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Abstract

We prove that a large class of smooth solutions ψ to the linear wave equation �gψ = 0 on subextremal

rotating Kerr spacetimes which are regular and decaying along the event horizon become singular at

the Cauchy horizon. More precisely, we show that assuming appropriate upper and lower bounds on

the energy along the event horizon, the solution has infinite (non-degenerate) energy on any spacelike

hypersurfaces intersecting the Cauchy horizon transversally. Extrapolating from known results in the

Reissner–Nordström case, the assumed upper and lower bounds required for our theorem are conjectured

to hold for solutions arising from generic smooth and compactly supported initial data on a Cauchy

hypersurface. This result is motivated by the strong cosmic censorship conjecture in general relativity.
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1 Introduction

In this paper, we study the linear instability of the Kerr Cauchy horizon under scalar perturbations. More

precisely, we consider the linear wave equation1 on the black hole interior of subextremal Kerr spacetime

with non-vanishing angular momentum (i.e., for Kerr parameters 0 < |a| < M - see (2.1) for the formula for

the metric)

�gψ = 0 (1.1)

with (characteristic) initial data posed on the event horizon. We prove that there exists a large class of

smooth, polynomially decaying2 data such that the solutions have infinite non-degenerate energy on any

spacelike hypersurface intersecting the Cauchy horizon transversally. In particular, such solutions do not

belong to W 1,2
loc in any neighbourhood of any point on the Cauchy horizon. In addition to merely constructing

singular solutions, our main theorem identifies a sufficient condition only in terms of upper and lower bounds

of appropriate energy along the event horizon that guarantees the solution blows up at the Cauchy horizon.

We state our main result roughly as follows and refer the readers to Theorem 3.2 for a precise statement.

Theorem 1.2 (Rough version of main theorem). Let ψ be a smooth solution to (1.1) in the interior of

a subextremal Kerr spacetime with non-vanishing angular momentum. If the energy of ψ along the event

horizon obeys some polynomial upper and lower bounds (see i)-iii) of Theorem 3.2 for precise bounds), then

the non-degenerate energy3 on any spacelike hypersurface intersecting the Cauchy horizon transversally is

infinite.

Our result is motivated by the celebrated strong cosmic censorship conjecture in general relativity. We will

not discuss this conjecture in detail, but refer the readers to [6, 7, 17] for further discussions. For the purpose

of this paper, it suffices to say that the maximal globally hyperbolic development of the Kerr solution for

0 < |a| < M has a smooth Cauchy horizon and the strong cosmic censorship conjecture suggests the following

instability conjecture of the Kerr Cauchy horizon for small perturbations of Kerr:

1Here, �g denotes the standard Laplace–Beltrami operator for the Kerr metric g.
2with respect to the function v+ (see Section 2).
3See Remark 3.11 for further discussions on the non-degenerate energy.
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Conjecture 1.3. Generic small perturbations of Kerr initial data for the Einstein vacuum equations

Ric(g)µν = 0 (1.4)

lead to maximal globally hyperbolic developments such that the Cauchy horizons are so-called weak null sin-

gularities. In particular, for any continuous extensions of the spacetime metric, the spacetime Christoffel

symbols are not square-integrable.

Early formulations of this instability conjecture often suggest an even stronger instability - namely, that

a spacelike singularity may form “prior to the Cauchy horizon” and that the spacetime does not contain a

Cauchy horizon at all. However, recent work [7] shows that the Kerr Cauchy horizon is in fact C0-stable if

one assumes that the exterior region of Kerr is stable is a reasonably strong sense. On the other hand, the

estimates proven in [7] are consistent with the spacetime not having square integrable Christoffel symbols.

One can therefore still hope that the weaker formulation of the instability conjecture based on the non-

square-integrability of Christoffel symbols may hold.4

Theorem 1.2 can be viewed as a first step towards establishing Conjecture 1.3. Instead of considering

the full nonlinear Einstein vacuum equations, we only study a much simpler model equation, namely the

linear scalar wave equation (1.1). This can be regarded as a simplified linearization of the Einstein equations

in which we ignore the tensorial structure of the system and drop all the lower order terms5. We prove

in Theorem 1.2 that at least in this much simpler setting, there is indeed an instability mechanism. If

one moreover naively compares6 the metric in (1.4) with the scalar field in (1.1), then the infinitude of the

non-degenerate energy of ψ corresponds to the blow-up of the L2
loc norm of the Christoffel symbols as in

Conjecture 1.3.

There is a long tradition in both mathematics and physics in studying the linear scalar wave equation on

black hole backgrounds. The existence of solutions to the linear wave equation on Kerr which are regular

at the event horizon but singular at the Cauchy horizon have been previously constructed in [20, 23] (see

also [12]). Therefore, the main novelty of Theorem 1.2 is that it gives a sufficient condition for the solution

to be singular at the Cauchy horizon only in terms of L2 upper and lower bounds of the solution along

the event horizon. Moreover, motivated by the known results in the case of the subextremal Reissner–

Nordström spacetime7 8 with non-vanishing charge, one may conjecture that the bounds that are needed

in the assumptions of Theorem 1.2 hold for some solutions to the linear wave equation arising from smooth

and compactly supported initial data on a complete 2-ended Cauchy hypersurface. This conjecture, if true,

means that generic smooth and compactly supported initial data on a Cauchy hypersurface lead to solutions

that are singular at the Cauchy horizon. We will return to this point in the discussions in Section 1.1.

Our proof of Theorem 1.2 is based on energy identities and energy estimates in the interior of the Kerr

black hole, which are established by appropriate choices of various vector fields. Most importantly, we rely

4This formulation is due to Christodoulou [3]. In particular, if this formulation of the conjecture holds, then the maximal

globally hyperbolic developments of generic initial data in a small neighbourhood of Kerr data admit no extensions as weak

solutions to the Einstein vacuum equations.
5Notice in particular that the linear equation that we study is not a true linearization of the Einstein vacuum equations.
6Recall that in a generalized wave coordinate system, (1.4) becomes a wave equation for the metric g. We should remark

however that this comparison is best taken only at a heuristic level, as a resolution of Conjecture 1.3 will likely not be based on

generalized wave coordinates (cf. [7]).
7See Section 1.2 for the metric of Reissner–Nordström spacetime and discussions on its geometry.
8One can view the subextremal Reissner–Nordström spacetime (with non-vanishing charge) as a “poor-man’s version” of

the subextremal Kerr spacetime (with non-vanishing angular momentum) in the sense that they have similar global geometries,

including having smooth Cauchy horizons, while the geometry in the Reissner–Nordström case is simpler. Indeed, as we will

discuss in Section 1.1, more is known about solutions to the linear wave equation in Reissner–Nordström. Moreover, in that

case, there exists solutions arising from smooth and compactly supported Cauchy data such that analogues of the assumptions

of Theorem 1.2 hold (see Section 1.1).
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on the conservation law9 associated to a Killing vector field TCH+ (see (3.1) for the definition) which extends

the null generators of the Cauchy horizon. This conservation law lets us propagate an L2 lower bound from

the event horizon up to a spacelike hypersurface γσ (see (2.4) for the definition) that approaches the Cauchy

horizon “at timelike infinity”. For an appropriate choice of the hypersurface γσ, we can then propagate

this lower bound to a hypersurface transversally intersecting the Cauchy horizon using the energy identity

associated to the (non-Killing!) vector field ∆
ρ2 ∂r + r2+a2

ρ2 ∂t + a
ρ2 ∂ϕ. In order to10 control the error terms

arising from this energy identity, we need to prove sufficiently strong stability estimates, which in turn are

also obtained via energy estimates. We refer the readers to further discussions on the ideas of the proof in

Section 1.2 where we sketch the argument in the slightly simpler case of the Reissner–Nordström spacetime.

In the remainder of the introduction, we will discuss the global Cauchy problem for (1.1) in Section 1.1.

In particular, we will point out the relevance of Theorem 1.2 to the global Cauchy problem. Then, in Section

1.2, we will outline some ideas of the proof in the setting of the Reissner–Nordström spacetime. Finally, we

will end the introduction with an outline of the remainder of the paper.

1.1 The global Cauchy problem

With an eye towards the instability of Kerr Cauchy horizon conjecture (Conjecture 1.3), one would like to

go beyond the study of solutions to the linear wave equation within the interior of the black hole region as

in Theorem 1.2, but instead consider the problem of global evolution, where the initial data are prescribed

on a 2-ended complete asymptotically flat Cauchy hypersurface Σ0 (see11 Figure 1).

I+

CH+

i+

i0
H+

Σ0

Σ1

Figure 1: The global Cauchy problem

Due to the blue-shift effect associated with the Cauchy horizon, it has been expected since the pioneering

work of Simpson–Penrose [24] that there is a global instability for the Cauchy problem such that generic

regular data give rise to solutions which are singular at the Cauchy horizon. This problem has been widely

studied in the physics literature, see for instance [2, 16, 18, 19].

The first rigorous result on the instability of solutions to the linear wave equation dates back to McNamara

[20], who gave a conditional12 proof of the existence of solutions arising from regular polynomially decaying

data but are singular at the Cauchy horizon, subject to verifying a condition regarding the non-triviality

of the “scattering map” of the solutions from past null infinity to the the Cauchy horizon. This condition

has recently been proven by Dafermos–Shlapentokh-Rothman [12], who also gave an alternative proof of this

9Recall Noether’s theorem which allows us to obtain a conservation law for the solutions to a wave equation from a symmetry

of the underlying spacetime.
10In fact, stability estimates are also needed to bound the “boundary terms” in the conservation law associated to TCH+ (see

discussions in Section 1.2).
11Here, the interior of black hole region depicted in Figure 2 on page 14 should be thought of as the top “diamond” region in

Figure 1.
12Notice that in the case of Reissner-Nordström, the condition also was shown to hold in [20].
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result as part of their general treatment of blue-shift instabilities on black hole spacetimes. We give a rough

version of the theorem here and refer the readers to [12] for a precise statement:

Theorem 1.5 (McNamara [20], Dafermos–Shlapentokh-Rothman [12]). On any subextremal Kerr spacetime

with non-vanishing angular momentum, there exist solutions to the linear wave equation which arise from

polynomially decaying data (with an arbitrarily fast polynomial rate) on past null infinity but are singular at

the Cauchy horizon.

Another construction of solutions which are singular at the Cauchy horizon but have finite initial energy

follows from the results of Sbierski. More precisely, the following was proven in [23] by geometric optics

considerations:

Theorem 1.6 (Sbierski [23]). Consider a subextremal Kerr spacetime with non-vanishing angular momen-

tum. Let Σ0 be a complete 2-ended asymptotically flat Cauchy hypersurface and Σ1 be a spacelike hypersurface

in the interior of the black hole intersecting the Cauchy horizon transversally (see Figure 1). There exists

a sequence of solutions {ψi}∞i=1 to the linear wave equation �gψi = 0 such that the initial energies on Σ0

satisfy E(ψi,Σ0) = 1 while the non-degenerate energies on Σ1 obey E(ψi,Σ1)→ +∞.

Given the above result, an application of the closed graph theorem13 implies the existence of solutions

which initially belong to the energy class but then fail to be in the non-degenerate energy class near the

Cauchy horizon.

In the constructions in Theorems 1.5 and 1.6 above, the solutions do not have compact support on the

Cauchy hypersurface Σ0. As pointed out in [23], Theorem 1.6 also holds in the extremal case, i.e., when

0 < |a| = M . In that case, however, the instability may in fact be milder - it is known that for axisymmetric

data on extremal Kerr spacetimes which decay sufficiently fast on a Cauchy hypersurface14, the corresponding

solutions to the linear wave equation have finite non-degenerate energy in the interior of the black hole [15]

(see also [14, 22]). In other words, the analogue of Theorem 1.6 in the extremal case only holds because

one considers general Cauchy data in the energy class. On the other hand, in the case of subextremal Kerr

spacetime, it is indeed expected that the singularity at the Cauchy horizon is not an artefact of the slow decay

of the initial data at spacelike infinity. It is therefore desirable to obtain an instability result for smooth and

compactly supported Cauchy data. We formulate this as a conjecture:

Conjecture 1.7. Generic smooth and compactly supported Cauchy data on Σ0 to the linear wave equation

(1.1) in subextremal rotating Kerr spacetimes give rise to solutions such that the non-degenerate energy on

any spacelike hypersurface intersecting the Cauchy horizon transversally is infinite.

While the above conjecture remains an open problem, an analogue in the Reissner–Nordström spacetime

has been recently established:

Theorem 1.8 (Luk–Oh [17]). Given any Reissner–Nordström spacetime with 0 < |e| < M , generic

smooth and compactly supported initial data on a complete 2-ended asymptotically flat Cauchy hypersurface

13More precisely, we use the following consequence of the closed graph theorem: Let X, Y , Z be Banach spaces and T : X → Y ,

Q : Y → Z be linear maps. If Q is bounded and injective and Q ◦ T is bounded, then T is bounded. In our setting, let X

be the energy space on Σ0, Y and Z be the non-degenerate and degenerate energy spaces on Σ1 respectively. If for the sake

of argument that all solutions initially in the energy class on Σ0 belong to the non-degnerate energy class on Σ1, then we can

define T to be the operator “solving the wave equation” and Q to be the inclusion map and derive a contradiction with Theorem

1.6 using the above functional analytic statement. The key remaining analytic ingredient is the boundedness of Q ◦ T , i.e., the

boundedness of the degenerate energy, which follows from [11] together with considerations in Section 4.
14By saying this, we have chosen a globally hyperbolic subset of the extremal Kerr spacetime for which there is an (incomplete!)

asymptotically flat Cauchy hypersurface which extends into the black hole region. For precise statements, see [23, 15].
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Σ0 (Figure15 1) give rise to solutions to the linear wave equation such that the non-degenerate energy on any

spacelike hypersurface intersecting the Cauchy horizon transversally is infinite.

This theorem was proved in [17] via first showing that a lower bound16 on the energy along the event

horizon holds for a generic class of solutions arising from smooth and compactly supported data on Σ0. This

lower bound is in a similar form as that required for our main theorem (see assumption ii) of Theorem 3.2).

Based on the known results in the Reissner–Nordström case, one can therefore hope that in the Kerr case,

there exist smooth and compactly supported data on Σ0 such that the solutions obey the assumptions of

Theorem 1.2 along the event horizon. In other words, by Theorem 1.2, Conjecture 1.7 can be reduced17 to

the following conjecture:

Conjecture 1.9. There exist smooth and compactly supported initial data on a complete 2-ended asymptoti-

cally flat Cauchy hypersurface Σ0 (Figure 1) in Kerr spacetime (with 0 < |a| < M) such that the solutions

to the linear wave equation (1.1) obey the assumptions on the energy along the event horizon in Theorem 1.2.

Let us finally remark that the upper bounds i) and iii) in the assumptions of Theorem 3.2 are known to

hold for some q > 0 [9, 11, 21, 25]. Thus the main challenge is to obtain the lower bound ii). Moreover, one

needs to show near optimal upper and lower bounds such that i) and ii) in the assumptions of Theorem 3.2

hold with the same q > 0.

1.2 Outline of the proof by example of the subextremal Reissner–Nordström

black hole interior

In this section, we discuss the main ideas of the proof of our theorem. In order to describe the key points of

the proof without getting into the technical complications arising from the geometry of Kerr, we will restrict

our attention to Reissner–Nordström in this section. We first briefly recall the geometry of subextremal

Reissner–Nordström black hole interior in the case of non-vanishing charge. For 0 < |e| < M , the interior of

the Reissner–Nordström black hole is the manifold MRN = R× (r−, r+)× S2 with the following metric:

gRN = −(1− 2M

r
+
e2

r2
) dt2 + (1− 2M

r
+
e2

r2
)−1 dr2 + r2(dθ2 + sin2 θdϕ2),

where r± = M ±
√
M2 − e2 are the two roots of the polynomial ∆RN := r2 − 2Mr + e2. Define r∗ =

r + (M + 2M2−e2
2
√
M2−e2 ) log |r − r+|+ (M − 2M2−e2

2
√
M2−e2 ) log(r − r−), v+ = t+ r∗, v− = r∗ − t. Notice that v+ and

v− are null variables18. The metric takes the form

gRN =
∆RN

2r2
(dv+ ⊗ dv− + dv− ⊗ dv+) + r2 (dθ2 + sin2 θ dϕ2) .

We then attach the boundaries H+ and CH+ to MRN , where H+ is the set R × {r = r+} × S2 in the

(v+, r, θ, ϕ) coordinate system and CH+ is the set R × {r = r−} × S2 in the (v−, r, θ, ϕ) coordinate system

(see Figure 2).

15Figure 1 was of course meant to depict the Kerr spacetime. However, since Kerr spacetime (for 0 < |a| < M) and

Reissner–Nordström spacetime (for 0 < |e| < M) can be described by the same Penrose diagram, we also use it to depict the

Reissner–Nordström spacetime for the purpose of the statement of this theorem.
16Although it was not explicitly used in [17], upper bounds analogous to those in Assumptions i) and iii) in Theorem 3.2 are

also known in the Reissner-Nordström setting [8, 21, 25].
17Strictly speaking, the combination of Theorem 1.2 and Conjecture 1.9 only proves the existence of singular solutions arising

from smooth and compactly supported initial data. Nevertheless, by virtue of the linearity of the wave equation, this would

immediately implies the genericity of such singular solutions.
18Note that this is in contrast to the definitions of v+ and v− that we introduce in the Kerr case, which will not be null

variables (see Section 2)
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Below, we will consider various vector fields using the following conventions: ∂t is to be understood as

the coordinate vector field in the (t, r, θ, ϕ) coordinate system, while ∂v+ and ∂v− are to be understood as the

coordinate vector fields in the (v+, v−, θ, ϕ) coordinate system. Define also the vector fields (Ω1,Ω2,Ω3) :=

(− cos θ cosϕ
sin θ ∂ϕ − sinϕ∂θ,− cos θ sinϕ

sin θ ∂ϕ + cosϕ∂θ, ∂ϕ) and the notation that | /∇ψ|2 = 1
r2

∑3
i=1 |Ωiψ|2.

Using the above notations, a precise version of the analogue of Theorem 1.2 in the setting of Reissner–

Nordström black hole interior is given as follows19:

Theorem 1.10. Let ψ : MRN ∪ H+ → R be a smooth solution to the wave equation �gRNψ = 0. Assume

that there exists some q > 0 and δ ∈ [0, 1) such that

i) the following upper bound holds20 on H+ for all V ≥ 1,∫
H+∩{v+≥V}

(
(∂v+ψ)2 + | /∇ψ|2

)
r2 sin2 θ dv+ dθ dϕ . V−q;

ii) the following lower bound holds on H+ for all V ≥ 1,∫
H+∩{v+≥V}

(∂v+ψ)2r2 sin2 θ dv+ dθ dϕ & V−(q+δ);

iii) the following upper bound holds for the higher derivative of ψ on H+,

3∑
i=1

∫
H+∩{v+≥1}

(
(∂v+Ωiψ)2 + | /∇Ωiψ|2

)
r2 sin2 θ dv+ dθ dϕ . 1.

Then for every u0 ∈ R, there exists a sequence vk ∈ R with vk →∞ as k →∞ such that21∫
{v−=u0}∩{v+≥vk}

(∂v+ψ)2r2 sin2 θ dv+ dθ dϕ & (vk)−(q+δ). (1.11)

A slight variant of this theorem was proven in [17] if ψ is in addition assumed to be spherically sym-

metric. In other words, the methods in this paper give an extension to the corresponding result in [17]

to allow for general ψ. In fact, even when restricted to spherical symmetry, the present paper provides an

alternative approach to that in [17].

Our strategy is to carry out the proof in the following steps:

1. Stability estimates,

2. Instability estimates up to the hypersurface γσ via the ∂t-conservation law,

3. Instability estimates to the future of γσ.

19Notice that in Theorem 1.10, a lower bound which implies the infinitude of the non-degenerate energy is proven on a

null hypersurface. This is in contrast to a lower bound on a spacelike hypersurface in Theorem 3.2. This is simply carried

out for expositional convenience and it is easy to pass from lower bounds on null hypersurfaces to lower bounds on spacelike

hypersurfaces.
20It is understood here, and below, that the implicit constants are independent of V.
21Using the coordinates (v−, r, θ, ϕ), which are regular at CH+, it is seen that 1

(−∆RN )
∂v+ is regular at CH+. Moreover,

for constant v−, (−∆RN ) decays exponentially in v+. Hence, the boundedness of the non-degenerate energy on {v− = u0}
would imply that the left hand side of (1.11) decays at least exponentially in vk. See the discussions in the Kerr case in (3.5)

and Remarks 3.9 and 3.11 for more details. Hence, (1.11) implies in particular the blow-up of the non-degenerate energy on

{v− = u0}.
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In each of these steps the key is the following energy identity, which holds for any solutions to the linear

wave equation in any compact region D ⊆ M with piecewise smooth boundary ∂D, which is oriented with

respect to the outward pointing normal∫
∂D

ιT[ψ](Z,·)] vol =

∫
D

d
(
ιT[ψ](Z,·)] vol

)
=

∫
D

T[ψ]µν∇µZν vol , (1.12)

where T[ψ] is the stress-energy-momentum tensor given by

T[ψ]µν := ∂µψ∂νψ −
1

2
gµνg

−1(dψ, dψ).

The derivation of the energy identity relies on the fact T is divergence-free by virtue of the linear wave

equation. We refer the readers to Section 2.4 for further discussions.

1.2.1 Stability estimates

We now explain each of the steps above. The first step, i.e., the stability estimates, is already carried out in

[13]. Since we need a slightly different version, we state it here in Proposition 1.14, with a brief sketch of the

proof. The complete proof will be carried out in the Kerr case in Section 4, and in the sketch below, we will

point out where the analogue of each of the steps in the Kerr case will be carried out in the paper.

Before we state the proposition on stability estimates, we first need to define a hypersurface in the interior

of Reissner-Nordström, which plays a crucial role in the analysis. Define a function

fγσ (v+, v−) := v+ + v− − σ log(v+)

for v+ sufficiently large and σ > 0 and define a hypersurface γσ in the interior of the Reissner–Nordström

black hole by

γσ := f−1
γσ (1). (1.13)

An analogue of this hypersurface was first introduced by Dafermos [4, 5] in the setting of the Einstein–

Maxwell–(real)–scalar–field system in spherical symmetry (see also [13]). This hypersurface has the important

property that its future, restricted to the past of {v− = u0} (for arbitrary u0), has finite spacetime volume.

This fact will be the underlying geometric reason that the error terms in Proposition 1.23 are under control.

The following are the main stability estimates:

Proposition 1.14. Let α ∈ [0, 1), r0 ∈ (r−, r+) and u1 ∈ R. Denote by vol the metric volume form

vol =
1

2
(−∆RN ) sin θ dv− dv+ dθ dϕ.

Then there exists C > 0 such that for all V ≥ 1, the following stability estimates hold for ψ satisfying i) and

iii) in the assumptions of Theorem 1.10:∫
{v+≥V}∩{r≥r0}

(
(∂v+ψ)2 +

1

(−∆RN )2
(∂v−ψ)2 + | /∇ψ|2

)
vol

︸ ︷︷ ︸
=:IE1[ψ;V ]

+

∫
{v+≥V}∩{fγσ≤1}

∩{r≤r0}

( 1

(−∆RN )α
[
(∂v+ψ)2 + (∂v−ψ)2

]
+ | /∇ψ|2

)
vol

︸ ︷︷ ︸
=:IE2[ψ;V ]

≤ CV−q ,
(1.15)
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and ∫
{r≤r0}∩{v−≤u1}

1

(−∆RN )α

(
(∂v+ψ)2 + (∂v−ψ)2 + | /∇ψ|2

)
vol ≤ C . (1.16)

Sketch of proof. Step One (Section 4.1) The first step is to establish the following integrated energy estimates

to the past of the hypersurface {r = r0}:

IE1[ψ; V] +

∫
{v+≥V }∩{r=r0}

(
(∂v+ψ)2 + (∂v−ψ)2 + | /∇ψ|2

)
volr

.
∫

H+∩{v+≥V}

(
(∂v+ψ)2 + | /∇ψ|2

)
r2 sin2 θ dv+ dθ dϕ

︸ ︷︷ ︸
=:I[V]

+

∫
{v+=V}∩{r≥r0}

(
1

(−∆RN )2
(∂v−ψ)2 + | /∇ψ|2

)
(−∆RN )r2 sin2 θ dv− dθ dϕ

︸ ︷︷ ︸
=:II[V]

.

(1.17)

Here, volr is chosen such that vol = dr ∧ volr.

This estimate can be achieved using the identity (1.12) with a combination of well-chosen vector fields,

namely 1
(−∆RN )∂v− + (1− η−1(−∆RN ))∂v+ very near r = r+ and eλr(∂v+ + ∂v−) in the remaining region for

λ and η−1 suitably large.

By assumption i) of Theorem 1.10, I[V] in (1.17) has the desired decay V−q. To deal with the term II,

we notice that
∫ +∞

V
II[v+] dv+ . IE[ψ; V]. Using this and a standard argument based on the pigeonhole

principle (see Section 4.1.4) then gives II[V] . V−q. In particular, (1.17) now implies firstly the desired

bound for IE1[ψ; V] in (1.15) and secondly we also get the bound∫
{v+≥V }∩{r=r0}

(
(∂v+ψ)2 + (∂v−ψ)2 + | /∇ψ|2

)
volr . V−q. (1.18)

Step Two (Section 4.1) In this step, our goal is to obtain stability estimates to the future of {r = r0}.
To this end, we again rely on the identity (1.12). To the future of {r = r0} we use the vector field (1 +

η−1(−∆RN )1−α)(∂v− + ∂v+) very near r = r− and the vector field eλr(∂v+ + ∂v−) in the remaining region

and choose λ and η−1 to be suitably large. As a consequence, for any u1 and v1 such that v1 + u1 = 2r∗0
(where r∗0 is the value of r∗ when r = r0), we obtain the following estimate:∫

{v+≥v1}∩{v−≤u1}
∩{r≤r0}

( 1

(−∆RN )α
[
(∂v+ψ)2 + (∂v−ψ)2

]
+ | /∇ψ|2

)
vol

.
∫

{v+≥v1}∩{r=r0}

(
(∂v+ψ)2 + (∂v−ψ)2 + | /∇ψ|2

)
volr . (v1)−q,

(1.19)

where the final bound follows from (1.18). Starting from the estimate (1.19), we make two observations.

Firstly, due to the choice of fγσ , we can choose v1 < V with V . v1 (where the implicit constant is

independent of V) such that the inclusion

{v+ ≥ V} ∩ {fγσ ≤ 1} ∩ {r ≤ r0} ⊂ {v+ ≥ v1} ∩ {v− ≤ u1} ∩ {r ≤ r0}

holds. This observation and (1.19) then imply the bound for IE2[ψ;V ] in (1.15), which, together with the

estimates in Step One, imply (1.15).
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Secondly, using (1.19), we obtain the following for any u1 ∈ R:∫
{r≤r0}∩{v−≤u1}

( 1

(−∆RN )α
[
(∂v+ψ)2 + (∂v−ψ)2

]
+ | /∇ψ|2

)
vol ≤ C . (1.20)

Notice that to go from (1.15) and (1.20) to (1.16), it remains to improve the bounds for | /∇ψ| since ∂v+ψ

and ∂v−ψ have already been shown to obey even stronger estimates.

Step Three (Section 4.2) In order to improve the bounds for | /∇ψ|, we need an auxiliary estimate. Using

the spherical symmetry22 of Reissner–Nordström, we can commute the wave equation with Ωi so that Ωiψ is

also a solution to the linear wave equation. Therefore, we can apply the estimate in (1.20) for Ωiψ together

with the assumption iii) in Theorem 1.10 to get

3∑
i=1

∫
{r≤r0}∩{v−≤u1}

( 1

(−∆RN )α
[
(∂v+Ωiψ)2 + (∂v−Ωiψ)2

]
+ | /∇Ωiψ|2

)
vol ≤ C .

Step Four (Section 4.3) The estimates from Step Three controls ∂v−Ωiψ with the desired weight in (−∆).

Recalling that | /∇ψ|2 ∼
∑3
i=1(Ωiψ)2, the desired bounds from | /∇ψ| thus follows from a Hardy inequality.

1.2.2 Instability estimates

In the two steps of the instability estimates we deal with the regions to the past and to the future of γσ

respectively (recall the definition of γσ in (1.13) and see Figure 6 for a depiction of the spacetime regions in

the Kerr case). In the first step (see Proposition 1.21 below and Section 5.1 for the Kerr case), we use the

conservation law associated to the vector field23 ∂t to prove a lower bound of the energy on γσ. In the second

step (see Proposition 1.23 below and Section 5.2 for the Kerr case), we then propagate the lower bound on

γσ to the {v− = u0} hypersurface. In both of these steps, the stability estimates that have been derived play

an important role.

Proposition 1.21. There exists a sequence vk ∈ R with vk → ∞ such that the following estimate holds on

the hypersurface γσ: ∫
γσ∩{v+≥vk}

T(∂t, (−dfγσ )]) volfγσ & (vk)−(q+δ),

where volfγσ is chosen so that vol = dfγσ ∧ volfγσ .

Sketch of proof. We apply (1.12) with Z = ∂t. Since ∂t is Killing, we in fact obtain a conservation law, which

22Of course, the Kerr spacetime is not spherically symmetric and thus requires a modification of this part of the argument.

As it turns out, one can define differential operators ΩiH+ and ΩiCH+ such that while they do not commute with �g , the

commutators are well-behaved near the horizons and can be controlled, see Section 4.2.
23In the Kerr case, we will use the conservation law associated to TCH+ , see Section 5.1.
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implies the following lower bound for every v:∫
γσ∩{v+≥v}

T(∂t, (−dfγσ )]) volfγσ

&
∫

H+∩{v+≥v}

(∂v+ψ)2 r2 sin2 θ dv+ dθ dϕ

︸ ︷︷ ︸
=:I

− C
∫

{v+=v}∩{fγσ≤1}

(
(∂v−ψ)2 + (−∆RN )| /∇ψ|2

)
r2 sin2 θ dv− dθ dϕ

︸ ︷︷ ︸
=:II

.

(1.22)

Notice again that it is important that this is derived from a conservation law and there are no bulk terms. By

assumption ii) of Theorem 1.10, the term I is bounded below by v−(q+δ). To treat the terms II, we crucially

rely on the stability estimate (1.15) which allows us to pick, using the pigeonhole principle, a sequence

vk →∞ as k →∞ such that the corresponding term decays as (vk)−(q+1)+Cσ(1−α). Since δ < 1, for every σ,

one can choose α close to 1 to conclude the proof.

Finally, we prove the main conclusion of Theorem 1.10:

Proposition 1.23. For every u0 ∈ R, there exists a sequence vk ∈ R with vk →∞ as k →∞ such that∫
{v−=u0}∩{v+≥vk}

(∂v+ψ)2r2 sin2 θ dv dθ dϕ & (vk)−(q+δ).

Sketch of proof. We use (1.12) with Z = ∂v+ in the region to the future of γσ and to the past of {v− =

u0} ∪ CH+. Noticing that the term “at the Cauchy horizon” vanishes24 and dropping a boundary term with

a good sign, we have∫
{v−=u0}∩{v+≥vk}

(∂v+ψ)2r2 sin2 θ dv dθ dϕ

&
∫

γσ∩{v+≥vk}

T(∂v+ , (−dfγσ )]) volfγσ

︸ ︷︷ ︸
=:I

−C
∫

{v−≤u0}∩{v+≥vk}
∩{fσ≥1}

((∂v+ψ)2 + (∂v−ψ)2 + | /∇ψ|2) vol

︸ ︷︷ ︸
=:II

. (1.24)

First, I, which is the main term, can be bounded below by the term in Proposition 1.21. This is because

∂t = ∂v+−∂v− and the term
∫

γσ∩{v+≥vk}
T(∂v− , (−dfγσ )]) volfγσ has a favourable sign for this one-sided bound.

As a consequence, I & (vk)−(q+δ).

Then, in order to control the bulk error term II in (1.24), the key observation is that by choosing σ > 0 to

be sufficiently large, the stability estimate (1.16) implies that II decays faster than any polynomial, i.e., for

any p, it is bounded by Cp(vk)−p. The conclusion therefore follows by considering sufficiently large vk.

1.3 Outline of the paper

We end the introduction with an outline of the remainder of the paper. We will begin by a brief discussion

on the geometry of the interior of the Kerr black hole in Section 2. We will also introduce the preliminaries

24To justify this, one needs to use (1.15) and an approximation argument, see the proof of (5.9).
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about performing energy estimates in this section. We then give a precise statement of the main theorem in

Section 3. The proof of the main theorem will then occupy the remainder of the paper: In Section 4, we prove

the necessary stability estimates; in Section 5, we then prove the instability estimates, using in particular the

bounds derived in Section 4.
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2 The interior of subextremal Kerr spacetime

We consider the standard (t, r, θ, ϕ) coordinates on the smooth manifold M = R × (r−, r+) × S2, where r−

and r+ will be defined momentarily. A Lorentzian metric g on M is defined by

g = gtt dt
2 + gtϕ (dt⊗ dϕ+ dϕ⊗ dt) +

ρ2

∆
dr2 + ρ2 dθ2 + gϕϕ dϕ

2 , (2.1)

where

ρ2 = r2 + a2 cos2 θ , gtt = −1 +
2Mr

ρ2
,

∆ = r2 − 2Mr + a2 , gtϕ = −2Mra sin2 θ

ρ2
,

gϕϕ =
[
r2 + a2 +

2Mra2 sin2 θ

ρ2

]
sin2 θ .

Here, a and M , which are required to satisfy 0 < |a| < M , are constants representing the angular momentum

per unit mass and the mass of the black hole, respectively.

We now define r− < r+ to be the roots of ∆ and fix a time orientation on the Lorentzian manifold

(M, g) by stipulating that −∂r is future directed. The time oriented Lorentzian manifold (M, g) is called

the interior of a subextremal Kerr black hole. Moreover, let us fix an orientation by stipulating that the

Lorentzian volume form vol = ρ2 sin θ dt ∧ dr ∧ dθ ∧ dϕ is positive.

For later reference we note that the inverse metric g−1 in the Boyer–Lindquist coordinates (t, ϕ, r, θ) is

given by

g−1 =


− gϕϕ

∆ sin2 θ
gtϕ

∆ sin2 θ
0 0

gtϕ
∆ sin2 θ

− gtt
∆ sin2 θ

0 0

0 0 ∆
ρ2 0

0 0 0 1
ρ2

 . (2.2)

Let r∗(r) be a function on (r−, r+) satisfying dr∗

dr = r2+a2

∆ and r(r) a function on (r−, r+) satisfying
dr
dr = a

∆ . We now define the following functions on M:

v+ := t+ r∗ , ϕ+ := ϕ+ r ,

v− := r∗ − t , ϕ− := ϕ− r .
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Here, to be precise, ϕ+ and ϕ− are defined modulo 2π. It is easy to check that (v+, ϕ+, r, θ) and (v−, ϕ−, r, θ)

are coordinate systems for M. The metric g in these coordinates takes the following form:

g = gtt dv
2
+ + gtϕ

(
dv+ ⊗ dϕ+ + dϕ+ ⊗ dv+

)
+ gϕϕ dϕ

2
+ +

(
dv+ ⊗ dr + dr ⊗ dv+

)
− a sin2 θ

(
dr ⊗ dϕ+ + dϕ+ ⊗ dr

)
+ ρ2 dθ2

= gtt dv
2
− − gtϕ

(
dv− ⊗ dϕ− + dϕ− ⊗ dv−

)
+ gϕϕ dϕ

2
− +

(
dv− ⊗ dr + dr ⊗ dv−

)
+ a sin2 θ

(
dr ⊗ dϕ− + dϕ− ⊗ dr

)
+ ρ2 dθ2 .

This shows that in each of the above coordinate systems the metric extends in fact analytically to all pos-

itive values of r. We now attach the following boundaries to the manifold M: using the coordinate chart

(v+, ϕ+, r, θ) we attach the boundary R × {r = r+} × S2, which we call the event horizon and denote with

H+. Moreover, using the coordinate chart (v−, ϕ−, r, θ) we attach the boundary R × {r = r−} × S2, which

we call the Cauchy horizon and denote with CH+. The resulting manifold with boundary25 is denoted with

M and is depicted using a Penrose-style representation in Figure 2.

2.1 Hypersurfaces

Note that 〈dv+, dv+〉 = 〈dv−, dv−〉 = a2 sin2 θ
ρ2 , thus showing that for a > 0 the level sets of v+ and v− are

timelike hypersurfaces away from the axis.

We now define the functions f+ := v+ − r + r+ and f− := v− − r + r−. An easy computation gives

〈df+, df+〉 = 〈df−, df−〉 =
a2 sin2 θ

ρ2
+

∆

ρ2
− 2(r2 + a2)

ρ2
(2.3)

which shows that the level sets of f+ and f− are spacelike hypersurfaces. We introduce the notation Σ+
c :=

{f+ = c} and Σ−c := {f− = c}. Moreover, it is immediate that the hypersurfaces Σc := {r = c} are spacelike.

We also define the function fγσ (v+, v−) := v+ + v− − σ log(v+) for v+ large enough, where σ > 0, and

compute

〈dfγσ , dfγσ 〉 =
a2σ2 sin2 θ

v2
+ρ

2
+ 4(1− σ

v+
)
(r2 + a2)2

∆ρ2
.

Hence, for v+ large enough the level sets of fγσ are spacelike hypersurfaces (recall that ∆ < 0 on M). Let

γσ := f−1
γσ (1). (2.4)

We define an orientation on the level sets of r (including the horizon H+) by stipulating that the volume

form vol−r, given by vol = −dr ∧ vol−r, is positive. Similarly, we define positive volume forms volf+ , volf− ,

and volfγσ by vol = df+ ∧ volf+ , vol = df− ∧ volf− , and vol = dfγσ ∧ volfγσ , respectively.

2.2 The principal null frame field

For convenience we introduce the abbreviations S = sin θ and C = cos θ. Moreover, using the Boyer–Lindquist

coordinates, we define

V = (r2 + a2)∂t + a∂ϕ and W = ∂ϕ + aS2∂t .

25We note explicitly that with our convention, H+ only consists of one (future affine complete) null hypersurface and CH+

also only consists of one (past affine complete) null hypersurface. In particular, the dotted lines in Figure 2 are not part of the

M.
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H+

CH+

Σ(·)

Σ+
(·)

Σ−(·)

M
γσ

+∞

+∞

−∞

−∞

v+

v−

Figure 2: The Kerr interior

The principal null frame is then given by

e1 :=
1

ρ
∂θ , e3 :=

∆

ρ2
∂r −

1

ρ2
V ,

e2 :=
W

|W |
=

1

ρS
(∂ϕ + aS2∂t) , e4 := −∂r −

1

∆
V .

The vector fields e3 and e4 are null and future directed and satisfy 〈e3, e4〉 = −2. Let us denote the distribution

spanned by e3 and e4 by Π and the to Π orthogonal distribution by Π⊥. The vector fields e1 and e2 are not

defined on the axis, but where defined they form an orthonormal basis for Π⊥.

Note that in (v−, r, θ, ϕ−) coordinates we have26

e3 =
∆

ρ2

∂

∂r

∣∣∣
−
− 2

ρ2
V and e4 = − ∂

∂r

∣∣∣
−
,

while in (v+, r, θ, ϕ+) coordinates we have

e3 =
∆

ρ2

∂

∂r

∣∣∣
+

and e4 = − ∂

∂r

∣∣∣
+
− 2

∆
V .

Hence, the null vectors e3 and e4 are regular at the Cauchy horizon CH+, but not at the event horizon H+.

At the event horizon H+ the vector fields

ẽ3 := − 1

∆
e3 and ẽ4 := −∆ e4

are regular.

26In the following
∣∣
± indicates a partial derivative in the (v±, r, θ, ϕ±) coordinate system.
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Using ∇ to denote the Levi–Civita connection, the covariant derivatives can be computed to be

∇e1e1 = − r

2ρ2
e3 +

r∆

2ρ4
e4 , ∇e1e2 = − aC

2ρ2
e3 −

aC∆

2ρ4
e4 ,

∇e2e1 =
C

S

r2 + a2

ρ3
e2 +

aC

2ρ2
e3 +

aC∆

2ρ4
e4 , ∇e2e2 = −C

S

r2 + a2

ρ3
e1 −

r

2ρ2
e3 +

r∆

2ρ4
e4 ,

∇e3e1 = −∆aC

ρ4
e2 −

a2SC

ρ3
e3 , ∇e3e2 =

aC∆

ρ4
e1 +

arS

ρ3
e3 ,

∇e4e1 = −aC
ρ2
e2 −

a2SC

ρ3
e4 , ∇e4e2 =

aC

ρ2
e1 −

arS

ρ3
e4 ,

∇e1e3 =
r∆

ρ4
e1 −

∆aC

ρ4
e2 +

a2SC

ρ3
e3 , ∇e1e4 = − r

ρ2
e1 −

aC

ρ2
e2 −

a2SC

ρ3
e4 ,

∇e2e3 =
aC∆

ρ4
e1 +

r∆

ρ4
e2 +

arS

ρ3
e3 , ∇e2e4 =

aC

ρ2
e1 −

r

ρ2
e2 −

arS

ρ3
e4 ,

∇e3e3 = ∂r
(∆

ρ2

)
e3 , ∇e3e4 = −2a2SC

ρ3
e1 +

2arS

ρ3
e2 − ∂r

(∆

ρ2

)
e4 ,

∇e4e3 = −2a2SC

ρ3
e1 −

2arS

ρ3
e2 , ∇e4e4 = 0 .

(2.5)

The commutators are

[e1, e2] = −C

S

r2 + a2

ρ3
e2−

aC

ρ2
e3 −

aC∆

ρ4
e4 , [e2, e3] =

r∆

ρ4
e2 ,

[e1, e3] =
r∆

ρ4
e1 +

2a2SC

ρ3
e3 , [e2, e4] = − r

ρ2
e2 ,

[e1, e4] = − r

ρ2
e1 , [e3, e4] =

4arS

ρ3
e2 − ∂r

(∆

ρ2

)
e4 .

Finally, we compile the expressions for the Boyer–Lindquist coordinate vector fields written in terms of

the principal frame field:

∂t = −aS
ρ
e2 −

1

2
e3 −

∆

2ρ2
e4 , ∂θ = ρ e1 ,

∂r =
ρ2

2∆
e3 −

1

2
e4 , ∂ϕ =

S

ρ
(r2 + a2) e2 +

S2a

2
e3 +

S2a∆

2ρ2
e4 .

(2.6)

2.3 Commutators

We define ϕCH+ := ϕ−+ a
(r2−+a2)

v−, which is a regular angular function away from H+, and ϕH+ = ϕ+ −
a

(r2++a2)
v+, which is a regular angular function away from CH+. A direct computation gives

e1ϕCH+ = 0 , e1ϕH+ = 0 ,

e2ϕCH+ =
1

ρS
(1− a2S2

r2
− + a2

) , e2ϕH+ =
1

ρS
(1− a2S2

r2
+ + a2

) ,

e3ϕCH+ = − 2

ρ2
a(1− r2 + a2

r2
− + a2

) , e3ϕH+ = 0 ,

e4ϕCH+ = 0 , e4ϕH+ = − 2

∆
a(1− r2 + a2

r2
+ + a2

) .

(2.7)
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We now define the following vector fields on M:

Ω1
CH+/H+ = −

cos θ cosϕCH+/H+

sin θ
W − sinϕCH+/H+∂θ

= −ρ cos θ cosϕCH+/H+ · e2 − ρ sinϕCH+/H+ · e1 ,

Ω2
CH+/H+ = −

sinϕCH+/H+ cos θ

sin θ
W + cosϕCH+/H+∂θ

= −ρ cos θ sinϕCH+/H+ · e2 + ρ cosϕCH+/H+ · e1 ,

Ω3
CH+/H+ = W

= ρ sin θ · e2 .

(2.8)

In order to understand the regularity properties of these vector fields, they should be compared to the

generators of the rotations Ωi = εijkxj∂k in R3, which are in particular smooth, and read as follows in

spherical coordinates

Ω1 = −cos θ cosϕ

sin θ
∂ϕ − sinϕ∂θ ,

Ω2 = − sinϕ cos θ

sin θ
∂ϕ + cosϕ∂θ ,

Ω3 = ∂ϕ .

It is now easy to see that {Ω1
CH+ ,Ω2

CH+ ,Ω3
CH+} is a collection of smooth vector fields which span Π⊥

everywhere and, moreover, extend smoothly to CH+, while {Ω1
H+ ,Ω2

H+ ,Ω3
H+} is a collection of smooth

vector fields which span Π⊥ everywhere and extend smoothly to H+. The angular coordinates ϕCH+/H+

have been defined such that one has [ΩiCH+ , e3] = 0 on CH+ and [ΩiH+ ,−∆e4] = 0 on H+. The importance

of this property will become obvious in Section 4.2.

2.4 The wave equation and an energy estimate

Let ψ ∈ C∞(M,R). The wave equation on the Kerr interior is defined by

�gψ := (g−1)
µν∇µ∇νψ = 0 ,

where ∇, as above, denotes the Levi–Civita connection on (M, g) and here, and below, repeated indices are

summed over. We recall that the stress-energy tensor T[ψ] of ψ is given by

T[ψ]µν := ∂µψ∂νψ −
1

2
gµνg

−1(dψ, dψ)

and satisfies ∇µT[ψ]µν = �gψ∂νψ. We also recall that the deformation tensor π(Z)µν of a vector field Z is

given by

π(Z)µν = ∇µZν +∇νZµ.

For a compact region D ⊆ M with piecewise smooth boundary ∂D, which is oriented with respect to the

outward pointing normal, Stokes’ theorem now yields∫
∂D

ιT[ψ](Z,·)] vol =

∫
D

d
(
ιT[ψ](Z,·)] vol

)
=

∫
D

(
T[ψ]µν∇µZν +�gψZψ

)
vol . (2.9)

We refer to (2.9) as the energy estimate with multiplier Z in the region D.
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3 The main theorem

Let

TH+ = ∂t +
a

r2
+ + a2

∂ϕ

denote a Hawking vector field of the event horizon; TH+ is Killing and orthogonal to H+. Moreover, we

denote with

TCH+ = (r2
− + a2) ∂t + a ∂ϕ (3.1)

a Hawking vector field of the Cauchy horizon, which is Killing and orthogonal to CH+. We now state our

theorem precisely as follows:

Theorem 3.2. Let ψ :M∪H+ → R be a smooth solution of the wave equation �gψ = 0. Assume that there

exists q > 0, δ ∈ [0, 1) and C > 0 such that

i) for all V ≥ 1, the following upper bound holds on H+:∫
H+∩{v+≥V}

T[ψ](Ñ , ẽ4) vol−r≤ CV−q ,

where Ñ is a future directed timelike vector field that satisfies [Ñ , TH+ ] = 0 on H+;

ii) for all V ≥ 1, the following lower bound holds on H+:

V−(q+δ)≤ C
∫

H+∩{v+≥V}

T[ψ](TCH+ , ẽ4) vol−r; (3.3)

iii) the following upper bound holds for the second order energy27 on H+:

3∑
i=1

∫
H+∩{v+≥1}

T[ΩiH+ψ](Ñ , ẽ4) vol−r ≤ C .

It then follows that for every u0 ∈ R there exists a sequence vk ∈ R with vk → ∞ for k → ∞ such that the

following holds:28 ∫
Σ−u0∩{v+≥vk}

T[ψ]
(
−∆e4, (−df−)]

)
volf− & (vk)−(q+δ) , (3.4)

where the implicit constant is independent of vk. In particular, (3.4) implies29 that for every u0 ∈ R we have∫
Σ−u0∩{v+≥1}

T[ψ]
(
e4, (−df−)]

)
volf− =∞ . (3.5)

Note that the right hand side of (3.3) is not manifestly non-negative, since TCH+ is spacelike on the event

horizon H+.

Remark 3.6 (Alternative formulation of Theorem 3.2). Assumption ii) in Theorem 3.2 can be replaced by

27Recall the definition of ΩiH+ in (2.8).
28Here, in the preceding and in the following, ] denotes the isomorphism between one-forms and vector fields given by “raising

the index with the inverse of the metric g”.
29The fact that (3.4) implies (3.5) will be proven explicitly in Remark 3.9 below.
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ii’) The wave ψ is axisymmetric (i.e., ∂ϕψ = 0 everywhere in M) and there exists a δ ∈ [0, 1) and a

sequence wk ∈ R with wk →∞ for k →∞ such that

w
−(q+δ)
k .

∫
H+∩{v+≥wk}

T[ψ](TCH+ , ẽ4) vol−r . (3.7)

Note that under the assumption of axisymmetry the right hand side of (3.7) is manifestly non-negative30.

Making use of this non-negativity31 allows us to weaken the lower bound (3.3) (which holds for every V ≥ 1)

to a lower bound only along a sequence wk →∞.

Remark 3.8 (Yet another formulation of Theorem 3.2). By pulling out the weight from under the integral

we see that i) follows from ∫
H+∩{v+≥1}

(v+)qT[ψ](N, ẽ4) vol−r <∞ .

Moreover, for wk := 2ik , where ik →∞ as k →∞, ii′) follows from:∫
H+∩{v+≥1}

(v+)q+δ−εT[ψ](TCH+ , ẽ4) vol−r =∞ holds for some ε > 0 .

This is easily seen by contradiction: Assume that for all b > 0 there exists a k0 ∈ N such that for all k > k0

we have ∫
H+∩{2k≤v+≤2k+1}

T[ψ](TCH+ , ẽ4) vol−r < b · (2k)−(q+δ) .

It then follows that ∫
H+∩{2k≤v+≤2k+1}

(v+)q+δ−εT[ψ](TCH+ , ẽ4) vol−r < 2q+δ−εb · (2k)−ε

holds for all k > k0. Summing over k then gives the contradiction
∫
H+∩{v+≥1}(v+)q+δ−εT[ψ](TCH+ , ẽ4) vol−r <

∞.

Remark 3.9 (Proof of (3.5) from (3.4)). Recall that r∗(r) satisfies

dr∗

dr
=
r2 + a2

∆
=

r2 + a2

(r − r+)(r − r−)
=

r2
− + a2

(r− − r+)(r − r−)
+O(1) for r ↘ r− .

Hence, for any r0 ∈ (r−, r+) there exists a C > 0 such that

1

2κ−
log(r − r−) + C ≥ r∗ ≥ 1

2κ−
log(r − r−)− C ,

where we have introduced the surface gravity κ− = r−−r+
2(r2−+a2)

of the Cauchy horizon. Thus, in (r−, r0) we have

r − r− . e2κ−r
∗

= eκ−(v++v−) . r − r− . (3.10)

We now prove (3.5) by contradiction, that is we assume∫
Σ−u0∩{v+≥1}

T[ψ]
(
e4, (−df−)]

)
volf− ≤ C .

30This can be seen by noting that TH+ is future directed and causal along H+ and that for axisymmetric ψ, the identity

T[ψ](TCH+ , ẽ4) = (r2
− + a2)T[ψ](TH+ , ẽ4) holds on H+.

31See the proof of Proposition 5.1.
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It then follows from (3.10) and the relation v− − r + r− = u0 along Σ−u0
that∫

Σ−u0∩{v+≥V}

−∆ · T[ψ]
(
e4, (−df−)]

)
volf− .

∫
Σ−u0∩{v+≥V}

eκ−v+eκ−(u0+r) · T[ψ]
(
e4, (−df−)]

)
volf− . e

κ−v+ .

This, however, contradicts (3.4). In order to prove Theorem 3.2 it thus suffices to prove (3.4).

Remark 3.11 (Blow up of non-degenerate energy). Let Σ be a smooth spacelike hypersurface that intersects

the Cauchy horizon transversally. Suppose Σ is given by a defining function f :M→ R (i.e., Σ = f−1(0))

such that (−df)] is a future-directed timelike vector field. Define the non-degenerate energy by∫
Σ

T(e3 + e4, (−df)]) volf ,

where the volume form volf is defined such that vol = df ∧ volf . (3.5) implies32 that the non-degenerate

energy on Σ−u0
∩ {v+ ≥ 1} is infinite for every u0 ∈ R.

Moreover, by proving energy estimates locally near the Cauchy horizon, it can be shown that the non-

degenerate energy is infinite on any smooth spacelike hypersurface intersecting the Cauchy horizon transver-

sally, as is claimed in Theorem 1.2.

Remark 3.12 (Constructing solutions to the wave equation which satisfy the assumptions of Theorem 3.2).

It is a standard fact that the linear wave equation is well-posed towards the future with smooth data imposed

on the event horizon H+ ∩{v+ ≥ 1} and spacelike hypersurface Σ+
1 . Since the equation is linear, the solution

exists and remains smooth in {v+ ≥ 1} ∩ {r ∈ (r−, r+]}. Note that the data on H+ ∩ {v+ ≥ 1} can be

prescribed such that the assumptions i) − iii) of Theorem 3.2 are satisfied. Moreover, the proof of Theorem

3.2 will show that the theorem also holds if ψ is only assumed to be a smooth solution in the smaller set

{v+ ≥ 1} ∩ {r ∈ (r−, r+]}. Hence, there exists a large class of solutions to the wave equation in the interior

of the Kerr black hole which are initially regular but have infinite non-degenerate energy near the Cauchy

horizon.

4 Stability estimates

4.1 Integrated energy decay for first derivatives

The results of this section depend only on the first assumption of Theorem 3.2:

Assumption 4.1. Let ψ : M∪H+ → R be a smooth solution of the wave equation �gψ = 0 and assume

that there exists a q > 0 such that for all V ≥ 1∫
H+∩{v+≥V}

T[ψ](Ñ , ẽ4) vol−r . V−q ,

where Ñ is a future directed timelike vector field that satisfies [Ñ , TH+ ] = 0.

We prove:

32Notice that
∫

Σ−u0∩{v+≥1}
T[ψ]

(
e3, (−df−)]

)
volf− > 0 .

19



Proposition 4.2. Under Assumption 4.1 the following holds: Let σ > 0 and V be large enough33. Then for

any α ∈ [0, 1) we have∫
{f+≥V}∩{fγσ≤1}
∩{r≥rblue}

(
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

)
vol

+

∫
{f+≥V}∩{fγσ≤1}
∩{r≤rblue}

( 1

(−∆)α
[
∆2(e4ψ)2 + (e3ψ)2

]
+ (e2ψ)2 + (e1ψ)2

)
vol . V−q ,

for some rblue ∈ (r−, r+).

Proposition 4.3. Under Assumption 4.1 the following holds: Let α ∈ [0, 1) and u1 ∈ R There then exists a

constant C > 0 such that∫
{r≤rblue}∩{f−≤u1}

( 1

(−∆)α

[
∆2(e4ψ)

2
+ (e3ψ)

2
]

+
(
(e2ψ)

2
+ (e1ψ)

2))
vol ≤ C (4.4)

for rblue ∈ (r−, r+) as in Proposition 4.2.

We depict in Figure 3 the regions of spacetime under consideration. The darker shaded region depicts

the region of integration in Proposition 4.2, which is to the future of Σ+
V and to the past of γσ. This region

is further divided into two: the future and past of {r = rblue}, where the weights in the integrated energy

decay estimates are different.34 The lightly shaded region, on the other hand, is the region of integration in

Proposition 4.3. The estimate in Proposition 4.3 is of course most useful to the future of γσ, i.e., for fγσ > 1,

for otherwise Proposition 4.2 provides a stronger bound35. Notice that in the region {fγσ > 1}, since (−∆) is

sufficiently small, for later applications, we only need to show that the left hand side of (4.4) is bounded.36

H+

H+ ∩ {v+ ≥ V}

Σ−u1

CH+

Σrblue Σ+
V

{r ≤ rblue} ∩ {f− ≤ u1}

{f+ ≥ V} ∩ {fγσ ≤ 1} ∩ {r ≥ rblue}

{f+ ≥ V} ∩ {fγσ ≤ 1} ∩ {r ≤ rblue}
γσ

Figure 3: The spacetime regions under consideration in Propositions 4.2 and 4.3

33This is just to ensure that fγσ is defined in the region {f+ ≥ V}
34We remind the readers that for rblue ∈ (r−, r+), ẽ4 and ẽ3 are the regular vector fields in the region to the past of {r = rblue}

while e4 and e3 are the regular vector fields to the future of {r = rblue}.
35at least when V ≥ 1 is sufficiently large.
36Indeed, it holds that the left hand side of (4.4) in Proposition 4.3 decays like (−u1)−q for u1 → −∞. This stronger

statement, however, is not needed in what follows.
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The proof of Propositions 4.2 and 4.3 will be carried out using the energy estimate (2.9) with appropriate

choices of multipliers Z. We will choose three different multipliers in three regions of spacetime - the multi-

pliers will be defined and discussed in Sections 4.1.1, 4.1.2 and 4.1.3. We then conclude this subsection and

prove Propositions 4.2 and 4.3 by combining the energy estimates obtained using these multipliers.

4.1.1 Multiplier in the red-shift region

The vector field TH+ = ∂t + a
r2++a2

∂ϕ is Killing and orthogonal to the null hypersurface H+. Moreover, on

the event horizon we have

∇TH+TH+ = κ+TH+ ,

where κ+ = r+−r−
2(r2++a2)

> 0 is the surface gravity. On the event horizon we have TH+ = 1
2(r2++a2)

ẽ4.

Section 7 in [10] shows that one can choose an rred ∈ (r−, r+) and a constant κ > 0 (depending on κ+

and going to zero for κ+ → 0) such that one can construct a future directed timelike vector field N that is

invariant under the flow of TH+ , i.e., [N,TH+ ] = 0, and that satisfies in the region r ∈ [rred, r+]

T(ψ)µνπ(N)µν ≥ κ
((
ẽ3ψ

)2
+
(
ẽ4ψ

)2
+
(
e1ψ

)2
+
(
e2ψ

)2)
. (4.5)

4.1.2 Multiplier in the blue-shift region

We define

L := −∆

ρ2
e4 and L := e3 .

Let us also write eµ � eν := 1
2 (eµ ⊗ eν + eν ⊗ eµ) Using (2.5) we find that the deformation tensors of L and

L are given by

π(L) =
2r∆

ρ4
e1 � e1 +

2r∆

ρ4
e2 � e2 +

4a2SC

ρ3
e1 � e3 +

4arS

ρ3
e2 � e3 − ∂r

(∆

ρ2

)
e4 � e3 ,

π(L) =
2r∆

ρ4
e1 � e1 +

2r∆

ρ4
e2 � e2 −

4∆a2SC

ρ5
e1 � e4 +

4∆arS

ρ5
e2 � e4 − ∂r

(∆

ρ2

)
e3 � e4 . (4.6)

Consider now the vector field

X := L+ L = 2
∆

ρ2
∂r = 2(dr)] .

Introducing the shorthand ψi := ei(ψ) for i = 1, . . . , 4, we obtain

T[ψ]µνπ(X)µν = 2∂r

(−∆

ρ2

)
[ψ2

1 +ψ2
2 ] +

4a2SC

ρ3
ψ1ψ3 +

4arS

ρ3
ψ2ψ3−

4a2∆SC

ρ5
ψ1ψ4 +

4∆arS

ρ5
ψ2ψ4 +

4r∆

ρ4
ψ3ψ4 .

(4.7)

Note here that

∂r

(−∆

ρ2

)∣∣∣
r=r−

=
r+ − r−
r2
− + a2C2

> 0 , (4.8)

and thus the first term on the right hand side of (4.7) is positive for r close enough to r−.

We now introduce the function

wα(r) =

r∫
r−

1(
−∆(r′)

)α dr′ ,
where α ∈ [0, 1) and r ∈ [r−, r+]. Note that since α < 1 the function wα is bounded.

21



We compute

T[ψ]µνπ(wαX)µν = wαT[ψ]µνπ(X)µν + 2T[ψ]
(
(dwα)], X

)
= wαT[ψ]µνπ(X)µν +

2

(−∆)α
T[ψ]

(
(dr)], X

)
= wαT[ψ]µνπ(X)µν +

1

(−∆)α
T[ψ]

(
L+ L,L+ L

)
= wαT[ψ]µνπ(X)µν +

1

(−∆)α

[∆2

ρ4
ψ2

4 + ψ2
3 +
−2∆

ρ2
(ψ2

1 + ψ2
2)
]
.

It now follows from (4.7), (4.8) and Cauchy–Schwarz that there exists an rblue ∈ (r−, r+) (depending on α)

such that the following holds in R× (r−, rblue)× S2 ⊂M :

T[ψ]µνπ(wαX)µν &
1

(−∆)α
[∆2

ρ4
ψ2

4 + ψ2
3

]
+
(
ψ2

1 + ψ2
2

)
. (4.9)

4.1.3 Multiplier in the intermediate region

Let w̃λ(r) = eλr and compute

T[ψ]µνπ(w̃λX)µν = w̃λT[ψ]µνπ(X)µν + 2λw̃λT[ψ]
(
(dr)], X

)
= w̃λT[ψ]µνπ(X)µν + λw̃λ

[∆2

ρ4
ψ2

4 + ψ2
3 +
−2∆

ρ2
(ψ2

1 + ψ2
2)
]
.

Without loss of generality we have rblue < rred. We can now choose λ0 > 0 big enough such that in the

region r ∈ [rblue, rred] we have

T[ψ]µνπ(w̃X)µν & ψ2
4 + ψ2

3 + ψ2
2 + ψ2

1 , (4.10)

where we have set w̃ := w̃λ0 .

4.1.4 Putting everything together

Let σ > 0 be given and let α ∈ [0, 1). Constructing the multiplier wαX in the blue-shift region such

that (4.9) holds determines rblue ∈ (r−, r+). The energy estimate (2.9) with multiplier N in the region

{r ≥ rred} ∩ {v1 ≤ f+ ≤ v2}, see also Figure 4, yields∫
Σrred∩{v1≤f+≤v2}

T[ψ](N, (dr)]) vol−r +

∫
Σ+
v2
∩{r≥rred}

T[ψ](N, (−df+)]) volf+

+

∫
{r≥rred}∩{v1≤f+≤v2}

1

2
T[ψ]µνπ(N)µν vol

=

∫
Σ+
v1
∩{r≥rred}

T[ψ](N, (−df+)]) volf+ +

∫
H+∩{v1≤v+≤v2}

T[ψ](N, (dr)]) vol−r .

(4.11)

We now note that since [N,TH+ ] = 0 = [Ñ , TH+ ], the energy densities T[ψ](N, ẽ4) and T[ψ](Ñ , ẽ4) are

comparable along H+. The same holds for the energy densities T[ψ](N, (dr)]) and T[ψ](w̃X, (dr)]) along

Σrred . The energy estimate with multiplier w̃X in the region {rblue ≤ r ≤ rred} ∩ {v1 ≤ f+ ≤ v2}, together
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H+

CH+

Σrblue

Σ+
v1

Σrred

Σ+
v2

Σ−u1

Figure 4: Regions considered for the energy estimates in Section 4.1.4

with (4.11) and Assumption 4.1, yields∫
Σrblue

∩{v1≤f+≤v2}

T[ψ](w̃X, (dr)]) vol−r +

∫
Σ+
v2
∩{r≥rblue}

[
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

]
volf+

+

∫
{r≥rblue}∩{v1≤f+≤v2}

[
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

]
vol

.
∫

Σ+
v1
∩{r≥rblue}

[
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

]
volf+ + (v1)−q .

(4.12)

We need the following

Lemma 4.13. Let q > 0 and let h be a positive measurable function on [1,∞) that satisfies

h(t2) +

t2∫
t1

h(t) dt ≤ C ·
(
h(t1) + t−q1

)
for all 1 ≤ t1 < t2 <∞ , (4.14)

where C > 0 is a constant. It then follows that

h(t) . t−q (4.15)

for every t ≥ 1, with an implicit constant37 which is independent of t.

Proof. We start with showing

h(t) . t−k (4.16)

for all 0 ≤ k ≤ bqc.
The case k = 0 follows directly from (4.14) after taking t1 = 1 and t2 = t. So assume (4.16) holds for a

non-negative integer k ≤ bqc − 1. We will prove (4.16) for k replaced by k + 1.

Let τn := 2n. In particular, (4.14) together with (4.16) imply∫ τn+1

τn

h(t) dt ≤ Ckτ−kn for all n ∈ N ,

37Indeed, it follows from the proof that the constant depends only on C, q and h(1).
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where Ck > 0 is a constant38 depending on k, h(1), q and C. Thus, for every n ∈ N there exists a

τ ′n ∈ [τn, τn+1] such that

h(τ ′n) ≤ Ckτ−(k+1)
n (4.17)

holds. Moreover, it follows from (4.14) that for all τ ∈ [τn+1, τn+2] we have

h(τ) ≤ C
(
h(τ ′n) + (τ ′n)−q

)
(4.17)

≤ Ck
(
τ−(k+1)
n + τ−qn

)
(4.18)

≤ Ckτ−(k+1)
n ,

which proves (4.16) for k replaced by k + 1 if k + 1 ≤ bqc.
The above induction thus allows us to show (4.16) for k ≤ bqc. To continue, we let k = bqc and repeat

the above proof up to (4.18). From there we conclude h(τ) ≤ Ckτ−qn , which proves the lemma.

We now set

h(t) :=

∫
Σ+
t ∩{r≥rblue}

[
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

]
volf+

and recall vol = df+ ∧ volf+ . Hence, (4.12) implies that h(t) satisfies (4.14) and thus, by Lemma 4.13, we

have h(t) . t−q. Using this in (4.12) and letting v2 tend to infinity gives∫
Σrblue

∩{v1≤f+}

T[ψ](w̃X, (dr)]) vol−r +

∫
{r≥rblue}∩{v1≤f+}

[
(ẽ4ψ)2 + (ẽ3ψ)2 + (e1ψ)2 + (e1ψ)2

]
vol . (v1)−q .

(4.19)

Finally, let us consider the energy estimate with multiplier wαX in the blue-shift region {r ≤ rblue}∩{f− ≤
u1}, where u1 = 2r∗blue − 2rblue − v1 + r+ + r− (see also Figure 4):39∫

Σ−u1∩{r≤rblue}

T[ψ](wαX, (−df−)]) volf− +

∫
{r≤rblue}∩{f−≤u1}

( 1

(−∆)α

(
∆2ψ2

4 + ψ2
3

)
+
(
ψ2

1 + ψ2
2

))
vol

.
∫

Σrblue
∩{v1≤f+}

T[ψ](wαX, (dr)
]) vol−r .

(4.20)

This, together with (4.19) and the fact that the energy densities T[ψ](w̃X, (dr)]) and T[ψ](wαX, (dr)
]) are

comparable along Σrblue
, proves in particular Proposition 4.3.

In order to prove Proposition 4.2 let V := f+
(
γσ ∩ Σ−u1

)
(this is well-defined for v1 big enough - see also

Figure 5). Note that v+

(
γσ ∩ Σ−u1

)
is implicitly given by

v+

(
γσ ∩ Σ−u1

)
+ u1 + r(γσ ∩ Σ−u1

)− r− − σ log
(
v+

(
γσ ∩ Σ−u1

))
= 1 ,

and thus, together with u1 = 2r∗blue − 2rblue − v1 + r+ + r−, we obtain V . v+

(
γσ ∩Σ−u1

)
. v1. Thus, (4.19)

38We will continue to write Ck below to emphasize the dependence of the constant on k. Notice however that we will allow

the constants to be different in every line.
39Actually, one would carry out the energy estimate first in the compact region {r ≤ rblue} ∩ {f− ≤ u1} ∩ {f+ ≤ v2}. The

boundary term along Σ+
v2 has a positive sign and can thus be dropped. One then takes v2 →∞. This approximation argument

is standard and will be silently omitted in the future.
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H+

CH+

Σrblue

Σ+
v1

Σ+
V

Σ−u1

γσ

Figure 5: The hypersurfaces Σ+
v1 and Σ+

V

and (4.20) imply∫
{r≥rblue}∩{f+≥V}

[
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

]
vol

+

∫
{r≤rblue}∩{fγσ≤1}∩{f+≥V}

( 1

(−∆)α

[
∆2ψ2

4 + ψ2
3

]
+
(
ψ2

1 + ψ2
2

))
vol

≤
∫

{r≥rblue}∩{f+≥v1}

( 1

(−∆)α

(
∆2ψ2

4 + ψ2
3

)
+
(
ψ2

1 + ψ2
2

))
vol

+

∫
{r≤rblue}∩{fγσ≤1}∩{f−≤u1}

( 1

(−∆)α

(
∆2ψ2

4 + ψ2
3

)
+
(
ψ2

1 + ψ2
2

))
vol

. (v1)−q . V−q ,

which proves Proposition 4.2.

4.2 Integrated energy decay for second derivatives

The result of this section depends, in addition to Assumption 4.1, also on the third assumption of Theorem

3.2:

Assumption 4.21. Assume ψ : M∪ H+ → R is a smooth solution to the wave equation �gψ = 0 that

satisfies
3∑
i=1

∫
H+∩{v+≥1}

T[ΩiH+ψ](Ñ , ẽ4) vol−r ≤ C .

We prove

Proposition 4.22. Under Assumptions 4.1 and 4.21 the following holds: Let α ∈ [0, 1) and u1 ∈ R. There

then exists a constant C > 0 such that

3∑
i=1

∫
{r≤rblue}∩{f−≤u1}

( 1

(−∆)α

(
∆2(e4ΩiCH+ψ)2 + (e3ΩiCH+ψ)2

)
+
(
(e1ΩiCH+ψ)2 + (e2ΩiCH+ψ)2

))
vol ≤ C

(4.23)
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for rblue ∈ (r−, r+) as in Proposition 4.2.

4.2.1 Boundedness of second order energy on Σrblue

For the proof of Proposition 4.22 we commute the wave equation with the vector fields ΩiH+,CH+ . For a

vector field Z one has40

[�g, Z]ψ = π(Z)µν∇µ∇νψ + (∇µπ(Z)µν)∂νψ −
1

2
∂µ
(
trπ(Z)

)
∂µψ . (4.24)

Summing the energy estimates for the functions ΩiH+ψ in the region {r′ ≤ r ≤ r+} ∩ {f+ ≥ v1}, where

r′ ≥ rred, with multiplier N (recall the definition of N and the bound (4.5) from Section 4.1.1) gives

3∑
i=1

∫
Σr′∩{f+≥v1}

T[ΩiH+ψ](N, (dr)]) vol−r

+

3∑
i=1

∫
{r≥r′}∩{f+≥v1}

κ
(

(ẽ3ΩiH+ψ)2 + (ẽ4ΩiH+ψ)2 + (e1ΩiH+ψ)2 + (e2ΩiH+ψ)2
)

vol

+

3∑
i=1

∫
{r≥r′}∩{f+≥v1}

(
π(ΩiH+)µν∇µ∇νψ +

(
∇µπ(ΩiH+)µν

)
∂νψ −

1

2

(
∂µ
(
trπ(ΩiH+)

))
∂µψ

)
︸ ︷︷ ︸

=:Err

(
NΩiH+ψ

)
vol

≤
3∑
i=1

∫
Σ+
v1
∩{r≥r′}

T[ΩiH+ψ](N, (−df+)]) volf+ +

3∑
i=1

∫
H+∩{v+≥v1}

T[ΩiH+ψ](N, (dr)]) vol−r .

(4.25)

We want to show that (4.25) implies41

3∑
i=1

∫
Σr′∩{f+≥v1}

T[ΩiH+ψ](N, (dr)]) vol−r . 1 +

3∑
i=1

∫
{r≥r′}∩{f+≥v1}

T[ΩiH+ψ](N, (dr)]) vol . (4.26)

This, together with vol = −dr ∧ vol−r and Gronwall, then implies

3∑
i=1

∫
Σrred∩{f+≥v1}

T[ΩiH+ψ](N, (dr)]) vol−r ≤ C . (4.27)

In order to show (4.26), let us first recall that (dr)] = 1
2 (L+ L) = 1

2 ( 1
ρ2 ẽ4 −∆ẽ3). Hence, we have

T[ΩiH+ψ](N, (dr)]) & −∆(ẽ3ΩiH+ψ)2 + (ẽ4ΩiH+ψ)2 + (e1ΩiH+ψ)2 + (e2ΩiH+ψ)2 . (4.28)

We now explain how one estimates the third term in (4.25): First recall that the tilded frame field

{ẽ3, ẽ4, e1, e2} is invariant under the flow of the Killing vector field TH+ . However, the orthonormal basis

{e1, e2} of Π⊥ is not smooth on the axis. We thus introduce in addition an orthonormal basis {e′1, e′2} of Π⊥

which is smooth in a small neighbourhood of the axis and also invariant under the flow of TH+ .42

40See for example [1], Chapter 6.2
41Note that for any fixed v+, the two terms on the right hand side of (4.25) are bounded (uniformly in r′ ≥ rred) by the

smoothness assumption and Assumption 4.21.
42Note that so far there was no need to introduce a frame that is also regular at the axis, since we only decomposed expressions

involving dψ, i.e., first derivatives of ψ, with respect to a frame field involving e1 and e2. Technically, in such computations one

restricts the domain to the region under consideration with the axis deleted. After estimating and rearranging such expressions

we always ended up with the expression (e1ψ)2 + (e2ψ)2, which is equal to (g|Π⊥ )−1(dψ, dψ) and thus extends smoothly to the

axis. By continuity, the obtained estimate thus also holds on the axis.

Now, however, we are about to decompose expressions involving ∇∇ψ. Here, it is important that we decompose with respect

to a regular frame near the axis, since for example the term e2(e1ψ) is in general unbounded when approaching the axis.
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We then split the domain of integration in the third term of (4.25) in two disjoint regions A (disjoint of

the axis) and A′ (containing the axis) such that e1 and e2 are smooth on A and e′1 and e′2 are smooth on

A′. In the following we decompose Err in region A with respect to the frame {ẽ3, ẽ4, e1, e2} and in region

A′ with respect to the frame {ẽ3, ẽ4, e
′
1, e
′
2}. To simplify the presentation, we will restrict ourselves in the

following discussion to region A. Region A′, however, is dealt with completely analogously.

From the coordinate representations of ΩiH+ in (2.8) it is easy to see that these vector fields are invariant

under the flow of the Killing vector field TH+ . Hence, the same holds for the deformation tensor π(ΩiH+) and

its covariant derivative. The invariance under the flow of TH+ implies that the coefficients of the deformation

tensor and its covariant derivative, when expressed in terms of the tilded frame, are uniformly bounded in

the region under consideration. We proceed by writing all contractions in the term Err in terms of the

tilded frame, e.g. π(ΩiH+)µν∇µ∇νψ = π(ΩiH+)4̃4̃(ẽ4ẽ4ψ+∇ẽ4 ẽ4ψ+ . . .). Again by the invariance of the frame

field under the flow of the Killing vector field TH+ vector fields of the form ∇ẽ4 ẽ4 have uniformly bounded

coefficients when expressed in the tilded frame. We conclude that in region A the term Err can be written

as a sum of terms of the form h · e(fψ) and h · eψ, where h is a uniformly bounded function and e and f are

members of the tilded frame field.

Using this structure, we can now estimate in region A terms of the form (h · eψ)(NΩiH+ψ) in the third

term of (4.25) by

|(h · eψ)(NΩiH+ψ)| ≤ ε−1h2(eψ)2 + ε(NΩiH+ψ)2 . (4.29)

Choosing ε > 0 small enough and recalling that N is invariant under the flow of TH+ , the second term can be

absorbed by the second term in (4.25). The first term in (4.29), after integration, is bounded by Proposition

4.2.

It thus remains to deal with terms of the form h ·e(fψ) in Err. We again use Cauchy–Schwarz to estimate

|
(
h · e(fψ)

)
(NΩiH+ψ)| ≤ ε−1h2

(
e(fψ)

)2
+ ε(NΩiH+ψ)2 .

Choosing ε > 0 small enough, the second term can again be absorbed. Recalling (4.28), we now show that the

first term can be controlled by
∑3
i=1 T[ΩiH+ψ](N, (dr)]) (modulo first order terms which, after integration,

can again be controlled by Proposition 4.2). Here, clearly, the structure of π(ΩiH+) is important.

1. First consider terms of the form h2 ·
(
e(fψ)

)2
, where f ∈ {e1, e2} and e ∈ {e1, e2, ẽ4}. Note that we

can assume without loss of generality this order for e and f , since the commutator is a first derivative

of ψ and can thus be estimated as before. In region A we can write e1 and e2 as a linear combination

of the ΩiH+ where the coefficient functions have uniformly bounded derivative (since we are away from

the axis). Writing f thus and using the Leibniz rule, we see that the term h2 ·
(
e(fψ)

)2
is controlled

by
∑3
i=1 T[ΩiH+ψ](N, (dr)]) together with, after integration, Proposition 4.2.

2. Now consider terms of the form h2 ·
(
ẽ3(fψ)

)
, where f ∈ {e1, e2}. Again, without loss of generality, we

can assume this order of the derivatives. We will show that h goes to zero like −∆ for r → r+, and

hence this term can be controlled as before43.

Note that for ΩiH+ and f = ej , i ∈ {1, 2, 3}, j ∈ {1, 2}, the coefficient h is here given by

h = 2π(ΩiH+)3̃j = 2(−∆)π(ΩiH+)3j .

43Notice that (−∆) weight for the ẽ3ψ term in the estimate (4.28).
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Using in particular (2.7) and (2.5), we compute44

− 2π(Ω1
H+)31 = 〈∇e4Ω1

H+ , e1〉+ 〈∇e1Ω1
H+ , e4〉

= 2a cosϕ+
H

(
− C2

ρ
+
ρ

∆

(
1− r2 + a2

r2
+ + a2

))
,

− 2π(Ω1
H+)32 = 2aC sinϕH+

(1

ρ
− ρ

∆

(
1− r2 + a2

r2
+ + a2

))
,

− 2π(Ω2
H+)31 = 2a sinϕH+

(
− C2

ρ
+
ρ

∆

(
1− r2 + a2

r2
+ + a2

))
, − 2π(Ω3

H+)31 =
2aCS

ρ
,

− 2π(Ω2
H+)32 = 2aC cosϕH+

(
− 1

ρ
+
ρ

∆

(
1− r2 + a2

r2
+ + a2

))
, − 2π(Ω3

H+)32 = 0 .

Hence, h goes to zero like −∆ for r → r+.

3. Indeed, no terms of the form h2 ·
(
ẽ3(ẽ3ψ)

)2
or h2 ·

(
ẽ4(ẽ4ψ)

)2
are present. This follows from

〈∇e4ΩiH+ , e4〉 = 0 = 〈∇e3ΩiH+ , e3〉

for all i ∈ {1, 2, 3}.

4. It remains to consider terms of the form h2 ·
(
ẽ4(ẽ3ψ)

)2
. Expressing the wave equation in the tilded

frame field we obtain

0 = �gψ = −ẽ4(ẽ3ψ) + (∇ẽ4 ẽ3)ψ +

2∑
i=1

(
ei(eiψ)−∇eieiψ

)
.

Hence, we can replace
(
ẽ4(ẽ3ψ)

)2
by terms we already know how to control.

We have now shown (4.26) and thus proved (4.27).

In the next step we consider the summed energy estimates for the functions ΩiH+ψ in the region {rblue ≤
r ≤ rred} ∩ {f+ ≥ v1} with multiplier w̃X. (Recall the definition in Section 4.1.3.) Note that in the region

{rblue ≤ r ≤ rred} we have

T[ΩiH+ψ](w̃X, (dr)]) & (ẽ3ΩiH+ψ)2 + (ẽ4ΩiH+ψ)2 + (e1ΩiH+ψ)2 + (e2ΩiH+ψ)2 .

Hence, in order to be able to control the error term by T[ΩiH+ψ](w̃X, (dr)]) (together with Proposition 4.2)

as before, the only structure needed this time is that no ẽ3(ẽ3ψ) or ẽ4(ẽ4ψ) terms appear in Err - which we

have already shown. One then obtains, using (4.27) and Gronwall,

3∑
i=1

∫
Σrblue

∩{f+≥v1}

T[ΩiH+ψ](w̃X, (dr)]) vol−r ≤ C . (4.30)

4.2.2 Integrated energy decay for second derivatives in the blue-shift region

We sum the energy estimates for the functions ΩiCH+ψ in the region {r′ ≤ r ≤ rblue} ∩ {f− ≤ u1} with

multiplier wαX. (Recall the definition from Section 4.1.2). Here, u1 is given again by u1 = 2r∗blue − 2rblue −
44Notice that after multiplying the following components of the deformation tensor by (−∆), they vanish on H+. This fact

can be traced back to [ΩiH+ , ẽ4] = 0 on H+.
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v1 + r+ + r−.

3∑
i=1

∫
Σr′∩{f−≤u1}

T[ΩiCH+ψ](wαX, (dr)
]) vol−r

+

3∑
i=1

∫
{r′≤r≤rblue}∩{f−≤u1}

1

C

( 1

(−∆)α
[
∆2(e4ΩiCH+ψ)2 + (e3ΩiCH+ψ)2

]
+
[
(e1ΩiCH+ψ)2 + (e2ΩiCH+ψ)2

])
vol

+

3∑
i=1

∫
{r′≤r≤rblue}∩{f−≤u1}

(
π(ΩiCH+)µν∇µ∇νψ +∇µπ(ΩiCH+)µν∂νψ −

1

2
∂µ
(
trπ(ΩiCH+)

)
∂µψ

)
︸ ︷︷ ︸

=:Err

wαXΩiCH+ψ vol

≤
3∑
i=1

∫
Σrblue

∩{f+≥v1}

T[ΩiCH+ψ](wαX, (dr)
]) vol−r .

(4.31)

First we note that the right hand side of (4.31) is finite: indeed, along Σrblue one can write each ΩiCH+ ,

i ∈ {1, 2, 3}, as a linear combination of the ΩjH+ with uniformly bounded coefficients such that, moreover, the

derivatives of the coefficients with respect to the principal frame are also uniformly bounded. Hence, (4.30)

together with (4.19) show the claim.

We want to show that (4.31) implies

3∑
i=1

∫
Σr′∩{f−≤u1}

T[ΩiCH+ψ](wαX, (dr)
]) vol−r

+

3∑
i=1

∫
{r′≤r≤rblue}∩{f−≤u1}

1

C ′

( 1

(−∆)α
[
∆2(e4ΩiCH+ψ)2 + (e3ΩiCH+ψ)2

]
+
[
(e1ΩiCH+ψ)2 + (e2ΩiCH+ψ)2

])
vol

.1 +

3∑
i=1

∫
{r′≤r≤rblue}∩{f−≤u1}

T[ΩiCH+ψ](wαX, (dr)
]) vol .

(4.32)

Recalling vol = −dr ∧ vol−r and using Gronwall then implies

3∑
i=1

∫
Σr′∩{f−≤u1}

T[ΩiCH+ψ](wαX, (dr)
]) vol−r ≤ C for all r′ ∈ (r−, rblue) .

Integrating this bound in r and substituting it into (4.32) then proves Proposition 4.22.

We will now prove (4.32). First note that one has

T[ΩiCH+ψ](wαX, (dr)
]) & (e3ΩiCH+ψ)2 + ∆2

[
(e4ΩiCH+ψ)2 + (e1ΩiCH+ψ)2 + (e2ΩiCH+ψ)2

]
& w2

α(XΩiCH+ψ)2 .

(4.33)
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Moreover, the following components of the deformation tensors π(ΩiCH+), i = 1, 2, 3, are needed:

π(Ω1
CH+)11 = 2 sinϕCH+

a2SC

ρ2
, π(Ω2

CH+)11 = −2 cosϕCH+ · a
2SC

ρ2
,

π(Ω1
CH+)22 = −2 sinϕCH+a2CS(

1

r2
− + a2

+
1

ρ2
) , π(Ω2

CH+)22 = 2 cosϕCH+ · a2SC
( 1

r2
− + a2

+
1

ρ2

)
,

π(Ω1
CH+)13 =

2a

ρ
cosϕCH+

[
(1− r2 + a2

r2
− + a2

)− C2∆

ρ2

]
, π(Ω2

CH+)13 =
2a

ρ
sinϕCH+

([
1− r2 + a2

r2
− + a2

]
− C2∆

ρ2

)
,

π(Ω1
CH+)23 =

2aC

ρ
sinϕCH+

[∆

ρ2
− (1− r2 + a2

r2
− + a2

)
]
, π(Ω2

CH+)23 =
2aC

ρ
cosϕCH+

([
1− r2 + a2

r2
− + a2

]
− ∆

ρ2

)
,

π(Ω1
CH+)33 = 0 , π(Ω2

CH+)33 = 0 ,

π(Ω1
CH+)34 = −4a2SC

ρ2
sinϕCH+ , π(Ω2

CH+)34 =
4a2SC

ρ2
cosϕCH+ ,

π(Ω1
CH+)44 = 0 , π(Ω2

CH+)44 = 0 ,

π(Ω3
CH+)11 = 0 , π(Ω3

CH+)22 = 0 ,

π(Ω3
CH+)13 =

2aCS∆

ρ3
, π(Ω3

CH+)23 = 0 ,

π(Ω3
CH+)33 = 0 , π(Ω3

CH+)34 = 0 ,

π(Ω3
CH+)44 = 0 .

(4.34)

We now estimate the third term of (4.31) by Cauchy–Schwarz: each of the individual terms of Err (after

squaring) is weighted with an ε > 0, while the term w2
α(XΩiCH+ψ)2 is weighted with ε−1. By (4.33), the

latter term is controlled by T[ΩiCH+ψ](wαX, (dr)
]). We now show that the first terms are either controlled

by Proposition 4.3 or, for ε small, can be absorbed in the second term of (4.31).

Let us first consider the term ∂µ(trπ
(
ΩiCH+)

)
∂µψ in Err. In order to control this term (after Cauchy–

Schwarz) by Proposition 4.3, we need to show that all e4ψ terms come with a coefficient that is O(r − r−)

for r → r−; i.e., we need to show that

e3

(
trπ(ΩiCH+)

)
= e3

[
trπ(ΩiCH+)11 + trπ(ΩiCH+)22 − trπ(ΩiCH+)34

]
= O(r − r−) for r → r− .

This, however, follows easily from (4.34), since e3 either acts on a function of r, which generates a ∆, or e3

acts on ϕCH+ , which also goes linearly to zero for r → r−, see (2.7).

The term ∇µπ(ΩiCH+)µν∂νψ in Err is dealt with similarly. For π = π(ΩiCH+) we compute(
∇µπµν

)
(e3)ν

=〈∇e1π, e1 ⊗ e3〉+ 〈∇e2π, e2 ⊗ e3〉 −
1

2
〈∇e3π, e4 ⊗ e3〉 −

1

2
〈∇e4π, e3 ⊗ e3〉

=e1(π13) + e2(π23)− 1

2
e3(π43)− 1

2
e4(π33)

− 〈π,
(
∇e1e1 +∇e2e2 −

1

2
∇e3e4 −

1

2
∇e4e3

)
⊗ e3〉

− 〈π, e1 ⊗∇e1e3 + e2 ⊗∇e2e3 −
1

2
e4 ⊗∇e3e3 −

1

2
e3 ⊗∇e4e3〉

=e1(π13) + e2(π23)− 1

2
e3(π43)− 1

2
e4(π33)

− 〈π, (4a2SC

ρ3
− C

S

r2 + a2

ρ3

)
e1 ⊗ e3 +

r∆

ρ4
e1 ⊗ e1 +

r∆

ρ4
e2 ⊗ e2 +

2arS

ρ3
e3 ⊗ e2 −

r

ρ2
e3 ⊗ e3 +

r∆

ρ4
e4 ⊗ e3〉 .
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It is easy to check each of the terms and verify that
(
∇µπ(ΩiCH+)µν

)
(e3)ν = O(r − r−) for r → r−.

In order to discuss the term π(ΩiCH+)µν∇µ∇νψ, we again, as in Section 4.2.1, split the domain of inte-

gration in two regions A and A′ and decompose π(ΩiCH+)µν∇µ∇νψ in region A with respect to the frame

{e3, e4, e1, e2} and in region A′ with respect to a frame {e3, e4, e
′
1, e
′
2}, where again e′1 and e′2 form a smooth

frame field for Π⊥ in A′. As before we limit our discussion to the region A.

1. We first consider the terms arising from π(ΩiCH+)kl, where k, l ∈ {1, 2}. The arising second order terms

can be absorbed in the second term of (4.31) after choosing ε to be sufficiently small. To see that the

arising first order terms (e.g. ∇e1e1ψ) do not contain non-degenerate e4ψ terms, we note that (2.5)

shows

〈∇ekel, e3〉 = −〈el,∇eke3〉 = O(r − r−) for r → r− .

2. The second order terms arising from π(ΩiCH+)µν , where µ = 3, ν = 1, 2 can be absorbed (and controlled),

and the arising first order terms do not contain e4-derivatives since 〈∇e3eν , e3〉 = 0.

3. It follows from (4.34) that π(ΩiCH+)µν , where µ = 4, ν = 1, 2, is O(r − r−) for r → r−, and hence the

second order terms can be absorbed (and controlled) and the first order terms can be controlled.

4. It follows from (4.34) that π(ΩiCH+)µν = 0 for µ = ν = 3 and µ = ν = 4.

5. It remains to deal with the terms arising from π(ΩiCH+)34. Since ψ satisfies the wave equation we have

(e3 ⊗ e4)µν∇µ∇νψ =
(
g|Π⊥

)µν∇µ∇νψ ,
and we have already shown how to deal with the terms on the right hand side in the first point.

This finishes the proof of (4.32) and hence Proposition 4.22 is proved.

4.3 Improved integrated energy decay for the e1 and e2 derivatives

In this subsection, we complete the necessary stability estimates by improving the weights for (e1ψ)2 and

(e2ψ)2 in the estimate in Proposition 4.3 (see Proposition 4.37 below). Key to this improved integrated

energy decay estimate is the following lemma, which is a Hardy inequality:

Lemma 4.35. There exists r̃ ∈ (r−, rblue] sufficiently close to r− such that the following estimate holds for

all smooth functions φ on M:∫
{r≤r̃}∩{f−≤u1}

1

(−∆)α
φ2 vol ≤ Cα

( ∫
Σr̃∩{f−≤u1}

φ2 vol−r +

∫
{r≤r̃}∩{f−≤u1}

1

(−∆)α
(e3φ)2 vol

)
.

Proof. Let h and φ be smooth functions on M. The product rule gives∫
{r≤r̃}∩{f−≤u1}
∩{f+≤v}

(
Le3h+hdiv(e3)

)
φ2 vol =

∫
{r≤r̃}∩{f−≤u1}
∩{f+≤v}

Le3
(
hφ2 vol

)
−

∫
{r≤r̃}∩{f−≤u1}
∩{f+≤v}

2hφ (Le3φ) vol . (4.36)

Setting h = 1
(−∆)α , we compute

e3h = − α
ρ2
∂r∆ ·

1

(−∆)α

and

div(e3) =
2r∆

ρ4
+ ∂r

(∆

ρ2

)
.
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We thus obtain

e3h+ hdiv(e3) =
1

(−∆)α

(1− α
ρ2

∂r∆
)
.

Hence, (4.36) together with Stokes’ lemma yields∫
{r≤r̃}∩{f−≤u1}
∩{f+≤v}

1− α
ρ2

(−∂r∆) · 1

(−∆)α
φ2 vol ≤

∫
{r≤r̃}∩{f−≤u1}
∩{f+≤v}

2

(−∆)α
φ(e3φ) vol

+

∫
Σr̃∩{f−≤u1}
∩{f+≤v}

1

(−∆)α
φ2 ·

(
− ∆

ρ2

)
vol−r ,

where we have dropped the negative boundary terms on the right hand side. Note that (−∂r∆)(r−) > 0.

Hence, we can choose r̃ sufficiently close to r− so that after letting v → ∞ and using the Cauchy–Schwarz

inequality we obtain∫
{r≤r̃}∩{f−≤u1}

1

(−∆)α
φ2 vol ≤ Cα

( ∫
Σr̃∩{f−≤u1}

φ2 vol−r +

∫
{r≤r̃}∩{f−≤u1}

1

(−∆)α
(e3φ)2 vol

)
.

Using the above lemma, we obtain the following improved integrated energy decay:

Proposition 4.37. Under Assumptions 4.1 and 4.21 the following holds: Let α ∈ [0, 1) and u1 ∈ R. Then

there exists a constant C > 0 such that∫
{r≤rblue}∩{f−≤u1}

1

(−∆)α

(
∆2ψ2

4 + ψ2
3 + ψ2

1 + ψ2
2

)
vol ≤ C (4.38)

for rblue ∈ (r−, r+) as in Proposition 4.2.

Proof. By Proposition 4.3, we only need to prove the estimate for ψ2
1 and ψ2

2 . Moreover, using Proposition

4.3 again, it suffices to prove the desired bound after restricting the domain of integration to {r ≤ r̃}.
Applying Lemma 4.35 with φ = ΩiCH+ψ and summing in i, we obtain

3∑
i=1

∫
{r≤r̃}∩{f−≤u1}

1

(−∆)α
(ΩiCH+ψ)2 vol

≤Cα
3∑
i=1

( ∫
Σr̃∩{f−≤u1}

(ΩiCH+ψ)2 vol−r

︸ ︷︷ ︸
=:I

+

∫
{r≤r̃}∩{f−≤u1}

1

(−∆)α
(e3ΩiCH+ψ)2 vol

︸ ︷︷ ︸
=:II

)
.

(4.39)

By the definition of ΩiCH+ , we have

(e1ψ)2 + (e2ψ)2 ∼
3∑
i=1

(ΩiCH+ψ)2 (4.40)

Returning to (4.39), I is bounded: This can be proven using (4.40) and also the argument45 that leads up

to (4.19). II is also bounded by Propositions 4.22. Therefore, the left hand side of (4.39) is bounded, which

then implies the desired conclusion by (4.40).

45Indeed, this can be proven by straightforward modifications of the vector field w̃X.
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5 Instability estimates

5.1 From the event horizon to the hypersurface γσ

Proposition 5.1. Let σ > 0 be given. Under the assumptions of Theorem 3.2, and also if ii) is replaced by

ii′) of Remark 3.6, we have ∫
γσ∩{f+≥vk}

T[ψ]
(
−∆e4, (−dfγσ )]

)
volfγσ & v

−(q+δ)
k

for k ∈ N big enough, where vk ∈ R is a sequence with vk →∞ for k →∞.

Let us remark that if ii) is not replaced by ii′), then one even has∫
γσ∩{f+≥V}

T[ψ]
(
−∆e4, (−dfγσ )]

)
volfγσ & V−(q+δ)

for every V ≥ 1. This stronger statement is, however, not needed in what follows.

Proof. We only give the proof in the case that assumption ii) of Theorem 3.2 is replaced by assumption ii′)

of Remark 3.6. The other case is analogous, but easier.

Using (2.2) and (2.6) we compute

(−df+)] = −aS
ρ
e2 −

r2 + 2Mr + a2

2∆
e3 −

∆

2ρ2
e4 (5.2)

and

TCH+ = (r2
− + a2) ∂t + a ∂ϕ

=
aS

ρ
(r2 − r2

−) e2 −
1

2
(r2
− + a2C2) e3 −

∆

2ρ2
(r2
− + a2C2) e4 .

(5.3)

Abbreviating T[ψ] with T, this implies∣∣T[ψ]
(
TCH+ , (−df+)]

)∣∣
.−∆|T(e2, e2)|+ |T(e2, e3)| −∆|T(e4, e2)|+ 1

−∆
|T(e3, e3)|+ |T(e3, e4)|+ ∆2|T(e4, e4)|

.
1

−∆
ψ2

3 + (∆ψ4)2 + ψ2
1 + ψ2

2 .

(5.4)

We now consider the sequence wk ∈ R from assumption ii′) of Remark 3.6. Recalling vol = df+ ∧ volf+

and using the pigeonhole principle, Proposition 4.2 implies that there exists a sequence vk ∈ [ 1
2wk, wk] and a

constant C > 0 such that∫
Σ+
vk
∩{r≥rblue}

(
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

)
volf+

+

∫
Σ+
vk
∩{r≤rblue}∩{fγσ≤1}

( 1

(−∆)α
[
∆2(e4ψ)2 + (e3ψ)2

]
+ (e2ψ)2 + (e1ψ)2

)
volf+ ≤ C · v−(q+1)

k

(5.5)

holds for all k ∈ N big enough.
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At the heart of the proof is the energy estimate in the region {f+ ≥ vk} ∩ {fγσ ≤ 1} with multiplier

TCH+ : ∫
γσ∩{f+≥vk}

T[ψ]
(
TCH+ , (−dfγσ )]

)
volfγσ

=

∫
Σ+
vk
∩{fγσ≤1}

T[ψ]
(
TCH+ , (−df+)]

)
volf+ +

∫
H+∩{f+≥vk}

T[ψ]
(
TCH+ , (dr)]

)
vol−r .

(5.6)

We are going to show that the first term on the right hand side decays faster than the last term on the right

H+

CH+

Σrblue

Σ+
vk+1

Σ−u0

γσ

1
2wk
wk

wk+11
2wk+1

Σ+
vk

Σ+
vk+1

Σ+
vk

Figure 6: Propagating the lower bound

hand side. It follows from (5.4) that∫
Σ+
vk
∩{fγσ≤1}

∣∣T[ψ]
(
TCH+ , (−df+)]

)∣∣ volf+

.
∫

Σ+
vk
∩{r≥rblue}

(
(ẽ4ψ)2 + (ẽ3ψ)2 + (e2ψ)2 + (e1ψ)2

)
volf+

+
(

sup
Σ+
vk
∩{r≤rblue}
∩{fγσ≤1}

1

(−∆)1−α

)
·

∫
Σ+
vk
∩{r≤rblue}
∩{fγσ≤1}

( 1

(−∆)α
[
∆2(e4ψ)2 + (e3ψ)2

]
+ (e2ψ)2 + (e1ψ)2

)
volf+ .

(5.7)

Moreover, (3.10) implies −∆ & eκ−(v++v−) for r ∈ [r−, rblue]. Also using fγσ = v+ + v− − σ log v+ ≤ 1, we

thus have

sup
Σ+
vk
∩{r≤rblue}
∩{fγσ≤1}

1

(−∆)1−α . sup
Σ+
vk

(
e−κ−σ log v+

)1−α
. vk

−κ−σ(1−α) .

Hence, (5.7) together with (5.5) yield∫
Σ+
vk
∩{fγσ≤1}

∣∣T[ψ]
(
TCH+ , (−df+)]

)∣∣ volf+ ≤ C · v−(q+1)−κ−σ(1−α)
k

for all k ∈ N big enough. Recall that assumption (3.7) states w
−(q+δ)
k .

∫
H+∩{v+≥wk} T[ψ](TCH+ , ẽ4) vol−r.

Since the integrand is manifestly non-negative for axisymmetric ψ, the same holds with H+ ∩ {v+ ≥ wk}
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replaced by H+ ∩ {v+ ≥ vk}. Putting these two things together, and using vk ∈ [ 1
2wk, wk], we infer from

(5.6) that ∫
γσ∩{f+≥vk}

T[ψ]
(
TCH+ , (−dfγσ )]

)
volfγσ ≥ C

′ · v−(q+δ)
k − C · v−(q+1)−κ−σ(1−α)

k

for some C,C ′ > 0. We can now choose α ∈ [0, 1) sufficiently close to 1, depending in particular on σ > 0

and δ ∈ [0, 1), such that for all k ∈ N sufficiently large we have46∫
γσ∩{f+≥vk}

T[ψ]
(
TCH+ , (−dfγσ )]

)
volfγσ & v

−(q+δ)
k . (5.8)

We are going to write TCH+ as a difference of a future and a past directed causal vector field. Recalling (5.3)

and adding and subtracting ∆
2ρ2B e4, where B is a positive constant, we obtain

TCH+ =
aS

ρ
(r2 − r2

−) e2 −
1

2
(r2
− + a2C2) e3 +

∆

2ρ2
B e4 −

∆

2ρ2
(B + r2

− + a2C2) e4

=: Y − ∆

2ρ2
(B + r2

− + a2C2) e4 ,

It now follows from

〈Y, Y 〉 =
a2S2

ρ2
(r2 − r2

−)2 + 2(r2
− + a2C2)

∆

2ρ2
B

that 0 < B <∞ can be chosen big enough such that Y is past directed timelike. Since T[ψ]
(
Y, (−dfγσ )]

)
≤ 0

and 1
2ρ2 (B + r2

− + a2C2) is bounded, (5.8) shows that∫
γσ∩{f+≥vk}

T[ψ]
(
−∆ e4, (−dfγσ )]

)
volfγσ & v

−(q+δ)
k

holds for all k ∈ N large enough. This finishes the proof of the proposition.

5.2 From the hypersurface γσ to the Cauchy horizon

Starting from Proposition 5.1 we now finish the proof of Theorem 3.2. At the centre of this step is the energy

estimate with multiplier L = −∆
ρ2 e4 in the region {f− ≤ u0} ∩ {f+ ≥ vk} ∩ {fγσ ≥ 1} (see also Figure 6)47,

where vk ∈ R is the sequence as given by Proposition 5.1:∫
Σ−u0∩{f+≥vk}

T[ψ]
(
L, (−df−)]

)
volf−

≥
∫

γσ∩{f+≥vk}

T[ψ]
(
L, (−dfγσ )]

)
volfγσ −

∫
{f−≤u0}∩{f+≥vk}

∩{fγσ≥1}

T[ψ]µνπ(L)µν vol .
(5.9)

46Notice that the implicit constant here is allowed to depend on σ and δ.
47We briefly elaborate on how one derives this energy estimate by approximation by compact sets: using (5.2), we obtain∣∣T[ψ]

(
−∆ e4, (−df+)]

)∣∣ . ∆2ψ2
4 + ψ2

1 + ψ2
2 .

It then follows from Proposition 4.3 that there exists a sequence w′` ∈ R with w′` → ∞ for ` → ∞ such that∫
Σ+

w′
`

∩{f−≤u0}∩{fγσ≥1} T[ψ]
(
− ∆ e4, (−df+)]

)
volf+ → 0 for ` → ∞. Hence, one can consider the energy estimate in the

region {f− ≤ u0} ∩ {w′` ≥ f+ ≥ vk} ∩ {fγσ ≥ 1} and let ` tend to infinity. Moreover, a positive boundary term is dropped on

the right hand side.

35



We will show that one can choose σ (and hence the auxiliary hypersurface γσ) such that the bulk term (i.e.,

the second term) on the right hand side decays faster than the first term on the right hand side.

It easily follows from (4.6) that∣∣T[ψ]µνπ(L)µν
∣∣ . ψ2

1 + ψ2
2 + ψ2

3 + (∆ψ4)2 .

Moreover note that (3.10) implies (−∆)α . eακ−(v++v−) for regions where r is bounded away from r+, and

hence

sup
{fγσ≥1}∩{f+≥vk}

(−∆)α . sup
{fγσ≥1}∩{f+≥vk}

eακ−σ log v+ = sup
{fγσ≥1}∩{f+≥vk}

v
σκ−α
+ . vk

σκ−α .

In order to obtain (3.4), it suffices to take k sufficiently large and assume without loss of generality that

{f− ≤ u0} ∩ {f+ ≥ vk} ∩ {fγσ ≥ 1} ⊂ {r ≤ rblue}. Proposition 4.37 thus implies for any48 α ∈ [0, 1), the

following holds:∫
{f−≤u0}∩{f+≥vk}

∩{fγσ≥1}

∣∣T[ψ]µνπ(L)µν
∣∣ vol

.
(

sup
{fγσ≥1}∩{f+≥vk}

(−∆)α
)
·

∫
{r≤rblue}∩{f−≤u0}

1

(−∆)α

(
∆2ψ2

4 + ψ2
3 + ψ2

1 + ψ2
2

)
vol . vk

σκ−α .

(5.10)

On the other hand, by Proposition 5.1, and using the fact that 1
ρ2 is bounded uniformly above and below on

M, we can bound the first term on the right hand side of (5.9) as follows, with some C > 0:∫
γσ∩{f+≥vk}

T[ψ]
(
L, (−dfγσ )]

)
volfγσ ≥ C · v

−(q+δ)
k . (5.11)

Combining (5.9), (5.10) and (5.11), we obtain∫
Σ−u0∩{f+≥vk}

T[ψ]
(
L, (−df−)]

)
volf− ≥ C · v

−(q+δ)
k − C ′ · vσκ−αk , (5.12)

for some49 C,C ′ > 0. Without loss of generality we can assume that α ∈ ( 1
2 , 1). We finally fix σ > 0 such

that 1
2 |κ−|σ > q + δ. Note that this choice is independent of α. Hence, (5.12) shows (3.4) and thus finishes

the proof of Theorem 3.2.
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