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Abstract

Learning causal effects from observational data greatly benefits a variety of domains
such as health care, education, and sociology. For instance, one could estimate the
impact of a new drug on specific individuals to assist clinical planning and improve
the survival rate. In this paper, we focus on studying the problem of estimating the Con-
ditional Average Treatment Effect (CATE) from observational data. The challenges
for this problem are two-fold: on the one hand, we have to derive a causal estimator to
estimate the causal quantity from observational data, in the presence of confounding
bias; on the other hand, we have to deal with the identification of the CATE when
the distributions of covariates over the treatment group units and the control units are
imbalanced. To overcome these challenges, we propose a neural network framework
called Adversarial Balancing-based representation learning for Causal Effect Inference
(ABCEI), based on recent advances in representation learning. To ensure the identifi-
cation of the CATE, ABCEI uses adversarial learning to balance the distributions of
covariates in the treatment and the control group in the latent representation space,
without any assumptions on the form of the treatment selection/assignment function.
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In addition, during the representation learning and balancing process, highly predic-
tive information from the original covariate space might be lost. ABCEI can tackle this
information loss problem by preserving useful information for predicting causal effects
under the regularization of a mutual information estimator. The experimental results
show that ABCEI is robust against treatment selection bias, and matches/outperforms
the state-of-the-art approaches. Our experiments show promising results on several
datasets, encompassing several health care (and other) domains.

Keywords Causal inference - Observational study General Adversarial Networks -
Representation learning

1 Introduction

Many domains of science require inference of causal effects, including health-
care (Casucci et al. 2017, 2019), economics and marketing (LaLonde 1986; Smith
and Todd 2005), sociology (Morgan and Harding 2006), and education (Zhao and
Heffernan 2017). For instance, medical scientists must know whether a new medicine
benefits patients; teachers want to know whether their teaching plan significantly
improves the grades of students; economists need to evaluate whether a policy can
improve unemployment rates. Due to the broad application of machine learning models
in these domains, properly estimating causal effects is an important task for machine
learning research.

The classical method to estimate causal effects is Randomized Controlled Trials
(RCTs) (Autier and Gandini 2007), where one must maintain two statistically identical
groups, randomly assign treatments to each individual, and observe the outcomes.
However, RCTs can be time-consuming, expensive, or unethical (e.g., for studying
the effect of smoking on health). Hence, causal effect inference through observational
studies is needed (Benson and Hartz 2000). The core issue of causal effect inference
from observational data is the identification problem. That is: given a set of assumptions
and non-experimental data, is it possible to derive a model that can correctly estimate
the strength of a causal effect by certain quantities?

In this paper, our aim is to build a machine learning model that is able to estimate
the Conditional Average Treatment Effect (CATE) (Abrevaya et al. 2015) from obser-
vational data. There are several challenges for this task. First, there might be spurious
associations between the treatments and outcomes caused by confounding variables:
variables that affect both treatment variables and the outcome variables. For example,
patients with more personal wealth are in a better position to get new medicines, and
at the same time their wealth increases the likelihood that they can survive. Due to
the existence of confounding bias, it is nearly impossible to build an estimator by
directly modeling the relations between treatments and outcomes. Strong ignorability
in Rubin’s Potential Outcome framework (Rubin 2005) provides a way to estimate
the causal quantities. In order to satisfy ignorability in practical studies, people derive
methods to match or balance the covariates using optimization techniques (Diamond
and Sekhon 2013; Tam Cho et al. 2013; Zubizarreta 2012), e.g., based on mutual
information between treatment variables and covariates (Sun and Nikolaev 2016),
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or based on propensity scores (Dehejia and Wahba 2002). However, these methods
are only feasible for the estimation of Average Treatment Effect (ATE), or Average
Treatment effect on the Treated (ATT), respectively. Pearl (2009) proposes a criterion
based on graphical models to select admissible covariates for ignorability. Through-
out this paper, we assume that all the variables in the causal system can be observed
and measured, so that the causal effects we are interested in are identifiable from the
observational data. This assumption allows us to build causal quantity estimators for
each outcome system conditioning on the covariates.

Another challenge for CATE estimation is that in an observational study we can only
observe the factual outcomes; the counterfactual outcomes can never be observed. In
the presence of treatment selection bias, the imbalanced distributions of covariates in
the treatment and the control groups would lead to bias in the estimation of the CATE
due to generalization errors (Swaminathan and Joachims 2015). Several studies pro-
posed various techniques to tackle this problem. Yao et al. (2018) propose to use hard
samples to preserve local similarity information, which can be ported from covari-
ate space to latent representation space. The hard sample mining process is highly
dependent on the propensity score model, which is not robust when the propensity
score model is misspecified. Imai and Ratkovic (2014) and Ning et al. (2020) propose
estimators which are robust even when the propensity score model is not correctly
specified. Kallus (2018, 2020) and Ozery-Flato et al. (2018) propose to generate bal-
anced weights for data samples to minimize a selected imbalance measure in covariate
space. Shalit et al. (2017) propose to derive upper bounds on the estimation error by
considering both covariate balancing and potential outcomes. Highly predictive infor-
mation might be lost in the reweighing or balancing processes of these methods.

To address these problems, we propose a framework (cf. Fig. 1), which gener-
ates balanced representations and preserves highly predictive information in the latent
space without using propensity scores. We design a two-player adversarial game,
between an encoder that transforms covariates to latent representations and a dis-
criminator which distinguishes representations from the control and treatment groups.
Unlike in the classical GAN framework, the ‘true distribution’ (latent representations
of the control group') in this game must also be generated by the encoder. To prevent
losing useful information during the balancing process, we use a mutual information
estimator to constrain the encoder to preserve highly predictive information (Hjelm
etal. 2019). The outcome data are also considered in this unified framework to specify
the causal effect predictor.

Technically, the unified framework encodes the input covariates into a latent repre-
sentation space, and builds estimators to estimate the treatment outcomes with those
representations. There are three components on top of the encoder in our model:

Mutual information estimation an estimator is specified to estimate and maximize the
mutual information between representations and covariates;

Adversarial balancing the encoder plays an adversarial game with a discriminator,
trying to fool the discriminator by minimizing the discrepancies between distribu-
tions of representations from the treatment and the control group;

1 our method supports representations of either treatment/control group or both as the ‘true distribution’.
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Discriminator: D

Noise: z ~ P(z) . .
——>"l—> GAN Loss (Lp, Lg)
Encoder: ® I I I Predictor: ¥
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Fake input: X

MI Estimator: Q

Fig. 1 Deep neural network architecture of ABCEI for causal effect inference

Treatment outcome prediction a predictor over the latent space is employed to esti-
mate the treatment outcomes.

By jointly optimizing the three components via backpropagation, we can get a robust
estimator for the CATE. The overarching architecture of our framework is shown in
Fig. 1. As a summary, our main contributions are:

1. We propose a novel model: Adversarial Balancing-based representation learning
for Causal Effect Inference (ABCEI) with observational data. ABCEI addresses
information loss and treatment selection bias by learning highly informative and
balanced representations in a latent space.

2. A neural network encoder is constrained by a mutual information estimator to
minimize the information loss between representations and input covariates, which
preserves highly predictive information for causal effect inference.

3. We employ an adversarial learning method to balance representations between the
treatment and the control groups, which deals with the treatment selection bias
problem without any assumption on the form of the treatment selection function,
unlike, e.g., the propensity score method.

4. We conduct various experiments on synthetic and real-world datasets. ABCEI out-
performs most of the state-of-the-art methods on benchmark datasets. We show that
ABCETI is robust against various experimental settings. By supporting mini-batch,
ABCEI can be applied on large-scale datasets.

2 Problem setup

Assume an observational dataset {X, T, Y}, with covariate matrix X € R<k, binary
treatment vector 7 € {0, 1}", and treatment outcome vector Y € R”. Here, n denotes
the number of observed units, and k denotes the number of covariates in the dataset.
For each unit u, we have k covariates xp, ..., xx, as well as one observable outcome
y corresponding to one specified value of treatment variable ¢ € {0, 1}. According to
the Rubin-Neyman causal model (Rubin 2005), two potential outcomes yg, y; exist
for treatments {0, 1}, respectively. We call y, the factual outcome, denoted by y , and
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Y1— the counterfactual outcome, denoted by y.r. Assuming there is a joint distribution
P(x,t, yo, y1), we make the following assumptions:

Assumption 1 (Strong Ignorability) Conditioning on x, the potential outcomes yg, y1
are independent of ¢, which can be stated as: (yg, y1) L #|x.

Assumption 2 (No Interference) The treatment outcome of each individual is not
affected by the treatment assignment of other units, which can be formulated as:
YUl ") =Y.

Assumption 3 (Consistency) The potential outcome y; of each individual is equal to
the observed outcome y, if the actual treatment received is T = ¢, which can be
represented as: y = y;, if T = ¢, V.

Assumption 4 (Positivity) For all sets of covariates and for all treatments, the proba-
bility of treatment assignment will always be strictly larger than O and strictly smaller
than 1, which can be expressed as: 0 < P(t|x) < 1, V¢ and Vx.

Assumption 1 indicates that all the confounders are observed, i.e., no unmeasured
confounder is present. This is a restrictive but much used assumption in a large subset
of causal inference literature (Rosenbaum and Rubin 1983). Hence, by controlling
on X, we can remove the confounding bias. Assumption 4 allows us to estimate the
CATE for any x in the covariate space. Under these assumptions, we can formalize
the definition of the CATE for our task:

Definition 1 The Conditional Average Treatment Effect (CATE) for unit u is:
CATEw):=E[y |x*]=E[yo | x"]

We can now define the Average Treatment Effect (ATE) and the Average Treatment
effect on the Treated (ATT) as:

ATE :=E[CATE®) ], ATT :=E[CATEw) |t=1].

Because the joint distribution P(x,t, yg, y1) is unknown, we can only estimate
CAT E(u) from observational data. A function over the covariate space X can be
defined as f : X x {0, 1} — ). The estimate of CAT E (1) can now be defined:

Definition 2 Given an observational dataset {X, 7', Y} and a function f, for unit u,
the estimate of CAT E (u) is:

CATE®) = f(x“, 1) — f(x*,0).

In order to accomplish the task of CATE estimation, we need to find an optimal
function over the covariate space for both systems (observable populations with # = 1
and r = 0, respectively).
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Fig.2 Mutual information estimator between covariates and latent representations

3 Proposed method

In order to overcome the challenges in CATE estimation, we build our model on recent
advances in representation learning. We propose to define function @ : X — H and
function ¥ : H — Y so that we have Y7 = f(X,T) = ¥(®(X),T) = ¥(h, T).
Instead of directly estimating the treatment outcome conditioned on covariates, we
propose to use an encoder to learn latent representations of covariates. Thus, we simul-
taneously learn latent representations and estimate the treatment outcome. However,
the function f could suffer from information loss and treatment selection bias, unless
we constrain the encoder @ to learn balanced representations while preserving useful
information.

3.1 Mutual information estimation

Consider the information loss when transforming covariates into a latent space. The
non-linear statistical dependencies between variables can be acquired by mutual infor-
mation (MI) (Shannon 1948). Thus we use MI between latent representations and
original covariates as a measure to account for information loss:

I(X: h) = // P(x, h)log < P@x, h) )dhdx.
P(x)P(h)

We denote the joint distribution between covariates and representations by Py, and
the product of marginals by Px @ Pj,. Note that, consistent with Shannon’s information
theory, MI can be represented as the Kullback-Leibler (KL) divergence:

I(X; h) := H(X) — H(X|h) := Dxr (Pxn||Px & Pp).

It is hard to compute MI in continuous and high-dimensional spaces, but one can
capture a lower bound of MI with the Donsker-Varadhan representation of KL-
divergence (Donsker and Varadhan 1983):

Theorem 1 (Donsker-Varadhan)

Di1(PxilIPx ® i) = sup By, [2(x, )] — log By, |20 ].
eC
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Here, C denotes the set of unconstrained functions £2.

Proof Given a fixed function §2, we can define distribution G as:

224
4G = ¢ 40
fZ e2(DdQ
Equivalently, we have:
dG = e @@D=9q0, § =logEq [¢*®].

Then by construction, we have:

Epl2(2)] — logEq [¢?® | =Ep[2(2)] - §

=Ep |log —]

=Ep |log

ZEP IOg@—IOgE

= DKL(PHQ) - DKL(PHG)
< Dkr(P|[Q).

[ dP dPi|

When distribution G is equal to P, this bound is tight. O

Inspired by the Mutual Information Neural Estimation (MINE) idea (Belghazi et al.
2018), we propose to establish a neural network estimator for MI. Specifically, let 2
be a function X x H — R parameterized by a deep neural network. We have:

1(X; h) == Dk (Pxp||Px ® Pp)
> I (X; h) 0
= Ep,,[2(x, h)] — log Ep,gp, [e.o(x,h)] .

By distinguishing the joint distribution and the product of marginals, the estimator
£2 approximates the MI with arbitrary precision. In practice, as shown in Fig. 2,
we concatenate the input covariates X with representations # one by one to create
positive samples (as samples from the true joint distribution). Then, we randomly
shuffle X on the batch axis to create fake input covariates X. Representations / are
concatenated with fake input X to create negative samples (as samples from the product
of marginals). From Eq. (1) we can derive the loss function for the MI estimator:

Log = —FEex [2 (x, )] + logE_¢ [e‘z(x’h)] .

@ Springer



1720 X.Du et al.

Information loss can be decreased by simultaneously optimizing the encoder ¢ and
the MI estimator £2 to minimize L, iteratively via gradient descent.

3.2 Adversarial balancing

The representations of the treatment and the control groups are denoted by A(t = 1)
and h(t = 0), respectively. The discrepancy between the covariate distributions within
the treatment and the control groups is the issue to be addressed. To decrease this
discrepancy, we propose an adversarial learning method to constrain the encoder to
learn treatment and control representations that are balanced distributions. We build
an adversarial game between a discriminator D and the encoder @, in line with the
framework of Generative Adversarial Networks (GAN) (Goodfellow et al. 2014). In
the classical GAN framework, a source of noise is mapped to a generated image by a
generator. A discriminator is trained to distinguish whether an input sample is from
the true or the synthetic image distribution generated by the generator. The logic of
GAN:Ss lies in training a reliable discriminator to distinguish fake and real images, and
then, using the discriminator to train the generator, which in turn generates images
constructed so as to try to fool the discriminator.
In our adversarial game:

1. We draw a noise vector z ~ P(z) which has the same length as the latent rep-
resentations, where P(z) can be a spherical Gaussian distribution or a Uniform
distribution,;

2. We separate representation by treatment assignment, and form two distributions:
Ppr=1) and Pp=0);

3. We train a discriminator D to distinguish concatenated vectors from the treatment
and the control group ([z, A(t = 1)] and [z, h(t = 0)]);

4. We optimize the encoder @ to generate balanced representations to fool the dis-
criminator.

According to the architecture of ABCEI, the encoder is associated with the MI esti-
mator §2, treatment outcome predictor ¥, and adversarial discriminator D. This means
that the training process is iteratively adjusting each of the components. The instability
of GAN training will become serious in this context. To stabilize the GAN training, we
propose to use the framework of Wasserstein GAN with gradient penalty (Gulrajani
et al. 2017). By removing the sigmoid layer and applying the gradient penalty to the
data between the distributions of the treatment and the control groups, we can find a
function D which satisfies the 1-Lipschitz inequality:

P (") = 2 ()] = [l =7
We can write down the form of our adversarial game:

n}gn mDaX Eh'\'Ph(,=()) [D([Zs h])] - Eh"‘Ph(,=1) [D([Zs h])]_

BEi~ Py |1V Dz, hDII2 = 2]
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Control: h(t = 0)

n(t=0)xdim_h " [a(t = 0),2] * Real
* <
Treatment: h(t = 1) > @D > > Discriminator: D >
Noise: z ~ P A \
nt=1)xdmh csez P =12 | Fake
; y \
hpenalty ~ Ppenalty
n(penalty) x dim _h [hpenatty 21 Penalty

Fig.3 Adversarial learning structure for representation balancing

where Ppenalty is the distribution acquired by uniformly sampling along the straight
lines between pairs of samples from Pj;—0) and Py=1). The adversarial learning
process is depicted in Fig. 3.

The encoder @ will now be smoothly trained to generate balanced representations.
We can write down the training objectives for discriminator D and encoder @, respec-
tively:

Lp == By [D(02 AD] + Eppy_y [D(02, A1
o+ BB~ Pty | (Vi DLz DI = D?]
L@ = Eh'\'Ph(,=()) [D([Za h])] - Eh"‘Ph(,=1) [D([Za h])]

3.3 Treatment outcome prediction
The final step for CATE estimation is to predict the treatment outcomes with learned
representations. We establish a neural network predictor, which takes latent represen-

tations and treatment assignments of units as the input, to conduct outcome prediction:
y; = W (h, t). We can write down the loss function of the training objective as:

Low =By~ .rm) | (1) = 307 ] + 2 RW).

Here, R is a regularization on ¥ for the model complexity.

3.4 Learning optimization

With respect to the architecture in Fig. 1, we minimize L¢g, Lo, and Ley, respec-
tively, to iteratively optimize parameters in the global model. The optimization steps
are handled with the stochastic method due to Adam (Kingma and Ba 2015), and the
training of the model is done per Algorithm 1.

@ Springer



1722 X.Du et al.

Algorithm 1 ABCEI

Input: Observational dataset { X, T', Y'};loss function Lg o, Le and Ly y, L p; Neural
Networks @, §2, D, ¥; parameters Ogp, On, Op, Oy
repeat

Draw mini-batch {X;,, T, Y} C {X, T, Y}

Compute representations 1 = @ (Xp)

Draw fake input X, ~ P

Draw noise z ~ N (0, I)

Set Op, Ogn < Adam(Loo (Xp, Xp, h), Op, Og)

fori = 1to3do

Set ®p < Adam(Lp(h, z, Tp), Op)

Set ®¢p < Adam(Lg (h, z, Tp), Ogp)

Set O¢, Oy < Adam(Lgoy (h, Tp, Yp), O¢, Oy)
until convergence

4 Experiments

Due to the lack of counterfactual treatment outcomes in observational data, it is difficult
to validate and test the performance of causal effect inference methods. In this paper,
we adopt two ways to construct datasets for validating and testing the performance
of causal inference methods: the one is to use simulated or semi-simulated treatment
outcomes, in particular based on dataset IHDP (Hill 2011); the other is to use RCT
datasets and add a non-randomized component to generate imbalanced datasets, in
particular based on dataset Jobs (LaL.onde 1986; Smith and Todd 2005). We employ
five benchmark datasets: IHDP, Jobs, Twins (Louizos et al. 2017), ACIC (Dorie et al.
2019) and MIMIC-IIT (Johnson et al. 2016, 2019). For IHDP, Jobs, Twins, ACIC,
and MIMIC-III, the experimental results are averaged over 1000, 100, 100, 7700, 100
train/validation/test sets, respectively, with split sizes 60%/30%/10%. The implemen-
tation of our method is based on Python and Tensorflow (Abadi et al.2016). All the
experiments in this paper are conducted on a cluster with 1x Intel Xeon ES 2.2GHz
CPU, 4x Nvidia Tesla V100 GPU and 256GB RAM. The source code of our algorithms
is available on GitHub.?

4.1 Details of datasets

Metadata on the employed datasets can be found in Table 1.

ACIC (Dorie et al. 2019) The Atlantic Causal Inference Conference (ACIC) dataset
is derived from real-world data with 4802 observations with 58 covariates. There
are 77 datasets which are simulated with different treatment selection and outcome
functions. Each dataset is generated in 100 random replications independently. In this
benchmark, different settings like degrees of non-linearity, treatment selection bias
and magnitude of treatment outcome are considered.

2 https://github.com/octeufer/ Adversarial-Balancing-based-representation-learning-for- Causal- Effect-
Inference.
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Table 1 Metadata on employed datasets

Dataset Observations Control/treatment Covariates Reference

ACIC 4802 —/— 58 Dorie et al. (2019)
IHDP 747 608/139 25 Hill (2011)

Twins 25656 12828/12828 43 Louizos et al. (2017)
MIMIC-III 7413 —/—- 25 Johnson et al. (2016)
Jobs 3122 2825/297 7 LaLonde (1986)

On the ACIC dataset, the number of control and treatment units varies across replications; on the MIMIC-III
dataset, the numbers of control and treatment units are simulated. Both procedures can be found in the main
text, in the respective paragraphs of Sect. 4.1 where the corresponding datasets are introduced. Note that
control units pool in the Jobs dataset consists of two components (cf. Jobs paragraph of Sect. 4.1)

IHDP (Hill 2011) The Infant Health and Development Program (IHDP) studies
the impact of specialist home visits on future cognitive test scores. Covariates in the
semi-simulated dataset are collected from a real-world randomized experiment. The
treatment selection bias is created by removing a subset of the treatment group. We use
the setting ‘A’ in (Dorie 2016) to simulate treatment outcomes. This dataset includes
747 units (608 control and 139 treated) with 25 covariates associated with each unit.

Twins (Louizos et al. 2017) The Twins dataset is created based on the “Linked Birth
/ Infant Death Cohort Data” by NBER.? Inspired by Almond et al. (2005), we employ
a matching algorithm to select twin births in the USA between 1989 and 1991. By
doing this, we get units associated with 43 covariates including education, age, race of
parents, birth place, marital status of mother, the month in which pregnancy prenatal
care began, total number of prenatal visits, and other variables indicating demographic
and health conditions. We only select twins that have the same gender who both weigh
less than 2000g. For the treatment variable, we use ¢ = 0 indicating the lighter twin
and + = 1 indicating the heavier twin. We take the mortality of each twin in their
first year of life as the treatment outcome, inspired by Louizos et al. (2017). Finally,
we have a dataset consisting of 12,828 pairs of twins whose mortality rate is 19.02%
for the lighter twin and 16.54% for the heavier twin. Hence, we have observational
treatment outcomes for both treatments. In order to simulate the selection bias, we
selectively choose one of the twins to observe with regard to the covariates associated
with each unit as follows: #|x ~ Bernoulli(o (w” x 4 n)), where w” ~ N(0,0.1 - 1)
andn ~ N(1,0.1).

MIMIC-III (Johnson et al. 2016, 2019) This benchmark is created based on MIMIC-
111, a database comprised of de-identified profile and health outcome data for critical
care unit patients. We select patient samples with their demographic information as
well as various observed laboratory measurements by chemistry or hematology. After
filtering samples with missing values, the benchmark consists of 7413 samples with 25
covariates. We investigate the effect of prescription amount in the first day of critical
care unit on the length of stay in the ICU: for the binary treatment, we let O represent a
small prescription amount and 1 a large prescription amount. The treatment outcomes
are simulated by y|x, 7 ~ (w’x + Bt + n), where n ~ N(0, 1), w ~ N(0%°,0.5 -

3 https://nber.org/data/linked-birth-infant-death- data- vital-statistics-data.html.
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(Z 4+ 27T)),and ¥ ~ U((—1, 1)*25). The treatment assignments are simulated as
tlx ~ Bernoulli(o (sTx + m)), where m ~ N(0,0.1) and s ~ N'(0%,0.1 - I).

Jobs (LaLlonde 1986; Smith and Todd 2005) The Jobs dataset studies the effect of
job training on employment status. It consists of a non-randomized component from
observational studies and a randomized component based on the National Supported
Work program. The randomized component includes 722 units (425 control and 297
treated) with seven covariates, and the non-randomized component (PSID comparison
group) includes 2490 control units.

4.2 Evaluation metrics

Since the ground truth CATE for the IHDP dataset and MIMIC-III benchmark is
known, we can employ Precision in Estimation of Heterogeneous Effect (PEHE) (Hill
2011), as the evaluation metric of CATE estimation:

] n
eppne =~ 3 (Elyilx"] = Elyola") — (£, 1) = f(x", 0)*.

u=1

Subsequently, we can evaluate the precision of ATE estimation based on the estimated
CATE.

For the Jobs dataset, because we only know parts of the ground truth (the randomized
component), we cannot evaluate the performance of ATE estimation. Following Shalit
et al. (2017), we evaluate the precision of ATT estimation and policy risk estimation,
where

Rpot(m) =1—[E (|7 (x*) =1)- P(x = 1)+ E (yo|m (x*) =0) - P(x = 0)].

In this paper, we consider 7 (x*) = 1 when f(x%, 1) — f(x*,0) > 0.

For the Twins dataset, because we only know the observed treatment outcome for
each unit, we follow Louizos et al. (2017) in using the Area Under the ROC Curve
(AUC) as the evaluation metric. For the ACIC dataset, we follow Ozery-Flato et al.
(2018) in using the RMSE ATE as performance metric.

4.3 Baseline methods

We perform the comparisons with the following baselines: least square regres-
sion using treatment as a feature (OLS/L R); separate least square regressions for
each treatment (OLS/L R;); balancing linear regression (BLR) and balancing neu-
ral network (BNN) (Johansson et al. 2016); k-nearest neighbor (k-NN) as suggested
by Crump et al. (2008); Bayesian additive regression trees (BART) (Sparapani
et al. 2016); random forests (RF) (Breiman 2001); causal forests (CF) (Wager and
Athey 2018); treatment-agnostic representation networks (TARNet) and counterfac-
tual regression with Wasserstein distance (CFR-Wass) (Shalit et al. 2017); causal effect
variational autoencoders (CEVAE) (Louizos et al. 2017); local similarity preserved
individual treatment effect (SITE) (Yao et al. 2018); MMD measure using RBF kernel
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Fig.4 Boxplots per method of the Root Mean Square Error in the Average Treatment Effect on the ACIC
dataset (lower = better)

(MMD-V1, MMD-V2) (Kallus 2020, 2018); and adversarial balancing with cross-
validation procedure (ADV-LR/SVM/MLP) (Ozery-Flato et al. 2018). We show a
quantitative comparison between our method and the state-of-the-art baselines. In the
comparison, we include two variants of ABCEI: by ABCEI* we denote ABCEI with-
out the mutual information estimation component, and by ABCEI** we denote ABCEI
without the adversarial learning component. All baseline methods are parameterized
according to the recommended settings in the original papers.

4.4 Results

Figure 4 displays the relative performance of ABCEI and recent balancing methods, on
the ACIC benchmark dataset. As we can see, representation learning methods display
a lower variance than methods based on reweighing samples on covariate space. Also,
adversarial balancing methods have a lower (= better) mean RMSE in ATE estimation.
ABCEI combines the benefits of both: it has the advantage of adversarial balancing
as well as preserving predictive information in latent space. As a consequence, it
outperforms counterfactual regression with Wasserstein distance and MMD-V 1, and
compared to the other baselines, performs similarly in mean but better in variance.

Experimental results on the other four datasets are shown in Tables 2, 3, 4, and 5. It
would be unsound to report aggregated statistical test results over the results reported
in these tables. Due to varying (un-)availability of ground truth, we must resort to
reporting varying evaluation measures per dataset. It would not be appropriate to
aggregate over these measures in a single statistical hypothesis test. However, one
can see that ABCEI performs best in fourteen out of sixteen cases, not only by the
best number in the column, but often also by a non-overlapping empirical confidence
interval (u & o, so 68% confidence intervals) with that of the best competitor (cf.
reported standard deviations). This provides evidence that ABCEI is a substantial
improvement over the state of the art.
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Table 2 In-sample and

out-of-sample results with mean Methods In-sample Out-sample

and standard errors on the IHDP VEPEHE CATE VEPEHE CATE

dataset (lower = better) OLS/LR;  58+.3 J3+£.04 58+3 94+ .06
OLS/LRy 24+ .1 .14 £ .01 25+.1 31+£.02
BLR 58+.3 72 +.04 58+.3 93 +.05
BART 2.1+.1 .23 4+ .01 23+.1 344+ .02
k-NN 2.1+.1 .14 + .01 41+ .2 .79 £+ .05
RF 42+ .2 73 £ .05 6.6+.3 .96 + .06
CF 38+ .2 .18 +£.01 38+ .2 40 £ .03
BNN 2241 37+.03 2.1+.1 42 +.03
TARNet 88 +.0 .26 + .01 95+.0 .28 +.01
CFR-Wass J1+£.0 25+ .01 76 £.0 27+ .01
CEVAE 27+.1 34 £ .01 26+.1 46 +.02
SITE 69 £.0 .22 £ .01 I5+£.0 .24 £ .01
ABCEI* 74+ .0 12+ .01 8 +£.0 11+ .01
ABCEI** 8l1+.1 .18 4+.03 89+ .1 .16 +.02
ABCEI J1+£.0 .09 + .01 73+ .0 .09 + .01

Additionally, we observe that the two out of the sixteen cases, in which ABCEI does
not perform best, have several similar characteristics. They are based on in-sample
measurements on the Jobs and IHDP datasets, and as Table 1 shows, these are the
datasets with the smallest numbers of observations, the (joint) smallest numbers of
covariates, and a relative imbalance between control and treatment group size. Among
these five datasets, ABCEI always performs better on datasets with more observations,
with more covariates, and with more balance between control and treatment group size,
although the number of datasets is too small to claim the significance of these effects.

Due to the existence of treatment selection bias, regression based methods suf-
fer from a high generalization error. Nearest neighbor based methods consider unit
similarity to overcome selection bias, but cannot achieve balance globally. Recent
advances in representation learning bring improvements in causal effect estimation.
Unlike CFR-Wass, BNN, and SITE, ABCEI considers information loss and balancing
problems. The mutual information estimator ensures that the encoder learns represen-
tations preserving useful information from the original covariate space. The adversarial
learning component constrains the encoder to learn balanced representations. This
causes ABCEI to achieve better performance than the baselines. We also report the
performance of our model without mutual information estimator or adversarial learn-
ing, respectively, as ABCEI*, ABCEI**. From the results we can see that performance
suffers when either of these components is left out, which demonstrates the importance
of combining adversarial learning and mutual information estimation in ABCEL
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Table 3 In-sample and out-of-sample results with mean and standard errors on the Twins dataset (AUC:
higher = better, € 47 : lower = better)

Methods In-sample Out-sample
AUC €EATE AUC €ATE
OLS/LR; .660 £ .005 .004 +.003 .500 £.028 .007 £ .006
OLS/LR> .660 £ .004 .004 £ .003 .500 £ .016 .007 £ .006
BLR .611 £+ .009 .006 £ .004 510+ .018 .033 +.009
BART 506 +.014 121 +.024 .500 + .011 127 £.024
k-NN .609 £+ .010 .003 £ .002 492 £+ .012 .005 £ .004
BNN .690 £ .008 .006 £ .003 .676 £ .008 .020 £ .007
TARNet .849 £ .002 .011 +.002 .840 £ .006 .015 £ .002
CFR-Wass .850 £ .002 .011 +.002 .842 £ .005 .028 +.003
CEVAE .845 +£.003 .022 +.002 .841 £ .004 .032 +.003
SITE .862 £+ .002 .016 £ .001 .853 £ .006 .020 £+ .002
ABCEI* .861 £ .001 .005 £ .001 .851 +.001 .006 £ .001
ABCET** .855 +.001 .005 £ .001 .849 +.001 .006 £ .001
ABCEI .871 +.001 .003 £+ .001 .863 +.001 .005 £+ .001
Table4 In-sample and . Methods In-sample Out-sample
out-of-sample results with mean
and standard errors on the VEPEHE  €ATE VEPEHE  €ATE
MIMIC-III benchmark (lower =
better) OLS/LR; 7.1+£2 92+ .15 82+ .2 97+ .15
OLS/LR> 27+.1 24 £ .11 33+ .2 29+.13
BLR 73+.1 .90 £+ .09 85+ .3 97 £ .09
BART 24+ 2 31+.09 31+ .2 37+ .12
k-NN 28+.1 32411 3.6+.1 36+.11
RF 46+ .3 .88 £.10 53+.3 .89+ .11
CF 41+.1 22+.13 49+.1 24+ .14
BNN 25+.1 A5+ .11 33+.1 49+ .11
TARNet 1.91+.0 25+.16 2.11+.1 31+.16
CFR-Wass 1.06 £.0 19+ .14 1.09+ .0 21+.14
CEVAE 271+ .0 23+ .11 272+ .0 23+.12
SITE 129+ .0 21+ .14 135+ .0 25+ .14
ABCEI* 89+.0 A3+£.13 92+.0 16+ .14
ABCET** 96+ .0 A5 £.12 99+ .0 16+ .14
ABCEI 85+ .0 A1+ .12 89+.0 12+ .14
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Table 5 In-sample and

out-of-sample results with mean
and standard errors on the Jobs Rpol €ATT Rpot EATT
dataset (lower = better)

Methods In-sample Out-sample

OLS/LR; 22+ .0 .01+ .00 23+ .0‘ .08 + .04
OLS/LR> 21+ .0 .01 £+ .01 24+ .0 .08 +£.03
BLR 22+ 0 .01 £+ .01 25+ .0 .08 +£.03
BART 23+ .0 .02 £ .00 25+ .0 .08 +£.03
k-NN 23+ .0 .02 £ .01 26£.0 13 £.05
RF 23+ .0 .03 £ .01 28£.0 .09 £ .04
CF 19+ .0 .03 £ .01 20+ .0 .07 £.03
BNN 20+£.0 .04 £ .01 24+ .0 .09 £ .04
TARNet 17+ .0 .05 +.02 21+.0 11 4+.04
CFR-Wass 17+ .0 .04 £+ .01 21+.0 .08 +.03
CEVAE A5+.0 .02 £+ .01 26+ .1 .03+ .01
SITE 17+ .0 .04 £+ .01 21+.0 .09 £+ .03
ABCEI* 14+ .0 .04 £+ .01 A8 £.0 .04 £+ .01
ABCET** A5+ .0 .05 £ .01 19+ .0 .04 £ .01
ABCEI A3+ .0 .02 £ .01 A7+ .0 .03 +.01

4.5 Training details

We adopt ELU (Clevert et al. 2016) as the non-linear activation function if there is
no specification. We employ various numbers of fully-connected hidden layers with
various sizes across networks: four layers with size 200 for the encoder network; two
layers with size 200 for the mutual information estimator network; three layers with
size 200 for the discriminator network; and finally, three layers with size 100 for the
predictor network, following the structure of TARnet (Shalit et al. 2017). The gradient
penalty weight B is set to 10.0, and the regularization weight is set to 0.0001.

In the training step, firstly we minimize Lgg by simultaneously optimizing @
and §2 with one-step gradient descent. Then the representations / are passed to the
discriminator to minimize L p by optimizing D with 3-step gradient descent, in order
to find a stable discriminator. Next, we use discriminator D to train encoder @ by
minimizing L¢ with one-step gradient descent. Finally, encoder @ and predictor ¥
are optimized simultaneously by minimizing Lgy .

4.6 Hyper-parameter optimization

Due to the fact that we cannot observe counterfactuals in observational datasets,
standard cross-validation methods are not feasible. We follow the hyper-parameter
optimization criterion in (Shalit et al. 2017), with an early stopping with regard to
the lower bound on the validation set. Hyper-parameter search space details are dis-
played in Table 6. The optimal hyper-parameter settings for each benchmark dataset
are reported in Table 7.
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Table 6 Search spaces of hyper-parameters

Hyper-parameter Range

A le-3,1e-4,5¢-5

B 1.0,5.0,10.0,15.0
Optimizer RMSProp, Adam

Depth of encoder layers

Depth of discriminator layers
Depth of predictor layers
Dimension of encoder layers
Dimension of discriminator layers
Dimension of MI estimator layers
Dimension of predictor layers

Batch size

1,2,3,4,5,6
1,2,3,4,5,6
1,2,3,4,5,6

50, 100, 200, 300, 500
50, 100, 200, 300, 500
50, 100, 200, 300, 500
50, 100, 200, 300, 500
65, 80, 100, 200, 300, 500

Table 7 Optimal hyper-parameters for each benchmark dataset

Hyper-parameters Datasets

IHDP Jobs Twins ACIC
A le—4 le—4 le—4 le—4
B 10.0 10.0 10.0 10.0
Optimizer Adam Adam Adam Adam
Depth of encoder layers 4 5 5 4
Depth of discriminator layers 3 3 3 3
Depth of predictor layers 3 3 3 3
Dimension of encoder layers 200 200 300 200
Dimension of discriminator layers 200 200 200 200
Dimension of MI estimator layers 200 200 200 200
Dimension of predictor layers 100 100 200 100
Batch size 65 100 300 100

4.7 Computational complexity

Assuming that the size of mini-batch is n, and the number of epochs is m, the compu-
tational complexity of our model is O(n - m - (P, — 1)<P5) + (2, — 1).S’25J + (Dy, —
1)D12u + (¥, — 1)11/13)). Here @y, 2, Dy, ¥), indicate the numbers of layers, and
Dy, 2y, Dy, ¥, indicate the numbers of neurons in each layer, in Neural Networks

D,2,D, V.

4.8 Robustness analysis on treatment selection bias

To investigate the performance of our model when varying the level of treatment selec-
tion bias, we generate toy datasets by varying the discrepancy between the treatment
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and control group. We draw 8 000 samples with ten covariates x ~ N (ug, 0.5 - (X +
>T)) as control group, where X ~ U((—1, 1)10X1O). Then we draw 2 000 samples
from x ~ N'(u1,0.5 - (¥ + X7T)). By adjusting 111, we generate treatment groups
with varying treatment selection bias, which can be measured by KL-divergence. For
the outcomes, we generate y|x ~ (w’x + n), where n ~ N (0>*1,0.1 - 1**?) and
w ~U(—1,1)1072).

In Fig. 5, we can see the robustness of ABCEI, in comparison with CFR-Wass,
BART, and SITE. The reported experimental results are averaged over 100 test sets.
From the figure, we can see that with increasing KL-divergence, our method achieves
the most stable performance. We do not visualize standard deviations as they are
negligibly small.

4.9 Robustness analysis on number of covariates

To investigate how our model performs in regards to the numbers of covariates or con-
founders, we generate synthetic datasets in which we control the number of covariates,
according to the procedure outlined in Ning et al. (2020). The outcome functions are
also simulated following Ning et al. (2020). The results are displayed in Fig. 6. As one
would expect, all methods experience higher errors when the number of covariates
increases; the error increase in ABCEI’s performance is in line with the error increase
for competing methods. ABCEI has a consistently though not necessarily significantly
lower error than the competitors, but more importantly for this specific experiment:
ABCEI does not suffer more or less than the competitors from the increase in the
number of covariates.

As shown in Fig. 6, our method, without estimating propensity scores, can per-
form robustly in high-dimensional settings, while preserving the valuable predictive
information during covariate balancing.
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Fig.7 Mutual information (/ (X; 1)) between representations and original covariates, as well as e pp gy £ in
each epoch. With increasing M1, € p g g r decreases. Best viewed in color; when viewed in black and white,
notice that € p gy g corresponds to the generally left-to-right decreasing line and the axis values on the
left-hand side, while 7(X; i) corresponds to the generally left-to-right increasing line and the axis values
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4.10 Robustness analysis on mutual information estimation

To investigate the impact of minimizing the information loss on causal effect learning,
we block the adversarial learning component and train our model on the IHDP dataset.
We record the values of the estimated Ml and € p g iy g in each epoch. In Fig. 7, we report
the experimental results averaged over 1000 test sets. We can see that with increasing
MI, the mean square error decreases and reaches a stable region. But without the
adversarial balancing component, the e pgp g cannot be further lowered due to the
selection bias. This result indicates that even though the estimators benefit from highly
predictive information, they will still suffer if imbalance is ignored.
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Fig.8 t-SNE visualization of the treatment and the control groups, on the IHDP and Jobs datasets. The dark
(purple) dots are treated units, and the light (yellow) dots are control units. The left figures are the units in
original covariate space, the middle figures are the representations learned by ABCEI, and the right figures
are the representations learned by CFR-Wass; notice how the latter has control unit clusters unbalanced by

treatment observations

4.11 Balancing performance of adversarial learning

In Fig. 8, we visualize the learned representations on the IHDP and Jobs datasets
using t-SNE (van der Maaten and Hinton 2008). Such visualizations display high-
dimensional datapoints in a two-dimensional embedding, such that similar datapoints
find themselves close together and dissimilar datapoints find themselves far apart. As
such, the t-SNE visualization represents natural grouping behavior within the dataset.
We use this visualization to interpret how well the encoders @, learned by the adversar-
ial learning methods, are capable of generating a balanced representation between the
control and the treatment groups; if the encoder works well, the t-SNE visualization of
the learned representation should display a consistent mix of the control and the treat-
ment group units. It is of no importance in these visualizations what the distribution of
the full dataset looks like in particular: the encoder is free to choose a representation
that naturally falls apart into an arbitrary number of clusters. Of importance, however,
is that the distribution of the control group naturally spans the same locations as the
distribution of the treatment group: if there are no parts of the space where the control
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group appears but the treatment group doesn’t, and there are no parts of the space
where the treatment group appears but the control group doesn’t, then the encoder has
rather successfully balanced the control and the treatment groups.

Figure 8 contains t-SNE visualizations of two datasets: IHDP in the top row, and
Jobs in the bottom row. For each dataset, we show three visualizations: the left column
displays the t-SNE visualizations in the original covariate space, the middle column
illustrates the representations learned by ABCEI, and the right column illustrates the
representations learned by CFR-Wass. In the top row we see that on the IHDP dataset,
both methods achieve a reasonably good matching. The biggest unmatched area is
found in the CFR-Wass figure, where one can draw a circle with midpoint (5, 17)
featuring quite a few control units and no treatment units. However, in the ABCEI
figure, the area around midpoint (16, —20) is not much better matched; there is little
difference between the two. On the Jobs dataset, however, the results are quite a bit dif-
ferent. The two methods choose strikingly different embeddings: the ABCEI encoder
goes for one long and thick connected component, while the CFR-Wass encoder goes
for multiple shorter and thinner components. In itself, this is interesting but not nec-
essarily a mark of quality: the one is not intrinsically better than the other. However,
throughout ABCEI’s connected component, we can almost always find both control
and treatment units nearby. Some of the components of the CFR-Wass encoder also
decently balance the control and treatment unit pockets, but there are other components
featuring very few treatment units, and three components featuring no treatment units
at all. These clusters of control units are badly or not at all balanced by treatment units,
and hence we can conclude that ABCEI achieves a better coverage of the treatment
group over the control group in the learned representation space than CFR-Wass does.
This showcases the degree to which adversarial balancing improves the performance
of ABCEI, especially in population causal effect (ATE, ATT) inference.

5 Related work

Studies on causal effect inference give us insight on the true data generating process
and allow us to answer what-if questions. The core issue of causal effect inference is the
identifiability problem given some data and set of assumptions (Tian and Pearl 2002).
Such data includes experimental data from Randomized Controlled Trials (RCTs) and
non-experimental data collected from historic observations. Due to the difficulties of
conducting RCTs, we mainly focus on the study of causal effect inference based on
observational data.

One could split the task of causal effect inference into two parts: given variables,
what is the direction of their causal relation, and what is the strength of their causal rela-
tion? Mooij et al. (2016) and Marx and Vreeken (2019) have recently provided answers
to the first part: determining cause from effect. In this paper, we focus on the second
part: the study of assessing the strength of the causal effect, assuming causal relations.
Confounding bias might create spurious correlations between variables and would lead
to difficulties for the identification of causal effect with observational data. The strong
ignorability assumption in the Potential Outcomes framework (Rubin 2005) provides a
way to remove the confounding-driven bias and makes causal effect inference possible
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with observational data. For practical applications, there are some studies focusing on
matching-based methods (Ho et al. 2011; Nikolaev et al. 2013) to create comparable
groups for causal effect inference. Various similarity measures are applied to achieve
better matching results and reduce the estimation error, e.g., Mahalanobis distance
and propensity score matching methods are proposed for population causal effect
inference (Rubin 2001; Diamond and Sekhon 2013). An information theory-driven
approach is proposed by using mutual information as the similarity measure (Sun and
Nikolaev 2016).

Recent studies employ deep representation learning methods to derive models that
satisfy the conditional ignorability assumption (Li and Fu 2017), in order to make
the Conditional Average Treatment Effect identifiable. For instance, Johansson et al.
(2016) propose to use a single neural network with the concatenation of represen-
tations and treatment variable as the input to predict the potential outcomes. Shalit
etal. (2017) propose to train separate models for different treatment outcome systems
associating with a measure based on probabilistic integral metric to bound the gen-
eralization error. Yao et al. (2018) propose to employ hard samples to preserve local
similarity in order to achieve better balancing results. The main difference between
ABCEI and the state-of-the-art representation learning-based methods are two-fold:
on the one hand, by employing adversarial learning, our balancing method does not
need any assumptions on the treatment selection functions; on the other hand, the
transformation between original covariate space and the latent space might lead to
information loss, but it turns out that this loss can be controlled. In our framework, a
mutual information estimator is employed to steer the encoder towards preserving as
much highly predictive information about cause and effect as possible.

From the view of graphical interpretation, there are some other difficulties for the
identification of causal effect, e.g., selection bias (Correa et al. 2019). Bareinboim
and Pearl (2012) propose the use of an instrumental variable for the identification
of causal effect. In this paper, we assume there exists only the confounding-driven
bias, i.e., that the removal of the confounding-driven bias can make the causal effect
accurately measurable. Louizos et al. (2017) propose to estimate causal effect by
using proxy variables. A modified variational autoencoder structure is employed to
identify the causal effect from observational data. In this paper, we assume that all the
confounders can be measured, so that our method is sufficient for the identifiability of
the CATE.

6 Conclusions

We propose a novel model for causal effect inference with observational data, called
ABCEI, which s built on deep representation learning methods. ABCEI focuses on bal-
ancing latent representations from the treatment and the control groups by designing
a two-player adversarial game. We use a discriminator to distinguish the represen-
tations from these two groups. By adjusting the encoder parameters, our aim is to
find an encoder that can fool the discriminator, which ensures that the distributions of
treatment and control representations are as similar as possible. Our balancing method
does not make any assumption on the form of the treatment selection function. With
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the mutual information estimator, we preserve the highly predictive information going
from the original covariate space to latent space. Experimental results on benchmark
datasets and synthetic datasets demonstrate that ABCEI is able to achieve robust and
substantially better performance than that of the pre-existing state of the art methods.

In future work, we will explore more connections between relevant methods in
domain adaptation (Daume III and Marcu 2006) and counterfactual learning (Swami-
nathan and Joachims 2015) with the methods in causal inference. A proper extension
would be to consider multiple treatment assignments or the existence of hidden con-
founders.
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