

Edinburgh Research Explorer

Semi-Automatic Construction of Text-to-SQL Dataset for Domain
Transfer
Citation for published version:
Li, T, Li, S & Steedman, M 2021, Semi-Automatic Construction of Text-to-SQL Dataset for Domain Transfer.
in S Oepen, K Sagae, R Tsarfaty, G Bouma, D Seddah & D Zeman (eds), Proceedings of the 17th
International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into
Enhanced Universal Dependencies (IWPT 2021). Association for Computational Linguistics (ACL),
Stroudsburg, PA, United States, pp. 38-49, The 17th International Conference on Parsing Technologies,
Bangkok, Thailand, 6/08/21. https://doi.org/10.18653/v1/2021.iwpt-1.4

Digital Object Identifier (DOI):
10.18653/v1/2021.iwpt-1.4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on
Parsing into Enhanced Universal Dependencies (IWPT 2021)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Feb. 2022

https://doi.org/10.18653/v1/2021.iwpt-1.4
https://doi.org/10.18653/v1/2021.iwpt-1.4
https://www.research.ed.ac.uk/en/publications/a2bec9d3-f44a-4f81-9ea7-d5e505118a40

Proceedings of the 17th International Conference on Parsing Technologies (IWPT 2021), pages 38–49
Bangkok, Thailand (online), August 6, 2021. ©2021 Association for Computational Linguistics

38

Semi-Automatic Construction of Text-to-SQL Data for Domain Transfer

Tianyi Li?, Sujian Li† and Mark Steedman?

?University of Edinburgh
†MOE Key Lab of Computational Linguistics, School of EECS, Peking University

tianyi.li@ed.ac.uk, lisujian@pku.edu.cn, steedman@inf.ed.ac.uk

Abstract

Strong and affordable in-domain data is a de-
sirable asset when transferring trained seman-
tic parsers to novel domains. As previous
methods for semi-automatically constructing
such data cannot handle the complexity of re-
alistic SQL queries, we propose to construct
SQL queries via context-dependent sampling,
and introduce the concept of topic. Along with
our SQL query construction method, we pro-
pose a novel pipeline of semi-automatic Text-
to-SQL dataset construction that covers the
broad space of SQL queries. We show that
the created dataset is comparable with expert
annotation along multiple dimensions, and is
capable of improving domain transfer perfor-
mance for SOTA semantic parsers.

1 Introduction

Due to the broad use of SQL in real-world
databases, the task of mapping natural language
questions to SQL queries (Text-to-SQL) has drawn
considerable attention. Several large-scale cross-
domain Text-to-SQL datasets have been manually
constructed and advanced the development of Text-
to-SQL semantic parsing (Zhong et al., 2017; Yu
et al., 2018).

While these datasets are built for domain-general
semantic parsing, current state-of-the-art (SOTA)
semantic parsers still suffer sharp performance drop
when generalising to unseen domains (Wang et al.,
2020; Guo et al., 2019; Zhang et al., 2019).

This could be attributed to the observation that
the mapping of Text-to-SQL vary vastly across dif-
ferent domains, particularly in terms of the expres-
sions of predicates1. It is very difficult for models
to generalize to those variations in a zero-shot fash-
ion. Thus, additional in-domain data is desirable
when applying semantic parsers to novel domains.

1An example illustrating such difference is presented in
Appendix A

Unfortunately, the cost and scarcity of super-
vised data have been a major barrier for the wider
application of the Text-to-SQL task, as creat-
ing pairs of natural language questions and SQL
queries is a complex task demanding expertise in
both SQL language and the specific domains. Take
the SPIDER dataset (Yu et al., 2018) for example,
10,181 Text-SQL pairs in 200 databases (from 138
domains) required 11 computer science graduates
to invest 1,000 human hours.

In semantic parsing, some semi-automatic
dataset construction methods have been proposed.
Wang et al. (2015) built logical forms composi-
tionally, converted them to rigid pseudo natural
language (Pseudo-NL) questions with rules, then
crowd-sourced those Pseudo-NL questions into NL
questions. Cheng et al. (2018) further broke down
the pseudo-NL questions into question sequences
to make them more digestible for crowd workers.

While these approaches shed light on the
methodology of semi-automatic construction of
semantic parsing datasets, applying them to collect
broad-coverage Text-to-SQL data for domain trans-
fer is not trivial. Firstly, SQL language has a much
larger variety of realistic queries than Lambda-DCS
logical forms (Liang, 2013), which were the focus
of earlier work. Blind enumeration-up-to-a-certain-
depth from a CFG is therefore intractable in size.
Secondly, Herzig and Berant (2019) have discov-
ered a mismatch between semi-automatically con-
structed queries and real-world queries, in terms of
the distribution of logical form and the style of nat-
ural language expressions. As achieving accuracy
gains in domain transfer demands high quality for
the in-domain data, narrowing these mismatches is
crucial.

In this paper, we propose a novel semi-automatic
pipeline for robust construction of Text-SQL pairs
as training data in novel domains, with broad se-
mantic coverage, from databases only. Following

39

Wang et al. (2015), our pipeline consists of three
parts: automatic SQL query construction, SQL-to-
PseudoNL conversion and PseudoNL-to-NL para-
phrasing. In SQL query construction, we use a
context-dependent probabilistic approach: first, we
choose a topic of interest, a random n-tuple of ta-
bles in the novel domain, such as Concerts and
Stadiums; then, we sample from a set of grammar
rules, at each step pruning the generation space
based on decision history. In SQL-to-PseudoNL
conversion, we follow Cheng et al. (2018) in break-
ing down constructed SQL queries with templates,
but also assign a “dominant concept” to topics to
simplify Pseudo-NL questions. In PseudoNL-to-
NL paraphrasing, we do crowd annotation, and pro-
vide crowd workers with various annotation scaf-
folds to collect quality NL questions. An example
through our pipeline is shown in Figure 1.

We show that by using schema-inspired topic
and context-dependent sampling instead of blind
enumeration, SQL queries analogous to real-world
queries can be constructed, and effective fine-tune
datasets for domain transfer can be built. Our ex-
periment shows that even a modest amount of our
data facilitates domain transfer across a range of se-
mantic parsers, raising accuracy in novel domains
by up to 1%2.

2 Related Work

Alternative Supervision To resolve the diffi-
culty in gathering supervised data for semantic
parsing, various methods have been proposed from
different perspectives.

Numerous approaches have explored distant su-
pervision to bypass the use of expensive anno-
tated data. Kwiatkowski et al. (2013); Berant et al.
(2013); Yao and Van Durme (2014); Berant and
Liang (2014) used question-answer pairs as super-
vision instead of logical form annotations; Reddy
et al. (2014) used web-scale corpora of descriptive
sentences, formalizing semantic parsing as a graph
matching problem. These methods perform well on
factoid questions; however, for more complex ques-
tions, it is harder to infer the underlying queries
from the answers alone.

Later on, semi-automatic data collection meth-
ods, which reduce the cost of annotation, have
been given considerable attention. Wang et al.

2Our code and data will be released at https:
//github.com/Teddy-Li/SemiAuto_Data_
Text_SQL

Figure 1: A example of the data construction pipeline,
from the topic of “concerts and stadiums” to the final
results: the SQL query and the paired natural language
question.

(2015) propose to compose logical forms by
combining sub-components through a grammar,
and translate the resulting trees into NL ques-
tions via rigid Pseudo-NL questions and crowd-
paraphrasing. Cheng et al. (2018) further replace
the Pseudo-NL questions with question sequences
to simplify the annotation for individual sentences.

While those approaches pioneered semi-
automatic data collection, the query construction
method based on exhaustive enumeration has its
weaknesses. Herzig and Berant (2019) showed
that there exists a significant mismatch between
the distributions of created logical forms and real
query logical forms, and between the language
style of paraphrases and real questions.

Text-to-SQL Text-to-SQL as a semantic pars-
ing task, has attracted increasing interest, where
multiple large-scale datasets have been released.
Zhong et al. (2017) created a large single-table
Text-to-SQL dataset, WikiSQL, from Wikipedia
entries, upon which many semantic parsers have
been trained, achieving high accuracies surpass-
ing 80% (Chang et al., 2020; Lyu et al., 2020;
Wang et al., 2018; Hwang et al., 2019; He et al.,
2019). Yu et al. (2018) proposed SPIDER, another
large-scale text-to-SQL dataset with multi-table
databases, much wider grammar coverage, and
more complex queries. It involves features includ-
ing GROUP-BY aggregation, ORDER-BY, nested
queries. This has made SPIDER a more realis-
tic, and also more challenging parsing task, with
SOTA semantic parsers achieving accuracies of
above 60%. (Guo et al., 2019; Wang et al., 2020).

Although SPIDER is considered a domain-
general semantic parsing dataset, semantic parsers

https://github.com/Teddy-Li/SemiAuto_Data_Text_SQL
https://github.com/Teddy-Li/SemiAuto_Data_Text_SQL
https://github.com/Teddy-Li/SemiAuto_Data_Text_SQL

40

trained on it still suffer a sharp performance drop
when generalizing to unseen domains3.

Thus, additional resource for domain transfer is
appealing. However, in this more complex multi-
table Text-to-SQL task, previous semi-automatic
dataset construction methods face an even greater
challenge. With multi-table SQL queries with
more complex clauses, exhaustive enumeration is
intractable in size and prone to mismatches.

More recently, various methods of Text-to-SQL
dataset construction have been proposed (Yu et al.,
2020; Zhong et al., 2020; Zhang et al., 2021), fur-
ther automating the SQL-to-NL step with neural
question generation. However, for query construc-
tion, they either do vanilla grammar-based SQL
query sampling (Zhang et al., 2021) or use tem-
plate sketches from existing datasets (Zhong et al.,
2020; Yu et al., 2020). On the other hand, we focus
instead on the context-dependent construction of
SQL queries that both generalize beyond existing
datasets and remain realistic.

3 Method

Our pipeline takes database schema as input, and
outputs a set of aligned pairs of NL questions and
SQL queries. We start by selecting a topic of inter-
est from the schema, followed by sampling produc-
tion rules from a concise SQL query grammar as
in figure 2, resulting in a created SQL query. We
then convert the query into a sequence of pseudo-
NL questions, and finally crowd-paraphrase the
sequence into a fluent NL question.

Specifically, we highlight two key features in
our SQL query construction algorithm, asserting
control to the process of sampling:

• We set the topic, namely the attended subset
of tables in database with an algorithm based
on Pagerank and Prim’s MST algorithm;

• At each step of sampling, we prune the space
of candidates by conditioning the distribution
of production rules heuristically on the deci-
sion history, namely ancestor nodes, left sib-
lings and left siblings’ descendants.

3.1 Setting the Topic
For each valid NL question, there is one topic refer-
ring to a concrete concept; similarly, for each real
SQL query, however complex, there is one topic,
the set of entities it attends to, typically specified in

3https://yale-lily.github.io/spider

Figure 2: The grammar for generating SQL queries,
listed iteratively. PREDEFINED TOPIC is the topic
set with method in section 3.1; terminal nodes are in
red, non-terminal nodes are in blue.

the ‘FROM’ clause, that should reflect some con-
crete concepts. For queries involving one table, the
topic is simply the table itself; for queries involving
multiple tables, which is an iconic feature of SPI-
DER, it is crucial to identify which tables should
be bound together and how.

Our approach here, which is a novel contribution
in this paper, takes inspiration from observations in
existing datasets. In SPIDER, 93.9% of ‘join-on’
clauses are between columns with foreign-key re-
lations, an additional 4.2% share the same name4.
This is consistent with our intuition about SQL
language, where join-on clauses are most closely
related to foreign-key relations. The popularity of
columns sharing the same name apart from foreign-
keys is partly a result of missing foreign-key rela-
tions and partly a reflection of the fact that columns
with the same names are likely relevant.

We therefore set up a table relation graph for
each database to model the probabilities that a topic
defined by join-on clauses is meaningful. When
two columns have a foreign key relation or share
the same name, we add an edge between their cor-
responding tables (foreign-key relations are given
higher weights for frequency). Multiple edges
between pairs of tables are reduced by sum. To
maintain the completeness of grammar space, we
assign a small ‘background radiation’ weight be-

4for examples of join-on relations with foreign-key and
same-name, please refer to Table 5 in Appendix

https://yale-lily.github.io/spider

41

tween each pair of tables.
The topic for each SQL query can then be mod-

elled as a sub-graph of this table relation graph, and
the transition distribution given previously chosen
tables can be modelled with a stochastic version of
Prim’s MST algorithm (Prim, 1957), formalized as:

p(tk|Φ) =
Σe∈edge(tk,Φ)e.w ∗ e.To.w
Σe∈edge(Φc,Φ)e.w ∗ e.To.w

(1)

where Φ = t1, ..., tk−1 is the set of previously cho-
sen tables, e.To is the candidate table, and e.w are
edges’ weight and e.To.w are Pagerank weights of
candidate tables.

With these transition probabilities, the problem
has been reduced to choosing the first table. To do
this, we need a prior distribution among all tables.
Again, we use Pagerank for this purpose: first, each
table is assigned an initial importance according to
their columns, then we do Pagerank on the table
relation graph with random-jump probability of 0.2
to get a context-aware importance among tables,
which is then normalized to a distribution. Note
that we turn edges to the reverse direction so that
weights would accumulate from the primary side
to the foreign side of foreign-key relations and the
foreign sides would be more likely chosen as the
first table, as we would hope.

In sum, as the first step of constructing an SQL
query from scratch, we settle its topic. We first
sample an ‘initial table’ from a prior distribution
of tables, which is ‘Concert’ in the case of our
example in Figure 1; then we iteratively expand to
other tables until halting after a random number of
steps5, which in the case of our example, results in
the value of Topic row in Figure 1.

3.2 Context-dependent Sampling

After sampling a topic from the table relation graph,
we move on to sampling the whole SQL query from
a concise SQL query grammar as in Figure 2. We
start from a root node Z and recursively dive down
until all branches have hit terminal nodes (colored
red in Figure 2). An example is shown in Figure 3.

We follow depth-first traversal order, and, to cre-
ate SQL query sets analogous to the queries in
real world, we use decision history as condition of
candidate distributions at each step. Namely, we

5in practice the maximum number of tables is limited to 4
following statistical observations.

Figure 3: An Example of Created SQL query “Se-
lect Count(Concert.concert id) from Concert join Sta-
dium on Concert.stadium id = Stadium.id where Sta-
dium.name = ‘Murrayfield’ group by Concert.year”
with tree structure.

assign a larger probability mass to relevant candi-
dates, avoid contradictory or redundant candidates,
thereby asserting control to clause structures.

On one hand, we want the resulting SQL queries
to make sense in the real world; on the other hand,
we don’t want their distribution to over-fit to ex-
isting domains. Thus, in practice we employ a
conservative heuristic approach, set up rules by col-
lecting patterns of ‘bad’ queries and other domain-
agnostic patterns from trials, and prune the space
by tuning distributions toward ‘good’ combinations
and against ‘bad’ ones.

For example, the following rule “A column is
more likely chosen to ‘where’ clause if it has been
chosen in the last ‘where’ clause”, tunes probabili-
ties against queries like select editors’ names from
journal committees and their corresponding jour-
nals and editors, whose age is smaller than 50 and
journal’s sales is larger than 1600, in favour of
those like select editors’ names whose age is larger
than 40 and smaller than 50.

Additionally, to reduce redundancy, we validate
all candidate clauses at each step by executing them
against the databases and collecting responses. We
compare query response before and after adding a
candidate clause, and screen out clauses that either
make no difference or result in empty responses.
We present the full set of rules in Appendix B.

3.3 From SQL to Pseudo-NL

Following previous work, to translate SQL queries
to NL questions, we first use a template-based ap-
proach to convert them to pseudo-NL questions.
Similarly to Cheng et al. (2018), we deterministi-
cally convert complex SQL queries into sequences

42

of pseudo-NL questions to make annotation easier.
In practice, with the more complex SQL clause
structures, we find it not ideal to split questions
into sequences as granular as Cheng et al. (2018),
because annotators again get lost in the labyrinth
of coreferences between questions in the same se-
quence. Thus we re-balance the trade-off between
the number of sentences and individual complexity
towards longer but fewer sentences, so it’s not too
hard for crowd workers to follow6.

Notably, while generally speaking SQL language
looks similar to natural language, its FROM clauses
with table-joining are very unnatural, and when in-
volving many tables, can make their literal transla-
tions impenetrable. Unlike in NL questions where
there is an integrated topic, in SQL language the
topic defined by ‘FROM’ clause could be long
and confusing. Take the example in Figure 1,
its topic ‘Concerts and Stadiums’ in the form of
SQL query becomes ‘Concert join Stadium on Con-
cert.stadium id = Stadium.id’. Worse still, multiple
tables also make the meaning of wildcard column
‘*’ confusing in clauses such as ‘select count(*)’.

Luckily, we have observed that for a pair of ta-
bles joined by foreign key relations, we can always
consider the foreign side as the ‘main’ table of the
pair, since it is the one from which the primary
side is extended. Therefore, we define this direc-
tionality for a topic sub-graph of the table relation
graph: primary −→ foreign as root-wise and for-
eign −→ primary as leaf-wise; for table pairs linked
by same-name relation, an edge is kept on both
directions.

Then, for multi-table queries, we assume that
the table(s) at the root-most position is the “dom-
inant concept” of the topic. Since sub-graphs are
predominantly trees, mostly there is one dominant
concept for each query. Whenever possible, we
replace all pseudo-NL phrases for the table joining,
such as the above, with expressions like ‘Concerts
and their corresponding Stadiums’, and replace
all phrases for wildcard column ‘count(*)’ with
expressions like ‘the number of Concerts’. This
way pseudo-NL questions are simplified, and the
annotation burden is eased.

3.4 From Pseudo-NL to NL

The last part of our pipeline involves crowd-
paraphrasing these pseudo-NL question sequences

6For a flowchart with details please see Figure 4 in Ap-
pendix.

into fluent NL questions. We recruit workers on the
Amazon Mechanical Turk (AMT) platform, present
tasks to AMT workers randomly and pay $0.25 for
each task completed.

In each task, we present the workers with a
pseudo-NL question sequence paired with exam-
ples from DB response. In pilot trials, we found
that annotators tend to keep fragments from the
pseudo-NL questions even when they’re clearly
rigid. We hypothesize that this is an exposure ef-
fect, that annotators’ exposure to the pseudo-NL
questions influenced their own style of expression.

As another of our novel contributions, we pose a
countermeasure to this exposure effect. First, we
engage annotators in the context of helping their
foreign friends sound local. Further, we present
a personalized example specific to each generated
SQL query. These personalized examples are taken
from expert annotated datasets in other domains,
but can give crowd workers a general idea of what
level of naturalness is expected and in which way.

Each personalized example involves a pseudo-
NL question sequence, an expert-annotated NL
question and an example DB response. To provide
the most relevant hint, we retrieve from existing
data the most similar entries to each created SQL
query, where similarity is measured as the cosine
similarity regarding an engineered feature vector7.
We retrieve the top 10 example queries with small-
est distances in the above terms. We then randomly
pick one as the personalized example to display.

We employed only the English speaking AMT
workers with 95%+ acceptance rate and 50+ accep-
tance history to restrict this paraphrasing task to a
set of competent workers. However, empirically
we still found a considerable number of workers
submitting nonsensical paraphrases, apparently not
understanding the task or giving up on the com-
plex input. Thus, we restricted the access to only
the trusted workers who had previously performed
well in our task.

4 Our Experimental Corpus

4.1 Corpus Construction Details

We experiment on the basis of the SPIDER dataset,
with data split details described in Table 1. Because
the databases and Text-SQL pairs for SPIDER test
set domains are not released, we re-split the 20
SPIDER development (dev) set domains equally

7For details of feature vector please refer to Appendix C.

43

Data Split Domains SQL Construction SQL-to-NL Data Size
seen-domain-train-set 166 train domains Gold Gold 7000
novel-domain-test-set 10 novel dev domains Gold Gold 440
seen-domain-dev-set 10 seen dev domains Gold Gold 594

novel-domain-ours-set 10 novel dev domains Ours Ours 543
novel-domain-oracle-set 10 novel dev domains Gold Ours 466

seen-domain-small-set 166 train domains Gold Gold 543
Zhang et al. (2021) 20 dev domains - - 58691

Table 1: Data splits involved in our experiment. Ours SQL construction refers to method in section 3.1, 3.2, while
Ours SQL-to-NL refers to 3.3, 3.4. Zhang et al. (2021) is a SOTA data augmentation system described in 5.1.

into seen domains and novel domains8. Accord-
ingly, we define the seen-domain-dev-set and novel-
domain-test-set from the SPIDER dev set, along
with the SPIDER train set renamed seen-domain-
train-set.

Additionally, we collect two data sets in the
novel domains, novel-domain-ours-set and novel-
domain-oracle-set. Novel-domain-ours-set is our
target dataset with entries constructed from scratch
with only the databases and our full pipeline.
Novel-domain-oracle-set entries start from the
novel domain gold SQL queries, annotated with
our SQL-to-NL method. Moreover, we create a
new data split called seen-domain-small-set, which
has the same size as novel-domain-ours-set, but is
randomly sampled from the expert-annotated seen-
domain-train-set.

We use a linear regression to derive the number
of SQL queries to construct for each database, w.r.t
the number of TABLES, COLUMNS and FOREIGN-
KEY relations. Each created SQL query is para-
phrased into natural language by 2 annotators as
in SPIDER, paraphrases too short or too long are
filtered out. The resulting data sizes are illustrated
in Table 1.

In total, the paraphrasing and human evaluation
(to be elaborated below) cost us $349.34.

4.2 Human Evaluation

To test the effectiveness of our SQL query con-
struction and SQL-to-NL conversion method re-
spectively, we conduct two experiments of human
evaluation with participants recruited on AMT.

To evaluate the constructed SQL queries, we
use the corresponding computer-generated pseudo-
NL as a proxy for SQL queries to involve crowd-

8The 10 selected novel domains are: orchestra, singer,
real estate properties, tvshow, battle death, voter 1, stu-
dent transcripts tracking, concert singer, world 1, and
course teach.

Queries considered having
following properties (in %)

ours expert

Succinct 75.51 74.46
Sensible 95.95 89.49
Relevant 83.06 76.82
Complex 55.80 37.98

Table 2: Human evaluation results between ours and
expert SQL queries.

sourcing. We present each participant with a
Pseudo-NL question, ask them to indicate whether
the Pseudo-NL is succinct, sensible, relevant and
complex. Each question is randomly chosen either
from our created novel-domain-ours-set or from
expert-annotated SQL queries in novel-domain-
oracle-set, where the choice is hidden from par-
ticipant workers. We evaluate on all entries in the
10 novel domains, with results presented in Table
2.

As shown, compared to expert-annotated ones,
participants considered a larger proportion of our
queries complex, but also a larger proportion con-
cise, sensible and relevant. Although human eval-
uation scores are subjective and could fluctuate
across individuals, this at least shows that from the
annotators’ point of view, our created SQL queries
are comparable to expert annotated ones on some
dimensions.

To evaluate our SQL-to-NL conversion method,
we compare our crowd-sourced questions from
novel-domain-oracle-set with expert annotated NL
questions from novel-domain-test-set. Since both
are aligned to the same set of gold SQL queries, we
show participants pairs of NL questions referring
to the same SQL query. We ask the participants
how similar the question pairs are, and which of
them is smoother in language.

With crowd workers as judges, we cannot di-

44

rectly measure how rigorous our NL questions are
in preserving the semantics of SQL queries. How-
ever, by taking expert-annotated questions as the
gold standard of query semantics, and inspecting
the similarity between ours and expert-annotated
questions for the same gold-standard SQL queries,
we can indirectly measure the level of rigorousness
that our conversion method is capable of.

Results show that the average similarity between
our questions and gold questions is scored 3.78 out
of 1 to 5, indicating a good alignment between the
meanings of the question pairs. As for preference,
45% of times our question is preferred, while 39%
of times gold question is preferred and 16% of
times the two are considered equally smooth in
expression. This result verifies the validity of our
SQL-to-NL conversion method.

5 Evaluation by Domain Transfer

5.1 Evaluation Setting
To further evaluate our pipeline’s effectiveness, we
do an extrinsic evaluation in the context of domain
transfer. Namely, we test the capability of our cre-
ated data to help semantic parsers generalize to
novel domains. Below we first define 4 dataset
settings and 2 training scenarios:

Dataset Settings
• PRETRAIN Trains on seen-domain-train-set9,

validates on seen-domain-dev-set, tests on novel-
domain-test-set. This reflects the process of train-
ing a model on seen domains then applying the
trained model to novel domains;

• OURS Trains on novel-domain-ours-set, tests
on novel-domain-test-set. This is our target
setting, which reflects training with our semi-
automatically constructed in-domain data then
test on real-world queries in the same domains;

• GOLD Trains on half (220 entries) of the novel-
domain-test-set, tests on the other half. This set-
ting approximates a theoretical upper bound, re-
flecting how much accuracy gain can be achieved
with gold in-domain data;

• TRAIN(SMALL) Trains on novel-domain-small-
set, tests on novel-domain-test-set. This setting is
an out-of-domain expert-annotated baseline for
OURS setting in RANDOM-INIT scenario, and an-
swers the question “how powerful is our created,
in-domain data compared to the expert-annotated

9For definitions of data splits, please refer to Table 1

but out-of-domain data, in terms of training mod-
els from random initialization”.

Training Scenarios
• RANDOM-INIT Start training from randomly

initialized model parameters. For models with
BERT, initialize BERT parameters with pre-
trained checkpoints10;

• FINETUNE Start training from model check-
points acquired from RANDOM-INIT training on
PRETRAIN data.

We conducted experiments with 3 popular re-
cent Text-to-SQL semantic parsers: lang2logic
(Dong and Lapata, 2016), IRNet-BERT (Guo et al.,
2019), and RAT-SQL-BERT (Wang et al., 2020).
lang2logic is the first semantic parser to employ
Seq2Seq paradigm, IRNet-BERT is the first practi-
cally effective semantic parser on SPIDER chal-
lenge, and RAT-SQL-BERT is the latest repro-
ducible SOTA when using BERT-Large encoder.
The lang2logic models were originally written in
Lua and are re-implemented with PyTorch; to serve
as a vanilla baseline, seq2seq setting is used in-
stead of the more complex seq2tree setting. For
RAT-SQL-BERT models, due to memory limits of
our 1080 TI GPUs and for a fair comparison with
IRNet-BERT, we use the bert-base-uncased version
as in IRNet-BERT, instead of the bert-large-whole-
word-masking version in the original implementa-
tion.

For each parser, we first train them under the
RANDOM-INIT scenario with PRETRAIN data; then
FINETUNE the pretrained model saperately, with
OURS and GOLD data. Additionally, we train each
parser under RANDOM-INIT scenario with OURS

and TRAIN(SMALL) data respectively, to evaluate
our data outside the scope of domain transfer.

For all RANDOM-INIT models we use the same
set of hyper-parameters as in their original settings;
for FINETUNE models, following the intuition that
fine-tuning should have learning rates no larger
than pretrain, we do log-uniform sampling through
1/3, 1/10, 1/30 and 1/100 of the original learning
rates as well as the original learning rates them-
selves; for models with BERT encoders, we further
grid-search both having the BERT learning rates
fixed and aligned with other parameters.

We have attempted to compare with previous
work on semi-automatic dataset construction. How-

10https://huggingface.co/transformers/
pretrained_models.html

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html

45

Accuracy (%) lang2logic IRNet-BERT RAT-SQL-BERT
pretrain 3.87 65.60 59.77
finetune-ours 5.00? 66.74† 60.00�

finetune-gold 8.06 71.07 61.13
random-init-ours 1.14 21.79 19.19
random-init-train(small) 1.82 42.66 14.55

Table 3: Exact Match accuracy in percentage points. ? means at learning rate of 1e-4, † means at 3e-4, � means
at 1e-5. To faithfully reproduce a domain transfer setting, the accuracies of PRETRAIN models are reported on
novel-domain-test-set. Therefore, reported accuracies may vary from the ones reported on the development set of
SPIDER.

ever, the method of Wang et al. (2015) is restricted
to LambdaDCS logical forms and not applicable
to our setting of multi-table SQL queries; the data
construction method of Cheng et al. (2018) is not
contained in their open-source codebase, and the
first author was unfortunately not reachable for that
implementation.

Nonetheless, we discuss Zhang et al. (2021) for
comparison, a recent work on large-scale Text-to-
SQL data augmentation, with context-free sam-
pling of SQL queries and hierarchical neural auto-
matic NL generation without human intervention.

5.2 Results and Discussions

Evaluation results are shown in Table 3. Accura-
cies are evaluated on the novel-domain-test-set of
SPIDER. As shown, extra in-domain data collected
with our pipeline improves novel domain accuracy
by more than 1% for both lang2logic and IRNet-
BERT models.

We also tried applying the same fine-tuning to
the IRNet and RAT-SQL parsers without BERT.
However, that did not increase the accuracy. We
attribute this difference to the fact that while our ad-
ditional data provides information on the novel do-
main, its language style is not the same as SPIDER
train set. Our crowd-paraphrased questions are
bound to be different in style to expert-annotated
questions. The conventional recurrent encoders,
trained only on the SPIDER train set, fail to capture
the meaning of questions in our fine-tune dataset.
On the other hand, with BERT contextualizers,
which had been trained on texts at the magnitude of
billions, the language of our questions looks more
familiar to models, and they can more successfully
absorb the domain-related information encoded in
our data. As BERT-Large models are bigger and
more powerful, we would expect the accuracy gain
to be larger with RAT-SQL-BERT-Large, and ex-
pect the same trend for other semantic parsers in

general.
The finetune-gold result provides an approxi-

mate upper bound, from expert-annotated data pairs
at the same magnitude of our size. It is encouraging
that we are able to correct roughly 20% of the cor-
rectable errors by this standard. Further gains could
reasonably be expected from increasing scale.

Comparisons between models trained from
RANDOM-INIT scenario also show interesting find-
ings. Since with both random-init-ours and
random-init-train(small), the data sizes are a mag-
nitude smaller than the SPIDER training set used
for PRETRAIN, parsers trained under these two
settings perform less competitively than their
FINETUNE counterparts. But among themselves,
training from RANDOM-INIT with OURS data is
generally comparable to that of expert-annotated
TRAIN(SMALL) setting of the same size, and in the
case of RAT-SQL-BERT it even exceeds that of
TRAIN(SMALL).

The results in Table 3 are for the best fine-
tuned model checkpoint on our test data, the novel-
domain-test-set. This choice reflects the scenario
of our chosen task: we start with novel domains,
having only the databases available for use. We
semi-automatically create an in-domain fine-tune
dataset and train semantic parsers with it. We envis-
age deploying the fine-tuned models to arrive at the
best model checkpoint by the use of feedback from
users, for which optimizing on the novel-domain-
test-set is used as a proxy.

We are nevertheless interested in knowing if we
can choose the best model checkpoint indepen-
dently of our test. In terms of our hypothetical
scenario, it reflects whether we can achieve good
performance with real queries, by assuming access
to a fixed development set, and choosing the best
model checkpoint according to performance on that
fixed set.

The standard practice here is to validate on a

46

set-aside development set, then report the accuracy
on the test set. However, the 440 entries of novel-
domain-test-set is all the expert-annotated data that
we have for our novel domains. In response to
this dilemma, we split the novel-domain-test-set in
half, into two subsets A and B. We then do cross-
validation between them: we use one subset for
picking the model checkpoint with highest accu-
racy, assessing its accuracy on the other (and vice
versa). Under this setting, we still achieve an accu-
racy gain of 0.74% with IRNet-BERT and 1.25%
with lang2logic.

Contemporary with our work, Zhang et al.
(2021) generated a much larger set of 50,000+ syn-
thetic training data (which they were able to do
by not involving human judges). Under the same
evaluation strategy as us in Table 3, and starting
from a different IRNet-BERT pretrained baseline
of 59.5%11, they report an augmented accuracy of
61.7% on the SPIDER development set, obtaining
an increase of 2.2%. However, we achieve half of
that increase with only around 1% their amount
of data. In the absence of access to their code, we
have been unable to determine the performance that
Zhang et al. (2021) would obtain from a compara-
bly small dataset, but we feel confident that gains
comparable to their full dataset could be obtained
from our method with more modest increases in
scale.

6 Conclusion

We have presented a novel approach to construct
in-domain Text-to-SQL data, following the three-
step paradigm of Wang et al. (2015). We ran-
domly select a topic of interest from a table relation
graph prior to building the actual query, and sample
query clauses in a context-dependent manner. We
identify “dominant concept” of the topics to sim-
plify the converted Pseudo-NL, and retrieve person-
alised examples as annotation scaffold for crowd-
paraphrasing. Our experiments show that our in-
domain data is comparable with expert-annotated
data, and capable of increasing the accuracy of
SOTA IRNet-BERT semantic parser by up to 1%.

For future work, we plan to explore more so-
phisticated probabilistic models to control SQL
query construction, and pair our query construction
method with recent work on SQL-to-NL transla-
tion, so as to bring our method to larger scale.

11which is mainly due to their use of SPIDER development
set and our use of novel-domain-test-set.

Acknowledgements

We thank Yantao Jia and Jeff Pan for helpful
comments and feedbacks, we’d also like to thank
the three anonymous reviewers for their valuable
comments. This work was supported partly by a
Mozilla PhD scholarship at Informatics Graduate
School, by the University of Edinburgh Huawei
Laboratory, and by National Natural Science Foun-
dation of China (No. 61876009).

References
Jonathan Berant, A. Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In EMNLP.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Shuaichen Chang, Pengfei Liu, Yun Tang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2020. Zero-shot
Text-to-SQL learning with auxiliary task. In AAAI.

Jianpeng Cheng, Siva Reddy, and Mirella Lapata. 2018.
Building a neural semantic parser from a domain on-
tology. CoRR, abs/1812.10037.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019.
Towards complex Text-to-SQL in cross-domain
database with intermediate representation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4524–
4535, Florence, Italy. Association for Computational
Linguistics.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019. X-SQL: reinforce schema
representation with context. arXiv preprint
arXiv:1908.08113.

Jonathan Herzig and Jonathan Berant. 2019. Don’t
paraphrase, detect! rapid and effective data collec-
tion for semantic parsing. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3810–3820, Hong Kong,
China. Association for Computational Linguistics.

https://doi.org/10.3115/v1/P14-1133
https://doi.org/10.3115/v1/P14-1133
http://arxiv.org/abs/1812.10037
http://arxiv.org/abs/1812.10037
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394

47

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on WikiSQL with table-aware word contextualiza-
tion. arXiv preprint arXiv:1902.01069.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1545–1556, Seattle,
Washington, USA. Association for Computational
Linguistics.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. CoRR, abs/1309.4408.

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik
Kundu, Jianwen Zhang, and Zheng Chen. 2020. Hy-
brid ranking network for Text-to-SQL. Technical
Report MSR-TR-2020-7, Microsoft Dynamics 365
AI.

Robert Clay Prim. 1957. Shortest connection networks
and some generalizations. The Bell System Techni-
cal Journal, 36(6):1389–1401.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377–392.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-
sandr Polozov, and Rishabh Singh. 2018. Robust
text-to-sql generation with execution-guided
decoding. arXiv preprint arXiv:1807.03100.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332–1342,
Beijing, China. Association for Computational Lin-
guistics.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question
answering with Freebase. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 956–966, Baltimore, Maryland. Association
for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and Text-to-SQL task.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3911–3921, Brussels, Belgium. Association
for Computational Linguistics.

Ao Zhang, Kun Wu, Lijie Wang, Zhenghua Li, Xinyan
Xiao, Hua Wu, Min Zhang, and Haifeng Wang.
2021. Data augmentation with hierarchical SQL-to-
question generation for cross-domain Text-to-SQL
parsing.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5338–5349,
Hong Kong, China. Association for Computational
Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A Cross-Domain Differences

The expression for query semantics can vary sig-
nificantly across domains, SQL queries of similar
structure can be mapped to fundamentally different
questions.

For example, the two SQL queries in Table 4
look similar in their sketch, differing only in their
schema tokens. However, their corresponding ques-
tions, when expressed in natural English, are very
different even from the structures. For instance,
the similar ‘where’ clause is a modifier of the sub-
ject ‘brand’ in one domain, and an adjunct of the
predicate ‘held’ in the other.

B Set of Major Heuristic Rules

• Every table in topic is involved in at least one
clause

https://www.aclweb.org/anthology/D13-1161
https://www.aclweb.org/anthology/D13-1161
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1309.4408
https://www.microsoft.com/en-us/research/publication/hybrid-ranking-network-for-text-to-sql/
https://www.microsoft.com/en-us/research/publication/hybrid-ranking-network-for-text-to-sql/
https://doi.org/10.1162/tacl_a_00190
https://doi.org/10.1162/tacl_a_00190
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
http://arxiv.org/abs/2103.02227
http://arxiv.org/abs/2103.02227
http://arxiv.org/abs/2103.02227
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

48

Domain: Car Makers
SQL: Select Brand.car maker,

Count(Brands.brand id) from Brands
JOIN Country ON Brands.country id =
Country.country id where Country. name
= ‘Germany’ group by Brand.car maker

Question: How many German brands
does each car maker own?

Domain: Singers and Concerts
SQL: Select Concert.year,

Count(Concert.concert id) from Concert
JOIN Stadium ON Concert.stadium id =
Stadium.id where Stadium.name
= ‘Murrayfield’ group by Concert.year

Question: How many concerts were held
in Murrayfield each year?

Table 4: An example pair of SQL queries with simi-
lar structures in different domains, the corresponding
natural language questions that map to them have very
different structures.

• A column is more likely chosen to ’WHERE’
clause if it has been chosen in the previous
‘WHERE’ clause

• A sub-query nested in ‘WHERE’ clause likely
returns the same column as the subject column
in that ‘WHERE’ clause or is related to it via
foreign-key relation

• Columns present in equality conditions are
likely not chosen in ‘GROUP BY’ clauses.

• Subject columns in ‘GROUP BY’ clauses are
likely to be selected.

• ‘GROUP BY’ clauses always take effect
either by aggregating ‘SELECT’ columns,
‘HAVING’ conditions or ‘ORDER BY’
clauses.

• Columns present in ‘SELECT’ are likely also
present in ‘ORDER BY’

• When two queries are linked together via an
‘UNION’, ‘EXCEPT’ or ‘INTERSECT’, it is
likely that the two queries share similar struc-
ture, only with one or two different structures
such as ‘WHERE’ conditions.

Example: Foreign key
Select avg(T1.killed) from perpetrator as T1
join people as T2 on T1.people id == T2.id
where T2.height < 1.8m
How many people were killed by perpetrators
shorter than 1.8m on average?

Example: Same Name
SELECT T1.id FROM trip AS T1 JOIN
weather AS T2 ON T1.zip code = T2.zip code
GROUP BY T2.zip code HAVING
avg(T2.mean temperature f) > 60
Give me ids for all the trip that took place in a
zip code area with average mean temperature
above 60.

Table 5: Examples of Foreign-Key and Same-Name
conditions, with SQL queries in the first line and paired
questions in the second.

C Feature Vector for Personalized
Examples

In retrieving the personalized examples, the fea-
ture vectors for measuring similarity between SQL
queries involve the following feature values. Fea-
tures related to “SELECT”, “FROM”, “WHERE”,
“GROUP BY”, “ORDER BY” and Set Operation
clauses are listed in Table 6, 7, 8, 9, 10, 11 respec-
tively.

Feature about “SELECT” Weight
Number of “SELECT” clauses 1.0

Wildcard “*” in column 4.0
MAX in column 2.0
MIN in column 2.0

COUNT in column 2.0
SUM in column 2.0
AVG in column 2.0

Table 6: Feature vector values regarding the column
clauses, with weights specified to the right of each fea-
ture.

Feature about “FROM” Weight
Number of tables in “FROM” 1.0

All tables connected by “JOIN ON” 2.0

Table 7: Feature vector values regarding the “FROM”
clauses, with weights specified to the right of each fea-
ture.

49

Figure 4: Flowchart illustration of how SQL queries
are split into sequences of computer-generated ques-
tions. Triangle boxes and connection lines indicate
the sequential relationship between these templates, in
rectangle boxes are individual templates. In these tem-
plates, colored red are the slots to fill in. To build a
sequence of Pseudo-NL questions, a program walks
through the chart from start to finish, and lists the re-
sulting instantiated templates iteratively as output.

Feature about “WHERE” Weight
Empty “WHERE” clause 2.0

Number of “WHERE” clauses 1.0
“*” in column 4.0

MAX in column 1.0
MIN in column 1.0

COUNT in column 1.0
SUM in column 1.0
AVG in column 1.0

Sub-query in clauses 4.0
Column-valued clauses 4.0
‘between’ as operator 1.0

‘equal’ as operator 1.0
‘larger than’ as operator 1.0

‘smaller than’ as operator 1.0
‘not larger than’ as operator 1.0

‘not smaller than’ as operator 1.0
‘not equal’ as operator 1.0

‘in’ as operator 1.0
‘like’ as operator 1.0

Table 8: Feature vector values regarding the “WHERE”
clauses, with weights specified to the right of each fea-
ture.

Feature about “GROUP BY” Weight
Number of “GROUP BY” clauses 1.0

Involves “HAVING” clause 2.0
Involves “HAVING” with Sub-query 2.0

Table 9: Feature vector values regarding the “GROUP
BY” clauses, with weights specified to the right of each
feature.

Feature about “ORDER BY” Weight
Number of “ORDER BY” clauses 1.0

Ascending / Descending order 1.0
Involves “LIMIT” clause 1.0

Involves “LIMIT 1” 2.0

Table 10: Feature vector values regarding the “ORDER
BY” clauses, with weights specified to the right of each
feature.

Feature about Set Operations Weight
Involves “UNION” clause 4.0

Involves “EXCEPT” clause 4.0
Involves “INTERSECT” clause 4.0

Table 11: Feature vector values regarding the Set Op-
eration clauses, with weights specified to the right of
each feature.

