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Abstract: Acoustic analysis of sustained vowels is 

typically used to quantify perturbations in 

fundamental frequency (F0), amplitude, and 

deviations from periodicity, and associate these with 

clinical outcomes of interest. Computational and 

practical constraints suggest that 2-3 seconds are 

often sufficient to acoustically characterize a 

sustained vowel phonation. The question then is how 

to best determine a short quasi-stationary segment 

from a typical 20-30 seconds speech recording. We 

computed the F0 contour in 10 millisecond epochs 

using SWIPE, a state-of-the-art F0 estimation 

algorithm, which we had previously demonstrated is 

very competitive in F0 estimation for sustained /a/ 

vowels. Subsequently, we determined the two second 

signal segment that exhibits the smallest mean 

absolute successive F0 difference. We tested the 

segmentation algorithm on 100 randomly selected 

sustained vowel /a/ phonations from the Parkinson’s 

Voice Initiative, where we had hand-labeled the 

quasi-stationary segments. We found the algorithm 

correctly identified the quasi-stationary segments in 

all cases, thus demonstrating it can be deployed at 

large scale studies automating further processing of 

sustained vowels. We also demonstrated that this 

pre-processing step can have a major influence in the 

acoustic characterization of the phonations. 
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signal segmentation, sustained vowels 

 

I. INTRODUCTION 
 

The use of sustained vowels to assess voice disorders 

is well established in clinical practice [1]. Compared to 

conversational speech or reading out loud specific 

abstracts of phonetically rich text, sustained vowels 

have the advantage that they circumvent linguistic 

confounds and accent effects [1]. The acoustic analysis 

of sustained vowels towards the development of robust 

clinical decision support tools has received considerable 

research attention. Indicatively, we had previously used 

sustained vowel /a/ phonations to demonstrate: (i) 

almost 99% accurate differentiation of people diagnosed 

with Parkinson’s Disease (PD) from Healthy Controls 

(HC) [2]; (ii) accurate replication of the most widely 

clinical tool assessing overall PD symptom severity 

reporting an error that is considerably lower than the 

inter-rater variability [3]–[6]; (iii) assessing PD voice 

rehabilitation [7]; and (iv) potential on early PD 

diagnosis/precursors [8], [9]. Researchers have also 

developed mechanistic models of speech articulation 

using sustained vowels, which may provide insights into 

the underlying vocal production mechanism and voice 

disorders in a physically interpretable way [10], [11]. 

In practice, the raw speech signal recordings typically 

include the prompt by the researcher/clinician, possibly 

some prior discussion, and one or more prolonged 

sustained vowel phonations by the study participant. 

Using the entire sustained vowel phonation (typically 

20-30 seconds) is computationally demanding and may 

be prone to problems (e.g. participant coughing, running 

out of breath). Computational and practical constraints 

suggest that processing 2-3 seconds of the sustained 

vowel phonation are sufficient to acoustically 

characterize the sustained vowels [1], [12] and to 

develop mechanistic models [10].  

The natural question then arises on how best to 

choose the short signal segment from the raw recording 

for further processing. Often, this is done manually by 

selecting the segment that ‘looks best’ (low amplitude 

and low frequency variation) or by selecting a pre-

specified signal segment (e.g. the middle of the 

phonation because that would likely be a stable part of 

the phonation). For small datasets it may be possible to 

manually detect segments, however as we move on 

larger datasets, such as with the Parkinson’s Voice 

Initiative (PVI) study with more than 18,000 sustained 

vowel phonations [13], [14], the need to develop an 

automated approach becomes obvious. Previous work in 

the context of speech signal analysis has focused on 

removing the non-sustained vowel segment of the 

recording (e.g. the prompts by investigators and 

silences). Surprisingly, to the best of our knowledge 

there is no published work on principled objective 

detection of short signal sustained vowel segments that 
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would be best applicable towards further acoustic 

analysis. Moreover, this crucial pre-processing step is 

rarely reported in the research literature. 

If we revisit the underlying principle of using 

sustained vowels, the aim is to elicit “stable” phonations 

and assess deviations from signal periodicity [1]. In 

practice, minor perturbations from maintaining constant 

amplitude and frequency are common even for people 

with no vocal pathologies, where larger fluctuations 

may be hinting towards a vocal pathology (which may 

be secondary e.g. to PD or other disorders) [1]. Hence, 

if we want to work on a short signal segment it would 

be reasonable to identify the most stable part of the 

phonation. Technically, that would be the most quasi-

stationary segment, where stationarity suggests that the 

central order moments of the signal remain constant 

[15]. Relaxing the requirement of quantifying non-

stationarity, we can instead aim to quantify changes in 

the fundamental frequency (F0), i.e. the F0 contour. The 

F0 is a key characteristic of speech and its computation 

is often a pre-requisite for many speech signal 

processing algorithms [1], [12]. 

The aim of this study is to develop an algorithmic 

approach towards automatically detecting the most 

quasi-stationary short signal segment from a speech 

recording that comprises a longer sustained vowel 

phonation which might also exhibit background noise 

(prompts, silence etc.). We demonstrate the 

effectiveness of the proposed approach towards the 

acoustic characterization of PD voices, although in 

principle the developed method is generalizable across 

applications focusing on sustained vowels. 

 
II. METHODS 

 

A. Data 
  

We used data from the large PVI study [13], [14], 

which was set in seven major geographical locations. 

Participants were invited to call in a dedicated phone 

number and contribute two sustained vowel /a/ 

phonations along with basic demographic information 

(age, gender), and whether they had been clinically 

diagnosed with PD. The phonations were sampled at 8 

kHz and stored on secure cloud servers. For the purposes 

of this study we have randomly selected phonations 

from 50 PD participants and from 50 control 

participants from the US cohort. 

 

B. F0 estimation and signal segmentation 

 

We had previously performed a thorough empirical 

comparison of multiple F0 estimation algorithms to 

establish the most accurate for the analysis of sustained 

vowels [16]. We had found that the Sawtooth Waveform 

Inspired Pitch Estimator (SWIPE) [17] was very 

competitive [16] and hence it was used in this study. We 

used 10 msec epochs to obtain the F0 contour in 

accordance to standard practice [1], [12], [16]. 

Following the computation of the F0 contour, we 

subsequently aimed to determine the short signal 

segment that exhibited the smallest mean absolute 

successive F0 differences (without loss of generality we 

searched for the best short segment of 2 seconds in 

duration). For convenience, we will simply use the term 

jitter later on to refer to the mean absolute successive F0 

differences. We remark that alternative definitions of 

jitter variants (F0 perturbations) are possible [1], [4], 

[12]; here we wanted to explore the simplest approach.  

 

C. Manual hand-labeling of quasi-stationary segments 

 

We have manually hand-labeled the quasi-stationary 

segments of the 100 speech recordings by aural and 

visual inspection (e.g. that the quasi-stationary window 

appears between 4th to the 12th second). We assessed 

whether the 2-second segment determined by the 

proposed segmentation algorithm falls completely 

within the hand-labeled segments. 

 

D. Acoustic analysis of speech segment 

 

We used the Voice Analysis Toolbox which we had 

previously developed (open source MATLAB code, 

available at https://www.darth-group.com/software) for 

the analysis of sustained vowels [5], [12], [18]. We 

extracted 307 acoustic features which characterize the 

speech signal: broadly, these features quantify 

frequency changes (jitter variants), amplitude changes 

(shimmer variants), signal-to-noise ratio concepts, F0 

variability using wavelets, and envelope modulation. 

For further information on the acoustic features, their 

algorithmic expression and their tentative interpretation 

please refer to the Voice Analysis Toolbox and the cited 

studies above. These features have been previously 

explored in detail in our PD work [4], [6], [9], [12].  

We applied the algorithmic expressions for the 

computation of the acoustic features using two different 

segments for comparison: (i) the segment between 1-3 

seconds, and (ii) the automatically determined 2-second 

segment with the algorithm in this study.  

 

III. RESULTS 

 

Fig. 1 presents an indicative sustained vowel 

recording and the F0 contour to visually illustrate the 

result of the segmentation algorithm. As a first step, we 

verified across all phonations used in the study that the 

automatically detected segment was indeed a short 

signal where the F0 variability appeared minimal and 

matched the hand-labeled quasi-stationary segments. 

Fig. 2 is the zoomed version of Fig. 1 focusing only on 

the selected signal segment. We can visually observe 

https://www.darth-group.com/software


from Fig. 1 that if we had pre-fixed a segment at the 

middle section of the phonation this would have 

included some large F0 fluctuations. This problem could 

have occurred at any point in the phonation, which 

cautions on the use of pre-fixed time segments for 

further acoustic analysis.   

So far, we have demonstrated that the proposed 

segmentation algorithm correctly identified a short 

quasi-stationary segment within a speech recording. The 

next question is whether this makes any practical 

difference in the subsequent step with the acoustic 

characterization of the phonation. Table 1 provides 

summary statistics across some indicative acoustic 

features (selected to be representative of different 

acoustic feature families). We remark that some of the 

acoustic features exhibit considerable differences in the 

summary values, which indirectly suggests that this pre-

processing segmentation step can have a major 

influence on the reported results.  

 

IV. DISCUSSION 

 

We have developed a robust algorithmic approach 

towards detecting the quasi-stationary speech signal 

segment in sustained vowel /a/ phonations that exhibits 

the lowest F0 fluctuations. This was achieved by first 

estimating the F0 contour in 10 msec epochs (which is 

standard in F0 estimation), and subsequently 

determining the two consecutive seconds segment that 

exhibited the lowest jitter. We visually verified that in 

all cases the algorithm had correctly identified a short 

signal segment where F0 does not fluctuate considerably 

(see Fig. 2). Finally, we reported that the signal segment 

that is passed for further processing affects the 

computed acoustic features (see Table 1). 

Although segmentation is a well-researched area in 

the signal processing and image processing research 

literature, we are not aware of any similar work that 

presents a principled approach towards determining a 

short speech segment within sustained vowels which 

would be a useful pre-processing step prior to further 

acoustic analysis. For example, Badawy et al. [19] 

attempted to correctly estimate the entire duration of the 

sustained vowel phonation, whereas here we aimed to 

determine the most quasi-stationary segment within a 

full recording. Other work has focused on removing 

silences in recordings [20] so that only the voiced 

segment could be presented to acoustic analysis 

algorithms. We remark that our algorithm can 

intrinsically automatically detect when the F0 

fluctuations are above a maximum threshold of F0 

fluctuations or unrealistic F0 ranges (e.g. silence 

recordings, background noise) and hence identify 

phonations of insufficient quality, prompting further 

investigation or rejecting those recordings from further 

processing.   

This study focused exclusively on sustained vowels 

/a/ phonations. We remark that in principle these 

findings should generalize well in other settings with 

 

Fig. 1: Indicative plot visually illustrating the selected 

signal segment (in transparent green) both in terms of 

the raw voice signal and the computed F0 contour. 

 

 
Fig. 2: Focusing on the segmented signal and the F0 

contour (zoomed in version from Fig. 1). 

 

Table 1: Summary statistics of indicative acoustic 

features for the  phonations used in the study. 

Indicative 

acoustic features 

Benchmark 

segment  

(1-3 sec) 

Automatically 

determined 

segment 

Jitter 1.65±2.37 1.33±1.94 

Shimmer 0.21±0.07 0.20±0.06 

HNR 8.36±10.21 8.49±10.46 

GNE 1.47±0.36 1.45±0.40 

EMD-ERNSR,TKEO 5.87±2.98 7.24±3.70 

VFERTKEO 0.72±0.59 2.51±1.74 

The features are summarized in the form mean±standard deviation. 

HNR = Harmonics to Noise Ratio, GNE = Glottal to Noise 
Excitation, EMD-ER = Empirical Mode Decomposition Excitation 

Ratio, VFER = Vocal Fold Excitation Ratio. For the algorithmic 

definition of the features in the Table see [12]. 

 



sustained vowel phonations (e.g. the other two corner 

vowels /i/ and /u/), but that remains to be tested. So far, 

we are not aware of any work that has empirically 

extensively tested F0 estimation algorithms beyond /a/, 

and future work would likely also need to be done for 

other vowels or phonetically rich sounds used in clinical 

practice [1]. A seemingly very different speech signal 

analysis area to sustained vowels which is, perhaps 

surprisingly, intrinsically linked is processing of voice 

fillers. Voice fillers essentially exhibit similar properties 

to sustained vowels [21] even though they originate in 

conversational speech, which is a more generic setting 

where participants are not specifically instructed to 

produce a specific type of phonation. Previously, we had 

extracted the corresponding voice fillers for further 

acoustic analysis manually [21]; in principle, the 

presented algorithm herein should be generalizable.  

We are currently working on extending our early 

work using the noisy speech data collected as part of the 

PVI project [13], [14]. This dataset presents 

considerable challenges because of its large size and the 

data have not been collected under carefully controlled 

acoustic conditions. This very challenging setting 

requires robust methodologies to extract clinically 

useful information, where automating segmentation and 

reducing the computations demands on acoustic 

characterization of phonations is crucial. 

Collectively, these results provide a compelling 

argument that speech segmentation should be carefully 

considered and reported. This may also have important 

implications for real-time biomedical signal processing 

applications (e.g. processing on smartphones), where 

computational constraints need to be carefully 

considered. We envisage the proposed algorithm 

providing a convenient, robust approach to determining 

a short signal segment from a longer sustained vowel 

phonation towards standardizing acoustic analysis.  
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