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Abstract

Guessing games are a prototypical instance of
the “learning by interacting” paradigm. This
work investigates how well an artificial agent
can benefit from playing guessing games when
later asked to perform on novel NLP down-
stream tasks such as Visual Question An-
swering (VQA). We propose two ways to ex-
ploit playing guessing games: 1) a supervised
learning scenario in which the agent learns
to mimic successful guessing games and 2)
a novel way for an agent to play by itself,
called Self-play via Iterated Experience Learn-
ing (SPIEL). We evaluate the ability of both
procedures to generalise: an in-domain eval-
uation shows an increased accuracy (+7.79)
compared with competitors on the evaluation
suite CompGuessWhat?!; a transfer evaluation
shows improved performance for VQA on the
TDIUC dataset in terms of harmonic average
accuracy (+5.31) thanks to more fine-grained
object representations learned via SPIEL.

1 Background & Related Work

Learning a language requires interacting with both
the environment and other agents (Bisk et al., 2020).
Language games represent one common example
of this (Wittgenstein et al., 1953), as seen by the
important role of play in L1 child language acqui-
sition (Hainey et al., 2016) as well as L2 learn-
ers (Godwin-Jones, 2014).

Among the language games defined in the litera-
ture (Steels, 2015), guessing games represent the
first step in a curriculum for language learning. For
example, in GuessWhat?! (de Vries et al., 2017),
two agents interact with each other: a Questioner
generates questions aimed at finding a hidden ob-
ject in the scene and an Oracle, aware of the target
object, answers the questions supporting the Ques-
tioner in playing the game. Different from other
language games (Das et al., 2017), guessing games

have a specific goal which represents a clear in-
centive for learning. In addition, they require that
the Questioner masters both natural language gen-
eration and understanding with a focus on object
categories and attributes. For humans, concepts
learned in this way are generic and generalisable to
new tasks and domains where grounded reasoning
is important (Hampton, 1979). However, how well
can AI agents generalise with concepts acquired
from visual guessing games?

The literature has not explored if representations
built from self-play are transferable, focusing in-
stead on large scale self-supervised learning. For
instance, large scale image captioning datasets have
been used to train multi-modal Transformers (Lu
et al., 2019; Li et al., 2019; Tan and Bansal, 2019;
Chen et al., 2019). Multi-task learning (Lu et al.,
2020) has been used to leverage the diversity of
training signals provided combining datasets, but
only for discriminative tasks. While some dialogue
work (Cogswell et al., 2020) aims to bootstrap a
conversing agent from VQA datasets, most work
on GuessWhat?! (de Vries et al., 2017; Shekhar
et al., 2019; Strub et al., 2017) has designed be-
spoke models for the task, ignoring the utility of
this dataset for other Vision+Language tasks.

We propose self-play as a mechanism for learn-
ing general grounded representations. We seed
our approach with the GuessWhat?! corpus of
questions and objects, and demonstrate how to
generalise to other downstream tasks. We pro-
pose two different strategies to exploit these data.
First, a supervised learning phase is undertaken to
learn a Questioner and Oracle model able to play
guessing games. Second, the trained agents can
be used to play guessing games on images requir-
ing only object annotations as supervision. We
show that an agent trained on GuessWhat?! dia-
logues can use self-play to adapt to new and harder
tasks. Specifically, we investigate models’ gener-
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alisation performance and quality of the learned
representations on the CompGuessWhat?! bench-
mark (Suglia et al., 2020), a more extensive evalua-
tion suite for GuessWhat?!. Furthermore, we study
how the learned representation help solve VQA on
the dataset TDIUC (Kafle and Kanan, 2017). We
show overall comparable performance with state-
of-the-art models and improvements for specific
question types that require object attribute informa-
tion to be answered correctly.

2 Methodology

Our proposed transfer/fine-tuning procedure re-
quires a training set of guessing games Dg from
which we learn a Questioner Q and an Oracle O
via supervised learning. Given a set of images I,
it is possible to use the trained models Q and O to
run the self-play procedure for n epochs obtaining
the model Qn. Finally, given a downstream task t
and an associated dataset Dt based on images from
I, we use Qn’s parameters as initialisation for the
training procedure on Dt.

To apply this procedure, both the Questioner and
the Oracle require a multi-modal encoder Γ able to
generate d-dimensional representations for the tex-
tual tokens ht, for the objects ho, as well as fusing
the visual and textual modalities in a representation
of the current context hc. After the self-play proce-
dure, only the encoder Γ of the model Qn is used in
the fine-tuning process on the downstream task t us-
ing the dataset Dt. It is important to underline that
the presented self-play procedure does not depend
on a specific implementation of the multi-modal
encoder Γ. A possible implementation is presented
in Section 2.4 and it is used in the experimental
evaluation of this paper.

2.1 Oracle design

The Oracle task is cast as a Visual Question An-
swering (VQA) task conditioned on the image I ,
the current question q and on the target object ô.
We follow common practice in vocabulary-based
VQA (Antol et al., 2015) and we treat the prob-
lem as a multi-class classification task over the
classes {Y es,No,N/A}. We use hc as input to a
multi-layer feedforward neural network to obtain a
probability distribution over the label set.

2.2 Questioner design

The Questioner must play two roles: question gen-
eration and target object prediction (de Vries et al.,

2017). It is beneficial to jointly learn the two tasks
because the representations learned by each task
are complementary. In addition, they better encode
attributes, which favours better generalisation to
unseen object categories (Suglia et al., 2020).

To solve the two specific tasks in a multi-task
fashion, we design two different heads on top of the
shared encoder Γ: 1) the guesser head, produces
a probability distribution over every object oi us-
ing the encoded representations hoi passed through
an MLP; 2) the generator head, a multi-modal de-
coder, also implemented as an MLP, which predicts
a probability distribution over the vocabulary V
given the context representation generated by Γ.

We include two losses in our model: 1) the nega-
tive log-likelihood of the probability associated by
the guesser head with the target object ô (Shekhar
et al., 2019); 2) a sequence-to-sequence cross-
entropy loss (Sutskever et al., 2014) for the gener-
ated question tokens. Unlike previous work that
trains a separate module to learn to stop (Shekhar
et al., 2018), we add a special token [STOP] to
the input data so that it learns when to stop more
efficiently as part of the question generation task.

Training an agent to solve tasks of different com-
plexity and size is challenging. The procedure pre-
sented in (Shekhar et al., 2019) alternates between
tasks, updating the hardest task more often. For
this technique, finding the right schedule is cum-
bersome and requires fine-tuning. We rely on a
more systematic training procedure based on ran-
dom dataset-proportional batch sampling inspired
by (Sanh et al., 2019). This represents a hard-
parameter sharing multi-task training procedure
that avoids interference between tasks and favours
a more stable training, which mitigates catastrophic
forgetting (French, 1999).

2.3 Self-Play via Iterated Experience
Learning (SPIEL)

Inspired by iterated learning (Kirby et al., 2014),
we design a process by which the Questioner
learns from games previously generated by other
instances of the Questioner agent. We call our
training procedure Self-play via Iterated Experi-
ence Learning (SPIEL).

In SPIEL, described in Algorithm 1, we assume
access to a set of images I and the bounding boxes
OI of the objects therein.1 In every gameplay, there

1Object annotations intended as either gold bounding
boxes or predicted bounding boxes from an object detector.
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Unified Encoder-Decoder for Vision Language Pretraining (VLP)
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[CLS] [SEP] is it a cup ? is it a [MASK]

Generator head

no [MASK]

[SEP]

Figure 1: We use the single-stream VLP model as a backbone multi-modal encoder for our task. The visual
features tokens (marked in red) are the FastRCNN features associated with the objects in the image, the history
tokens (marked in blue) and the tokens to be generated (marked in yellow) are given in input to the model. A
Guesser head uses the learned contextual object representations to generate a probability distribution over the
objects P (oi|hoi), whereas the Generator head is used to incrementally predict the masked tokens.

Algorithm 1 SPIEL: Self-Play via Iterated Experi-
ence Learning
1: procedure SELF PLAY(Q0, O, I, n)
2: Dq ← READ GOLD GAMES()
3: Eg ← [] . Initialise the experience buffer
4: for e← 1, n do
5: . Interactive phase
6: Q← Qe . load latest weights
7: Ge ← GENERATE GAMES(I)
8: Ge ← PLAY GAMES(Q,O,Ge)
9: APPEND(Eg,Ge)

10: De
g ← []

11: . Transmission phase
12: for i← 0, len(Eg) do
13: g ← Eg[i] . Priority to the latest games
14: if IS VALID GAME(g) then
15: APPEND(De

g , g)
16: if LEN(De

g) == LEN(Dq) then break
17: . Learning phase
18: Qe+1 ← TRAIN(Q,Dq,De

g)

is a Questioner Q and an Oracle O, initialised with
agents Q0 and O, respectively, that were trained
with Supervised Learning using gold successful
dialogues.2 We consider every iteration e of the
algorithm as a self-play epoch. In a single self-play
epoch, we alternate 3 phases:

Interactive phase: the agents play guessing
games with novel combinations of image and target
object. The generated dialogue can be successful
if the predicted target object is equal to the tar-
get object. Every played dialogue is stored in an
experience buffer Eg.

Transmission phase: in this phase the datasets
for the multi-task learning procedure for the Ques-
tioner are created. The generator head dataset Dq

is fixed in advance while the dataset for the guesser
head De

g is created from the experience buffer Eg
by selecting the unique and valid dialogues.

2The Oracle is fixed during this learning procedure.

Learning phase: the same multi-task learning
procedure used in the supervised learning phase is
used to fine-tune the Questioner parameters using
the datasets De

g and Dq collected for the current
epoch e. This procedure is repeated n times or until
a halting condition is reached (e.g. early stopping
based on validation metric).

See Appendix A.1 for implementation details.
At the end of the SPIEL procedure, we obtain the
model Qn whose parameters can be reused in other
tasks. Particularly, we use the parameters of Qn’s
shared encoder Γ as initialisation for the fine-tuning
on the downstream task t using dataset Dt.

2.4 Implementation

We implement a shared multi-modal encoder Γ us-
ing VLP (Zhou et al., 2020), a single-stream multi-
modal Transformer for captioning depicted in Fig-
ure 1. During the GuessWhat?! fine-tuning, we
extend VLP by including dialogue context in the
input together with the features associated with the
objects in the image. We learn two new segment ids
to represent the question/answer exchanges in the
dialogue, as described in (Wolf et al., 2019). The
question is generated by incrementally replacing
[MASK] tokens until the end of sequence is gener-
ated. See Appendix A.2 for more details. SPIEL
training is run on a set of images I from Guess-
What?! and TDIUC dataset with corresponding ob-
ject annotations. We make sure that GuessWhat?!
test images are not contained in I. This is not an
issue for TDIUC test images because the down-
stream task annotations (QA pairs) are not used by
the model during this phase. Once the model has
been trained with SPIEL, we use the parameters
of the shared encoder Γ as a backbone for a VQA
model that is fine-tuned on the TDIUC dataset.
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3 Experimental Evaluation

To assess the generality of our learned representa-
tions, we include two evaluation paradigms: 1) in-
domain evaluation and 2) transfer evaluation. We
evaluate several variants of our model: 1) VLP-SL:
VLP-based model trained on GuessWhat?! data us-
ing multi-task learning; 2) SPIEL-gs: VLP-SL
model fine-tuned with our SPIEL procedure where
the generator head uses only gold successful games
(gs); 3) SPIEL-gm: same as 2) but both success-
ful and failed gold games are used by the generator
head. In both SPIEL variants, the guesser head
is trained using failed and successful generated
games because it is important for the guesser head
to be exposed to both types of signal to learn a
more robust policy. We decided to investigate the
two variants SPIEL-gs and SPIEL-gm to get
more insights about the effect that successful and
failed games have on the generator head ability to
produce effective dialogues.

3.1 In-domain evaluation

We use the CompGuessWhat?! evaluation
suite (Suglia et al., 2020) to assess the ability of
the Questioner to play guessing games and learn
visually grounded representations in the process. It
complements an evaluation based only on game-
play accuracy (de Vries et al., 2017) with 2 auxil-
iary tasks: target object 1) attribute-prediction ex-
pressed in terms of abstract attributes (A), situated-
attributes (SO), abstract+situated attributes (AS),
and location attributes (L); 2) zero-shot game-
play with near-domain accuracy (ND) and out-of-
domain accuracy (OD). Table 1 shows the compar-
ison with previous state-of-the-art models on this
benchmark such as de Vries et al. (2017) (DV-*)
and Shekhar et al. (2019) (GDSE-*). VLP-SL
has a greater advantage in terms of representation
power compared to previous models. This is re-
flected in all the tasks of the CompGuessWhat?!
evaluation. Particularly, we see better performance
even for the zero-shot gameplay (ND: +5.6, OD:
+15.2). This is because VLP associates a vector
of probabilities that represents a distribution over
the VisualGenome object classes with every object.
This helps VLP to cope with the issue of unseen
objects and helps the model to generalise. Learning
to play is key to gameplay performance, leading to
an increase of +4.4 over VLP-SL and +7.9 over
GDSE-CL. In this setup, the difference between
the versions SPIEL-gs and SPIEL-gm is very

Attribute Pred. ZShot Score

Models Acc. A SO AS L ND OD

Random 15.8 15.1 0.1 7.8 2.8 16.8 18.6 13.3
DV-SL 41.5 46.8 39.1 48.5 42.7 31.3 28.4 38.5
DV-RL 53.5 45.2 38.9 47.2 43.5 43.9 38.7 46.2
GDSE-SL 49.1 59.9 47.6 60.1 48.3 29.8 22.3 43.0
GDSE-CL 59.8 59.5 47.6 59.8 48.1 43.4 29.8 50.1

VLP-SL 59.5 59.2 48.2 59.7 49.3 49.0 45.0 53.5
SPIEL-gs 64.1 61.3 49.6 61.6 51.1 54.9 51.9 57.8
SPIEL-gm 64.6 60.8 48.3 59.5 51.0 55.3 52.9 57.9

Table 1: F1 scores for attribute prediction and accura-
cies for zero-shot evaluation on CompGuessWhat?!.

minimal (0.1). However, when analysed in more
detail, we can see that training the questioner with
gold successful data only improves attribute pre-
diction while using mixed data improves overall
generalisation in the zero-shot evaluation.

3.2 Transfer evaluation

For the transfer evaluation, we use the VQA dataset
TDIUC (Kafle and Kanan, 2017). It provides a
finer-grained way to assess the quality of the rep-
resentations learned by our guessing game trans-
fer technique in terms of several question types
including object categories and their attributes.
Specifically, we were interested in improving on
the following question types: 1) Positional rea-
soning; 2) Counting; 3) Object presence; 4) Util-
ity/Affordances; 5) Attribute; 6) Color; and 7) Ob-
ject recognition. TDIUC is evaluated using the
arithmetic mean accuracy per question type (A-
MPT), as well as the harmonic mean (H-MPT)
that better captures the skewed question-type dis-
tribution. In Table 2, we report a comparison
between variants trained on guessing games data
(VLP+SL and SPIEL-*), the original model VLP
trained on Conceptual Captions (VLP+CC) and
other state-of-the-art models specifically designed
for the VQA task such as MUREL (Cadene et al.,
2019), RAU (Noh and Han, 2016), NMN (Andreas
et al., 2016), MCB-* (Fukui et al., 2016). The full
set of results is available in the Appendix, Table 4.

Among them, MUREL achieves the best scores
across the board, due to a custom iterative reason-
ing mechanism and a non-linear fusion module.
However, all our models have a more balanced
overall performance which results in better har-
monic means (H-MPT, +5 points over MUREL).
Specifically, this improvement is favoured by an in-
crease in accuracy on the Utility/Affordances ques-
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Generated dialogue (b)

is it food? no

is it a spoon? no

is it a cup? no

is it a bowl? yes

left picture? yes

the one on the soup? no

the one with the soup in it? yes

what is the spoon made of?

GOLD answer wood

VLP+CC plastic

VLP+SP+gm wood

what is the water glass made of?

GOLD answer glass

VLP+CC plastic

VLP+SP+gm glass

TDIUC predictions (a)

Attribute prediction (c)
Situated attributes Confidence

home 99.83%

bowl_used_to_scoop 99.37%

kitchen_utentils 99.53%

bowl_can_be_carried 99.40%

center 71.75%

Are the contents of the plate edible?

GOLD answer yes

VLP+CC beer

VLP+SP+gm yes

Figure 2: We show the ability of the model to play guessing games with the bowl as target object (highlighted
in red). Given the generated dialogue, we use the probing classifier trained for CompGuessWhat?! to predict the
bowl’s attributes. Predictions on TDIUC questions associated with the current image are reported as well.

tion type (+20.7). As shown by the attribute pre-
diction in the CompGuessWhat?! and depicted in
Figure 2 (c), our models learn better representations
than competitors specifically for abstract attributes
among which there are object affordances. Particu-
larly, we can see how it is able to understand that
certain objects can contain things (e.g. “the one
with the soup in it?”), that objects have specific
functions (e.g. “are the contents of the plate edi-
ble?”) or that they have specific properties (e.g. “a
spoon is made of wood”).

The effectiveness of the proposed fine-tuning
procedure is confirmed by the improved perfor-
mance across all the question types compared to
our baseline VLP+CC. Models such as MUREL and
MCB-* equipped with specific VQA modules have
an advantage on specific question (e.g., positional
reasoning) compared to VLP that relies only on
BERT self-attention layers (Devlin et al., 2019). In
addition, when comparing the two SPIEL variants,
a similar trend showed in the in-domain evaluation
can be observed. Particularly, SPIEL-gm benefits
from being exposed to more language data coming
from successful and failed guessing games.

4 Conclusions

In this work, we verified that representations
learned while playing guessing games can be trans-
ferred to other downstream tasks such as VQA.
We presented two ways of learning from guessing
games data namely multi-task learning and SPIEL.
Models using SPIEL performed better both on in-
domain evaluation on CompGuessWhat?! as well
as on the transfer task TDIUC. Our self-play pro-
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RAU 35.3 48.4 94.4 31.6 56.5 66.9 86.1 67.8 59.0
NMN 27.9 49.2 92.5 25.2 47.7 54.9 82.0 62.6 51.9
MCB-A 55.4 51.0 93.6 35.1 56.7 68.5 81.9 67.9 60.5
MCB 33.3 50.3 91.8 33.9 53.2 56.9 84.6 65.8 58.0
MUREL 41.2 61.8 95.8 21.4 58.2 74.4 89.4 71.2 59.3

VLP
+CC 36.9 55.3 94.7 31.0 55.4 67.3 85.8 68.8 60.1
+SL 39.0 57.6 94.8 42.1 54.3 69.0 86.1 70.5 64.0
SPIEL-gs 40.9 57.5 94.8 36.3 56.9 69.2 86.3 70.4 63.3
SPIEL-gm 40.6 57.0 94.8 39.2 57.0 69.4 86.2 70.9 64.3

Table 2: Results for the transfer evaluation on TDIUC.
The models are divided in two categories: (top) Models
specifically designed for VQA and (bottom) our VLP-
based implementations. We report only the question
types that we believe will benefit from the guessing
games fine-tuning procedure. For the full set of results
please refer to Appendix, Table 4.

cedure was able to learn useful and finer-grained
object representations such as object affordances,
thus demonstrating that learning to guess helps
learning to ground.

The current study showed how we can apply
the SPIEL training procedure to a VQA dataset
such as TDIUC. We believe that this work can
be extended to other datasets because the SPIEL
procedure only requires a set of images and as-
sociated object bounding boxes. These could be
either gold or generated by a trained object detector
therefore classifying guessing games as a holistic
self-training procedure for multi-modal datasets.



2140

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 39–48.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, et al. 2020. Experience grounds lan-
guage. arXiv preprint arXiv:2004.10151.

Remi Cadene, Hedi Ben-Younes, Matthieu Cord, and
Nicolas Thome. 2019. Murel: Multimodal rela-
tional reasoning for visual question answering. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1989–1998.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2019. Uniter: Learning univer-
sal image-text representations. arXiv preprint
arXiv:1909.11740.

Michael Cogswell, Jiasen Lu, Rishabh Jain, Stefan Lee,
Devi Parikh, and Dhruv Batra. 2020. Dialog without
dialog data: Learning visual dialog agents from vqa
data. arXiv preprint arXiv:2007.12750.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José MF Moura, Devi Parikh,
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A Appendices

A.1 Self-Play via Iterated Experience
Learning (SPIEL)

Learning to replicate gold dialogues is not enough
to play successfully. High performance in game-
play can be achieved only when the agents start
playing the game and are exposed to their own mis-
takes. Reinforcement Learning (Strub et al., 2017)
or Collaborative Learning (Shekhar et al., 2019)
are possible approaches to tackle this problem.

Inspired by iterated learning (Kirby et al., 2014),
we design a process by which “the gameplay arises
in one instance of the questioner through induction
on the basis of observations of gameplay in other
questioner agents who acquired that gameplay ca-
pability in the same way”. Therefore, we call our
procedure Self-play via Iterated Experience Learn-
ing (SPIEL).

In this setup, we assume we have access to a set
of images I and for each image I we have object
bounding boxes OI . The SP training procedure,
showed in Figure 1, can be described as follows.
We assume that there is a Questioner agent Q and
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an Oracle agent O. At the beginning of the pro-
cedure they are initialised with agents Q0 and O,
respectively, trained with Supervised Learning us-
ing gold successful dialogues 3. We consider every
iteration e of the algorithm as a self-play epoch. In
a single self-play epoch we alternate 3 phases: 1)
interactive phase: the agents play guessing games
with novel combinations of image and target ob-
ject; 2) transmission phase: the questioner creates
new datasets from the dialogues generated over the
epochs; 3) learning phase: multi-task learning is
used to fine-tune the Questioner parameters using
the datasets collected for the current epoch.

A.1.1 Interactive phase
We start the interactive phase by first sampling a set
of reference games Ge which consists of pairs (I, ô)
where I ∈ I and ô is the target object sampled
at random from the object annotations OI . The
agents Qe and O play the games Ge and accumulate
the generated experiences. During this phase, the
questioner agent is using the most updated weights
generated at epoch e− 1. It generates questions by
nucleus sampling (Holtzman et al., 2019) from the
probability distribution over the vocabulary learned
by the generator head. When the [STOP] token
is sampled, the guesser head, conditioned on the
dialogue generated so far, selects the object õ with
the highest probability. A game is successful if the
predicted object õ is equal to the target object ô.

A.1.2 Transmission phase
For every epoch e, in the transmission phase, we
create the datasetsDq andDg for the questioner and
guesser heads, respectively, used in the learning
phase for the questioner parameters update.
Questioner experience buffer To make sure
that the questioner does not experience language
drift (Lee et al., 2019), we consider a fixed dataset
Dq composed of dialogues generated by humans
contained in the GuessWhat?! training data. The
shared encoder Γ benefits from this data too be-
cause it is still exposed to human generated lan-
guage, which guarantees better generalisation.
Guesser experience buffer The Guesser should
learn from its own mistakes – therefore we use gen-
erated dialogues for the model updates (de Vries
et al., 2017; Shekhar et al., 2019). Inspired by Pri-
oritised Experience Replay (Schaul et al., 2015),
we create the experience buffer for the guesser Eeg
by accumulating all the unique and valid dialogues

3The Oracle is fixed during this learning procedure.

generated until epoch e. We consider a dialogue
unique if De

g does not contain another dialogue
with the same encoding 4. In addition, we consider
a dialogue valid if it does not contain repeated ques-
tions. We cap the number of dialogues in De

g so
that it matches the number of experiences in Dq.
This is done so that during the multi-task training
procedure there is an equal number of dialogues
for each task from which the agent will learn.

A.1.3 Learning phase
In this phase, we use the same multi-task train-
ing procedure that was used during the supervised
learning phase. We update the Questioner param-
eters using the dialogues collected in Dq and De

g.
The updated parameters resulting from this step
will be used for the self-play epoch e + 1.

A.2 VLP implementation

A.2.1 Multi-modal encoder
To implement the agents in our guessing games,
we rely on VLP, a single-stream multi-modal
model (Zhou et al., 2020) that jointly learns vi-
sual and language representations using Conceptual
Captions (CC) dataset (Sharma et al., 2018). The
input starts with a classification token ([CLS]),
followed by a series of K visual tokens, a separa-
tion token ([SEP]) divides the dialogue sequence
from the visual and from the sequence of tokens
to be generated. In a guessing game, we repre-
sent the reference image I as a set of image re-
gions extracted from an off-the-shelf object detec-
tor {r1, r2, . . . , rK}. Following (Zhou et al., 2020),
each region ri is represented by linear transforma-
tion of a feature vector f ∈ Rdn , region class prob-
abilities c ∈ Rdc and region geometric information
g ∈ Rdo where do = 5 consists of four values for
top left and bottom right corner coordinates of the
region bounding box (normalized between 0 and 1)
and one value for its relative area (i.e., ratio of the
bounding box area to the image area, also between
0 and 1). The Questioner models uses at most 36
predicted bounding boxes from FastRCNN while
the Guesser is using features generated by FastR-
CNN for gold bounding boxes. We use a specific
segment id sv for every region.

For the language part, we use Wordpiece embed-
dings (Wu et al., 2016). In particular, we flatten
the turns of the dialogue context as a sequence of

4The encoding of a dialogue is the SHA-256 hash associ-
ated with its sequence of tokens.
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tokens. However, to allow the model to differenti-
ate between question and answer tokens, following
(Wolf et al., 2019), we rely on novel segment ids
(su,sa). The VLP’s hidden state of the [CLS]
token is used as context representation hc.

A.2.2 Oracle design
The implementation of the Oracle follows the
one presented in the original VLP paper to solve
the VQA task (Zhou et al., 2020). Particularly,
the model predicts a probability distribution over
the possible answers by using a multi-layer feed-
forward neural network that receives in input the
element-wise product between the hidden state as-
sociated with the [CLS] token and the hidden state
associated with target object. The model is opti-
mised by minimising the cross-entropy loss using
as training dataset the question/answer pairs in the
successful GuessWhat?! training dialogues.

A.2.3 Questioner design
We rely on the VLP ability to generate captions
for the question generation task. In particular, we
provide in input to the model: 1) predicted FastR-
CNN visual features following (Zhou et al., 2020);
2) dialogue generated so far as a flattened sequence
of tokens; 3) question to be generated. We use
another segment id sq to allow the model to differ-
entiate what is the input and which are the tokens
to be generated. Following (Dong et al., 2019), we
make sure that the attention mask for tokens of the
question to be generated are masked so that the
token at timestep t is not allowed to attend to the
future tokens (seq2seq attention mask). For this
specific model, we use the masked language mod-
elling objective (Devlin et al., 2019) casting the
task as multi-modal masked language modelling.

A.3 GuessWhat?! evaluation
Oracle evaluation We report the test accuracy
for the Oracle of 82.22%. The baseline model used
by all the other is 78.5% (de Vries et al., 2017).

Guesser evaluation We report in Table 3 the
accuracy of the guesser in predicting the tar-
get object when gold dialogues are given in
input. We compare this model with several
baselines reported in (de Vries et al., 2017)
(first block), more sophisticated methods such
as ParallelAttention (Zhuang et al., 2018)
and GDSE-* (Shekhar et al., 2019) (second block)
as well as other Transformer-based models such as
VILBERT (Lu et al., 2020) (third block).

Model Accuracy

Human 90.80%
Random 17.10%
LSTM 61.30%
HRED 61%
LSTM+VGG 60.50%
HRED+VGG 60.40%

ParallelAttention 63.40%
GDSE-SL 62.96%
GDSE-CL 59.79%

VILBERT 65.69%
VLP-SL 69.30%
SPIEL-gs 71.80%
SPIEL-gm 71.70%

Table 3: Results for the guesser accuracy evaluation on
gold dialogues.
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MUREL 41.19 61.78 95.75 21.43 58.19 74.43 89.41 96.11 99.80 60.65 63.83 96.20 88.20 71.20 59.30
RAU 35.26 48.43 94.38 31.58 56.49 66.86 86.11 93.96 96.08 60.09 51.60 93.47 84.26 67.81 59.00
NMN 27.92 49.21 92.50 25.15 47.66 54.91 82.02 91.88 87.51 58.02 44.26 89.99 79.56 62.59 51.87
MCB-A 55.40 51.01 93.64 35.09 56.72 68.54 85.54 93.06 84.82 66.25 52.35 92.77 81.86 67.90 60.47
MCB 33.34 50.29 91.84 33.92 53.24 56.93 84.63 92.04 83.44 65.46 51.42 92.47 79.20 65.75 58.03

VLP-CC 36.93 55.28 94.65 30.99 55.42 67.33 85.76 92.98 98.34 62.62 51.34 94.11 85.60 68.81 60.14
VLP-SL 39.04 57.61 94.79 42.11 54.29 69.01 86.07 93.39 97.54 65.77 52.39 94.34 85.98 70.53 63.95
SPIEL-gs 40.94 57.53 94.76 36.26 56.87 69.2 86.33 93.97 97.48 62.3 54.44 94.62 86.1 70.39 63.34
SPIEL-gm 40.6 57.01 94.77 39.18 56.97 69.42 86.21 93.72 97.19 66.09 55.29 94.18 86 70.89 64.31

Table 4: Summary of results for the transfer evaluation on TDIUC. The models are divided in two categories: (1)
Models which are specifically designed for VQA (top) and (2) models that rely on the VLP encoder to generalise
to different downstream tasks (bottom). We underline the question types that we believe will benefit from the
guessing games transfer/fine-tuning procedure.


