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A B S T R A C T

Dynamic transportation networks have been analyzed for years by means of static graph-
based indicators in order to study the temporal evolution of relevant network components,
and to reveal complex dependencies that would not be easily detected by a direct inspection
of the data. This paper presents a state-of-the-art probabilistic latent network model to forecast
multilayer dynamic graphs that are increasingly common in transportation and proposes a
community-based extension to reduce the computational burden. Flexible time series analysis
is obtained by modeling the probability of edges between vertices through latent Gaussian
processes. The models and Bayesian inference are illustrated on a sample of 10-year data from
four major airlines within the US air transportation system. Results show how the estimated
latent parameters from the models are related to the airlines’ connectivity dynamics, and
their ability to project the multilayer graph into the future for out-of-sample full network
forecasts, while stochastic blockmodeling allows for the identification of relevant communities.
Reliable network predictions would allow policy-makers to better understand the dynamics of
the transport system, and help in their planning on e.g. route development, or the deployment
of new regulations.

1. Introduction and related work

We live in a highly interconnected world, and networks have become an integral part of our life, from telecommunications and
social media to transportation systems and the Internet of Things. Further technological advances and the advent of automation,
which may enable the autonomous operation of actors within the network, are likely to push the scale and sophistication of network
systems up to new levels in the near future. This increasing complexity has permeated into science in a natural way, and the
use of network modeling has become widespread in disciplines as diverse as Sociology, Neuroscience or Transportation (Jasny
et al., 2009; Barabási, 2016), propelled by the availability of data and computing power. Transportation science has been for many
decades an active field aiming for the development of models and policies that ensure the efficiency, safety and social acceptability
of transportation systems, while limiting costs and environmental impact. In recent years there has been a growing number of
research directions that reveal the need for appropriate methods to address the complexity imposed by network problems. Network
resilience analysis against e.g. natural disasters or terrorist attacks, structural evolution of network systems, and network-wide traffic
forecasting, are examples of these new directions. The interest in modeling and understanding transportation networks is not merely
academic. The maritime shipping network processes over 80% of the world trade, whereas the travel and tourism industries, which
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sustain 10% of the global GDP, rely on the air transport network (UNCTAD, 2017; WTTC, 2018). Also, public transport networks are
a key element in the infrastructure of large urban areas, where the bulk of the economic activity is concentrated in most developed
countries.

Here we focus on multilayer dynamic networks and use latent variable models for analyzing complex graph data that are
ncreasingly available in transportation and related fields. Multilayer networks add a new dimension to the network representation
hrough the definition of layers, and allow for the modeling of complex systems that would be difficult to represent using regular,
‘flat’’ graphs. Multilayer networks can be defined and structured in various ways depending on the problem and the specific role
f the layers (Kivelä et al., 2014). In transportation, a multilayer graph could represent how different airlines interact with the
nderlying airport network, or how different transport modes (e.g. bus and metro networks) operate simultaneously within a public
ransportation system. Dynamic networks, on the other hand, add a temporal dimension to the problem by assuming that the
nteraction between the elements in the network change over time, which is common in transport systems, as discussed below. A
atent network model (Kolaczyk, 2017; Crane, 2018) is a probabilistic model that uses unobserved features to characterize different
roperties and processes within a graph. These models are flexible and allow for e.g. link prediction and community detection, and
re also relatively easy to estimate, see Section 2 for further details and relevant literature.

Dynamic transportation networks have been studied for years, both from short-term and long-term perspectives. Studies featuring
long-term approach usually aim to analyze the structural dynamics of the transportation system in order to assess the temporal

volution of relevant network components in terms of months or years, and to reveal complex dependencies and patterns that would
ot be easily detected by a direct inspection of the data. A graph-based analysis through the use of measures such as e.g. the node
egree or betweenness (Guimera et al., 2005) became the de facto methodological approach, which has been also used to study the

dynamics of shipping and airport networks (Ducruet and Notteboom, 2012; Wang et al., 2014), or airline de-hubbing (Rodríguez-
Déniz et al., 2013), among many others. On the other hand, short-term network dynamic problems usually deal with time spans of
minutes or hours, and focus on modeling specific elements within the network (e.g. link congestion) rather than adopting a structural
approach. A good example of a short-term network problem in transportation is urban traffic forecasting. This is a time-series
prediction problem that has been traditionally addressed with statistical and machine learning models (Vlahogianni et al., 2014),
and where an explicit graph-based representation of the network is not strictly necessary. We believe there is an opportunity for a
methodological advance in studies involving the long-term analysis of transportation networks by using state-of-the-art statistical
models for dynamic and multilayer graph data, therefore moving from the current descriptive, indicator-based approach to an
inferential one. Moreover, reliable graph forecasting would allow for the definition of benchmarking scenarios in problems where
origin–destination pairs are usually assumed fixed. Examples of those applications would be airline schedule optimization (Cadarso
and de Celis, 2017), cargo assignment in shipping networks (Wang et al., 2016) and hub-location (Alkaabneh et al., 2019), to name
a few.

In spite of the above, there have been some recent contributions to model-based inference in transportation graphs. A
representative example is the paper from Kotegawa et al. (2010), which addresses the problem of route (link) prediction in air
transportation networks. Their work is motivated by the air traffic forecasts from the US Federal Aviation Administration (FAA),
which does not consider network dynamics in their predictions. The authors tackle the graph forecasting problem by training a model
that uses topological characteristics of the airports as covariates, and yield the probability of city-pairs being connected by new
routes in the future. Three competing models (logistic regression, neural networks, and a preferential attachment algorithm) were
tested, with the artificial neural network being the top performer. The authors stress that given the competitive nature of the airline
industry and its implications on the network’s structure (e.g. dehubbing), reliable network forecasts would allow policy-makers to
better understand the dynamics of the system, and help in their planning on e.g. infrastructure development, or the deployment of
new regulations. Similarly, de Wit and Zuidberg (2016) perform an econometric analysis to study the probability of market closures
for European low-cost carriers. They implement a logistic regression model with route-based covariates (e.g. distance, offered seats)
that could help identify the factors that make markets more likely to be canceled, although their approach lack the network and
dynamic perspective.

Working with large graphs can be computationally tough, and transportation networks are no exception to that. A practical way
to circumvent this issue that has been recently adopted in the literature is to reduce the scale of the problem by partitioning the
graph. In graph clustering, also known as community detection (see e.g. Fortunato, 2010) or stochastic blockmodeling (Nowicki and
Snijders, 2001; Airoldi et al., 2008), the objective is to find groups of highly interconnected elements within the network, which may
reveal structures such as e.g. social cliques or spatial patterns. In a public transport context, Yap et al. (2019) used a two-pronged
strategy to reduce the size of their transfer synchronization problem. First they performed spatial clustering to isolate relevant
transfer locations, and then used graph-based community detection to determine which line bundles within the selected hubs to
synchronize. Tian et al. (2020) greatly reduced the computational cost in a large-scale rebalancing problem by clustering their bike-
sharing network into five management areas. Still, graph clustering has not been exclusively used to deal with the computational
bottleneck. Yildirimoglu and Kim (2018) use modularity-based community detection to find demand patterns in an urban multilayer
setting (bus, passenger and car networks), thus allowing for a demand analysis at different spatial resolutions that may be helpful
for planning and operation, whereas Olmos et al. (2020) identified relevant demand clusters for a better design of a network of
bicycle paths. One aspect that is common among the previous studies is that the clustering is framed as a separate spatial problem,
without explicitly considering the dynamics of the network.

The aim of this paper is threefold: (i) present a state-of-the-art latent network model to forecast multilayer dynamic graphs that
are increasingly common in transportation, which have potential applications to the long-term analysis of transportation networks,
2

(ii) propose a community-based extension of the model to reduce the computational burden by jointly considering the temporal and
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spatial dimensions of the network, and (iii) demonstrate their applicability to a real multilayer transportation network in two case
studies with US airline data.

The rest of the manuscript is organized as follows. Section 2 briefly introduces relevant work on statistical models for network
ata. The methodological framework and the community-based model are detailed in Section 3, whereas in Section 4 a set of
alidation experiments are performed. Section 5 presents applications to real data from an airline network. The last section
ummarizes the paper and discuss limitations and possible directions for further research.

. Statistical models for graph data

Statistical network analysis is a well-established field of research (see e.g. Kolaczyk, 2009) with origins dating back to the seminal
ork on random graphs by Erdös and Renyi (1959). Despite their fundamental contributions, the original mathematical models,
long with other recent models such as the ‘‘small-worlds’’ from Watts and Strogatz (1998) and the hub-and-spoke networks from
arabási and Albert (1999), are too limited for most applications. Exponential Random Graph Models (ERGMs) were designed with
his aim in mind, initially with the 𝑝1model from Holland and Leinhardt (1981), and define an exponential family of distributions
ver a graph. However, model degeneracy and intractability are still unresolved problems, which has represented a hurdle for a
ider applicability outside social networks. Interestingly, Zhang et al. (2019) recently used ERGM models to learn social networks
ffects that can be used to generate synthetic populations in agent-based transport simulators.

In contrast with the log-linear approach of the ERGMs, latent network models (LNMs) define latent classes or features to capture
he network complexity in a non-linear fashion. The Stochastic Block Model (SBM - Holland et al., 1983) is perhaps the most
opular latent network model, and assumes a latent community structure that drives the relationship patterns between actors in
he network. Nowicki and Snijders (2001) proposed a Bayesian inference algorithm using Gibbs sampling whereas Daudin et al.
2008) developed variational inference for the model. Current research on SBM’s is mainly aimed at mixed membership clustering
Airoldi et al., 2008), extensions for weighted graphs (Aicher et al., 2014), dynamic and state-space modeling (Ishiguro et al., 2010;
u and Hero, 2014), and multi-layer networks (Han et al., 2015; Stanley et al., 2016). A different approach to LNMs is to define
latent space over the network nodes themselves (Hoff et al., 2002). In this case, the probability that two network elements are

onnected can be defined in terms of a distance function, in such a way that nodes neighboring in the unobserved latent space are
ore likely to be connected. Latent space models are able to capture transitive dependencies in a natural way (in contrast with

BM’s) and are flexible enough to incorporate dynamics while allowing for practical maximum likelihood and Bayesian inference.
ore recently, Durante and Dunson (2014) introduce exact Bayesian inference using Pólya-Gamma augmentation (Polson et al.,

013) for a dynamic latent space network model driven by Gaussian processes. A natural extension of the previous model to a
ynamic multilayer setting is presented in Durante et al. (2017), although scalability issues arise for large network data since the
odel introduces a Gaussian process for each node in each layer.

. Methodology

.1. Dynamic multilayered network model

We first describe the dynamic multilayered network model in Durante and Dunson (2014) and Durante et al. (2017) that serves
s a starting point for our community-based extension. We represent a network as a graph 𝐺 = (𝑉 ,𝐸) where 𝑉 is the set of vertices

(also called nodes) 𝑖 = 1,… , 𝑁 and 𝐸 a set of unweighted edges (also called links) between node pairs {𝑖, 𝑗}. The connectivity of the
raph is summarized in the 𝑁 ×𝑁 adjacency matrix 𝐴𝑖𝑗 , where 𝐴𝑖𝑗 = 1 if there is an edge connecting vertices 𝑖 and 𝑗, and 𝐴𝑖𝑗 = 0
therwise. We assume undirected edges and no self-loops, i.e. 𝐴𝑖𝑗 = 𝐴𝑗𝑖 and 𝐴𝑖𝑖 = 0. Dynamic multilayer graphs have a graph per
ayer that evolves in time and can be represented by adjacency matrices 𝐴𝑘𝑖𝑗 (𝑡) where 𝐴𝑘𝑖𝑗 (𝑡) = 1 if vertices 𝑖 and 𝑗 are connected in
ayer 𝑘 = 1,… , 𝐾 at time 𝑡 = 𝑡1,… , 𝑡𝑇 .

The dynamic multilayer network model in Durante and Dunson (2014) and Durante et al. (2017) defines a Bayesian logistic
egression for each element in the adjacency matrix 𝐴𝑘𝑖𝑗 (𝑡), i.e. for each possible edge in the graph at any layer 𝑘 and time 𝑡. The logit
f the probability that any two vertices in the multilayer graph are connected depends on a model with three additive components
eaturing unobserved variables that encode connectivity patterns. Specifically, the model is of the form

𝐴𝑘𝑖𝑗 (𝑡) ∼ Bernoulli
(

𝜋𝑘𝑖𝑗 (𝑡)
)

𝜓𝑘𝑖𝑗 (𝑡) = Logit
(

𝜋𝑘𝑖𝑗 (𝑡)
)

= 𝜇(𝑡) +
𝑅
∑

𝑟=1
�̄�𝑖𝑟(𝑡)�̄�𝑗𝑟(𝑡) +

𝐻
∑

ℎ=1
𝑥𝑘𝑖ℎ(𝑡)𝑥

𝑘
𝑗ℎ(𝑡), (1)

here the latent processes, 𝜇(𝑡), �̄�𝑖𝑟(𝑡) and 𝑥𝑘𝑖ℎ(𝑡), are assumed to be smoothly evolving Gaussian processes with RBF kernel functions
Rasmussen and Williams, 2006)

𝜇(𝑡) ∼ (0, 𝑘𝜇) (2a)

�̄�𝑖𝑟(𝑡) ∼ (0, 𝜏−1𝑟 𝑘�̄�) (2b)

𝑥𝑘𝑖ℎ(𝑡) ∼ (0, 𝜏𝑘
−1

ℎ 𝑘𝑥). (2c)
3
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The model is structured through a set of latent variables that capture different effects within the network. The global time-varying
intercept 𝜇(𝑡) defines a baseline network density for all nodes in all layers. The cross-layer effects �̄�𝑖(𝑡) enter as a bilinear form (Hoff,
005), increasing the probability of a link between vertices as their latent coordinates become aligned whereas the within-layer
𝑘
𝑖 (𝑡) coordinates act in an identical manner capturing those effects not shared across the different layers. Instead of learning the
imensionality 𝑅 and 𝐻 of the latent coordinates �̄�𝑖𝑟(𝑡), 𝑟 = 1,… , 𝑅 and 𝑥𝑘𝑖ℎ(𝑡), ℎ = 1,… ,𝐻 , the model uses multiplicative inverse
amma priors (Bhattacharya and Dunson, 2011) to induce a shrinkage effect that becomes stronger for larger 𝑟 and ℎ

𝜏−1𝑟 =
𝑟

∏

𝑢=1
𝛿−1𝑢 , 𝑟 = 1,… , 𝑅 (3)

𝛿1 ∼ Gamma(𝑎1, 1), 𝛿𝑢>1 ∼ Gamma(𝑎2, 1) (4)

(

𝜏𝑘ℎ
)−1 =

ℎ
∏

𝑣=1

(

𝛿𝑘𝑣
)−1 , ℎ = 1,… ,𝐻, 𝑘 = 1,… , 𝐾 (5)

𝛿𝑘1 ∼ Gamma(𝑎1, 1), 𝛿𝑘𝑣>1 ∼ Gamma(𝑎2, 1). (6)

Durante et al. (2017) prove that the model in Eq. (1) is very flexible and can essentially model any matrix of edge probabilities
if 𝑅 and 𝐻 is large enough. The likelihood factorizes into a set of Bernoulli logistic regressions which can be Gibbs sampled using
the Pólya-Gamma data augmentation in Polson et al. (2013). However, the number of Gaussian processes that needs to be learned
from data is 1 + 𝑅𝑁 +𝐻𝐾𝑁 , which makes computations and storage unmanageable for anything except small networks with few
layers and a small number of nodes. Moreover, the model is completely unstructured and is therefore massively overparametrized
when the data follow some structure, e.g. some sort of community clustering. In the next section we propose a SBM extension of
the model with a dramatically reduced number of Gaussian processes and develop a Gibbs sampling algorithm for inference using
the Pólya-Gamma data augmentation trick. The model imposes a community structure and is therefore less general than Durante
et al. (2017), but benefits from a reduction in the number of Gaussian processes and scales much better to larger networks.

3.2. Dynamic multilayered block network model

To impose a community structure we assume that each vertex in the network belongs to a stochastic block (Nowicki and Snijders,
2001) or cluster 𝑏 ∈ {1,… , 𝐵} with prior probability 𝑝(𝑧𝑖 = 𝑏) = 𝜂𝑏, where 𝑧 is the vector of block assignments, indicating to which
block each vertex 𝑖 belongs, and 𝜂 ∼ Dirichlet(𝛼1,… , 𝛼𝐵). This results in logistic regressions that model the interactions between
groups of vertices, i.e. the probability of the existence of an edge between any two vertices in the network now depends on which
block/cluster they belong. We propose the following block model extension of Durante et al. (2017)

𝑧𝑖 ∼ Categorical(𝜂1,… , 𝜂𝐵)

𝐴𝑘𝑖𝑗 (𝑡)|
(

𝑧𝑖 = 𝑝, 𝑧𝑗 = 𝑞
)

∼ Bernoulli
(

𝜋𝑘𝑝𝑞(𝑡)
)

(7)

𝜓𝑘𝑝𝑞(𝑡) = Logit
(

𝜋𝑘𝑝𝑞(𝑡)
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇(𝑡) +
𝑅
∑

𝑟=1
�̄�𝑝𝑟(𝑡)�̄�𝑞𝑟(𝑡) +

𝐻
∑

ℎ=1
𝑥𝑘𝑝ℎ(𝑡)𝑥

𝑘
𝑞ℎ(𝑡) if 𝑝 ≠ 𝑞

𝜇𝑘𝑝 (𝑡) +
𝑅
∑

𝑟=1
�̄�𝑝𝑟(𝑡) if 𝑝 = 𝑞

(8)

The link probabilities 𝜋𝑘𝑝𝑞(𝑡) for 𝑝 ≠ 𝑞 are of the same form as in Durante et al. (2017), but here defined over blocks, for a given
block assignment. The within-block link probabilities for 𝑝 = 𝑞 are modeled separately with a dynamic intercept per block and
layer 𝜇𝑘𝑝 (𝑡), and a second term with the sum of cross-layer coordinates of the corresponding block that allows for some block-wise
leveraging between the two logits. See Fig. 1 for a graphical representation.

3.3. A scalable Gibbs sampler for Bayesian inference

The complete-data likelihood for the proposed model is

𝑝(𝐴𝑘𝑖𝑗 (𝑡)|𝜓
𝑘
𝑝𝑞(𝑡)) =

𝑇
∏

𝑡=1

𝐾
∏

𝑘=1

𝑁
∏

𝑖=2

𝑖−1
∏

𝑗=1

exp(𝜓𝑘𝑧𝑖𝑧𝑗 (𝑡))
𝐴𝑘𝑖𝑗 (𝑡)

1 + exp(𝜓𝑘𝑧𝑖𝑧𝑗 (𝑡))
=

𝑇
∏

𝑡=1

𝐾
∏

𝑘=1

𝐵
∏

𝑝=1

𝑝
∏

𝑞=1

exp(𝜓𝑘𝑝𝑞(𝑡))
𝑦𝑘𝑝𝑞 (𝑡)

[

1 + exp(𝜓𝑘𝑝𝑞(𝑡))
]𝑛𝑘𝑝𝑞 (𝑡)

,

here 𝜓𝑘𝑝𝑞(𝑡) = Logit(𝜋𝑘𝑝𝑞(𝑡)), and 𝑛𝑘𝑝𝑞(𝑡) and 𝑦𝑘𝑝𝑞(𝑡) are the number of possible and actual edges in 𝐴𝑘𝑖𝑗 (𝑡) between blocks 𝑝 and 𝑞,
espectively. The block model induces a set of within-block summations over edges that structures the likelihood into 𝑇𝐾 explicit
inomial components instead of the Bernoulli components in Durante et al. (2017). This likelihood allows for exact Bayesian

nference using Gibbs sampling with the Pólya-Gamma data augmentation for Binomial logistic regression in Polson et al. (2013),
hile automatically reducing the model size for large network problems as the estimation will be over 𝐵(𝐵 +1)∕2 blocks instead of
4

(𝑁 − 1)∕2 vertices, where 𝐵 ≪ 𝑁 .
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Fig. 1. Example of a dynamic multilayer network with three stochastic blocks (red, blue and yellow), layers and time points.

Fig. 2. Simulation errors and times for the Pólya-Gamma approximation.

In Appendix B.1 we briefly review the Pólya-Gamma data augmentation method (Polson et al., 2013), which provides a tractable,
efficient way to perform Bayesian inference on models with binomial likelihoods, whereas Appendix B.2 gives a detailed description
of a Gibbs sampler algorithm to sample from the joint posterior of all model parameters. The sampler combines the multilayer
network model from Durante et al. (2017), modified to our specific structure of the block link probabilities in Eq. (8), with updating
steps for the latent block allocations 𝐳 and block probabilities 𝜼 following Nowicki and Snijders (2001).

The Gibbs sampler in Durante et al. (2017) involves 𝑇𝐾𝑁(𝑁−1)∕2 draws from the PG(1, c) distribution. Appendix B.2 shows that
this step in our algorithm includes 𝑇𝐾𝐵(𝐵 + 1)∕2 updating step for the Pólya-Gamma variables 𝜔𝑘𝑝𝑞(𝑡) ∼ PG(𝑏, 𝑐), where 𝑏 = 𝑛𝑘𝑝𝑞(𝑡).
Hence, although the number of draws is dramatically smaller for our algorithm, each draw tends to be more costly since the time to
simulate from PG(𝑏, 𝑐) increases in 𝑏. To speed up computations we follow up on the suggestion mentioned in Windle et al. (2014) and
develop a fast normal approximation via moment-matching; see Appendix A. Fig. 2 (left) show the mean absolute error between the
normal approximation and the sampling methods from Devroye (2009) and Polson et al. (2013), relative to the theoretical mean.
We see that for values of 𝑏 ≥ 50 the deviation from the theoretical mean is less than 20% in the worst case where 𝑐 < 10 and
negligible for 𝑐 ≥ 10. Simulation times are independent from 𝑏 when sampling from the approximation (right). Therefore, we use
our normal approximation to sample Pólya-Gamma variables for 𝑏 ≥ 100, and the standard exact methods otherwise.

The update of the block assignments in the last step of the Gibbs sampler implies the computation of the posterior of the
latent assignment probabilities for each node in the network (see step 10 in Appendix B.2). A naïve implementation will result
in (𝑁𝐾𝑇𝐵2) time, which could be prohibitive for large 𝑁 , specially if we update all 𝑧𝑖 sequentially at each MCMC iteration. We
recommend an annealed random-scan sampling that starts updating the entire network and exponentially decreases the number of
vertices being updated to a small fraction as the estimation progress. This would allow the Gibbs sampler to initially explore a large
space of possible clusterings at a higher computational cost, and then concentrate the estimation effort on the parameters defining
5

the block dynamics while still allowing for some refinement in the assignments.
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Table 1
Parameter configuration of the two models for the experiment.
Model 𝐵 𝑅 𝐻 𝑙𝜇 𝑙𝜇𝑝 𝑙�̄� 𝑙𝑥 𝑎1 𝑎2 MCMC Samples

DMN – 6 6 0.05 – 0.05 0.05 2 2 5,000 (20% burnin)
DMBN 10 6 6 0.05 0.05 0.05 0.05 2 2 5,000 (20% burnin)

Fig. 3. Illustrating the fitting capability of the DMBN with 𝐵 = 10 blocks on data simulated from four multilayer networks with 5, 15, 45 and no blocks (DMN),
as indicated in each column. All networks have 𝑁 = 128 edges, 𝐾 = 4 layers, and 𝑇 = 12 time points. The top row displays the true link probabilities and the
bottom row their estimated counterparts. The gray scale represent link probabilities going from 𝑝(𝐴𝑖𝑗 ) = 0 (white) to 𝑝(𝐴𝑖𝑗 ) = 1 (black).

4. Simulation study

In this section we use synthetic data to compare the fitting capability and estimation time of the DMN model in Durante
et al. (2017) with our DMBN model with block structure. We simulate multilayer networks with sizes ranging from 𝑁 =
{32, 64, 128, 256, 512} and different levels of granularity: 𝐵 = {5, 15, 45}. We also simulate networks from the DMN model without
block structure. All networks have the same number of 𝐾 = 4 layers and 𝑇 = 12 time points, and are generated from a dynamic
six-dimensional latent space, i.e. 𝑅 = 𝐻 = 6, with common smoothness 𝑙𝜇 = 𝑙𝜇𝑝 = 𝑙�̄� = 𝑙𝑥 = 0.05 over all components. Each
latent coordinate is simulated from three predefined types of connectivity patterns: (i) smoothed constant, (ii) smoothed seasonal
connectivity and (iii) smoothed linear trend. Table 1 shows the parameter configuration that is used by both models during the
simulations, which were performed on a cluster from the Swedish National Supercomputer Center (NSC-SNIC).

We estimated the models specified above to every simulated networks ten times with random initialization of block assignments
and latent coordinates. Estimation times and performance metrics were averaged accordingly. Relative mean absolute errors (MAE)
for estimating the true link probabilities are presented in Table 2. The results illustrate how the DMBN model takes advantage of
the community structures to recover the link probabilities, effect that is more pronounced as the network size increases. For larger
networks (𝑁 = 128, 256) and clear block structure (𝐵 = 5) the DMBN model outperforms the DMN with relative MAE ratios of 3.65
and 4.20 respectively. On the other hand, the performance of the DMBN model decreases with granularity regardless of the network
size. Absolute MAE’s for both models are between 0.01 and 0.08. Note that for the DMN model the number of latent coordinates
grows rapidly with 𝑁 , and for networks of size 𝑁 = 512 the estimation times exceeded the limit from the computing infrastructure,
thus relative measures are not shown. The fact that the block-based model is not able to fully recover all individual link probabilities
at full granularity is an expected outcome since this model tries to summarize the dynamic of groups of links using a very limited
set of parameters. As the granularity increases towards the worst-case-scenario of a multilayer network where the dynamics of each
link is generated by its own stochastic process and the block structure vanishes, the DMBN is expected to be less effective to fit the
data and outperformed by the DMN.

Fig. 3 shows the true and estimated probabilities from the DMBN on four dynamic multilayer networks with 𝑁 = 128 nodes and
different block structure. For each network (𝐵 = 5, 15, 45, and no block structure) the figure shows the probabilities from a randomly
selected graph out of the entire set of 𝑇𝐾 = 48 graphs. The four images in the top row show the true probabilities, which appear
clearly structured in (a–c) compared to the full-granularity graph in (d). In the bottom row we see how the DMBN is able to almost
perfectly recover all probabilities when 𝐵 = 5 and 𝐵 = 15, is doing a decent job when 𝐵 = 45 and, as expected, struggles to fit the
DMN model without any block structure.
6
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Table 2
Relative Mean Absolute Error (MAE) (MAEDMN∕MAEDMBN) for recovering the true probabilities from simulated data. The DMBN
model is estimated with 𝐵 = 10 blocks.
True 𝐵 Network size

32 64 128 256 512

5 1.49 2.30 3.65 4.20 –
15 0.92 1.05 1.25 1.12 –
45 0.93 0.94 0.87 0.79 –
No blocks 1.13 1.11 0.92 0.73 –

Table 3
Relative computing time (minutes) of the DMN model compared to the DMBN model with 𝐵 = 10 blocks.
True 𝐵 Network size

32 64 128 256 512

5 2.15 5.93 16.80 31.52 –
15 2.19 5.86 16.38 32.07 –
45 2.14 5.76 16.32 32.12 –
No blocks 2.11 5.57 16.24 31.16 –

Table 3 presents the relative running times (originally in minutes) for all simulations. As expected, the capacity of the DMN model
o capture network link dynamics at full granularity comes at the cost of time. The estimation of the DMN model is significantly
lower compared to the DMBN, with running times ranging from twice (𝑁 = 32) to more than thirty times slower to those from the

DMBN for the network with 𝑁 = 256 nodes. For the DMBN the absolute estimation times are below one hour in most cases, and
only grow noticeably when the network size is above 𝑁 = 256, hence demonstrating the scalability of the model when 𝐵 ≪ 𝑁 . This
assumption may hold true for many real networks, such as social or transportation networks, where community structure naturally
arises. In the next section we present a case study using real data, and evaluate the classification performance of the proposed model
to predict markets within the US airport system, a classic example of a hub-and-spoke network.

5. Application to the US air transport network

Modeling complex transportation systems as dynamic multilayer graphs (Kivelä et al., 2014) has been recently attempted for
e.g. air transportation (Cardillo et al., 2013), public transport (Gallotti and Barthelemy, 2015) or maritime networks (Ducruet,
2017). The majority of these contributions focus on the visual inspection of the graphs, or the temporal and multilayer analysis
of the networks by means of static, layer-wise topological measures, with no use of statistical or machine learning models. In this
case study we apply the model from Durante et al. (2017) and our community-based extension introduced in Section 3 to a real
airline network with airports as nodes and airlines as layers. The dynamic and multilayer dimensions of the network are modeled
jointly in a probabilistic fashion, and the stochastic block structure allows for interesting model-based clustering of airports. The
data description is presented first, followed by two different study scenarios. In the first scenario we fit the DMN model to a small
subnetwork of two airlines: Delta and Southwest. The objective is to investigate how the model estimates reflect changes in network
structure due to the merger of Southwest and AirTran after 2011, and other events happened during the sample period. The second
study features a full-scale forecasting application to a dynamic multilayer transport network with 80 airports and four airlines over
a 10-year period. We compare both models in terms of classification performance and estimation times, and also investigate the
resulting airport clusters from the DMBN. Table 5 summarizes the experimental setup and network data utilized in each case study.
All experiments were implemented using R Open 3.4.2 (MKL support), and executed on an Intel i7 Dual-Core PC with 16 GB of
RAM running Windows 10.

5.1. Data source and network description

We collected publicly available airline ticket data from the Airline Origin and Destination Survey (BTS, 2019a), from which
we create the air transportation graphs. Fig. 4 shows the mainland US airports available from the survey along with their hub
classification (FAA, 2019); we selected the 𝑁 = 80 airports with the largest number of (departing) flights, over a period of ten
ears (2009–2018). These airports concentrate around 95% of the total network traffic. The survey provides quarterly data so
he number of time steps will be 𝑇 = 40. To create a multilayer network, we generate separate graphs corresponding to 𝐾 = 4

major airlines: American Airlines, Delta, United/Continental and Southwest. Our choice of airlines is not random: after the mergers
of Delta/Northwest (2009), United/Continental (2010), Southwest/AirTran (2011) and American Airlines/US Airways (2013), the
resulting ‘‘big four’’ became the dominant airlines in the system. A graphical representation of the multilayer structure at the second
quarter of 2011 is presented in Fig. 5, and relevant network statistics in Table 4. We generated the multilayer graph using the library
Pymnet (Kivelä, 2015). All indicators but the number of flights are based on the corresponding unweighted, undirected graphs. We
see similar network characteristics among the full-service carriers, whereas Southwest stands out with a higher edge density and less
centralized degree distribution, which agrees with the tendency of low-cost airlines to relax the hub-and-spoke model by developing
a significant number of point-to-point markets (Doganis, 2019). Note also that there is only around 25% percent of edge-overlap
7

between the different airlines, which justifies the use multilayer models.
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Fig. 4. Mainland airports from the US air transport network, and their classification according to the Federal Aviation Administration (FAA, 2019).

Fig. 5. Dynamic multi-layered air transport network created from quarterly airline ticket data (2009–2018), and a snapshot at 𝑇 = 10 (2011Q2).

Table 4
Quarterly-averaged network statistics for the selected sample (2009–2018). AA: American Airlines, DL: Delta Airlines, UA: United
Continental, WN: Southwest, ASPL: Average shortest path length.
Layer Nodes Edges Density ASPL Degree Flights

1 - AA 80 579 0.092 1.948 14.486 206,078
2 - DL 80 563 0.089 1.957 14.070 170,825
3 - UA 80 557 0.088 1.975 13.912 125,464
4 - WN 80 1,047 0.166 1.803 26.163 284,437

Combined 80 2,190 0.346 1.669 54.756 789,163
8



Transportation Research Part C 137 (2022) 103556H. Rodriguez-Deniz et al.

S
i
t
w
w
n
b

f
t
t
v
t
d
o
a
t
t

b
e
e
l
t
l
d
f

E
a
A
h
w
i
s
w
a
f
s
d

Table 5
General description of the case studies and the network data used. Fit/training graphs are marked with a cross (×), and test data
with (◦).
Description Selected graphs by quarter and year

Case study 1: Model analysis 09 10 11 12 13 14 15 16 17 18
Only DMN model Q1 × × × × × × × × × ×
Only Delta/Southwest (K = 2) Q2
Subnetwork of N = 40 airports Q3

Q4

Case study 2: Forecasting 09 10 11 12 13 14 15 16 17 18
Both DMN/DMBN models Q1 × × × × × × × × × ◦
All airlines (K = 4) Q2 × × × × × × × × × ◦
All airports (N = 80) Q3 × × × × × × × × × ◦

Q4 × × × × × × × × × ◦

5.2. Merger of Southwest and AirTran (2011)

When Southwest acquired AirTran in 2011, it was the first merger between low-cost carriers in US history. Prior to the merge,
outhwest carried almost 90 million passengers in 2010, more than triple the traffic of AirTran, and operated point-to-point markets,
n contrast to the hub-and-spoke structure of AirTran’s network. The operation was appealing for Southwest, which not only had
he opportunity to take over the network of its competitor, but also to enter Atlanta, which was at the time the only major US city
ithout a strong presence of Southwest. This would help Southwest solidify its position as a dominant domestic low-cost carrier
hile adding some new international routes, mainly in the Caribbean, to its network. In this study, we investigate changes in the
etwork graphs of Southwest and Delta, the dominant airline at Atlanta, as a consequence of the merger, and other potential causes
etween 2009–2018, using the dynamic multilayer model of Durante et al. (2017).

To that end, we fit the DMN model to a selected subset of the full multilayer graph shown in Fig. 5, featuring 𝑁 = 40 airports
rom Delta and Southwest (𝐾 = 2) networks, and keeping only the first quarter of every year (𝑇 = 10), see Table 5. Note that even
hough we will estimate 𝑁(𝑁−1)𝐾𝑇 ∕2 = 15,600 logits, this scenario is rather conservative compared to the half-million required for
he full problem, hence the need for the community-based extension. We draw 5,000 posterior samples using similar hyperparameter
alues as for the simulations in Section 4, i.e. 𝑅 = 𝐻 = 6, with common smoothness 𝑙𝜇 = 𝑙�̄� = 𝑙𝑥 = 0.05 over all components. Due
o the bilinear forms in Eq. (1) the latent coordinates �̄�(𝑡) and 𝑥𝑘(𝑡) are not identified and their estimates should not be interpreted
irectly. We follow Hoff (2005) and calculate the posterior means of �̄�(𝑡)𝑇 �̄�(𝑡) for each 𝑡 instead, which are identified, and then
btain estimators ̂̄𝑥(𝑡) by truncating the spectral decompositions at the 𝑅-th largest eigenvalue. The within-layer coordinates 𝑥𝑘(𝑡)
re recovered using the same procedure, for every layer and time point. Since the estimated coordinates contain information about
he connectivity profile of every airport 𝑖, it is straightforward to define cross and within layer vertex connectivity scores (VCS) as
he euclidean norm of the coordinates, i.e.

CL-VCS𝑖(𝑡) = ‖
̂̄𝑥𝑖(𝑡)‖ (9a)

WL-VCS𝑘𝑖 (𝑡) = ‖�̂�𝑘𝑖 (𝑡)‖ (9b)

Fig. 6 present both scores for all airports in the sample as a function of the number of connections (i.e. degree). There seems to
e a strong linear correlation between the within-layer scores and the degree of an airport, which is not present in the cross-layer
stimates. This is probably related to our choice of mixing a legacy (hub-and-spoke) and a low-cost (point-to-point) carrier in the
xperiment. If airlines are significantly different in their structure and routes, their connectivity patterns will be absorbed by the
ayer effects, and the interpretation of the cross-layer connectivity scores may not be possible by direct inspection. We compared
he scores against more elaborated centrality indicators such as betweenness and closeness, with similar results. The fact that the
atent coordinates, which can be projected to future time steps, are related to topological properties from the underlying graph that
etermine the efficiency of air transportation in terms of e.g. passenger-kilometers (Kotegawa et al., 2014), is an interesting outcome
rom the model.

In Fig. 7 (left) we look directly at the two largest components from the estimated cross-layer coordinates for all airports in 2009.
ven though there is no apparent clustering structure, there exists a general pattern based on airline dominance at the airports,
nd the fact that we left American Airlines and Continental out of the experiment. Airports that are close to the origin are mostly
merican (e.g. Miami, Dallas Fort-Worth), US Airways (e.g. Philadelphia) or United/Continental (e.g. Houston, Chicago O’Hare)
ubs, whereas the most outlying airports are hubs for Delta (e.g. Atlanta, Salt Lake City) or focus cities for Southwest (e.g. Midway),
ith the exception of Los Angeles and Boston. In this case, a visual inspection of the coordinates for a specific year and quarter

s sufficient, but a proper cluster analysis would probably be the best choice for their interpretation over time. Back to the vertex
cores, Fig. 7 (right) presents the dynamic evolution of the cross-layer and within-layer VCS for Atlanta-Hartsfield. We see how the
ithin-layer score for Southwest grows steadily after the merger with AirTran in 2011 and the subsequent expansion at Atlanta. As
consequence, the cross-layer score is pushed up as both airlines hold now an important presence in that vertex, while the score

or Delta decreases slightly though remaining high. Similarly, once the cross-layer score is significantly increased, Southwest’s score
tarts to diminish as well, which could be an indication on how the model tries to leverage the different components of the logit
9

uring estimation.
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Fig. 6. Estimated Vertex Connectivity Scores (VCS) for all airports, time points and layers, against the original airport degrees. Left: cross-layer scores. Right:
within-layer scores (both Southwest and Delta).

Fig. 7. Left: estimated cross-layer coordinates (two largest components) for all airports in 2009. Right: Vertex Connectivity Scores (VCS) for Atlanta-Hartsfield.
See Appendix D for the IATA airport codes.

Table 6
Top 10 airports according to estimated vertex connectivity scores 2009–2018. CL: cross-layer VCS, DL: within-layer VCS for
Delta, SW: within-layer VCS for Southwest. Up-arrows ↑X↑ indicate that airport X climbed the ranks up to the top-10 between
2009–2018.
Rank CL-2009 CL-2018 DL-2009 DL-2018 SW-2009 SW-2018

1 SLC ↑ATL↑ ATL ATL MDW MDW
2 LAX LAX SLC SLC DEN ↑DAL↑
3 DAL LGA JFK MSP LAS DEN
4 OAK ↑MSP↑ LGA DTW PHX STL
5 LGA SLC DTW JFK HOU PHX
6 MSY ↑MCO↑ MSP LAX AUS BNA
7 BWI DAL BOS LGA MCI LAS
8 JFK LAS LAX ↑SEA↑ BWI AUS
9 DTW BWI MCO BOS STL HOU
10 LAS OAK TPA ↑LAS↑ BNA BWI
10
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Fig. 8. Top row: Estimated link probabilities for three new Southwest routes from Dallas Love-Field (DAL): Washington-Reagan (DCA — left), Portland (PDX —
center) and Tampa (TPA — right). Black dots are the original data in the corresponding adjacency matrices. Bottom row: Angles between the estimated latent
vectors of DAL, and the rest of airports, 2009–2018. We use normalized vectors within the unit circle to represent angle differences between cross-layer (left)
and within-layer (Delta and Southwest, center and right, respectively) coordinates.

Table 6 presents airport rankings according to estimated vertex connectivity indices for the sample period. Overall, we get the
expected actors at the top of the ranks, particularly at the airline (layer) level: Atlanta, Salt Lake City and Minneapolis lead Delta’s
network, whereas Chicago Midway, Denver, Las Vegas and Dallas-Love are the top performers for Southwest. In the cross-layer
rankings, we notice the rise of Minneapolis and Atlanta between 2009–2018, which is probably due to their acquisition by Delta
and Southwest after the mergers with Northwest (2008) and AirTran (2011), respectively. In 2014, Delta increased its presence at
Seattle airport in order to open a transoceanic hub, therefore entering into direct competition in the domestic market with Alaska
Airlines at their major base. This is reflected on Delta’s within layer rankings with Seattle climbing from the 19th to the 8th position.
From the Southwest’s perspective, Dallas Love-Field appears as the airport with the largest increase in within-layer connectivity.
This is an expected result: after the repealing of 1979’s Wright Amendment, which prohibited flights from Dallas Love-Field outside
Texas and its neighboring states in order to protect Dallas Fort-Worth, Southwest greatly expanded at the former with 15 new
routes in late 2014 (CAPA, 2015). In Fig. 8 (top row) we illustrate the model’s ability to capture the network’s dynamics during
this expansion of Southwest at Love-Field, focusing on the new routes to/from Washington-Reagan, Portland and Tampa. Note
how the underlying Gaussian processes that drive the logits adjust rapidly to changes in the network in all cases. Here the model’s
flexibility in latent space has clearly paid off, despite the lack of exogenous (e.g. passenger traffic) information outside the adjacency
matrices. We have experimentally verified that the estimated link probabilities are not sensitive to reasonable changes in the degree
of shrinkage of the latent coordinates (as controlled by the hyperparameters 𝑎1, 𝑎2 in the Gamma prior), which control the effective
dimensionality of the latent space. Similarly, the estimates are also robust to variation in the size of the latent coordinates 𝑅,𝐻 , and
the prior smoothness of the corresponding Gaussian processes. It is important to remark that the flexibility in latent space is due not
only to the magnitude (e.g. connectivity scores) but also to the alignment (i.e. angles) of the vectors. For instance, the estimated
cross-layer components can be written as ̂̄𝑥𝑖(𝑡)𝑇 ̂̄𝑥𝑗 (𝑡) = cos 𝜃𝑖𝑗 (𝑡) × CL-VCS𝑖(𝑡) × CL-VCS𝑗 (𝑡), where the angles 𝜃𝑖𝑗 (𝑡) between the latent
airport coordinates are a function of time. We finally corroborate this for our example in Fig. 8 (bottom row): the cross-layer and
layer-wise (Southwest) latent components of the new markets (2009–2018) are closer in angle to those of Dallas Love-Field.

5.3. Dynamic multilayer forecasting of the US air transport network

Despite its effectiveness, as we have just confirmed, fitting the original DMN model to very large graphs is not practical due to the
over-parametrization and subsequent high estimation times. Here we test our proposed model extension by fitting and forecasting
11

a large dynamic multilayer graph using all available airline data. The complete network features 𝑁 = 80 airports, 𝐾 = 4 airlines
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Fig. 9. Top: ROC curves (left) and estimation times (right) for the proposed model with increasing number of blocks and the DMN (Durante et al., 2017).
Bottom: layer-wise ROC curves from the proposed model with 𝐵 = 9 (left) and the DMN (right).

and 𝑇 = 40 time steps corresponding to quarters between 2009–2018. We compare both models in terms of classification accuracy
and estimation times, and also investigate whether the block-wise structure of the DMBN model is able to reveal meaningful airport
communities. First we compare the performance of the DMN with the DMBN model. For both models we choose a 𝑅 = 𝐻 = 2,
and a very smooth progression over time 𝑙𝜇 = 𝑙𝜇𝑝 = 𝑙�̄� = 𝑙𝑥 = 5 × 10−5. We use the first nine years of the sample (36 quarters) for
training the model, i.e. 𝑡 = {𝑡1,… , 𝑡36}, and the last year for out-of-sample testing. Both models were run for 5,000 MCMC iterations
and 20% burn-in, with a random-scan for the DMBN. Computing the posterior predictive distribution for the edge probabilities in
the test sample 𝑡∗ = {𝑡37,… , 𝑡40} is straightforward within the current Gibbs sampling framework, see Step 11 in Appendix B.2.
Fig. 9 (top-left) shows the ROC curves over the test data for the DMBN with 𝐵 = {3, 6, 9} blocks and the DMN. The DMN turns out
to be a very accurate classifier, but is computationally very costly as it estimates 𝑁(𝑁 − 1)∕2𝐾𝑇 = 505, 600 logits, in contrast to
the 𝐵(𝐵 + 1)∕2𝐾𝑇 = 14,400 from the DMBN with 𝐵 = 9 blocks. The performance of the DMBN model increases with 𝐵 and takes
substantially less time to estimate; estimation times (Fig. 9, top-right) for the DMBN range from 25 min (𝐵 = 3) to 1.5 h (𝐵 = 9),
and are at least one order of magnitude faster than the DMN, which needs almost 19 h to be estimated. The layer-wise ROC curves
presented below for the DMBN with 𝐵 = 9 blocks (left), and the DMN (right) also show how the least structured airline network
(Southwest) is the most difficult to predict.

Fig. 10 presents some adjacency matrices from the multilayer network, and their estimated edge probabilities calculated from the
posterior samples of the DMBN model with 𝐵 = 9 blocks. All matrices are 80 × 80 in size, and their rows are ordered according to the
airport’s IATA codes (see Appendix D). Most adjacency matrices (top row) present a clear hub-and-spoke layout, with few dominant
airports connected to all other nodes at a given layer, which is captured well by the model through the estimated probabilities
(bottom row). Note that probability matrices in Fig. 10 (bottom row) are not ordered according to blocks but to airport codes, thus
the block structure resulting from the DMBN model is not clearly visible. The first column shows the network of American Airlines
at the last quarter of 2009, from which we see how the model learned the connectivity patterns from the adjacency matrix, assigning
12
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Fig. 10. Observed adjacency matrices (top row) and estimated edge probabilities (bottom row) on selected graphs from the multilayer airline network. The first
three columns present estimates from graphs within the training set, whereas the last column shows the one-quarter-ahead estimated probabilities.

the highest probabilities to edges connected to Charlotte, Dallas Fort-Worth, Miami, Chicago O’Hare and Philadelphia. Having the
latent block coordinates �̄�𝑧𝑖 (𝑡) entering as a bilinear form (Hoff, 2005) is convenient here to capture the cross-like patterns exhibited
by these hubs, as airports with larger magnitudes in their latent space will increase their connectivity with respect to every other
node in the network, regardless of the block they belong to. The estimated edge probabilities for Delta in the third quarter of
2009 (second column) seem to have captured the most relevant patterns, corresponding to the connections of Delta’s major hubs,
i.e. Atlanta, Detroit, Los Angeles, La Guardia, Minneapolis and Salt Lake City. Similar results are obtained for United/Continental
in 2015 (third column) with Newark, Dulles, Houston International and San Francisco, although some more noise is appreciated in
the estimated probabilities. The last column of Fig. 10 shows the one-quarter-ahead predicted edge probabilities in the test set for
American Airlines.

Airline densities and airport degrees can be readily calculated from the posterior edge probabilities (Eq. (10a), (10b)), both
for in-sample and out-of-sample predictions. Fig. 11 presents observed and estimated network densities for all airlines during the
sample period, which range from 0.05 to 0.2. In all cases the estimated densities fit almost perfectly the observed data, and forecasts
lie within the 95% posterior intervals. Note that the density forecasts are not a mere projection from a univariate time-series, as
Fig. 11 may suggest: here the entire multilayer graph has been projected forward in time using the smoothness from the Gaussian
processes. Future densities and degree distributions are then calculated from the predicted multilayer networks. American Airlines
appears as the airline with the most stable network density, in a similar manner as Delta after it absorbed Northwest in 2010.
United/Continental shows a marked seasonal effect after the merge of their former airlines in 2012, perhaps due to network
restructuring. Southwest is the only airline that grows steadily in density during the sample period, with noticeable seasonality
after 2013.

𝐷𝑘(𝑡) = E

[ 𝑁
∑

𝑖=2

𝑖−1
∑

𝑗=1
𝐴𝑘𝑖𝑗 (𝑡)∕(𝑁(𝑁 − 1)∕2)

]

=
𝑁
∑

𝑖=2

𝑖−1
∑

𝑗=1
𝜋𝑘𝑧𝑖𝑧𝑗 (𝑡)∕(𝑁(𝑁 − 1)∕2) (10a)

𝑑𝑘𝑖 (𝑡) = E

[

∑

𝑗≠𝑖
𝐴𝑘𝑖𝑗 (𝑡)

]

=
∑

𝑗≠𝑖
𝜋𝑘𝑧𝑖𝑧𝑗 (𝑡) (10b)

Table 7 lists the nine airport clusters found by the DMBN model. The clustering structure becomes apparent after computing the
matrix of posterior probabilities that two nodes are in the same block, which is invariant with respect to the block labels. Clusters
have been formed both layer-wise and also according to the connectivity dynamics of each airport. The first cluster is the largest,
and contains 33 airports that are mainly small and mid-sized Southwest airports, with the exception of Honolulu, Cleveland and
Memphis. Cluster 2 aggregates airports with a rising number of Southwest connections, the outliers here would be Boston, NY La
Guardia, Seattle and Washington Reagan. The third, fourth and sixth clusters represent the bulk of the major hubs from American
Airlines, Delta, and Southwest respectively, whereas Chicago Midway stands alone in cluster 5 as the largest focus city for Southwest,
with a 96% of market share (BTS, 2019b). The three airports in cluster 7 are fast-growing Southwest bases, with Dallas Love Field
and Houston Hobby among the fastest growing airports in the US in the last decade. Cluster 8 groups a number of large hubs
with little presence of Delta, with the exception of Los Angeles, and cluster 9 features large United/Continental hubs. Figs. 12 and
13 present the observed and estimated degrees (Eq. (10b)) for two clusters to assess the effect of the stochastic blockmodeling on
13



Transportation Research Part C 137 (2022) 103556H. Rodriguez-Deniz et al.
Fig. 11. Estimated (black) and observed (red) network densities.

Fig. 12. Observed (red) and estimated (black) vertex degrees for block 2.

Fig. 13. Observed (red) and estimated (black) vertex degrees for block 8.

learning the dynamics of the multilayered network. Note how the estimated Gaussian process for the edge probabilities in each
block captures the average dynamics from all airports belonging to that block.

We finally benchmark the DMN and DMBN forecasting performance against several popular, non-probabilistic, algorithms. Link
prediction is a common task in network science, where a large proportion of methods are based on similarity metrics (Lü and Zhou,
14
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Table 7
Estimated airport clusters. IATA airport codes in Appendix D.
Cluster Airports

�̂� = 1 ABQ, ALB, BDL, BHM, BOI, BUF, BUR, CHS, CMH, CVG, ELP
GEG, GRR, HNL, ISP, JAX, LIT, MEM, MHT, OGG, OKC, OMA
ONT, ORF, PBI, PNS, PVD, RIC, RNO, SAV, SDF, TUL, TUS

�̂� = 2 AUS, BOS, CLE, DCA, IND, LGA, MCI, MKE, MSY, PDX
PIT, RDU, RSW, SAN, SAT, SEA, SJC, SMF, SNA

�̂� = 3 CLT, DFW, JFK, MIA
�̂� = 4 ATL, DTW, MSP, SLC
�̂� = 5 MDW
�̂� = 6 BNA, BWI, FLL, LAS, MCO, STL, TPA
�̂� = 7 DAL, HOU, OAK
�̂� = 8 DEN, LAX, PHL, PHX
�̂� = 9 EWR, IAD, IAH, ORD, SFO

2011; Martínez et al., 2016). Similarity-based algorithms define a function, usually based on the topology of the graph, to assign a
similarity score between every pair of nodes in the network. These scores can be used as input for a binary classifier that predicts
the existence or non-existence of links between nodes. We choose five similarity-based algorithms: (i) Common Neighbors (CN)-
(Newman, 2001), (ii) Adamic–Adar Index (AA)-(Adamic and Adar, 2003), (iii) Katz Index (Katz)-(Katz, 1953), (iv) Random walk
with restart (RWR), based on PageRank algorithm (Brin and Page, 1998), and (v) Local Path Index (LPI)-(Zhou et al., 2009). The first
two indexes use the local topology to calculate scores whereas Katz and RWR are global methods that use all available information
in the graph; LPI is based on a mixed strategy. These algorithms can be readily implemented in e.g. R for link prediction (Kolaczyk
and Csárdi, 2014; Bojanowski and Chrol, 2018). The selected methods are originally defined for single-layered non-dynamic graphs.
We will therefore apply the algorithms layerwise, but extending them to a dynamic setting, as follows. Let score𝑘𝑖𝑗 (𝑡) be the similarity
core between nodes 𝑖, 𝑗 at layer 𝑘 and time 𝑡. A straightforward way to account for time dynamics is to use a simple exponential
moother,

𝑆𝑘𝑖𝑗 (𝑡) = 𝛼 score𝑘𝑖𝑗 (𝑡) + (1 − 𝛼) 𝑆𝑘𝑖𝑗 (𝑡 − 1), 𝑡 > 1, (11)

𝑆𝑘𝑖𝑗 (1) = score𝑘𝑖𝑗 (1) (12)

where 𝛼 ∈ [0, 1] is the smoothing parameter. The recursion above can be applied on each layer until we obtain 𝑆𝑘(𝑡 = 𝑡36), a matrix
of scores that summarizes the information contained in the training data on that layer, and that can be used to classify/predict the
links on the test graphs 𝐴𝑘(𝑡 = 𝑡37,… , 𝑡40). In Fig. 14 we present the ROC curves and the area under the curve (AUC) for the DMN
and DMBN with 9 blocks (DMBN9), and for the similarity-based prediction algorithms with 𝛼 = 1, i.e. a random-walk. We see that
the classifiers based on the global indicators (Katz and RWR) are almost as good as the DMN. Local and quasi-local models (CN, AA,
and LPI) are faster alternatives comparatively, but with a reduced predictive performance. Table 8 presents evaluation metrics for
all algorithms at two different levels of 𝛼. The classification threshold for each model has been chosen to maximize the F1 measure.
Overall, the DMN and the Katz index are the best probabilistic and similarity-based classifiers, respectively. Probabilistic models
yield better results in term of precision/recall and the combined F1 measure. The classification performance of similarity-based
algorithms improves as their scores take more information from the recent graphs in the series due to the smoothing. Still, while
some of the similarity-based methods are competitive as pure link-prediction devices, their outcome (i.e. the score matrices) can be
difficult to interpret, and the insights from such models are quite limited. As we have shown in the two case studies, probabilistic
multilayer dynamic models have the important advantage of offering, among other possibilities, probabilistic forecasts, temporal
network analysis from inferred latent coordinates, and community detection.

5.4. Some practical implications in air transportation

The network predictions provided by the DMN and DMBN models can have a variety of applications. From a regulatory
perspective, we can mention merger screening. In a post-covid setting with further concentration predicted for the airline
sector (Budd et al., 2020), major consolidations in the US had often involved thousands of city-pair markets that must be screened
in order to identify those where the merger would lead to an excessive increase in monopolistic power. These models can predict the
system-wide evolution of market shares and route concentration post-merger to pinpoint the main routes of concern for competition
authorities, who might then formulate a series of remedial divestitures to mitigate the anticompetitive threats or reject the merger
altogether. From a network planning perspective, our model can aid in the identification of new or potentially underserved routes,
a process that would require the addition of demand and supply factors into the prediction. These would include, among others,
price levels, catchment areas, substitute travel modes, and even the evolving nature of aircraft technology as it affects fuel efficiency
and break-even load factors.

We have obtained promising results both in terms of model expressiveness and prediction power by focusing on three full-service-
carriers plus Southwest within the US market, but these may not generalize to a different case study. The application to different
15
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Fig. 14. ROC curves for probabilistic and similarity-based link prediction methods. The numbers in parenthesis are the areas under the curve (AUC).

Table 8
Classification metrics for probabilistic and similarity-based link prediction methods, with 𝛼 as temporal smoothing
parameter. Best model is indicated in bold font, and runner-up in parenthesis.
Model (𝛼 = 1) Precision Recall 𝐹1 AUC

DMN (0.933) 0.950 0.941 0.984
DMBN - 9 blocks 0.855 (0.914) 0.884 0.948
Common neighbors 0.441 0.620 0.515 0.846
Adamic–Adar 0.526 0.590 0.557 0.858
Katz index 0.936 0.913 (0.924) 0.979
Random walk restart 0.908 0.905 0.907 (0.983)
Local path index 0.566 0.678 0.617 0.895

Model (𝛼 = 0.4) Precision Recall 𝐹1 AUC

DMN (0.933) 0.950 0.941 0.984
DMBN - 9 blocks 0.855 0.914 0.884 0.948
Common neighbors 0.511 0.577 0.542 0.855
Adamic–Adar 0.519 0.606 0.559 0.863
Katz index 0.945 0.915 (0.930) 0.992
Random walk restart 0.895 (0.922) 0.908 (0.988)
Local path index 0.564 0.673 0.613 0.897

with the corresponding sacrifice of computational time, would be needed to properly characterize the networks of low-cost carriers in
the US, with the added challenge, in terms of accuracy, of training the model to account for the operation of narrow-body aircraft
by LCCs like Spirit or Frontier on relatively thinner coast-to-coast routes (Soyk et al., 2018). An additional level of complexity
would be present if applying the model to the less concentrated European airline market, where most big carriers operate single or
dual-hub strategies and there is more integration with high-speed rail, bringing both competition and collaboration opportunities
to air carriers and thus playing a key role in shaping the multilayer network dynamics.

6. Conclusion

We present dynamic multilayer network methods with applications to transportation networks due to their potential to model and
orecast time series of complex graphs. Flexible time series analysis is obtained by modeling the probability of edges between vertices
hrough latent Gaussian processes. The block-based extension is natural for many real networks, such as transportation networks,
here community structure naturally arises, and makes it possible to substantially improve the scaling of Bayesian inference
lgorithms to larger networks. Specifically, the models have the potential to enhance the analysis of transportation networks due to
heir ability to: (i) capture the dynamic, multi-layered nature of most transport networks, (ii) model both endogenous and exogenous
ffects underlying such dynamics, (iii) perform out-of-sample network forecasting, and (iv) scale to reasonably large problems. The
odels and Bayesian inference methodology are illustrated on a sample of 10-year quarterly data from four major US airlines:
merican, Delta, United/Continental and Southwest.

We take advantage from the fact that important network restructuring and mergers within the US air transportation system
16

ook place during the sample period (2009–2018), and assess the ability of the models to reflect those changes. Results show how
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the estimated latent parameters from the models are related to the airlines’ connectivity dynamics, reflecting e.g. the entrance of
Southwest into Atlanta after its merger with AirTran (2011), or its expansion at Dallas Love-Field in 2014. We show also how
the extended model is able to capture the hub-and-spoke nature of the air transport network, and to project the entire multilayer
graph into the future for out-of-sample full network forecasts, which differs from the current practice of visual analysis of static
topological indicators. The stochastic blockmodeling allows for a time-series clustering of the airports’ connectivity dynamics, and
the identification of relevant communities, while keeping estimation times within reasonable limits.

Several interesting extensions of the model are possible. For example, explicit modeling of three-way dependencies, which are
ommon in e.g. air transportation. Extending the model to accommodate exogenous network covariates or layer-wise stochastic
locks is straightforward. Better methods for handling label-switching (Celeux et al., 2019) in multi-layered networks would make
t easier to interpret some aspects of the extended model’s results. For very large network problems, variational approximations
ithin the Pólya-Gamma framework (Zhou et al., 2012) may be a good strategy to reduce estimation times.
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Appendix A. Normal approximation of the Pólya-Gamma variables

The moment generating function (Polson et al., 2013) is defined as

𝑚𝜔(𝑡) = ∫

∞

0
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Mean and variance can be readily obtained through the first two moments
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Var[𝜔] = E[𝜔2] − E2[𝜔] =
𝑏(𝛼2 − 1)

4𝑐2
+ 𝑏𝛼

2𝑐3
(A.9)

Fig. A.15 present several Pólya-Gamma distributions with large shape parameter 𝑏, and their moment-matching Normal
approximation using (A.4), (A.9). For very large 𝑏 and/or 𝑐 computations should be performed in logarithmic scale to avoid
numerical overflow.
17
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Fig. A.15. Four Pólya-Gamma distributions (histograms), and their Normal approximations (red lines). Sample size is 106.

Appendix B. Gibbs sampler

B.1. Pólya-Gamma data augmentation

The proposed Gibbs sampler involves the Pólya-Gamma data augmentation trick in Polson et al. (2013). A random variable
𝜔 ∈ R+ is said to have a Pólya-Gamma distribution, 𝜔 ∼ 𝑃𝐺(𝑏, 𝑐) with parameters 𝑏 ∈ R+ and 𝑐 ∈ R, if

𝜔
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The relation between a Binomial likelihood and the Pólya-Gamma distribution is given by the following two key results in Polson
et al. (2013)

(𝑒𝜓 )𝑎
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∼ 𝑃𝐺(𝑏, 𝜓). (B.4)

To see the connection to the binomial model, note that the contribution to the likelihood of each observation in the model
𝑦𝑖 ∼ Binomial(𝑛𝑖, 𝜋𝑖) with 𝜓𝑖 = logit(𝜋𝑖) = 𝒙𝑇𝑖 𝜷 is

𝑝(𝑦𝑖|𝜷, 𝑥𝑖) =
exp(𝒙𝑇𝑖 𝜷)

𝑦𝑖
[

1 + exp(𝒙𝑇𝑖 𝜷)
]𝑛𝑖
. (B.5)

sing Eq. (B.3) this can be expressed as

𝑝(𝑦𝑖|𝜷, 𝑥𝑖) ∝ exp(𝜅𝑖𝒙𝑇𝑖 𝜷)∫
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2∕2)𝑝(𝜔𝑖|𝑛𝑖, 0) (B.6)

where 𝜅𝑖 = 𝑦𝑖 − 𝑛𝑖∕2 and 𝜔𝑖 ∼ 𝑃𝐺(𝑛𝑖, 0). By conditioning on the Pólya-Gamma variables 𝝎 = 𝜔1,… , 𝜔𝑁 using Eq. (B.4), direct
application of Bayes’ theorem yield the posterior for 𝜷,

𝑝(𝜷|𝝎, 𝒚, 𝑋) ∝ 𝑝(𝜷)
𝑁
∏

𝑝(𝑦𝑖|𝜷, 𝜔𝑖, 𝑥𝑖) = 𝑝(𝜷)
𝑁
∏

exp(𝜅𝑖𝒙𝑇𝑖 𝜷 − 𝜔𝑖(𝒙𝑇𝑖 𝜷)
2∕2) ∝ 𝑝(𝜷) exp(−1 (𝒛 −𝑋𝜷)𝑇𝛺(𝒛 −𝑋𝜷)), (B.7)
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which is the posterior for a Gaussian linear regression with response 𝒛, mean 𝑋𝜷 and known covariance matrix 𝛺−1, where
𝒛 = (𝜅1∕𝜔1,… , 𝜅𝑁∕𝜔𝑁 ) and 𝛺 = diag(𝝎). Using the prior 𝜷 ∼  (𝝁0, 𝛴0), the Pólya-Gamma method for the Binomial model therefore
results in a two-step Gibbs sampler that alternates between

𝜔𝑖|𝜷, 𝑋 ∼ 𝑃𝐺(𝑛𝑖,𝒙𝑇𝑖 𝜷) (B.8a)

𝜷|𝑋, 𝒚,𝝎 ∼  (𝝁𝜔, 𝛴𝜔) (B.8b)

where 𝝁𝜔 = 𝛴𝜔(𝑋𝑇 𝜅 + 𝛴−1
0 𝝁𝟎), and 𝛴𝜔 = (𝑋𝑇𝛺𝑋 + 𝛴−1

0 )−1.

.2. Updating steps

. Update the block probabilities
Compute the clustering quantities given the current assignments 𝑧
𝑛𝑝 =

∑𝑁
𝑖=1 I(𝑧𝑖 = 𝑝), for all 𝑝 = 1,… , 𝐵

𝑛𝑘𝑝𝑞(𝑡) = 𝑛𝑝𝑛𝑞 − 𝑛𝑝I(𝑝 = 𝑞), for all {𝑝, 𝑞} ∈ {1,… , 𝐵}, 𝑡 = 𝑡1,… , 𝑡𝑇 , 𝑘 = 1,… , 𝐾
𝑦𝑘𝑝𝑞(𝑡) =

∑∑

𝐴𝑘𝑖𝑗 (𝑡)
{𝑖,𝑗}∶𝑧𝑖=𝑝,𝑧𝑗=𝑞

, for all {𝑝, 𝑞} ∈ {1,… , 𝐵}, 𝑡 = 𝑡1,… , 𝑡𝑇 , 𝑘 = 1,… , 𝐾

Sample the vector of block probabilities 𝜂1,… , 𝜂𝐵
𝜂|− ∼ Dirichlet(𝛼1 + 𝑛1,… , 𝛼𝐵 + 𝑛𝐵)

2. Generate the Pólya-Gamma variables
Sample the augmented data 𝜔𝑘𝑝𝑞(𝑡)
for each time 𝑡 = 𝑡1,… , 𝑡𝑇 , layer 𝑘 = 1,… , 𝐾 and block pair {𝑝, 𝑞} ∈ {1,… , 𝐵} do

if 𝑝 = 𝑞 then 𝑐 = 𝜇𝑘𝑝 (𝑡) +
∑𝑅
𝑟=1 �̄�𝑝𝑟(𝑡) else 𝑐 = 𝜇(𝑡) + �̄�⊺𝑝(𝑡)�̄�𝑞(𝑡) + 𝑥
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𝑝 (𝑡)𝑥𝑘𝑞 (𝑡)

Let 𝑏 = 𝑛𝑘𝑝𝑞(𝑡) and 𝛼 = tanh(0.5𝑐)

if 𝑏 < 100 then 𝜔𝑘𝑝𝑞(𝑡)|− ∼ 𝑃𝐺(𝑏, 𝑐) else 𝜔𝑘𝑝𝑞(𝑡)|− ∼ 
(

𝑏
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)

end for

3. Update the between-block dynamic mean
Sample the vector 𝜇(𝑡) = [𝜇(𝑡1),… , 𝜇(𝑡𝑇 )]⊺ from
𝜇|− ∼ 𝑇 (𝜇𝜇 , 𝛴𝜇)
𝛴𝜇 =

[

diag
{

∑𝐾
𝑘=1

∑𝐵
𝑝=2

∑𝑝−1
𝑞=1 𝜔

𝑘
𝑝𝑞(𝑡1),… ,

∑𝐾
𝑘=1

∑𝐵
𝑝=2

∑𝑝−1
𝑞=1 𝜔

𝑘
𝑝𝑞(𝑡𝑇 )

}

+𝐾−1
𝜇

]

𝜇𝜇 = 𝛴−1
𝜇

⎡

⎢

⎢

⎢

⎣

∑𝐾
𝑘=1

∑𝐵
𝑝=2

∑𝑝−1
𝑞=1{𝑦

𝑘
𝑝𝑞(𝑡1) − 𝑛

𝑘
𝑝𝑞(𝑡1)∕2 − 𝜔

𝑘
𝑝𝑞(𝑡1)[�̄�

⊺
𝑝(𝑡1)�̄�𝑞(𝑡1) + 𝑥

𝑘⊺
𝑝 (𝑡1)𝑥𝑘𝑞 (𝑡1)]}

⋮
∑𝐾
𝑘=1

∑𝐵
𝑝=2

∑𝑝−1
𝑞=1{𝑦

𝑘
𝑝𝑞(𝑡𝑇 ) − 𝑛

𝑘
𝑝𝑞(𝑡𝑇 )∕2 − 𝜔

𝑘
𝑝𝑞(𝑡𝑇 )[�̄�

⊺
𝑝(𝑡𝑇 )�̄�𝑞(𝑡𝑇 ) + 𝑥

𝑘⊺
𝑝 (𝑡𝑇 )𝑥𝑘𝑞 (𝑡𝑇 )]}

⎤

⎥

⎥

⎥

⎦

4. Update the cross-layer block coordinates
Sample the vectors �̄�𝑝(𝑡1),… , �̄�𝑝(𝑡𝑇 ) for every block and layer
for each block 𝑝 = 1,… , 𝐵 do

Block-sample {�̄�𝑝(𝑡1),… , �̄�𝑝(𝑡𝑇 )} conditioned on {�̄�𝑞(𝑡) ∶ 𝑝 ≠ 𝑞, 𝑡 = 𝑡1,… , 𝑡𝑇 }
Let �̄�𝑝 = {�̄�𝑝1(𝑡1),… , �̄�𝑝1(𝑡𝑇 ),… , �̄�𝑝𝑅(𝑡1),… , �̄�𝑝𝑅(𝑡𝑇 )}
Let 𝑥𝑘𝑝 = {𝑥𝑘𝑝1(𝑡1),… , 𝑥𝑘𝑝1(𝑡𝑇 ),… , 𝑥𝑘𝑝𝐻 (𝑡1),… , 𝑥𝑘𝑝𝐻 (𝑡𝑇 )}
for each layer 𝑘 = 1,… , 𝐾 and 𝑞 < 𝑝 do

Define a Bayesian logistic regression with �̄�𝑝 as coefficient vector like
𝑦𝑘𝑝 ∼ Binomial(𝑛𝑘𝑝 , 𝜋

𝑘
𝑝 ), logit(𝜋𝑘𝑝 ) = �̃� + �̄�−𝑝�̄�𝑝 +𝑋𝑘

−𝑝𝑥
𝑘
𝑝

𝑦𝑘𝑝 = [
⋃

𝑝≠𝑞
{𝑦𝑘𝑝𝑞(𝑡1),… , 𝑦𝑘𝑝𝑞(𝑡𝑇 )}, {𝑦

𝑘
𝑝𝑝(𝑡1),… , 𝑦𝑘𝑝𝑝(𝑡𝑇 )}]

⊺

𝑛𝑘𝑝 = [
⋃

𝑝≠𝑞
{𝑛𝑘𝑝𝑞(𝑡1),… , 𝑛𝑘𝑝𝑞(𝑡𝑇 )}, {𝑛

𝑘
𝑝𝑝(𝑡1),… , 𝑛𝑘𝑝𝑝(𝑡𝑇 )}]

⊺

𝜋𝑘𝑝 = [
⋃

𝑝≠𝑞
{𝜋𝑘𝑝𝑞(𝑡1),… , 𝜋𝑘𝑝𝑞(𝑡𝑇 )}, {𝜋

𝑘
𝑝𝑝(𝑡1),… , 𝜋𝑘𝑝𝑝(𝑡𝑇 )}]

⊺

�̃� = [𝟏𝐵−1 ⊗ 𝜇, 𝜇𝑘𝑝 ]
⊺

The prior is �̄�𝑝 ∼ 𝑇×𝑅(0, diag(𝜏−11 ,… , 𝜏−1𝑅 )⊗𝐾�̄�). Design matrices �̄�−𝑝 and
�̄�𝑘

−𝑝 contain regressors chosen respectively from �̄�𝑝 and 𝑥𝑘𝑝 to fulfill Eq. (8).
𝛺𝑘
𝑝 is a diagonal matrix with the corresponding Pólya-Gamma variables.

end for
Using the above specification the update of �̄�𝑝 becomes
�̄�𝑝|− ∼ 𝑇×𝑅(𝜇�̄�𝑝 , 𝛴�̄�𝑝 )

𝛴�̄�𝑝 =
[

�̄�⊺
−𝑝(

∑𝐾
𝑘=1𝛺

𝑘
𝑝 )�̄�−𝑝 + diag(𝜏1,… , 𝜏𝑅)⊗𝐾−1

�̄�

]

𝜇�̄�𝑝 = 𝛴−1
�̄�𝑝

[

�̄�⊺
−𝑝(

∑𝐾
𝑘=1{𝑦

𝑘
𝑝 − 𝑛

𝑘
𝑝 (𝑡)∕2 −𝛺

𝑘
𝑝 [�̃� +𝑋𝑘

−𝑝𝑥
𝑘
𝑝 ]})

]

19
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5. Update the within-layer coordinates

Sample the vectors 𝑥𝑘𝑝 (𝑡1),… , 𝑥𝑘𝑝 (𝑡𝑇 ) for every block and layer
for each layer 𝑘 = 1,… , 𝐾 do

for each block 𝑝 = 1,… , 𝐵 do
Block-sample {𝑥𝑘𝑝 (𝑡1),… , 𝑥𝑘𝑝 (𝑡𝑇 )} conditioned on {𝑥𝑘𝑞 (𝑡) ∶ 𝑝 ≠ 𝑞, 𝑡 = 𝑡1,… , 𝑡𝑇 }
Adapting Step 4 to fulfill Eq. (8) yields the following update for 𝑥𝑘𝑝
𝑥𝑘𝑝 |− ∼ 𝑇×𝐻 (𝜇𝑥𝑘𝑝 , 𝛴𝑥𝑘𝑝 )

𝛴𝑥𝑘𝑝 =
[

𝑋𝑘⊺
−𝑝𝛺𝑘

𝑝𝑋
𝑘
−𝑝 + diag(𝜏𝑘1 ,… , 𝜏𝑘𝐻 )⊗𝐾−1

𝑥

]

𝜇𝑥𝑘𝑝 = 𝛴−1
𝑥𝑘𝑝

[

𝑋𝑘⊺
−𝑝(𝑦𝑘𝑝 − 𝑛

𝑘
𝑝 (𝑡)∕2 −𝛺

𝑘
𝑝 [𝟏𝐵−1 ⊗ 𝜇 + �̄�−𝑝�̄�𝑝])

]

end for
end for

6. Update the cross-layer shrinkage parameters

Sample the gamma quantities that define the shrinkage parameters 𝜏1,… , 𝜏𝑅

𝛿1|− ∼ Gamma

(

𝑎1 +
𝐵×𝑇×𝑅

2 , 1 + 0.5
𝑅
∑

𝑚=1
𝜃(−1)𝑚

𝐵
∑

𝑝=1
�̄�⊺𝑝𝑚𝐾−1

�̄� �̄�𝑝𝑚

)

𝛿𝑟≥2|− ∼ Gamma

(

𝑎2 +
𝐵×𝑇×(𝑅−𝑟+1)

2 , 1 + 0.5
𝑅
∑

𝑚=𝑟
𝜃(−𝑟)𝑚

𝐵
∑

𝑝=1
�̄�⊺𝑝𝑚𝐾−1

�̄� �̄�𝑝𝑚

)

where 𝜃(−𝑟)𝑚 =
𝑚
∏

𝑓=1,𝑓≠𝑟
𝛿𝑓 for 𝑟 = 1,… , 𝑅 and �̄�𝑝𝑚 = {�̄�𝑝𝑚(𝑡1),… , �̄�𝑝𝑚(𝑡𝑇 )}⊺

7. Update the within-layer shrinkage parameters

for each layer 𝑘 = 1,… , 𝐾 do
Sample the gamma quantities that define the within-layer 𝜏𝑘1 ,… , 𝜏𝑘𝐻

𝛿𝑘1 |− ∼ Gamma

(

𝑎1 +
𝐵×𝑇×𝐻

2 , 1 + 0.5
𝐻
∑

𝑙=1
𝜃(−1)𝑙

𝐵
∑

𝑝=1
𝑥𝑘⊺𝑝𝑙𝐾

−1
𝑥 𝑥𝑘𝑝𝑙

)

𝛿𝑘ℎ≥2|− ∼ Gamma

(

𝑎2 +
𝐵×𝑇×(𝐻−ℎ+1)

2 , 1 + 0.5
𝐻
∑

𝑙=1
𝜃(−ℎ)𝑙

𝐵
∑

𝑝=1
𝑥𝑘⊺𝑝𝑙𝐾

−1
𝑥 𝑥𝑘𝑝𝑙

)

where 𝜃(−ℎ)𝑙 =
𝑙
∏

𝑓=1,𝑓≠ℎ
𝛿𝑘𝑓 for ℎ = 1,… ,𝐻 and 𝑥𝑘𝑝𝑙 = {𝑥𝑘𝑝𝑙(𝑡1),… , 𝑥𝑘𝑝𝑙(𝑡𝑇 )}

⊺

end for

8. Update the within-block dynamic mean

Sample the vector 𝜇𝑘𝑝 (𝑡) = [𝜇𝑘𝑝 (𝑡1),… , 𝜇𝑘𝑝 (𝑡𝑇 )]
⊺ for every block and layer

for each block 𝑝 = 1,… , 𝐵 and layer 𝑘 = 1,… , 𝐾 do
𝜇𝑘𝑝 |− ∼ 𝑇 (𝜇𝜇𝑝 , 𝛴𝜇𝑝 )

𝛴𝜇𝑝 =
[

diag
{

𝜔𝑘𝑝𝑝(𝑡1),… , 𝜔𝑘𝑝𝑝(𝑡𝑇 )
}

+𝐾−1
𝜇𝑝

]

𝜇𝜇𝑝 = 𝛴−1
𝜇𝜇𝑝

⎡

⎢

⎢

⎢

⎣

𝑦𝑘𝑝𝑝(𝑡1) − 𝑛
𝑘
𝑝𝑝(𝑡1)∕2 − 𝜔

𝑘
𝑝𝑝(𝑡1)

∑𝑅
𝑟=1 �̄�𝑝𝑟(𝑡)

⋮
𝑦𝑘𝑝𝑝(𝑡𝑇 ) − 𝑛

𝑘
𝑝𝑝(𝑡𝑇 )∕2 − 𝜔

𝑘
𝑝𝑝(𝑡𝑇 )

∑𝑅
𝑟=1 �̄�𝑝𝑟(𝑡)

⎤

⎥

⎥

⎥

⎦

end for

9. Compute posterior block probabilities

Obtain the posterior block probabilities 𝜋𝑘𝑝𝑞(𝑡)
for each time 𝑡 = 𝑡1,… , 𝑡𝑇 , layer 𝑘 = 1,… , 𝐾 and block pair {𝑝, 𝑞} ∈ {1,… , 𝐵} do

if 𝑝 ≠ 𝑞 then
𝜋𝑘𝑝𝑞(𝑡) =

[

1 + exp{−𝜇(𝑡) − �̄�⊺𝑝(𝑡)�̄�𝑞(𝑡) − 𝑥
𝑘⊺
𝑝 (𝑡)𝑥𝑘𝑞 (𝑡)}

]−1

else
𝜋𝑘𝑝𝑝(𝑡) =

[

1 + exp{−𝜇𝑘𝑝 (𝑡) −
∑𝑅
𝑟=1 �̄�𝑝𝑟(𝑡)}

]−1

end if
end for
20
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1

A

10. Update the block assignments
Sample the latent block assignments 𝑧 sequentially.
Denote 𝑧∗𝑖 if the assignment of vertex 𝑖 has been already updated, and 𝑧𝑖 otherwise.
for each vertex 𝑖 = 1,… , 𝑁 do

Let �̃� = [𝑧∗1 ,… , 𝑧∗𝑖−1, 𝑧𝑖+1,… , 𝑧𝑁 ]
for each block 𝑝 = 1,… , 𝐵 do

𝛾𝑖𝑝 = 𝑝(𝑧𝑖 = 𝑝|−) ∝ 𝜂𝑝
𝑡𝑇
∏

𝑡=𝑡1

𝐾
∏

𝑘=1

𝐵
∏

𝑞=1
[𝜋𝑘𝑝𝑞(𝑡)]

∑

𝑗≠𝑖∶�̃�𝑗=𝑞
𝐴𝑘𝑖𝑗 (𝑡)

[1 − 𝜋𝑘𝑝𝑞(𝑡)]

∑

𝑗≠𝑖∶�̃�𝑗=𝑞
1−𝐴𝑘𝑖𝑗 (𝑡)

end for
𝑧𝑖|− ∼ Categorical(𝛾𝑖)

end for
Note: The pseudocode above describes a complete update of all 𝑧𝑖’s though we strongly recommend random-scan Gibbs sampling
to alleviate the computational burden. In a random-scan the outer loop will iterate only over the 𝑧𝑖’s randomly selected at a given
MCMC step, and the vector �̃� will not have a sequential structure but need to be defined appropriately. All other calculations
remain the same.

1. [Optional] Edge prediction/imputation
Sample the unobserved edges from 𝜋𝑘𝑝𝑞(𝑡

∗).
Let 𝑡∗ ⊂ 𝑡 be the unobserved time intervals, and denote the unobserved
part of the data as 𝐴𝑢 = 𝐴𝑘𝑖𝑗 (𝑡

∗).
for each time 𝑡∗ ∈ {𝑡∗1 ,… , 𝑡∗𝑇 ∗}, layer 𝑘 = 1,… , 𝐾 and vertex pair {𝑖, 𝑗} ∈ {1,… , 𝑁} do

Impute the unobserved edges from 𝐴𝑢|− ∼ Bernoulli(𝜋𝑘𝑧𝑖𝑧𝑗 (𝑡
∗))

end for

ppendix C. Notation

Symbol Meaning
𝑁 ∈ N Number of network nodes/vertices
{𝑖, 𝑗} = 1,… , 𝑁 Indices for the network nodes
𝑇 ∈ N Number of time intervals
𝑡 = 𝑡1,… , 𝑡𝑇 Index for the time intervals
𝐾 ∈ N Number of network layers
𝑘 = 1,… , 𝐾 Index for the network layers
𝐵 ∈ N Number of network blocks/clusters
{𝑝, 𝑞} = 1,… , 𝐵 Indices for the network blocks
𝐴𝑘𝑖𝑗 (𝑡) ∈ {0, 1} Adjacency matrix at time 𝑡 and layer 𝑘
𝜃𝑘𝑖𝑗 (𝑡) ∈ [0, 1] Matrix of edge probabilities at time 𝑡 and layer 𝑘
𝜋𝑘𝑝𝑞(𝑡) ∈ [0, 1] Matrix of block probabilities at time 𝑡 and layer 𝑘
𝜓𝑘𝑝𝑞(𝑡) ∈ R Logit of the block probabilities at time 𝑡 and layer 𝑘
�̄�𝑝𝑟(𝑡) ∈ R Latent between-layer coordinate 𝑟, for block 𝑝 at time 𝑡
𝑥𝑘𝑝ℎ(𝑡) ∈ R Latent within-layer coord. ℎ, for block 𝑝, at time 𝑡 and layer 𝑘
𝜇(𝑡) ∈ R Latent between-block intercept at time 𝑡
𝜇𝑘𝑝 (𝑡) ∈ R Latent within-block intercept for block 𝑝, at time 𝑡 and layer 𝑘
𝜏𝑟 ∈ R+ Shrinkage parameter for the latent between-layer coordinate 𝑟
𝜏𝑘ℎ ∈ R+ Shrinkage for the latent within-layer coordinate ℎ at layer 𝑘
𝛿𝑟 ∈ R+ Gamma for shrinkage parameter 𝜏𝑟
𝛿𝑘ℎ ∈ R+ Gamma for shrinkage parameter 𝜏𝑘ℎ
{𝑎1, 𝑎2} ∈ R+ Shape hyperparameters for the shrinkage Gammas
𝑧𝑖 ∈ {0,… , 𝐵} Block/cluster assignment vector
𝜂𝑝 ∈ [0, 1] Prior probability that a node belongs to block 𝑝
𝜶 = {𝛼1,… , 𝛼𝐵} ∈ [0, 1] Concentration hyperparameter vector for 𝜂
𝛾𝑖𝑝 = 𝑝(𝑧𝑖 = 𝑝) ∈ [0, 1] Posterior probability that node 𝑖 belongs to block 𝑝
𝑛𝑝 ∈ N Number of vertices in block 𝑝, such that ∑𝐵

𝑝=1 𝑛𝑝 = 𝑁
𝑛𝑘𝑝𝑞(𝑡) ∈ N Matrix of potential edges b/w blocks {𝑝, 𝑞}, at time 𝑡, layer 𝑘
𝑦𝑘𝑝𝑞(𝑡) ∈ N Matrix of actual edges b/w blocks {𝑝, 𝑞}, at time 𝑡, layer 𝑘
𝜔𝑘𝑝𝑞(𝑡) ∈ R+ Pólya-Gamma variable for block pair {𝑝, 𝑞}, at time 𝑡, layer 𝑘
21
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Symbol Meaning

𝛺 = diag(𝜔𝑘𝑝𝑞(𝑡)) ∈ R+ Matrix with diagonal Pólya-Gamma variables
𝑘𝑓 (𝑡, 𝑡′) ∈ R+ Kernel function for latent variable 𝑓
𝑙 ∈ R+ Lengthscale for a Radial-Basis-Function kernel
𝐾𝑓 ∈ R+ Gramian matrix from the kernel 𝑘𝑓 (𝑡, 𝑡′)
𝑇 ∗ ∈ N Number of unobserved time intervals, 𝑇 ∗ < 𝑇
𝑡∗ = 𝑡∗1 ,… , 𝑡∗𝑇 ∗ Index for the unobserved time intervals, 𝑡∗ ⊂ 𝑡
𝐴𝑢 = 𝐴𝑘𝑖𝑗 (𝑡

∗) ∈ {0, 1} Unobserved adjacency matrices
𝐷𝑘(𝑡) ∈ [0, 1] Network density at time 𝑡 and layer 𝑘
𝑑𝑘𝑖 (𝑡) ∈ N Degree of the vertex 𝑖 at time 𝑡 and layer 𝑘
𝑆𝑘𝑖𝑗 (𝑡) ∈ R Matrix of smoothed similarity scores at time 𝑡 and layer 𝑘

Appendix D. IATA airport codes

IATA Airport IATA Airport

ABQ Albuquerque Intl. MCO Orlando Intl.
ALB Albany Intl. MDW Chicago Midway Intl.
ATL Hartsfield-Jackson Atlanta Intl. MEM Memphis Intl.
AUS Austin Bergstrom Intl. MHT Manchester-Boston Regional
BDL Hartford Bradley Intl. MIA Miami Intl.
BHM Birmingham-Shuttlesworth Intl. MKE Milwaukee General Mitchell Intl.
BNA Nashville Intl. MSP Minneapolis-St Paul Intl.
BOI Boise Air Terminal MSY Louis Armstrong New Orleans Intl.
BOS Boston Logan Intl. OAK Metropolitan Oakland Intl.
BUF Buffalo Niagara Intl. OGG Kahului Airport
BUR Burbank Bob Hope OKC Oklahoma City
BWI Baltimore/Washington Intl. OMA Omaha Eppley Airfield
CHS Charleston AFB/Intl. ONT Ontario Intl.
CLE Cleveland-Hopkins Intl. ORD Chicago O’Hare Intl.
CLT Charlotte Douglas Intl. ORF Norfolk Intl.
CMH John Glenn Columbus Intl. PBI Palm Beach Intl.
CVG Cincinnati/Northern Kentucky Intl. PDX Portland Intl.
DAL Dallas Love Field PHL Philadelphia Intl.
DCA Ronald Reagan Washington National PHX Phoenix Sky Harbor Intl.
DEN Denver Intl. PIT Pittsburgh Intl.
DFW Dallas/Fort Worth Intl. PNS Pensacola Intl.
DTW Detroit Metro Wayne County PVD Providence Theodore Francis Green
ELP El Paso Intl. RDU Raleigh-Durham Intl.
EWR Newark Liberty Intl. RIC Richmond Intl.
FLL Fort Lauderdale-Hollywood Intl. RNO Reno/Tahoe Intl.
GEG Spokane Intl. RSW Fort Myers Southwest Florida Intl.
GRR Grand Rapids Gerald R. Ford Intl. SAN San Diego Intl.
HNL Honolulu Intl. SAT San Antonio Intl.
HOU Houston William P. Hobby SAV Savannah/Hilton Head Intl.
IAD Washington Dulles Intl. SDF Louisville Intl.-Standiford Field
IAH Houston George Bush Intl. SEA Seattle/Tacoma Intl.
IND Indianapolis Intl. SFO San Francisco Intl.
ISP Long Island MacArthur SJC Norman Y. Mineta San Jose Intl.
JAX Jacksonville Intl. SLC Salt Lake City Intl.
JFK New York John F. Kennedy Intl. SMF Sacramento Intl.
LAS Las Vegas McCarran Intl. SNA John Wayne Orange County
LAX Los Angeles Intl. STL St Louis Lambert Intl.
LGA New York La Guardia TPA Tampa Intl.
LIT Little Rock Clinton Nat. Adams Field TUL Tulsa Intl.
22

MCI Kansas City Intl. TUS Tucson Intl.
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