0⟩) ⊗ (

√
𝛼 |0⟩), which in general is distinct from

(𝛼 |0⟩) ⊗ (𝛼 |0⟩). So applying clone to |𝜙⟩ does not gives two copies |𝜙⟩ ⊗ |𝜙⟩, but rather two copies
of |𝜙⟩ with all amplitudes (in the computational basis) replaced by their square roots.
Define clone : 𝑏 ↣ 𝑏 × 𝑏 by induction on the structure of 𝑏. The base cases are clone0 =

arr (distriboi) and clone1 = arr (uniti×). Products are cloned inductively by rearranging:

clone𝑏×𝑏′ = (clone𝑏 ∗∗∗ clone′𝑏) >>> arr (midswap×)

Sums are cloned inductively, tagging accordingly, and factoring:

clone𝑏+𝑏′ = (clone𝑏 +++ clone𝑏′) >>> ((inl +++ id) ∗∗∗ (inr +++ id)) >>> arr (distribi).

Interestingly, though the languages and semantics are different, cloning is defined precisely as for
classical information effects [James and Sabry 2012].

3.3.2 Inhabitation. Later, we will need a notion of inhabited types in UΠ𝑎 . By a type 𝑏 being
inhabited in UΠ𝑎 , we mean that there is a combinator 1 ↣ 𝑏. For inhabited types 𝑏, construct
canonical inhabitants as follows. First, inhab1 = id. The inhabitant of a product type 𝑏 × 𝑏 ′ is the
product inhab𝑏×𝑏′ = uniti× >>> inhab𝑏 ∗∗∗ inhab𝑏′ of inhabitants. Finally, a sum 𝑏 +𝑏 ′ is inhabited if
either 𝑏 or 𝑏 ′ is: if 𝑏 is inhabited set inhab𝑏+𝑏′ = inhab𝑏 >>> inl, and if 𝑏 is not inhabited but 𝑏 ′ is,
inhab𝑏+𝑏′ = inhab𝑏′ >>> inr .

3.3.3 Expressiveness. We can now extend the expressiveness theorem for UΠ to one forUΠ𝑎 .

Theorem 3. UΠ𝑎 is approximately universal for isometries: For any 2𝑛 × 2𝑚 isometry𝑉 and 𝛿 > 0
there exists aUΠ𝑎 combinator 𝑣 such that





𝑉 − J𝑣K






op
< 𝛿 .

3.4 Quantum Combinators with Hiding and Allocation: UΠ
𝜒
𝑎

We finally extend UΠ𝑎 with an additional information effect to hide information via a combinator
discard : 𝑏 ⇝ 1, giving us the language of UΠ

𝜒
𝑎 (łyuppie-chi-až ). Dually to how allocation was

introduced inUΠ𝑎 , discarding is introduced in UΠ
𝜒
𝑎 by letting combinators 𝑏1 ⇝ 𝑏2 be given by

UΠ𝑎 combinators of type 𝑏1 ↣ 𝑏2 × 𝑏3, where we think of 𝑏3 as the type of garbage produced
by the combinator. In order to be able to produce a choice metacombinator, however, we need to
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Syntax

𝑏 ::= 0 | 1 | 𝑏 + 𝑏 | 𝑏 × 𝑏 (base types)

𝑡 ::= 𝑏 ⇝ 𝑏 (combinator types)

𝑐 ::= lift 𝑣 (primitive combinators)

𝑑 ::= iso | arr 𝑣 | 𝑐 >>> 𝑐 | first 𝑐 | second 𝑐 | left 𝑐 | right 𝑐
| 𝑐 ∗∗∗ 𝑐 | 𝑐 +++ 𝑐 | inhab | inl | inr | alloc | clone
| discard | fst | snd | merge | measure (derived combinators)

Typing rules

𝑣 : 𝑏1↣ 𝑏2 × 𝑏3 𝑏3 inhabited

lift 𝑣 : 𝑏1 ⇝ 𝑏2

𝑣 : 𝑏1↣ 𝑏2

arr 𝑣 : 𝑏1 ⇝ 𝑏2

𝑐1 : 𝑏1 ⇝ 𝑏2 𝑐2 : 𝑏2 ⇝ 𝑏3

𝑐1 >>> 𝑐2 : 𝑏1 ⇝ 𝑏3

𝑐 : 𝑏1 ⇝ 𝑏2

first 𝑐 : 𝑏1 × 𝑏3 ⇝ 𝑏2 × 𝑏3
𝑐 : 𝑏1 ⇝ 𝑏2

second 𝑐 : 𝑏3 × 𝑏1 ⇝ 𝑏3 × 𝑏2
𝑐 : 𝑏1 ⇝ 𝑏2

left 𝑐 : 𝑏1 + 𝑏3 ⇝ 𝑏2 + 𝑏3
𝑐 : 𝑏1 ⇝ 𝑏2

right 𝑐 : 𝑏3 + 𝑏1 ⇝ 𝑏3 + 𝑏2
𝑐1 : 𝑏1 ⇝ 𝑏3 𝑐2 : 𝑏2 ⇝ 𝑏4

𝑐1 +++ 𝑐2 : 𝑏1 + 𝑏2 ⇝ 𝑏3 + 𝑏4
𝑐1 : 𝑏1 ⇝ 𝑏3 𝑐2 : 𝑏2 ⇝ 𝑏4

𝑐1 ∗∗∗ 𝑐2 : 𝑏1 × 𝑏2 ⇝ 𝑏3 × 𝑏4
𝑏 inhabited

inhab : 1⇝ 𝑏

alloc : 0⇝ 𝑎 inl : 𝑎⇝ 𝑎 + 𝑏 inr : 𝑏 ⇝ 𝑎 + 𝑏 clone : 𝑎⇝ 𝑎 × 𝑎
discard : 𝑎⇝ 1 fst : 𝑎 × 𝑏 ⇝ 𝑎 snd : 𝑎 × 𝑏 ⇝ 𝑏 merge : 𝑎 + 𝑎⇝ 𝑎 measure : 𝑎⇝ 𝑎

Fig. 6. The syntax and type system of the arrow metalanguage UΠ
𝜒
𝑎 (rules for inhabitation appear in Fig. 5).

make the additional assumption that this garbage is inhabited. This is a very mild assumption,
since garbage can always be chosen to be inhabited.
The hiding combinator allows projections fst : 𝑏1 × 𝑏2 ⇝ 𝑏1 and snd : 𝑏1 × 𝑏2 ⇝ 𝑏2 to be

defined. When combined with the classical cloning combinator inherited from UΠ𝑎 , we show that
a combinator measure : 𝑏 ⇝ 𝑏 for measurement can be derived.
UΠ

𝜒
𝑎 takes its canonical semantics in the categoryCPTP of Hilbert spaces and quantum channels,

and as withUΠ𝑎 , we will show in Section 4 how a model ofUΠ𝑎 can be extended to one ofUΠ
𝜒
𝑎 by

a universal construction, connecting isometries to quantum channels (more on this in Section 5). We
also extend the approximate universality theorem ofUΠ𝑎 to one showing approximate universality
ofUΠ

𝜒
𝑎 combinators with respect to quantum channels.

Like UΠ𝑎 , UΠ
𝜒
𝑎 is an arrow metalanguage extending UΠ𝑎 (see Fig. 6 for an overview). On the

surface, UΠ
𝜒
𝑎 may look similar to if we were to apply the arrow construction from the classical

case [James and Sabry 2012] toUΠ, but the result would be quite different. The arrow constructions
ofUΠ𝑎 andUΠ

𝜒
𝑎 are chosen precisely for their semantic properties (which we explore in Section 4),

and cannot be replaced without altering semantics. One tangible difference is in the treatment of
allocation: MLΠ (of [James and Sabry 2012]) does not have a unit 0 for the sum (as that would lead
to an undesirable combinator of type 1 ⇝ 0), so allocation has type 1 ⇝ 𝑏; on the other hand,
UΠ𝑎 and UΠ

𝜒
𝑎 have a unit 0 for the sum, and allocation has type 0⇝ 𝑏.

Similarly to UΠ𝑎 , UΠ
𝜒
𝑎 uses the same base types as UΠ and UΠ𝑎 , but introduces a new

combinator type 𝑏 ⇝ 𝑏 to distinguishUΠ
𝜒
𝑎 combinators at the type level. All combinators inUΠ

𝜒
𝑎

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.



Quantum Information Effects 2:13

are constructed from UΠ𝑎 combinators using the single primitive lift combinator

𝑣 : 𝑏1↣ 𝑏2 × 𝑏3 𝑏3 inhabited

lift 𝑣 : 𝑏1 ⇝ 𝑏2
.

The definition of the arrow metacombinators arr , >>>, and first are bound to look very familiar, as
they are defined dually to those inUΠ𝑎 (indeed, we will see in Section 4 that the two constructions
are dual in a formal sense). To turn a UΠ𝑎 combinator 𝑏1 ↣ 𝑏2 into a pure UΠ

𝜒
𝑎 combinator

𝑏1 ⇝ 𝑏2 can be done by assigning it the trivial (and trivially inhabited) garbage of 1,

arr (𝑣) = lift (𝑣 >>> uniti×) .
Combinators of type 𝑏1 ⇝ 𝑏2 and 𝑏2 ⇝ 𝑏3 with garbage of type 𝑏4 and 𝑏

′
4 respectively can be

composed by

lift (𝑣1) >>> lift (𝑣2) = lift (𝑣1 >>> (𝑣2 ∗∗∗ id) >>> assoc×)
resulting in a combinator with garbage 𝑏 ′4×𝑏4. For the final arrow combinator first allowing parallel
execution of arrows, we define 𝑐1 ∗∗∗ 𝑐2 to simply run the underlying UΠ𝑎 combinators in parallel
and swap the garbage into the right position as necessary,

lift (𝑣1) ∗∗∗ lift (𝑣2) = lift ((𝑣1 ∗∗∗ 𝑣2) >>> midswap×) ,
such that the garbage of 𝑐1 ∗∗∗ 𝑐2 is the product of the garbages of 𝑐1 and 𝑐2 respectively. We derive
first (𝑐) = 𝑐 ∗∗∗ id and second (𝑐) = id ∗∗∗ 𝑐 . All of these definitions are straightforwardly seen to
preserve the inhabitation requirement on garbage.

Defining the choice metacombinator 𝑐1 +++ 𝑐2 is a bit more tricky, and it turns out to be easier to
define left and derive +++ and right from it. The idea is to exploit distributivity and inhabitation of
garbage: if 𝑐 : 𝑏1 ⇝ 𝑏2 produces garbage of type 𝑏4 and the identity produces garbage of type 1, we
can use the inhabitation of 𝑏4 to turn the trivial garbage into garbage of type 𝑏4 via inhab : 1⇝ 𝑏4,
and then distribute out on the right to get something of the required type (𝑏2 + 𝑏3) × 𝑏4. This gives
us the definition

left (lift 𝑣) = lift ((𝑣 +++uniti×)>>> (id+++ (id ∗∗∗ inhab))>>> (swap×+++ swap×)>>>distribi>>> swap×)
from which we derive right and +++ as usual [Hughes 2005] as

right (𝑐) = swap+ >>> left (𝑐) >>> swap+ 𝑐1 +++ 𝑐2 = left (𝑐1) >>> right (𝑐2) .
The combinators alloc, inl, inr , clone, and inhab related to the allocation effect fromUΠ𝑎 , as well
as all of the base combinators ofUΠ lifted toUΠ𝑎 , can be further lifted toUΠ

𝜒
𝑎 by applying arr

to them (these are denoted by iso in Fig. 6).
Information hiding is introduced inUΠ

𝜒
𝑎 by means of the effectful discard : 𝑏 ⇝ 1 combinator.

Some finesse is required to manage the inhabitation requirement on garbage, however. On all types
aside from 0, discard is given by lifting theUΠ𝑎 combinator 𝑏 ↣ 1×𝑏 that adds the multiplicative
unit on the left,

discard = lift (uniti× >>> swap×) .
On 0, we first need to use alloc to allocate something of inhabited type, namely 1, before we can
discard it:

discard = lift (alloc >>> uniti×) .
Analogously to the injections inUΠ𝑎 , we can derive projections from this discarding effect as

fst = id ∗∗∗ discard >>> unit× snd = swap× >>> fst

though these can also be defined equivalently as fst = lift (id) and snd = lift (swap×).
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To allow the choice metacombinator to be used for conditional execution, we need a way to
merge branches. This can be defined inUΠ

𝜒
𝑎 as themerge :𝑏 +𝑏 ⇝ 𝑏 combinator, exploiting hiding

and the fact that 𝑎 + 𝑎 � 𝑎 × (1 + 1), as in

merge = (uniti× +++ uniti×) >>> distribi >>> fst .

We are finally ready to explore the measurement combinator in UΠ
𝜒
𝑎 .

3.4.1 Measurement in the Computational Basis. As we have seen previously, UΠ𝑎 permits a
notion of classical cloning, and UΠ

𝜒
𝑎 inherits it. When we combine this with the ability to discard

information in UΠ
𝜒
𝑎 using the projections, we obtain a surprisingly robust notion of measurement

in the computational basis. This measurement combinator measure : 𝑏 ⇝ 𝑏 is defined simply to be

measure = clone >>> fst

Classically, this is a complicated way of doing absolutely nothing ś the map takes a piece of classical
data, copies it, and then immediately throws away the copy. In the quantum case, however, this
performs measurement. We illustrate this by an example.
Consider an arbitrary qubit state |𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, and the associated density matrix

|𝜙⟩⟨𝜙 | = (𝛼 |0⟩ + 𝛽 |1⟩)(𝛼 ⟨0| + 𝛽 ⟨1|)

Conjugating by JcloneK (noting that this does indeed perform classical cloning in the canonical
model of CPTP) yields the density matrix

JcloneK |𝜙⟩⟨𝜙 | JcloneK† = (𝛼 |00⟩ + 𝛽 |11⟩)(𝛼 ⟨00| + 𝛽 ⟨11|)

= |𝛼 |2 |00⟩⟨00| + 𝛼𝛽 |00⟩⟨11| + 𝛽𝛼 |11⟩⟨00| + |𝛽 |2 |11⟩⟨11| . (1)

We remark that, in CPTP, JfstK is given by the partial trace (see, e.g., [Nielsen and Chuang 2002])
of density matrices. This means that

JfstK( |𝛼 |2 |00⟩⟨00| + 𝛼𝛽 |00⟩⟨11| + 𝛽𝛼 |11⟩⟨00| + |𝛽 |2 |11⟩⟨11|)

= |𝛼 |2 tr( |0⟩⟨0|) |0⟩⟨0| + 𝛼𝛽 tr( |0⟩⟨1|) |0⟩⟨1| + 𝛽𝛼 tr( |1⟩⟨0|) |1⟩⟨0| + |𝛽 |2 tr( |1⟩⟨1|) |1⟩⟨1|
= |𝛼 |2 |0⟩⟨0| + |𝛽 |2 |1⟩⟨1| (2)

since for vectors |𝑎⟩ and |𝑏⟩ in the computational basis, tr( |𝑎⟩⟨𝑏 |) = 1when |𝑎⟩ = |𝑏⟩, and tr( |𝑎⟩⟨𝑏 |) =
0 otherwise. Note that measurement in an arbitrary basis can then be performed by conjugating the
measurement combinator with the appropriate change-of-base combinator. For example, measure-
ment in the Hadamard basis {|+⟩ , |−⟩} is performed using hadamard >>> measure >>> hadamard.

This method of measurement may seem counterintuitive, but it is important to note that (1) and
(2) above show that it is physically equivalent to the usual one. Our presentation can be seen as
exploiting purification of quantum states (see, e.g., [Nielsen and Chuang 2002]) to describe mixed
states, as this result implies that every mixed state appears as the partial trace of a pure one.

3.4.2 Expressiveness. Finally we can extend the universality theorems forUΠ andUΠ𝑎 to one that
UΠ

𝜒
𝑎 is approximately universal for arbitrary quantum computations, that is, quantum channels.

Theorem 4. UΠ
𝜒
𝑎 is approximately universal for quantum channels: For any quantum channel Λ

and 𝛿 > 0 there exists aUΠ
𝜒
𝑎 combinator 𝑐 such that





Λ − J𝑐K






op
< 𝛿 .
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4 CATEGORICAL SEMANTICS

In this section we develop denotational semantics for the simple programming languages of the
previous section in three stages. First, the base language Π can be interpreted in rig groupoids. This
is then extended to UΠ by providing interpretations for the phase and Hadamard combinators.
Finally, we discuss two categorical constructions, 𝑅 and 𝐿, that model the arrow constructions ś i.e.,
lift combinator constructors of UΠ𝑎 and UΠ

𝜒
𝑎 respectively ś in order to encapsulate information

allocation and hiding and account for measurement.

4.1 Rig Groupoids

To interpret the type system and semantics of Π in a category, it needs to have combinators ⊕ and
⊗ that distribute over each other in the correct way. This is captured in the notion of a rig groupoid.
Recall that a groupoid is a category in which every morphism is invertible.

Definition 5. A rig category is category C with two symmetric monoidal structures (⊕, 0) and
(⊗, 𝐼 ), as well as natural isomorphisms

𝛿𝐴,𝐵,𝐶 : 𝐴 ⊗ (𝐵 ⊕ 𝐶) → (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶)
𝛿0 : 𝐴 ⊗ 0 → 0

satisfying several coherence laws for which we refer to [Kelly 1974; Laplaza 1972].

Here ⊕ need not be a coproduct, and ⊗ need not be a product, which is the special case of a
distributive category.
A rig groupoid suffices to interpret Π. Being a language for classical reversible computing, a

canonical such model is the rig groupoid FinBij of finite sets and bijective functions. The base types
are interpreted as J0K = 0, J1K = 𝐼 , J𝑏 + 𝑏 ′K = J𝑏K ⊕ J𝑏 ′K, and J𝑏 × 𝑏 ′K = J𝑏K ⊗ J𝑏 ′K. The combinator
type 𝑏 ↔ 𝑏 ′ becomes the (invertible) morphisms J𝑏K → J𝑏 ′K. As for the atomic combinators, the
swap morphisms for ⊕ and ⊗ interpret swap+ and swap×, respectively. The unitor 𝜌 ⊕

𝐴
: 𝐴⊕ → 0

and its inverses coming from the monoidal structure (⊕, 0) denote unit+ and uniti+. The associator
𝛼 ⊕
𝐴,𝐵,𝐶

: (𝐴 ⊕ 𝐵) ⊕ 𝐶 → 𝐴 ⊕ (𝐵 ⊕ 𝐶) and its inverse interpret assoc+ and associ+. We use the

coherence isomorphisms of (⊗, 𝐼 ) to interpret Junit×K = 𝜌 ⊗ , Juniti×K = (𝜌 ⊗)−1, Jassoc×K = 𝛼 ⊗ ,
and Jassoci×K = (𝛼 ⊗)−1. The distributors finish the interpretation: JdistribK = 𝛿 , JdistribiK = 𝛿−1,
JdistriboK = 𝛿0, and JdistriboiK = 𝛿−10 . The combinators are simply composition via ◦, ⊕, and ⊗.

InterpretingUΠ requires additionally to give semantics to the phase𝜑 and hadamard combinators.

In principle, they can be given trivial semantics (i.e., as identities) in any rig groupoid, though
that would yield mere classical semantics, and thus defeat the purpose of the quantum extension
to Π to begin with. A far better approach would be to interpretUΠ in a category with quantum
capabilities, the canonical choice being the category Unitary of finite dimensional Hilbert spaces
and unitaries. Here, the semantics of these two combinators are given by

J𝑝ℎ𝑎𝑠𝑒𝜑K = 𝑥 ↦→ 𝜑 · 𝑥 Jℎ𝑎𝑑𝑎𝑚𝑎𝑟𝑑K =
1
√
2

(

1 1
1 −1

)

.

Another way of writing J𝑝ℎ𝑎𝑠𝑒𝜑K is as the 1 × 1 matrix (𝜑), as phases are exactly unitaries C→ C.

4.2 Garbage and Heap

We now extend the categorical semantics of UΠ to take quantum information effects into account.
LetC be a symmetric monoidal category. We think of its objects as types, its morphisms as programs,
and its tensor product as parallel composition. Hence a morphism 𝑓 : 𝐴 → 𝐵 ⊗ 𝐺 will denote
a program that takes an input of type 𝐴 and produces an output of type 𝐵 together with some
garbage of type 𝐺 . As we want to disregard the garbage, we will identify this morphism with

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.



2:16 Chris Heunen and Robin Kaarsgaard

(id𝐵 ⊗ ℎ) ◦ 𝑓 : 𝐴 → 𝐵 ⊗ 𝐺 ′ for any morphism ℎ : 𝐺 → 𝐺 ′ that postprocesses the garbage, called a
mediator. That is, we consider the equivalence relation ∼𝐿 generated by:

∼𝐿𝑓

𝐴

𝐵 𝐺

𝑓

𝐴

𝐵

𝐺

𝐺′

ℎ

(3)

Dually, instead of garbage, we can also consider a heap. That is, morphisms 𝑓 : 𝐴 ⊕ 𝐻 → 𝐵 will
denote a program that takes input of type 𝐴 and may use a heap 𝐻 in producing an output of type
𝐵. Again, we only care about access to the heap and not the actual contents of the heap, so we will
identify 𝑓 with 𝑓 ◦ (id𝐴 ⊕ ℎ) : 𝐴 ⊕ 𝐻 ′ → 𝐵 for any morphisms ℎ : 𝐻 ′ → 𝐻 that preprocesses the
heap. That is, we consider the equivalence relation ∼𝑅 generated by:

∼𝑅𝑓

𝐵

𝐴 𝐻

𝑓

𝐵

𝐴

𝐻

𝐻 ′
ℎ

(4)

Notice that the diagram in (3) refers to the monoidal product ⊗, while the one above in (4) refers to
the monoidal sum ⊕.
What exactly are ∼𝐿 and ∼𝑅? Equations (3) and (4) define relations that are already reflexive

(with the identity as mediator) and transitive (compose mediators), but not always symmetric. The
following lemma shows that they are already symmetric in special cases of interest, such as when
the base category C is a groupoid.

Lemma 6. When every morphism in C is split monic, equation (3) defines an equivalence relation.
When every morphism in C is split epic, equation (4) defines an equivalence relation.

Proof. It suffices to establish symmetry. If (id ⊗ ℎ) ◦ 𝑓 = 𝑔, there is 𝑘 with 𝑘 ◦ ℎ = id, so
(id ⊗ 𝑘) ◦ 𝑔 = (id ⊗ 𝑘) ◦ (id ⊗ ℎ) ◦ 𝑓 = 𝑓 . An analogous argument holds for ∼𝑅 . □

Proposition 7. If (C, ⊗, 𝐼 ) is a symmetric monoidal category, there is a well-defined symmetric
monoidal category 𝐿[C] whose:

• objects are the same as those of C;
• morphisms 𝐴 → 𝐵 are equivalence classes of morphisms 𝐴 → 𝐵 ⊗ 𝐺 in C under (3);
• composition is:

𝑔

𝐶 𝐺′

𝑓

𝐴

𝐵

𝐺

𝑔

𝐵

𝐶 𝐺′

◦𝑓

𝐴

𝐵 𝐺

=

• identities are the inverse right unitors:

𝐴

𝐼

• tensor unit 𝐼 is as in C;
• tensor product of objects is as in C;
• tensor product of morphisms is:
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𝑔

𝐴′

𝐵′ 𝐺′

⊗
𝑓

𝐴

𝐵 𝐺

𝑔

𝐴′

𝐵′ 𝐺′

=
𝑓

𝐴

𝐵 𝐺

Dually, if (C, ⊕,𝑂) is a symmetric monoidal category, there is a well-defined symmetric monoidal
category 𝑅 [C] = 𝐿[Cop]op. Explicitly:

• objects are the same as those of C;
• morphisms 𝐴 → 𝐵 are equivalence classes of morphisms 𝐴 ⊕ 𝐻 → 𝐵 in C under (4). □

Proof. Well-definedness follows from Lemma 8. It is straightforward to verify that coherence
isomorphisms in 𝐿[C] may be taken to be those in C composed with the inverse right unitor. □

Lemma 8. Let (C, ⊕) be a monoidal category. If 𝑓 ∼𝑅 𝑓
′ and 𝑔 ∼𝑅 𝑔

′, then:

(i) 𝑔 ◦ 𝑓 ∼𝑅 𝑔
′ ◦ 𝑓 ′ if 𝑔 and 𝑓 are composable in 𝑅 [C];

(ii) 𝑓 ⊕ 𝑔 ∼𝑅 𝑓
′ ⊕ 𝑔′;

Dually 𝑔 ◦ 𝑓 ∼𝐿 𝑔
′ ◦ 𝑓 ′ when 𝑔 and 𝑓 composable in 𝐿[C] and 𝑓 ⊗ 𝑔 ∼𝐿 𝑓

′ ⊗ 𝑔′ when 𝑓 ∼𝐿 𝑓
′ and

𝑔 ∼𝐿 𝑔
′ in a monoidal category (C, ⊗).

So what is the point of doing these constructions? This is made clear in the following proposition.
Indeed, in Section 5, we will see that 𝐿[C] and 𝑅 [C] are, in a certain sense, the smallest categories
containing C with these properties.

Proposition 9. The monoidal unit 𝐼 is terminal in 𝐿[C], and the monoidal unit 𝑂 is initial in
𝑅 [C].

As a consequence of this fact, there are canonical projections 𝑋 ⊗ 𝑌 𝜋1−−→ 𝑋 and 𝑌 ⊗ 𝑌 𝜋2−−→ 𝑋 in

𝐿[C] given by 𝑋 ⊗ 𝑌 id⊗!−−−→ 𝑋 ⊗ 𝐼
𝜌⊗

−−→ 𝑋 (and symmetrically for 𝜋2). Likewise, there are canonical

injections 𝑋
⨿1−−→ 𝑋 ⊕ 𝑌 and 𝑌

⨿2−−→ 𝑋 ⊕ 𝑌 (defined dually to the above) in 𝑅 [C].

Proposition 10. If (C, ⊗) is a monoidal category, there is a strict monoidal functor E : C → 𝐿[C]
given by E(𝐴) = 𝐴 on objects, and on morphisms as:

E(𝐴
𝑓
→ 𝐵) = 𝐴

𝑓
→ 𝐵

𝜌⊗−1

→ 𝐵 ⊗ 𝐼
Dually, if (C, ⊕) is a monoidal category, there is a strict monoidal functor D : C → 𝑅 [C] given by
D(𝐴) = 𝐴 on objects, and on morphisms as:

D(𝐴
𝑓
→ 𝐵) = 𝐴 ⊕ 0

𝜌⊕

→ 𝐴
𝑓
→ 𝐵

Proof. By definition E(𝐴 ⊗ 𝐵) = E(𝐴) ⊗ E(𝐵) on objects. On morphisms:

E(𝑓 ⊗ 𝑔)
𝐴

𝐵

𝐴′

𝐵′

=

𝐴

𝐵

𝐴′

𝐵′

=𝑓 𝑔

𝐼

=

𝐴

𝐵

𝐴′

𝐵′

𝑓 𝑔

𝐼 𝐼

∼
𝐴

𝐵

𝐴′

𝐵′

𝑓 𝑔

𝐼 𝐼

𝐴

𝐵

𝐴′

𝐵′

𝑓 𝑔

𝐼𝐼

𝐴

𝐵

𝐴′

𝐵′

= E(𝑓 ) E(𝑔)

Coherence isomorphisms in 𝐿[C] are precisely the image under E of those in C. □
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4.3 Lifting Tensor Products

We will compose the 𝐿 and 𝑅 constructions, applying them to the base rig groupoid consecutively.
In this section we show that if C is a rig category then so is 𝑅 [C], while 𝐿[𝑅 [C]] loses its direct
sum and becomes merely a monoidal category. However, we will see later that the direct sum in
𝐿[𝑅 [C]] is binoidal and satisfies the laws associated with an arrow with choice.
The overall idea with these constructions is that if C interprets the base language UΠ, then

𝑅 [C] interprets the arrow metalanguage UΠ𝑎 of UΠ extended with allocation. More precisely,
if J𝑢K : J𝑏1K ⊕ J𝑏3K → J𝑏2K is the interpretation of some UΠ combinator 𝑢 in a rig groupoid C,
the interpretation Jlift (𝑢)K in UΠ𝑎 is given by the equivalence class

[

J𝑢K
]

∼𝑅

: J𝑏1K → J𝑏2K in

𝑅 [C]. In turn, 𝐿[𝑅 [C]] interprets the arrow metalanguageUΠ
𝜒
𝑎 extendingUΠ with allocation and

hiding by interpreting Jlift (𝑣)K : J𝑏1K → J𝑏2K as the equivalence class of J𝑣K : J𝑏1K → J𝑏2K ⊗ J𝑏3K in
𝑅 [C]. Later, in Section 5.1 we will exhibit universal properties of 𝑅 [C] and 𝐿[C], and argue that
they justify these constructions in the canonical semantics of UΠ: 𝑅 [Unitary] is equivalent to
the category Isometry of finite dimensional Hilbert spaces and isometries, while 𝐿[𝑅 [Unitary]] is
equivalent to the category CPTP of finite dimensional Hilbert spaces and quantum channels.

Although 𝐿 and 𝑅 are dual constructions, the order in which they transform C is important: we
first add heaps and then garbage. The reason for this asymmetry is the following lemma.

Lemma 11. Let C be a symmetric monoidal category. If C has an initial object, then so does 𝐿[C].

Proof. Let 0 be an initial object in C. For each object 𝐴 there is then a morphism 0 → 𝐴 in 𝐿[C]
given by the morphism

𝐴 ⊗ 0 𝐴

=

0

!

0

!

0

𝐴

=

in C. If 𝑓 : 0 → 𝐴 is a morphism in 𝐿[C], represented by a morphism 𝑓 : 0 → 𝐴 ⊗ 𝐺 in C, then:

𝐴 𝐴

=

𝐺

𝑓

0

𝑓

0

𝐴

=

𝐺

!

0

𝐴

=

0

!

0

𝐺

!
𝐴

∼𝐿

0

!

0

𝐴

=

Thus 0 is indeed initial in 𝐿[C] as well. □

We start by endowing ⊗ and ⊕ with the capability to allow heaps.

Lemma 12. If C is a rig category, then so is 𝑅 [C].

Proof sketch. The monoidal structure (⊕, 0) is inherited from C straightforwardly. More intri-
cately, 𝑅 [C] is monoidal with (⊗, 𝐼 ) inherited from C:

• the tensor product of objects is 𝐴 ⊗ 𝐵;
• the tensor unit is 𝐼 ;
• the tensor product of morphisms 𝑓 : 𝐴 ⊕ 𝐻 → 𝐵 and 𝑓 ′ : 𝐴′ ⊕ 𝐻 ′ → 𝐵′ is

(𝐴 ⊗ 𝐴′) ⊕ 𝐻 ′′ 𝛿−1→ (𝐴 ⊕ 𝐻 ) ⊗ (𝐴′ ⊕ 𝐻 ′)
𝑓 ⊗𝑓 ′
−→ 𝐵 ⊗ 𝐵′

where 𝐻 ′′
= (𝐻 ⊗ 𝐴′) ⊕ (𝐴 ⊗ 𝐻 ′) ⊕ (𝐻 ⊗ 𝐻 ′);

□
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The dual result does not hold: if C is a rig category, then 𝐿[C] need not be (though it is always
monoidal by Proposition 7). This asymmetry is caused by the fact that ⊗ distributes over ⊕, but not
the other way around. Lemma 11 is the nullary case of this fact. For a special case where this does
hold, regard a Boolean algebra as a posetal category C; then ∧ and ∨ do distribute over each other
both ways, so in that case 𝐿[C] is again a rig category.

Lemma 13. If C is a rig category, then D : C → 𝑅 [C] is a strict rig functor.

Proof. By definition D(𝐴 ⊗ 𝐵) = D(𝐴) ⊗ D(𝐵) on objects. On morphisms, D(𝑓 ) ⊗ D(𝑔) is

(𝐴 ⊗ 𝐴′) ⊕ 𝐻 ′′ 𝛿−→ (𝐴 ⊕ 0) ⊗ (𝐴′ ⊕ 0)
𝜌⊕⊗𝜌⊕

−−−−−→ 𝐴 ⊗ 𝐴′ 𝑓 ⊗𝑔
−−−→ 𝐵 ⊗ 𝐵′

with 𝐻 ′′
= (0 ⊗𝐴′) ⊕ (𝐴 ⊗ 0) ⊕ (0 ⊗ 0). Now 𝐻 ′′ ≃ 0 by successive applications of the annihilators

and unitors for ⊕, so by coherence D(𝑓 ) ⊗ D(𝑔) is the composition of 𝜌 ⊕ : (𝐴 ⊗𝐴′) ⊕ 0 → 𝐴 ⊗𝐴′

and 𝑓 ⊗ 𝑔, which is precisely D(𝑓 ⊗ 𝑔). □

4.4 Arrows with Choice

To complete the categorical semantics, wewill show that𝐿[𝑅 [C]] supports arrowswith choice [Hughes
2005]. We saw in Proposition 7 and Lemma 12 that if C is a rig category, then 𝐿[𝑅 [C]] is monoidal
under ⊗. What happens to ⊕? It is no longer necessarily a monoidal structure on 𝐿[𝑅 [C]], but we
will show that it is binoidal ś roughly, it is monoidal except that ⊕ is only a functor in each variable
separately rather than in both variables jointly [Power and Robinson 1997] (see also [Jacobs et al.
2009]).

Definition 14. A category C is binoidal when it is equipped with functors 𝐴 ⊕ − : C → C and
− ⊕ 𝐵 : C → C for each choice of objects 𝐴, 𝐵 ∈ C such that applying the first functor to 𝐵 results
in the same object 𝐴 ⊕ 𝐵 as applying the second functor to 𝐴.
An arrow with choice is a functor 𝐹 from a monoidal category (C, ⊕, 0) where 0 is initial to a

binoidal category (D, ⊕) such that for any 𝑔 : 𝐵 → 𝐵′:

𝐹 (𝑓 ⊕ 𝐵) = 𝐹 (𝑓 ) ⊕ 𝐵 (5)

𝐹 (⨿1) ◦ 𝑓 = (𝑓 ⊕ 𝐵) ◦ 𝐹 (⨿1) (6)

(𝑓 ⊕ 𝐵′) ◦ 𝐹 (𝐴 ⊕ 𝑔) = 𝐹 (𝐴 ⊕ 𝑔) ◦ (𝑓 ⊕ 𝐵) (7)

𝛼⊕ ◦ ((𝑓 ⊕ 𝐵) ⊕ 𝐶) = (𝑓 ⊕ (𝐵 ⊕ 𝐶)) ◦ 𝛼⊕ (8)

To prove that 𝐿[𝑅 [C]] is binoidal under ⊕, we will require that it has inhabited garbage: for any
equivalence class of morphisms𝐴 → 𝐵 ⊗𝐺 in 𝑅 [C], there is a morphism 𝐼 → 𝐺 in 𝑅 [C]. Because 0
is initial in 𝑅 [C], the problematic case where there is an isomorphism 𝜗 : 𝐺 → 0 is handily avoided

as 𝑓 : 𝐴 → 𝐵 ⊗ 𝐺 is then equivalent to 𝐴
𝑓
−→ 𝐵 ⊗ 𝐺 id⊗𝜗−−−−→ 𝐵 ⊗ 0

id⊗!−−−→ 𝐵 ⊗ 𝐼 .
In the remaining cases, inhabited garbage can be constructed when C is semisimple, meaning

that any object is isomorphic to one built out of copies of the tensor unit 𝐼 using ⊕ and ⊗. This is
the case for Unitary. In this case, canonical inhabitants, i.e., morphisms 𝐼 → 𝐺 for each inhabited
object 𝐺 , can be constructed as the interpretation of theUΠ𝑎 combinators given in Section 3.3.2.

Lemma 15. If C is a semisimple rig category, then 𝐿[𝑅 [C]] is a binoidal category under ⊕.

Proposition 16. If C is a semisimple rig category, E : 𝑅 [C] → 𝐿[𝑅 [C]] is an arrow with choice.

Combining the previous Proposition with Lemma 13 shows that E ◦ D : C → 𝐿[𝑅 [C]] is an
arrow with choice. The categorical semantics ofUΠ,UΠ𝑎 , andUΠ

𝜒
𝑎 , including certain derived

combinators with structural or otherwise significant interpretations, are summarised in Fig. 7.
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Base types

J0K = 𝑂 J1K = 𝐼 J𝑏 + 𝑏 ′K = J𝑏K ⊕ J𝑏 ′K J𝑏 × 𝑏 ′K = J𝑏K ⊗ J𝑏 ′K

Semantics of UΠ J𝑏1 ↔ 𝑏2K = J𝑏1K → J𝑏2K in C

Jswap+K = 𝜎⊕ Junit+K = 𝜌⊕ Juniti+K = (𝜌⊕)−1 Jassoc+K = 𝛼 ⊕ Jassoci+K = (𝛼 ⊕)−1
Jswap×K = 𝜎⊗ Junit×K = 𝜌⊗ Juniti+K = (𝜌⊗)−1 Jassoc×K = 𝛼 ⊗ Jassoci×K = (𝛼 ⊗)−1
JidK = id JdistribK = 𝛿 JdistribiK = 𝛿−1 JdistriboK = 𝛿0 JdistriboiK = 𝛿−10

J𝑐1 o
9 𝑐2K = J𝑐2K ◦ J𝑐1K J𝑐1 + 𝑐2K = J𝑐1K ⊕ J𝑐2K J𝑐1 × 𝑐2K = J𝑐1K ⊗ J𝑐2K Jinv(𝑐)K = J𝑐K−1

In Unitary:

Jphase𝜑K = (𝜑) JhadamardK = 1√
2

(

1 1

1 −1

)

Semantics of UΠ𝑎 J𝑏1 ↣ 𝑏2K = J𝑏1K → J𝑏2K in 𝑅 [C]

Jlift 𝑢K =
[

J𝑢K
]

∼𝑅

Jarr 𝑣K = D(J𝑣K) J𝑐1 >>> 𝑐2K = J𝑐2K ◦ J𝑐1K

J𝑐1 ∗∗∗ 𝑐2K = J𝑐1K ⊗ J𝑐2K J𝑐1 +++ 𝑐2K = J𝑐1K ⊕ J𝑐2K Jfirst 𝑐K = J𝑐K ⊗ id

Jsecond 𝑐K = id ⊗ J𝑐K Jleft 𝑐K = J𝑐K ⊕ id Jright 𝑐K = id ⊕ J𝑐K

JallocK = 𝑂
!−→ J𝑏2K JinlK = ⨿1 JinrK = ⨿2

Semantics of UΠ
𝜒
𝑎 J𝑏1 ⇝ 𝑏2K = J𝑏1K → J𝑏2K in 𝐿[𝑅 [C]]

Jlift 𝑣K =
[

J𝑣K
]

∼𝐿

Jarr 𝑣K = E(J𝑣K) J𝑐1 >>> 𝑐2K = J𝑐2K ◦ J𝑐1K

J𝑐1 ∗∗∗ 𝑐2K = J𝑐1K ⊗ J𝑐2K J𝑐1 +++ 𝑐2K = Jright 𝑐2K ◦ Jleft 𝑐1K Jfirst 𝑐K = J𝑐K ⊗ id

Jsecond 𝑐K = id ⊗ J𝑐K Jleft 𝑐K = J𝑐K ⊕ J𝑏 ′1K Jright 𝑐K = J𝑏 ′1K ⊕ J𝑐K

JdiscardK = J𝑏1K
!−→ 𝐼 JfstK = 𝜋1 JsndK = 𝜋2

Fig. 7. The categorical semantics ofUΠ,UΠ𝑎 , andUΠ
𝜒
𝑎 in summary, including the semantics of various

derived combinators (marked yellow). The semantics of phase𝜑 and hadamard in UΠ refer to their canonical

semantics in Unitary. In UΠ
𝜒
𝑎 , 𝑏

′
1 in the semantics of left 𝑐 and right 𝑐 refer to the type of the alternate

choice; e.g., when 𝑐 has type 𝑏1 ⇝ 𝑏2, left 𝑐 has type 𝑏1 + 𝑏 ′1 ⇝ 𝑏2 + 𝑏 ′1.

5 PROPERTIES OF THE CATEGORICAL CONSTRUCTIONS

The previous section developed enough properties of our categorical semantics to interpret UΠ𝑎 .
But the 𝐿- and 𝑅-constructions have more properties, that give them the status of a very useful
generic construction. From these universal properties it follows that two fundamental embeddings
in reversible computing and quantum computing are both captured by our categorical semantics.

5.1 Universal Properties

The first insight is the following factorisation lemma, that brings morphisms in 𝐿[C] and 𝑅 [C] in a
normal form in terms of pure morphisms from C.

Lemma 17. If C is a rig category, then:

(i) any map 𝐴 → 𝐵 in 𝑅 [C] is represented by 𝐴 ⨿1−−→ 𝐴 ⊕ 𝐻
D(𝑓 )
−−−−→ 𝐵 for some 𝑓 : 𝐴 ⊕ 𝐻 → 𝐵 in C;

(ii) any map 𝐴 → 𝐵 in 𝐿[C] is represented by 𝐴
E(𝑓 )
−−−−→ 𝐵 ⊗ 𝐺 𝜋1−−→ 𝐵 for some 𝑓 : 𝐴 → 𝐵 ⊗ 𝐺 in C.
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These factorisations are unique.

Proof. Point (ii) follows from [Hermida and Tennent 2012, Lemma 8], see [Heunen and Kaars-
gaard 2021, Lemma 15]. Point (i) then follows from (ii) by Proposition 7. □

For any object𝐴 there is a unique morphism𝐴 → 𝐼 in 𝐿[C], represented by the unitor𝐴 → 𝐼 ⊗𝐴
in C, that simply considers the input as garbage and does nothing else. This makes 𝐿[C] affine, and
in fact it is the universal affine category including C.

Theorem 18. 𝐿[C] is the affine completion of a monoidal category C: for an affine monoidal

category D and a monoidal functor 𝐹 : C → D there is a unique monoidal functor 𝐹 : 𝐿[C] → D with

𝐹 = 𝐹 ◦ E.

Proof. This is an easy generalisation of [Heunen and Kaarsgaard 2021, Theorem 16]. □

Theorem 19. 𝑅 [C] is the coaffine completion of a rig category C: for any coaffine rig category D

and rig functor 𝐹 : C → D there is a unique rig functor 𝐹 : 𝑅 [C] → D such that 𝐹 = 𝐹 ◦ D.

Proof. By Proposition 7 and Theorem 18, there is a unique functor 𝐹 making the triangle
commute that is monoidal with respect to ⊕. Lemmas 13 and 17 show that it is also monoidal with
respect to ⊗, that is, a rig functor. □

It follows immediately that the 𝐿- and 𝑅-constructions are functorial: a monoidal functor C → D

induces a monoidal functor 𝐿[C] → 𝐿[D], and a rig functor C → D induces a rig functor 𝑅 [C] →
𝑅 [D]. The combination 𝐿[𝑅 [C]] is more than the sum of Theorems 18 and 19. The following lemma
shows that it is also universal for arrows with choice as in Section 4.4.

Lemma 20. Let C be a category with an initial object.

(i) The category 𝐿[C] has an initial object, and E : C → 𝐿[C] preserves it.
(ii) If 𝐹 : C → D preserves the initial object then so does 𝐹 : 𝐿[C] → D.

(iii) If 𝐹 : C → D preserves injections then so does 𝐹 : 𝐿[C] → D.

Proof. For (i), observe that any morphism 0 → 𝐴 in 𝐿[C] must be represented by the unique
morphism 0 → 𝐴 ⊗ 𝐺 in C for some 𝐺 , and these are all equivalent under ∼𝐿 . By construction
E(0) = 0, see Proposition 10. Points (ii) and (iii) now follow immediately. □

5.2 Toffoli and Stinespring

A central question of foundational importance for reversible modes of computing concerns that of
reversible expressivity. Any irreversible computing machine is trivially able to simulate a reversible
one ś after all, reversible operations are just ordinary operations which happen to be invertible ś
but what is lost by considering only the reversible ones? Fortunately for the viability of reversible
modes of computing, the answer turns out to be łnothing at all,ž if one is willing to accept some
ancillary inputs and garbage outputs to occur.

5.2.1 The Fundamental Theorem of Classical Reversible Computing. In the case of classical reversible
circuit logic, Toffoli found this question to be of so supreme importance to his theory that he dubbed
the expressivity theorem the fundamental theorem [Toffoli 1980] of classical reversible computing.
Toffoli showed this by demonstrating that any finite function 𝜙 can be simulated by a network
consisting of an encoder, a finite bijective function 𝑓 , and a decoder. This encoder and decoder
should be łessentially independent of 𝜙 and contain as little łcomputing powerž as possible,ž [Toffoli
1980] and though this characterisation is (perhaps intentionally) vague, Toffoli goes on to show
that one can always choose a łtrivial encoderž (an injection) and a łtrivial decoderž (a projection).
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It is perhaps surprising that this highly specific statement (and its proof) on the nature of finite
functions, down to decomposition of a finite function as an injection, a bijective function, and a
projection, can be formulated as the following purely categorical statement:

Theorem 21. The monoidal functor 𝐿[𝑅 [FinBij]] → FinSet induced by the (monoidal) inclusion
functor FinBij → FinSet is full.

To clarify, the inclusion functor FinBij
𝐼−→ FinSet acts as the identity on both objects and

morphisms, noting that any finite bijection is trivially also a finite function. The monoidal functor
𝐿[𝑅 [FinBij]] → FinSet then arises by successively applying Theorems 19 and 18, as in

FinBij 𝑅 [FinBij] 𝐿[𝑅 [FinBij]]

FinSet FinSet
id

ˆ̌𝐼𝐼

ED

𝐼

Notice that it follows from Lemma 17 that any morphism of 𝐿[𝑅 [FinBij]] factors (essentially
uniquely) as 𝐴

E(⨿1)−−−−−→ 𝐴 ⊕ 𝐻
E(D(𝑓 ))
−−−−−−−→ 𝐵 ⊗ 𝐺 𝜋1−−→ 𝐵 for some bijection 𝐴 ⊕ 𝐻

𝑓
−→ 𝐵 ⊗ 𝐺 . Recall that

all morphisms in FinBij are isomorphisms, and that all functors preserve isomorphisms. Using

Lemma 20 and noting that 𝑅 [FinBij] 𝐼−→ FinSet preserves injections, it follows that any function in

the image of ˆ̌𝐼 factors as

𝐴
⨿1−−−−−−→

injection
𝐴 ⊕ 𝐻

ˆ̌𝐼 (E (D(𝑓 )))
−−−−−−−−−→

bijection
𝐵 ⊗ 𝐺 𝜋1−−−−−−−→

projection
𝐵

What the fundamental theorem of reversible computing then states is that all functions are, in fact,

in the image of ˆ̌𝐼 , and so permit such a factorisation. That is exactly to say that ˆ̌𝐼 is full.

5.2.2 Stinespring’s Dilation Theorem. Similarly, in the setting of quantum theory, the 𝐿- and 𝑅-
constructions capture Stinespring’s dilation theorem. As discussed in Section 2.1.2, this theorem
shows that any mixed quantum operation can be modeled by a pure quantum operation, if one
is willing to enlarge the situation with an auxiliary system. Write Isometry for the category of
Hilbert spaces and isometric linear maps, and Unitary for the subcategory of unitary linear maps.

Theorem 22 (Huot & Staton). There is an equivalence 𝑅 [Unitary] ≃ Isometry of rig categories,
and an equivalence 𝐿[𝑅 [Unitary]] ≃ CPTP of monoidal categories.

Proof. See [Huot and Staton 2018, 2019] and [Heunen and Kaarsgaard 2021]. □

Notice that the previous theoremholds forHilbert space that are not necessarily finite-dimensional.

6 APPLICATIONS

We will now consider some areas where our results can be put to work. First, we argue that our
categorical model can be used to prove useful, nontrivial properties about measurement entirely
algebraically, without ever needing to consider the gritty details of quantum channels. Second, we
illustrate the use of UΠ

𝜒
𝑎 as a metalanguage by providing a translation from Selinger’s quantum

flowcharts [Selinger 2004] to UΠ
𝜒
𝑎 .
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6.1 Properties of Measurement

In this section, we will use type subscripts on combinators whenever it is necessary to disambiguate
between definitions, or to make the presentation clearer. For example, we will write measure𝑏+𝑏′ to
mean the measurement combinator on the type 𝑏 + 𝑏 ′⇝ 𝑏 + 𝑏 ′.

Our first property is bit technical, concerning the behaviour of injections with measurement. We
will see shortly how it can be used to prove far more interesting things.

Proposition 23. Measurement commutes with injections: Jmeasure𝑏>>>inlK = Jinl>>>measure𝑏+𝑏′K,
and likewise for inr.

Any complex, finite dimensional Hilbert space is isomorphic to one of the form C𝑛 , where 𝑛 is
its dimension. From this it follows that each canonical injection ⨿𝑖 : C→ C𝑛 is associated with a
distinct vector |𝑖⟩ linearly independent from all other | 𝑗⟩ for 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖 . Together, these are
precisely the classical states forming the computational basis of C𝑛 .

Abstracting, we say that a classical state is nothing but an injection, i.e., composition of inl and
inr . This intuition is correct, in that we can show that measurement does nothing to classical states:

Proposition 24. If 𝑠 is a classical state then Js >>> measureK = J𝑠K.

Proof. We first see that measurement on 1 is the identity:measure1 = clone1 >>> fst = uniti× >>>
(id × discard) >>> unit×. Since JdiscardK when applied to J1K = 𝐼 is nothing but the identity by 𝐼
terminal, it follows that

Jmeasure1K = Juniti× >>> (id × discard) >>> unit×K = Junit×K ◦ Jid × discardK ◦ Juniti×K

= Junit×K ◦ Juniti×K = JidK .

Now, since a classical state 𝑠 : 1 ⇝ 𝑏 is precisely an injection, it follows by Proposition 23 that
J𝑠 >>> measure𝑏K = Jmeasure1 >>> 𝑠K = J𝑠K ◦ Jmeasure1K = J𝑠K. □

A very useful property of measurement is that the result of measuring a joint system is nothing
but the product of measurements on each constituent system individually. This is shown as follows:

Proposition 25. Measurement of products is the product of measurements: Jmeasure𝑏×𝑏′K =

Jmeasure𝑏 ×measure𝑏′K.

Proof. Using the fact thatmeasure = clone>>> fst and clone𝑏×𝑏′ = clone𝑏 × clone𝑏′ >>>midswap×,
the property follows by naturality of Jmidswap×K:

𝐴 ⊗ 𝐵 (𝐴 ⊗ 𝐴) ⊗ (𝐵 ⊗ 𝐵) (𝐴 ⊗ 𝐼 ) ⊗ (𝐵 ⊗ 𝐼 )

(𝐴 ⊗ 𝐴) ⊗ (𝐵 ⊗ 𝐵) 𝐴 ⊗ 𝐵

(𝐴 ⊗ 𝐵) ⊗ (𝐴 ⊗ 𝐵) (𝐴 ⊗ 𝐵) ⊗ (𝐼 ⊗ 𝐼 )

JcloneK⊗JcloneK

JfstK JfstK

JidK⊗(JdiscardK⊗JdiscardK)

JdiscardK⊗JdiscardK

JfstK⊗JfstKJcloneK⊗JcloneK

Jmidswap×K

Jmidswap×K

Again, 𝐴 and 𝐵 range over interpretations of arbitrary UΠ
𝜒
𝑎 types 𝑏 and 𝑏 ′. □

An immediate consequence of this property is that measurements also commute with projections:

Proposition 26. Measurement on a product type commutes with projections: Jmeasureb×b′>>>fstK =
Jfst >>> measure𝑏K and likewise for snd.
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Proof. Since Jmeasureb×b′K = Jmeasure𝑏 ×measure𝑏′K = Jmeasure𝑏K ⊗ Jmeasure𝑏′K by Proposi-
tion 25, it follows by naturality of 𝜋1 = JfstK that

Jmeasureb×b′ >>> fstK = 𝜋1 ◦ Jmeasure𝑏K ⊗ Jmeasure𝑏′K = Jmeasure𝑏K ◦ 𝜋1 = Jfst >>> measure𝑏K .

which was what we wanted. □

The final property we want to show is that measurement is idempotent. Conceptually, this can
be seen as an extension to the property that measurement does nothing to classical states. This is
because the result of measuring a quantum state will always be a mixed classical state, so further
measuring this has no effect. To do this, we remark that cloning can be shown to be associative.

Proposition 27. Cloning is associative: Jclone>>> (clone×id)>>>assoc×K = Jclone>>> (id×clone)K.

We can then show idempotence:

Proposition 28. Measurement is idempotent: Jmeasure >>> measureK = JmeasureK.

Proof. Since JfstK = Jlift idK, it can be shown that JmeasureK = Jlift cloneK, so by the definition
of >>> in UΠ

𝜒
𝑎 we have that

Jmeasure >>> measureK = Jlift (clone >>> (clone × id) >>> assoc×)K = Jlift (clone >>> (id × clone))K,

the final equality following from coassociativity of cloning (Proposition 27). But then Jid × cloneK =
id ⊗ JcloneK mediates between JcloneK and Jclone >>> (id × clone)K in 𝑅 [C], so JmeasureK =

Jlift cloneK = Jlift (clone >>> (id × clone))K = Jmeasure >>> measureK in 𝐿[𝑅 [C]]. □

6.2 Quantum Flow Charts

In this section, we demonstrate the translation of (noniterative) quantum flow charts intoUΠ
𝜒
𝑎 . As

the name suggests, quantum flow charts are the quantum extension of the classical imperative flow
chart languages, used extensively in areas such as program compilation and partial evaluation [Hat-
cliff 1998; Jones et al. 1993]. They were first considered by Selinger in several variations [Selinger
2004]: here, we consider the purely quantum variant, which has only quantum data, in the form of
qubit ensembles. The only type of data supported is the type Qbit of qubits, so typing contexts Γ
are simply given by lists of active Qbit variables. In its textual form, a quantum flowchart is simply
a list of commands. The supported commands are as follows (with 𝑞 ranging over variables):

𝑐 ::= new qbit 𝑞 := 0 | discard 𝑞 | 𝐸 ∗= 𝑈 | permute 𝜑 | initial | measure 𝑞 | merge | 𝑐; 𝑐 | 𝑐 ⊕ 𝑐

Commands take sums of typing contexts to sums of typing contexts, each summand denoting a
program branch. Briefly, new qbit and discard allocate and discard variables respectively, 𝐸 ∗= 𝑈
applies a unitary 𝑈 to a non-empty list of variables 𝐸 = 𝑝, 𝑞, 𝑟, . . . , permute 𝜑 changes the variable
order by applying an arbitrary permutation 𝜑 , initial initialises an empty typing context, andmerge
merges two program branches (with the same typing context) into one. The most novel command
is arguably measure 𝑞, which measures the qubit 𝑞 and branches on the measurement result: this
style of measurement-based flow control goes by the motto of łquantum data, classical control.ž
Flow charts are composed in sequence and in parallel using ; and ⊕ respectively.
We begin with the translation of types and contexts, given simply by T J𝑞 : QbitK = 1 + 1 and

T JΓ, Γ′K = T JΓK × T JΓ′K. Before we proceed with the translation of commands, we will use the
abuse of notation |0⟩ and |1⟩ to refer to the injections inl : 1⇝ 1+1 and inr : 1⇝ 1+1 respectively,
to indicate that these serve as allocation of the constant classical values of |0⟩ and |1⟩. Commands
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are translated as follows:

T Jnew qbit 𝑞 := 0K = uniti× >>> id × |0⟩ T Jdiscard 𝑞K = fst

T J𝐸 ∗= 𝑈 K = id × arr (arr (𝑈 )) T Jpermute 𝜑K = arr (arr (𝜑))
T JinitialK = alloc T JmergeK = merge
T J𝑐; 𝑐 ′K = T J𝑐K >>> T J𝑐 ′K T J𝑐 ⊕ 𝑐 ′K = T J𝑐K +++ T J𝑐 ′K

T Jmeasure 𝑞K = id ×measure >>> distrib >>> ((id × |0⟩) +++ (id × |1⟩))

In the above, the terms𝑈 and 𝜑 denote the approximations of the unitary𝑈 and permutation 𝜑 (a
particularly simple kind of unitary) respectively as UΠ terms, as given by Theorem 2.

7 CONCLUSION AND FUTURE WORK

We have shown how quantum measurement, often presented in somewhat mysterious terms, arises
through two suprisingly simple arrow constructions, associated with the information effects of
allocation and hiding, on a reversible quantum combinator language. We have provided categorical
semantics for all of these languages through elementary universal constructions on rig categories.
These let us prove useful nontrivial properties of measurement as semantic equivalences, recast
the fundamental theorem of reversible computation as an elementary categorical statement, and
interpret (noniterative) quantum flow charts. There are several avenues for further research:

Classical andQuantum Data. In the current formulation,UΠ only allows forming quantum data
types. Hence qubit measurement, for example, can only be given the type Qbit → Qbit, rather than
Qbit → Bit. ExtendingUΠ

𝜒
𝑎 with classical data would address this shortcoming. Semantically, this

would need a (sufficiently nice) construction of the category of C*-algebras and quantum channels
from the category of Hilbert spaces and quantum channels.

Categorical Semantics of SILQ. The quantum programming language SILQ [Bichsel et al. 2020] has
several original features: measurement-free and quantum-free functions, a linear type system, and
the automatic uncomputation of garbage.UΠ

𝜒
𝑎 enables a type-level interpretation of measurement-

free functions (i.e., pure combinators), and access to a canonical reversibilisation of combinators. It
would be interesting to extend the UΠ family with the remaining features to provide combinator
semantics for SILQ, much like Π0 does in the classical case for Theseus [James and Sabry 2014].

Is There a Quantum Effect? We have shown that there are elementary arrow constructions con-
necting reversible and irreversible quantum computations. Is there a similar arrow construction
connecting classical reversible computation and quantum reversible computation? Such a construc-
tion would likely involve several steps, such as adjoining the circle group to introduce phases,
and considering a variation of convex combinations of morphisms respecting direct sums, to give
morphisms that introduce and eliminate superpositions.

Recursion and Subnormalised Channels. The notion of quantum channel considered in this paper is
too rigid to enable recursion or iteration, which is why we were only able to give semantics to the
noniterative fragment of quantum flow charts. To enable recursion requires relaxing the notion of
quantum channel, from (completely positive) trace-preserving maps to trace-nonincreasing ones.
Can recursion be added as an effect, i.e., an arrow construction from CPTP to CPTN?

Measurement-Based Quantum Computation. Measurement-based quantum computation is in a
sense opposite to the quantum circuit model. In the latter all operations are reversible except the
very last one. In the former all operations are irreversible up to reversible corrections being fed
forward. What is the relationship to the model given in this article? Is there a translation from the
language of measurement patterns used in measurement-based quantum computation to UΠ

𝜒
𝑎 ?

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.



2:26 Chris Heunen and Robin Kaarsgaard

REFERENCES

T. Altenkirch and A. S. Green. 2010. The Quantum IO Monad. Semantic Techniques in Quantum Computation (2010), 173ś205.

https://doi.org/10.1017/CBO9781139193313.006

C. H. Bennett. 1973. Logical Reversibility of Computation. IBM Journal of Research and Development 17, 6 (1973), 525ś532.

https://doi.org/10.1147/rd.176.0525

B. Bichsel, M. Baader, T. Gehr, and M. Vechev. 2020. Silq: A High-Level Quantum Language with Safe Uncomputation

and Intuitive Semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 2020) (PLDI 2020). ACM, 286ś300. https://doi.org/10.1145/3385412.3386007

W. J. Bowman, R. P. James, and A. Sabry. 2011. Dagger Traced Symmetric Monoidal Categories and Reversible Programming.

(2011). Work-in-progress report presented at the 3rd International Workshop on Reversible Computation.

J. Carette and A. Sabry. 2016. Computing with Semirings and Weak Rig Groupoids. In Proceedings of the 25th European

Symposium on Programming (ESOP 2016). Springer, 123ś148. https://doi.org/10.1007/978-3-662-49498-1_6

C.-H. Chen, V. Choudhury, J. Carette, and A. Sabry. 2020. Fractional Types: Expressive and Safe Space Management for

Ancilla Bits. In Proceedings of the 12th International Conference on Reversible Computation (RC 2020). Springer, 169ś186.

https://doi.org/10.1007/978-3-030-52482-1_10

C.-H. Chen and A. Sabry. 2021. A Computational Interpretation of Compact Closed Categories: Reversible Programming

with Negative and Fractional Types. Proc. ACM Program. Lang. 5, POPL, Article 9 (jan 2021), 29 pages. https://doi.org/10.

1145/3434290

K. Cho and A. Westerbaan. 2016. Von Neumann Algebras Form a Model for the Quantum Lambda Calculus. (2016).

arXiv:1603.02133 [cs.LO]

G. S. H. Cruttwell, B. Gavranović, N. Ghani, P. Wilson, and F. Zanasi. 2021. Categorical Foundations of Gradient-Based

Learning. (2021). arXiv:2103.01931 [cs.LG]

B. Fong, D. Spivak, and R. Tuyéras. 2019. Backprop as Functor: A Compositional Perspective on Supervised Learning. In

34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019). IEEE, 1ś13. https://doi.org/10.1109/LICS.

2019.8785665

A. S. Green and T. Altenkirch. 2008. From Reversible to Irreversible Computations. In Proceedings of the 4th International

Workshop on Quantum Programming Languages (QPL 2006) (Electronic Notes in Theoretical Computer Science), Vol. 210.

Elsevier, 65ś74. https://doi.org/10.1016/j.entcs.2008.04.018

A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. 2013. Quipper: A Scalable Quantum Programming

Language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI 2013). ACM, 333ś342. https://doi.org/10.1145/2491956.2462177

J. Hatcliff. 1998. An Introduction to Online and Offline Partial Evaluation Using a Simple Flowchart Language. In Partial

Evaluation: Practice and Theory (Lecture Notes in Computer Science), Vol. 1706. Springer, 20ś82. https://doi.org/10.1007/3-

540-47018-2_2

C. Hermida and R. D. Tennent. 2012. Monoidal Indeterminates and Categories of Possible Worlds. Theoretical Computer

Science 430 (2012), 3ś22. https://doi.org/10.1016/j.tcs.2012.01.001

C. Heunen and R. Kaarsgaard. 2021. Bennett and Stinespring, Together at Last. In Proceedings 18th International Conference

on Quantum Physics and Logic (QPL 2021) (Electronic Proceedings in Theoretical Computer Science), Vol. 343. OPA, 102ś118.

https://doi.org/10.4204/EPTCS.343.5

C. Heunen and J. Vicary. 2019. Categories for Quantum Theory. Oxford University Press. https://doi.org/10.1093/oso/

9780198739623.001.0001

N. G. Houghton-Larsen. 2021. A Mathematical Framework for Causally Structured Dilations and its Relation to Quantum

Self-Testing. Ph.D. Dissertation. Department of Mathematical Sciences, University of Copenhagen.

J. Hughes. 2005. Programming with Arrows. In Advanced Functional Programming (Lecture Notes in Computer Science),

Vol. 3622. Springer, 73ś129. https://doi.org/10.1007/11546382_2

M. Huot and S. Staton. 2018. Universal Properties in Quantum Theory. In Proceedings of the 15th International Conference on

Quantum Physics and Logic (QPL 2018) (Electronic Proceedings in Theoretical Computer Science), Vol. 287. OPA, 213ś224.

https://doi.org/10.4204/EPTCS.287.12

M. Huot and S. Staton. 2019. Quantum Channels as a Categorical Completion. In Proceedings of the 34th Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS 2019). IEEE, 1ś13. https://doi.org/10.1109/LICS.2019.8785700

B. Jacobs, C. Heunen, and I. Hasuo. 2009. Categorical Semantics for Arrows. Journal of Functional Programming 19, 3ś4

(2009), 403ś438. https://doi.org/10.1017/S0956796809007308

R. P. James and A. Sabry. 2012. Information Effects. In POPL ’12: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of programming languages. ACM, 73ś84. https://doi.org/10.1145/2103656.2103667

R. P. James and A. Sabry. 2014. Theseus: A High Level Language for Reversible Computing. (2014).

N. D. Jones, C. K. Gomard, and P. Sestoft. 1993. Partial Evaluation and Automatic Program Generation. Prentice Hall

International.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.

https://doi.org/10.1017/CBO9781139193313.006
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1007/978-3-662-49498-1_6
https://doi.org/10.1007/978-3-030-52482-1_10
https://doi.org/10.1145/3434290
https://doi.org/10.1145/3434290
https://arxiv.org/abs/1603.02133
https://arxiv.org/abs/2103.01931
https://doi.org/10.1109/LICS.2019.8785665
https://doi.org/10.1109/LICS.2019.8785665
https://doi.org/10.1016/j.entcs.2008.04.018
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1007/3-540-47018-2_2
https://doi.org/10.1007/3-540-47018-2_2
https://doi.org/10.1016/j.tcs.2012.01.001
https://doi.org/10.4204/EPTCS.343.5
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1007/11546382_2
https://doi.org/10.4204/EPTCS.287.12
https://doi.org/10.1109/LICS.2019.8785700
https://doi.org/10.1017/S0956796809007308
https://doi.org/10.1145/2103656.2103667


Quantum Information Effects 2:27

R. Kaarsgaard and N. Veltri. 2019. En Garde! Unguarded Iteration for Reversible Computation in the Delay Monad. In

Proceedings of the 13th International Conference on Mathematics of Program Construction (MPC 2019). Springer, 366ś384.

https://doi.org/10.1007/978-3-030-33636-3_13

G. Kelly. 1974. Coherence Theorems for Lax Algebras and Distributive Laws. Lecture Notes in Mathematics 420 (1974),

281ś375. https://doi.org/10.1007/BFb0063106

R. Landauer. 1961. Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development

5, 3 (1961), 261ś269. https://doi.org/10.1147/rd.53.0183

M. Laplaza. 1972. Coherence for Distributivity. Lecture Notes in Mathematics 281 (1972), 29ś72. https://doi.org/10.1007/

BFb0059555

T. Leinster. 2016. Basic Category Theory. Cambridge University Press.

M. A. Nielsen and I. Chuang. 2002. Quantum Computation and Quantum Information. American Association of Physics

Teachers.

J. Paykin, R. Rand, and S. Zdancewic. 2017. QWIRE: A Core Language for QuantumCircuits. POPL 2017: Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages, 846ś858. https://doi.org/10.1145/3009837.3009894

R. Péchoux, S. Perdrix, M. Rennela, and V. Zamdzhiev. 2020. Quantum Programming with Inductive Datatypes: Causality

and Affine Type Theory. In Foundations of Software Science and Computation Structures (FOSSACS 2020) (Lecture Notes in

Computer Science), Vol. 12077. 562ś581. https://doi.org/10.1007/978-3-030-45231-5_29

J. Power and E. Robinson. 1997. Premonoidal Categories and Notions of Computation. Mathematical Structures in Computer

Science 7, 5 (1997). https://doi.org/10.1017/S0960129597002375

M. Rennela and S. Staton. 2020. Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory. Logical

Methods in Computer Science 16 (2020), 6192. https://doi.org/10.23638/LMCS-16(1:30)2020

A. Sabry, B. Valiron, and J. K. Vizzotto. 2018. From Symmetric Pattern-Matching to Quantum Control. In International

Conference on Foundations of Software Science and Computation Structures (FOSSACS 2018). Springer, 348ś364. https:

//doi.org/10.1007/978-3-319-89366-2_19

P. Selinger. 2004. Towards a Quantum Programming Language. Mathematical Structures in Computer Science 14, 4 (2004),

527ś586. https://doi.org/10.1017/S0960129504004256

T. Toffoli. 1980. Reversible Computing. In Proceedings of the 7th Colloquium on Automata, Languages, and Programming

(ICALP 1980). Springer, 632ś644.

J. Vizzotto, T. Altenkirch, and A. Sabry. 2006. Structuring Quantum Effects: Superoperators as Arrows. Mathematical

Structures in Computer Science 16, 3 (2006), 453ś468. https://doi.org/10.1017/S0960129506005287

J. K. Vizzotto, A. R. Du Bois, and A. Sabry. 2009. The Arrow Calculus as a Quantum Programming Language. In International

Workshop on Logic, Language, Information, and Computation (WoLLIC 2009). Springer, 379ś393. https://doi.org/10.1007/

978-3-642-02261-6_30

A. Westerbaan. 2017. Quantum Programs as Kleisli Maps. In Proceedings 13th International Conference on Quantum Physics

and Logic (QPL 2016) (Electronic Proceedings in Theoretical Computer Science), Vol. 236. 215ś228. https://doi.org/10.4204/

EPTCS.236.14

N. Yanofsky and M. A. Mannucci. 2008. Quantum Computing for Computer Scientists. Cambridge University Press.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 2. Publication date: January 2022.

https://doi.org/10.1007/978-3-030-33636-3_13
https://doi.org/10.1007/BFb0063106
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/BFb0059555
https://doi.org/10.1007/BFb0059555
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1007/978-3-030-45231-5_29
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.23638/LMCS-16(1:30)2020
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129506005287
https://doi.org/10.1007/978-3-642-02261-6_30
https://doi.org/10.1007/978-3-642-02261-6_30
https://doi.org/10.4204/EPTCS.236.14
https://doi.org/10.4204/EPTCS.236.14

	Abstract
	Acknowledgments
	1 Introduction
	2 Background
	2.1 Quantum Theory
	2.2 Monoidal Categories
	2.3 Information Effects

	3 Three Generations of Yuppie
	3.1 Reversible Classical Combinators: 
	3.2 Reversible Quantum Combinators: U
	3.3 Quantum Combinators with Allocation: Ua
	3.4 Quantum Combinators with Hiding and Allocation: Ua

	4 Categorical Semantics
	4.1 Rig Groupoids
	4.2 Garbage and Heap
	4.3 Lifting Tensor Products
	4.4 Arrows with Choice

	5 Properties of the Categorical Constructions
	5.1 Universal Properties
	5.2 Toffoli and Stinespring

	6 Applications
	6.1 Properties of Measurement
	6.2 Quantum Flow Charts

	7 Conclusion and Future Work
	References

