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Abstract
Bonded contact models have been increasingly used in the discrete element method (DEM) to study cemented and sintered 
particulate materials in recent years. Several popular DEM bond models have been proposed in the literature; thus it is ben-
eficial to assess the similarities and differences between the different bond models before they are used in simulations. This 
paper identifies and discusses two fundamental types of bond models: the Spring Bond Model where two bonded particles 
are joined by a set of uniform elastic springs on the bond’s cross-section, and the Beam Bond Model in which a beam is 
used to connect the centres of two particles. A series of cantilever beam bending simulation cases were carried out to verify 
the findings and assess the strength and weakness of the bond models. Despite the numerous bond models described in the 
literature, they can all be considered as a variation of these two fundamental model types. The comparative evaluation in 
this paper also shows that all the bond models investigated can be unified to a general form given at a predefined contact 
point location.

Keywords Discrete element method · Bond contact model · Beam bond model · Parallel bond model · Bonded-particle 
model · Cantilever beam

Abbreviations
DEM  Discrete element method
EB  Euler–Bernoulli beam
EBBM  Euler–Bernoulli beam bond model
EDEM  Commercial discrete element method soft-

ware; https:// edems imula tion. com/
PBM  Parallel bond model
PFC  Particle flow code;  

https:// www. itasc acg. com/ softw are/ pfc
TB  Timoshenko beam

TBBM  Timoshenko beam bond model
YADE  Open source discrete element method code; 

https:// yade- dem. org

List of symbols
A  Area,  m2

d  Displacement, m
êx − êy − êz  Local coordinate system
E  Yong’s modulus, Pa
F  Force, N
fs  Form factor for shear
gc  Gap length, m
G  Shear modulus, Pa
I  Moment of inertia, N‧m
k  Stiffness coefficient, N/m
L  Length, m
M  Moment, N‧m
t  Time, s
r  Coordinate, m
rb  Bond radius, m
R  Particle radius, m
U  Velocity, m/s
v  Velocity, m/s
x  Position, m
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Greek symbols
v  Poisson’s ratio
μ  Friction coefficient
ω  Angular velocity, rad/s
ρ  Density, kg/m3
δ  Deflection, m
�b  Particle damping coefficient
�  Damping coefficient
ϕ  Timoshenko shear coefficient
�  Axial to shear stiffness ratio
θ  Angular displacement, rad
λ  Slenderness ratio

Subscripts
α, β  Particle indices
b  Bond
ben  Bending
c  Contact point
d  Damping
n  Normal direction
r  Relative velocity
s  Shear
tor  Torsion

1 Introduction

During the last two decades, there has been an increase 
in the number of attempts to apply the Discrete Element 
Method (DEM) to simulate the behaviour of cementitious 
materials like concrete, rocks and fibers [1–7]. A key reason 
for this growth is, unlike finite element method simulations, 
the ability of DEM simulations to naturally take into account 
the discontinuity or microstructure in the material behav-
iour allowing detailed analysis of the strength and failure 
mechanism of a cementitious material [8–10]. In general, 
the contact models in DEM can be classified into one of 
three groups: cohesionless, cohesive and bonded contacts. 
DEM was originally developed for cohesion-less systems 
[11], in which the contact model can be either a linear 
model like a Hookean spring-dashpot contact model [11] 
or a non-linear model such as the Hertz-Mindlin contact 
model [12]. In recent years, there have been increased efforts 
in applying DEM to simulate more complex systems such 
as using a cohesive contact model to simulate cohesive sys-
tems [13–20] or using a bonded contact model to simulate 
cementitious or bonded systems [1–4, 21]. A cohesive con-
tact model is often referred to particle–particle interaction 
caused by an adhesive force such as van der Waals type 
force or liquid bridges. While these models often have some 
finite contact area, the contribution of the contact area to 

the twisting or bending resistance of the contact is typically 
ignored. A cohesive contact exists at any time two particles 
are within a close proximity of each other for the cohesive 
force to come into play. Unlike the cohesionless family of 
contact models, particles do not necessarily need to be in 
physical contact for a cohesive contact to develop. These 
contacts can break and re-form. New cohesive contacts can 
be formed with any nearby particles. The final family of 
inter-particle contact models are bonded contact models. 
Bonded contacts, on the other hand, are formed at a bond 
initialisation timestep in a simulation and the breakage of 
a bond is irreversible. A bonded contact will be removed 
permanently upon failure, which is in contrast to the cohe-
sive contacts which can re-form. Bonded contact models 
also typically provide bending and twisting resistance in 
the contact, although some cohesionless [22] and cohesive 
[13, 23] also provide some bending and twisting resistance. 
The cross-sectional area of the bond is used to determine 
the bending and twisting resistance of the bonded contact 
and the use of a full rotation matrix allows the bending his-
tory from the initial free state to be considered. For exam-
ple, a bonded contact model can easily capture the bending 
and twisting forces present in a static, deformed beam. A 
bonded-particle model is a common approach used to simu-
late a cementitious material or rock-like material [24–29]. 
Bonded-particle models consist of an assembly of particles 
that are bonded together to create a virtual material that 
approximates the bulk behaviour. Cracking is represented 
by the failure and breakage of bonds. The fracture process 
is captured by the joining of multiple bond breakages. The 
micro-mechanisms of the failure of materials can be inves-
tigated since the formation and growth of micro-cracks on 
a particle scale are captured, which makes bonded-parti-
cle models an attractive tool. The bonded contact model, 
from hereafter referred to simply as the bond model, is a 
hugely important component of the bonded-particle model 
methodology.

A number of different bonded contact models have been 
developed to study the failure of cementitious materials and 
these have been categorised into two main types of bond 
model – spring and beam models. The simplest type of bond 
model is the single spring bond model or ‘pin’ bond model, 
where an infinitesimal interface (“point glue”) is used to 
bond particles [2]. The physical behaviour of the point bond 
can be envisioned as a spring with constant normal and shear 
stiffness acting at a point, which is capable of resisting the 
relative displacement of compression and tension actions but 
cannot resist bending or twisting actions [30]. Note that the 
single spring bond model is also called the “linear contact 
bond model” in the commercial software Particle Flow Code 
(PFC) [31].
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Another bonded contact model available in PFC is called 
linear parallel bond model which is developed by Potyondy 
and Cundall [1]. The linear parallel bond model (referred 
to as parallel bond model or PBM for short hereafter) is 
envisioned as a “reinforced” pin bond model by installing 
a finite-size “glue” at the contact so that it can resist twist-
ing and bending moments. Potyondy and Cundall [1] sum-
marised the motivation for the development of the paral-
lel bond model and described a parallel bond as a set of 
elastic springs, uniformly distributed over a circular cross-
section, centred at the contact point. Therefore, the paral-
lel bond model is classified as a multi-spring bond model. 
The advantages and limitations of using the parallel bond 
model for predicting the damage of rocks have been dis-
cussed elsewhere [3, 32, 33]. Besides springs, beam ele-
ments (as another fundamental structure element) are also 
used in bonded-particle models to mimic the behaviour of 
the cemented bond [9, 34–38]. In these beam bond models, 
either a Euler–Bernoulli beam or a Timoshenko beam is 
assumed to link the centres of bonded particles. Carmona 
[35] studied the detailed development of the fragmenta-
tion processes of brittle agglomerates using a beam bond 
model that is based on an extension of 2D Euler–Bernoulli 
beam theory. André [9] used a Euler–Bernoulli beam bond 
model (referred to as EBBM for short thereafter) to study the 
micro–macro laws for homogeneous and isotropic materials. 
Obermayr et al. [39] proposed a beam bond model based on 
Timoshenko beam theory and demonstrated that the behav-
iour of the bond was equivalent to a linear finite-element 
Timoshenko beam element with reduced integration. Brown 
[40] developed a Timoshenko beam bond model (referred 
to as TBBM for short thereafter) that was able to produce 
the dynamics response of various structural elements such 
as simply supported beams, cantilever beams, multi-storey 
plane frames and thin plates. Further successful applications 
of the TBBM to more complicated processes such as impact 
loading of cementitious materials and loading of fibre rein-
forced polymers bonded to concrete have also been demon-
strated [40, 41].

Although bonded-particle models are increasingly used in 
the simulations of cementitious or sintered materials, there is 
limited effort on comparative studies of the advantages and 

disadvantages of different bonded contact models. The simi-
larities and differences between the bonded contact mod-
els are unclear. Due to the differences in the mathematical 
expressions and model implementations, it can be confusing 
to the end-user whether a proposed model is a completely 
new model or just a slight variation of an existing model. In 
this paper, we identify and discuss two fundamental types 
of bonded contact models, namely, the multi-spring bond 
model and the beam bond model as shown schematically 
in Fig. 1. A series of verification cases were proposed to 
evaluate the efficacy of these commonly used bonded con-
tact models and establish any discrepancy in the model 
predictions.

2  Description of DEM bonded contact model

The ability for the bonded particle models to produce a 
realistic representation of the mechanical behaviour of a 
cemented granular assembly mainly depends on the imple-
mentation of an inter-particle bonded contact model. This 
paper focuses on clarifying the micro-mechanics of the 
bonded contact behaviour before bond failure. The names 
of different bond models originate from the differences in 
their elastic components. The damping component and plas-
tic deformation in the bond contact model will also be intro-
duced. A bonded contact model typically has some defined 
criteria for bond failure which will not be discussed in this 
paper.

2.1  Spring bond model

The Spring bond model considers that two bonded par-
ticles are joined by a set of uniform elastic springs on 
the bond’s cross-section. An example of the spring bond 
model is the parallel bond model in PFC3D. The parallel 
bond model in PFC3D incorporates a bonded contact com-
ponent and a non-bonded contact component. When the 
two bonded particles are in physical contact, both bonded 
and non-bonded contact components are active in parallel. 
If two particles are bonded together but are not in physical 

Fig. 1  Two fundamental types 
of bonded contact models
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contact, then only the bonded contact component is active. 
The bonded contact component can be considered as a set 
of elastic springs uniformly distributed over the circular 
cross-section of the particle–particle contact plane [1, 31]. 
These springs are centred at the contact point and have 
constant normal and shear stiffnesses. Since the bonded 
contact is activated over a finite area, this contact can 
resist both forces and moments.

The calculation of the forces and moments in a bond 
model is usually carried out in a local coordinate system 
[9, 39, 42]. Figure 2 shows a schematic of the contact 
description of the parallel bond model. The �̂x axis of this 
local coordinate system is defined by the central axis of 
the bond, which joins the centres of the bonded particles. 
The other two local axes �̂y, �̂z lie normal to each other, 
as well as normal to the central axis. A transformation 
matrix is used to transform the contact vectors in a global 
coordinate system to the local coordinate system [31, 38]. 
The contact point of the parallel bond model, �c , is located 
at the centre of the interaction volume (gap or overlap) as 
shown in Fig. 2, which is calculated as,

where gc is the length of contact gap or overlap, x� is the 
centroid of particle� , R� is the radius of particle� , Lb is the 
length of the bond, between the centre of particles � and 
� . In order to generate a bonded contact at the bond ini-
tialisation time, a reference gap is specified by the user. A 
bonded contact is formed when the contact gap gc is less 
than or equal to the reference gap at the bond initialisation 

(1)x
c
= x𝛼 +

(
R𝛼 + gc∕2

)
êx

(2)gc = Lb − R� − R�

(3)Lb = x� − x�

time. Note that a similar strategy of using the contact radius 
concept is implemented in EDEM [43] and YADE [44] to 
bond neighbouring particles that are not in physical contact, 
which will be discussed in more detail in the beam bond 
model section below.

The translational velocity of particle � at the contact point 
is calculated as,

where U� is the centroid translational velocity of particle � , 
�� is the rotational velocity of particle � and r�c is the con-
tact vector. The relative translational velocity ( vcr ) (Eq. 6) 
and rotational velocity (Eq. 7) at the contact point are given 
by

where the subscript of cr represents the relative velocity at 
the contact point. The bond contact forces and moments in 
the parallel bond model, that can be calculated incremen-
tally, are given in the Table 1 where kn, ks, ktor, kben are the 
normal, shear, twisting and bending stiffness, respectively. 
It can be seen that the bond contact stiffness depends on 
the bond material properties 

(
Eb, �b, �

)
 and bond geome-

try 
(
Lb, rb

)
 , which are the Young’s modulus Eb , Poisson’s 

ratio �b , length Lb and radius rb of the bond respectively, 
while � is the ratio of normal stiffness to shear stiffness. 
The bond radius is calculated as the minimum radius of the 
particle contact pair times a constant multiplier. Note that 
the default input value of normal stiffness in PFC3D is an 
average normal stiffness over the cross-section of the bond, 
i.e. kn = Eb∕Lb.

Each contact stores a force and moment that acts at the 
contact location in an equal and opposite direction on the 
two particle centres, while the shear forces at the contact 
point cause an additional torque at the particle centres that 
are not necessarily equal. Table 2 summarises the parallel 

(4)vc,� = U� + �� × r�c

(5)r�c = x
c
− x�

(6)vcr =
(
U� + �� × r�c

)
−
(
U� + �� × r�c

)

(7)�cr = �� − ��

Fig. 2  The contact description of parallel bond model [31]

Table 1  Summary of the parallel bond model contact forces and 
moments at the contact point

Contact law Stiffness

Normal force ΔFcx = knvcr,xΔt kn = Eb�r
2

b
∕Lb

Shear force ΔFcy = ksvcr,yΔt ks = kn∕�

ΔFcz = ksvcr,zΔt

Twisting moment ΔMcx = ktor�cr,xΔt ktor = 0.5ksr
2

b

Bending moment ΔMcy = kben�cr,yΔt

ΔMcz = kben�cr,zΔt

kben = 0.25knr
2

b
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bond contact force and moment calculations at particle 
centres.

While the parallel bond model by Itasca (described 
above) might be the most common implementation, various 
changes to its formulation have been proposed by research-
ers to address some of its shortcomings or limitations. 
Brendel et al. [45] presented a visco-elastic bond model for 
caked spheres. In this model the elastic part of the contact 
is derived from the contact elasticity, which has the same 
formulation as the parallel bond model, as shown in Table 1 
except that the ratio of normal to shear stiffness given by

in which Gb is the shear modulus of the bond.
In addition to the elastic part, various authors have 

added a viscous damping component to the bond forces and 
moments with coefficients for critical damping. The formula 
of bond damping is analogous to contact damping and can 
be calculated as follows [45, 46],

Here F
′

d
 and M

′

d
 are the viscous damping force and 

moment, m is the reduced mass given by m =
m1m2

m1+m2

 and I is 
the reduced moment of inertia given by I = I1I2

I1+I2
 . The vis-

cous bond damping coefficient �b determines the energy dis-
sipation rate as the bond deforms. The bond damping coef-
ficient is given the same value for all the forces and moments 
here for simplicity. In general, the damping coefficients in 
axial, shear, twisting and bending are not necessarily equal. 
Note that while the particle–particle contact component of 
the parallel bond model contains a damping component, this 
is only active when there is physical contact between the two 

(8)� = Eb∕Gb = 2
(
1 + �b

)

(9)F
�

d
= 2�b

√
knmvcr

(10)M
�

d
= 2�b

√
2ktorI�cr

particles. It does not apply if the particles are bonded but 
with a physical gap between the two particles.

For static and quasi-static problems, a so-called “local 
damping” [31], “global damping” [40] or “background 
friction” [13] can be introduced to accelerate the system 
convergence to a steady-state solution. To avoid confusion 
with damping occurring at the contact, the term “particle 
damping” will be used hereafter instead of global, local or 
background friction as it is a clearer description of the type 
of damping. The opposing damping forces F′′ and moments 
M′′ are applied to each of the six degrees of freedom for 
each particle given as follows,

where Fi and Mi are the sum of the force and moment act-
ing on particle i ,  U and � are the translational and angular 
velocity, and x , y and z represent each degree of freedom. �b 
is a dimensionless coefficient that defines the magnitude of 
the particle damping.

Rojek et al. [47] proposed a modification of the stiffness 
to take into account the non-uniform cross-sectional area 
consisting of two segments. The segment area and length are 
proportional to the particle size in their method. Therefore, 
the calculated stiffness of a bond in the polydisperse case 
will be different from the parallel bond model in PFC3D. 
Shen et al. [48] also proposed a modification of the bond 
strength and stiffness to capture the concave end geometry 
of the cylindrical bond.

(11)F
��
i
= −

�bFiUi

Ui

, i = x, y, z

(12)M
��
i
= −

�bMi�i

�i

, i = x, y, z

Table 2  Summary of the parallel bond contact force and moment at 
particle centres

Particle � Particle �

Normal force ΔF�x = −ΔFcx ΔF�x = ΔFcx

Shear force ΔF�y = −ΔFcy ΔF�y = ΔFcy

ΔF�z = −ΔFcz ΔF�z = ΔFcz

Twisting  
moment

ΔM�x = −ΔMcx ΔM�x = ΔMcx

Bending  
moment

ΔM�y = −ΔMcy − r�cΔF�z ΔM�y = ΔMcy + r�cΔF�z

ΔM�z = −ΔMcz + r�cΔF�y ΔM�z = ΔMcz − r�cΔF�y

Fig. 3  Contact description in beam bond model
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2.2  Beam bond model

Another class of DEM bonded particle models is the beam 
bond model [9, 35, 39, 40, 42, 49] which proposes a beam 
element to connect the centres of two bonded particles, as 
shown in Fig. 3. In contrast to the parallel bond model, the 
beam bond model typically directly calculates the forces 
and moments at the two ends of the bond (particle centres) 
instead of the bond centre.

In Euler–Bernoulli beam theory it is assumed that under 
deflection of a beam, plane sections remain plane and nor-
mal to the neutral axis after deformation. This means that 
in long beams with very small deflections there will only 
be very minor (almost negligible) strains in the outermost 
(compressive and tensile) fibres of the beam which gener-
ate very small transverse shear forces along the longitudinal 
axis. However, in shorter beams or with larger deflections 
where the bending is more pronounced, the strains in the 
outer most fibres are significant and no longer negligible, 
and the plane section can no longer be considered to be per-
pendicular to the axis. It is this rotation of the plane and the 
resulting transverse shear forces that is considered by the 
more comprehensive Timoshenko beam theory.

Timoshenko beam theory is adopted in the formulation of 
Timoshenko beam bond model (TBBM) [38, 40] because it 
accounts for the effects of transverse shear deformations in 
beams and is better suited than Euler–Bernoulli beam theory 
to study beams that are very short or undergo large deforma-
tions. In most cemented materials, where particle packings 
are dense, bonds tend to be short and stocky. Timoshenko 
beam theory will also correctly capture the behaviour of 
longer, more slender bonds. The TBBM model assumes 
the mechanical behaviour of a bonded contact under axial, 
shear, twisting and bending will follow the Timoshenko 
beam theory.

In the TBBM, a bond is formed when the contact radii of 
two particles touch or overlap at the bond formation time as 

shown in Fig. 4. The contact radius of a particle is defined as 
the product of its physical radius and a radius multiplier �r . A 
contact radius multiplier of unity specifies that a contact only 
exists if there is physical contact between two particles. By 
increasing the value of �r above 1, the contact radius becomes 
larger than the physical radius and a contact is formed between 
particles that are not physically touching. This will allow the 
bonding of particles to occur between particles not in direct 
contact, resulting in a denser matrix of bonds being formed at 
the bond formation time. The contact radius multiplier thus 
allows different degrees of cementation to give a better rep-
resentation of a cementitious matrix by increasing the bond 
density when needed.

The forces and moments at particle centres are calculated 
in an incremental manner that is similar to the parallel bond 
model.

The incremental displacements and rotations at the bond 
ends (i.e. particle centres) are related to the incremental forces 
and moments using a stiffness matrix given as follows,

where ΔF and Δ� are the incremental forces (moments) and 
displacement (rotations) at the two ends of the beam.

The term ΔF contains forces (F)  and moments (M) at the 
two ends of the bond, Δ� contains translational displacements 
(d) and rotations (�) that are calculated based on the transla-
tional velocity (U) and rotational velocity (�) of particles � 
and � , respectively. The elements of the stiffness matrix, K 
(Eq. (14)), are given as follows [50]:

(13)ΔF = −K ⋅ Δ�

(14)K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 . . . . . − k1 . . . . .

. − k2 . . . k3 . − k2 . . . k3
. . k2 . − k3 . . . − k2 . − k3 .

. . . k4 . . . . . − k4 . .

. . − k3 . k5 . . . k3 . k6 .

. k3 . . . k5 . − k3 . . . k6
−k1 . . . . . k1 . . . . .

. − k2 . . . − k3 . k2 . . . − k3
. . − k2 . k3 . . . k2 . k3 .

. . . − k4 . . . . . k4 . .

. . − k3 . k6 . . . k3 . k5 .

. k3 . . . k6 . − k3 . . . k5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)
ΔF =

{
ΔF�xΔF�yΔF�zΔM�xΔM�yΔM�zΔF�x

ΔF�yΔF�zΔM�xΔM�yΔM�z

}T

Δ� =

{
Δd�xΔd�yΔd�zΔ��xΔ��yΔ��zΔd�x

Δd�yΔd�zΔ��xΔ��yΔ��z

} T

(16)=
{
U�xU�yU�z��x��y��zU�xU�yU�z��x��y��z

}T
Δt

Fig. 4  Example of an overlap in the contact radii of two particles
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where Ab is the bond cross-sectional area, Ib is the second 
moment of area of the bond and Φs is the Timoshenko shear 
coefficient. They can be calculated as:

The Timoshenko shear coefficient is a dimension-
less quantity that is introduced to account for the shear 
stresses and strains no longer being uniformly distributed 
over the cross-section of the beam. The shear coefficient 

(17)k1 =
EbAb

Lb

(18)k2 =
12EbIb

L3
b

(
1 + Φs

)

(19)k3 = 0.5Lbk2

(20)k4 =
EbIb

Lb
(
1 + �b

)

(21)k5 =
EbIb

Lb

(
4 + Φs

)
(
1 + Φs

)

(22)k6 =
EbIb

Lb

(
2 − Φs

)
(
1 + Φs

)

(23)Ab = r2
b
�

(24)Ib = 0.25r4
b
�

(25)Φs =
20r2

b
(1 + �)

3L2
b

is dependent on the ratio of bond’s radius to length and 
Poisson’s ratio. If the Timoshenko shear coefficient Φs 
becomes zero, the behaviour of the Timoshenko beam is 
reduced to an Euler–Bernoulli beam and the correspond-
ing bonded particle model becomes the Euler–Bernoulli 
beam bond model (EBBM). When Φs becomes zero, the 
shear stiffness of EBBM equals k2 which is given by

The EBBM was used as the cohesive beam model [9] and 
the cohesive discrete element method [37, 51, 52]. However, 
it should be noted that the word “cohesive” usually repre-
sents contacts that can be separated and reformed in DEM 
simulations as explained in the introduction. By contrast, a 
bonded contact can form once at an initialisation time step 
and its breakage is irreversible and cannot be reformed in 
DEM simulations.

3  Test cases to evaluate common DEM bond 
models

The bending behaviour of a cantilever beam under a point 
load is used as a reference case for a comparative evaluation 
of the different bond models described above as the predi-
tions can be verified with the well founded solutions of the 
Euler–Bernoulli and Timoshenko beam theories. The canti-
lever beam, which is anchored at one end and free to deflect 
and rotate at the other, is modelled by bonding a number of 
spherical particles in a straight line to form the beam. An 
example of a beam with four particles is shown in Fig. 5. 
Since the two ends of a single bond are fixed at the centres 
of two neighbouring particles, the relative movements of the 
particles result in the deformation of the bonds.

(26)ks =
12EbIb

L3
b

Fig. 5  Schematic of the bending 
of a cantilever beam and bonded 
particle model. a physical 
model of cantilever beam b 
bonded particle model
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For the reference problem, a cantilever beam is modelled 
by bonding together a row of 11 particles. Each particle is 
just in physical contact with its neighbour particles; thus, the 
gap of the contact is zero. This case is similar to the verifica-
tion example of parallel bond model (referred to as PBM for 
short) provided by Itasca for PFC3D® 5.0 [31] and similar 
cases have also been studied in the literature [39, 49, 53].

To model the bending of a cantilever beam, the extreme 
left particle is fixed against all translational and rotational 
displacement while the extreme right particle is subjected 
to a point load perpendicular to the axis of the beam. Grav-
ity is not considered in the test cases. A quasi-static loading 
process is achieved by applying a small particle damping 
coefficient ( �b = 0.001 ) to dissipate the kinetic energy so that 
the system comes to rest. The particle damping coefficient 
is used to make the system reach the steady state faster. A 
preliminary test has been carried out to confirm that it has 
a negligible effect on the steady state result, which is also 
verified by the excellent agreement between numerical simu-
lation and analytical solutions of the cantilever beam test. 
The beam Young’s modulus Eb is 200 GPa and the Poisson’s 
ratio �b  is 0.3. The applied external loading force F is 100 
kN. The quasi-static loading is processed by increasing the 
load gradually at a rate of 100 kN/s for the first 1 s and then 
keep the load constant for the rest of simulation time. The 
system is assumed to reach the quasi-static state when the 
maximum particle velocity is below  10–9 m/s.

In order to study the responses of the different bond 
models, a series of tests (cases 2–5) are proposed where 
the length and configuration of the cantilever are varied by 
changing the bond radius, the bond length and the number 
of particles/bonds representing the beam. As this study only 
focuses on the behaviour of the bond models, our analysis 
intentionally exclude the non-bonded particle contact model 
that kicks in after a bond breakage. It should be noted that 
the PBM model also includes the non-bonded contact before 
the bond breakage which is also excluded in this evaluation. 
The configuration parameters for the reference problem and 
four other test cases are listed in Table 3. A schematic of 
these simulation cases is shown in Fig. 6.

In Case 2, the effect of a beam’s slenderness on its shear 
deformation is studied by varying the cantilever beam length 
while keeping the beam cross-section constant. In Case 
3, the effect of bond length is investigated by varying the 

number of bonds used to form the cantilever beam whilst 
keeping the other parameters the same as the reference Case 
1. Note that in Case 3, unlike the reference case, the particles 
are in not in physical contact—the gap between the particles 
is non-zero. This case is designed to study the sensitivity of 
the predictions to the beam resolution i.e. the number of par-
ticles representing the beam. In Case 4, both the number of 
bonds and the particle radius are varying. The particle radius 
is adjusted to fill in the beam so that each particle is still in 
physical contact with its neighbour particle. This case is to 
study if the gap or the number of bonds affects the predic-
tions. Finally, for Case 5, the influence of poly-dispersity is 
studied using particles of different sizes to form the beam.

All the test cases are simulated using three bond models, 
i.e. the PBM, the EBBM and the TBBM as described in 
the section above. The simulation cases of the PBM were 
carried out using the commercial software PFC3D® 5.0 
with the built-in parallel bond contact model [31], while 
EBBM and TBBM codes were implemented in the com-
mercial software EDEM® using the API [43]. Meanwhile, 
we also implemented the PBM through the API of EDEM 
to double check our simulation results and the correctness 

Table 3  Simulation parameters 
for the studied cases

Case 1 (Ref.) Case 2 Case 3 Case 4 Case 5

Beam length (m)L0 4 0.4 ~ 4 4 4 4
Bond slenderness ratio (-)�b 1 1 1 ~ 5 2 ~ 20 5
Particle radius (m)Rp 0.2 0.2 0.2 0.2 ~ 2 0.2 ~ 0.8
Bond radius (m)rb 0.2 0.2 0.2 0.1 0.2
Gap between particles No No Yes No Yes

Fig. 6  Schematic of the simulation cases. Case 1: reference case; 
Case 2: varying beam length; Case 3: varying the beam resolution; 
Case 4: varying the beam radius and particle radius; Case 5: poly-
disperse case
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of the formulation discussed in this work. The normal and 
shear strengths of the respective bond models are set to an 
extremely large value so that for all the cases the bonds can-
not break. The normal, shear stiffness and frictional coef-
ficient of non-bonded contacts is set to 0 in the PBM so 
that only stiffness in the bonded contact is active. The shear 
stiffness in the PBM is calculated using Eq. (8), which is 
based on the verification example of PFC3D® [31] and also 
adopted elsewhere [45, 46, 54] except in case 5 where the 
shear stiffness is intentionally adjusted as will be clarified 
later. Note that if the shear stiffness of the PBM is calculated 
using Eq. (8), then the twisting stiffness will be the same as 
the TBBM and the EBBM. Additionally, the default input 
value of stiffness in PFC3D is an average stiffness over the 
cross-section of the bond, i.e. k = k∕Ab . The input stiffness 
will be multiplied by the cross-section area of the bond in 
the background [31].

The governing equations for a Timoshenko cantilever 
beam with a circular cross-section are as follows [55, 56],

where x is the distance from the fixed end, fs is the form 
factor for shear and equals 10/9 for a circular cross-section. 
By integrating the equations and substituting the boundary 
conditions, one can get the theoretical deformation given 
as follows,

By substituting x = L0 into the solution, the deflection at 
the beam tip can be determined as

(27)

⎧⎪⎨⎪⎩

��

�x
=

FL0

EI

�
L0−x

L0

�
��y

�x
= −

F.fs

GA
− �

(28)�y =
Fx2

6EbIb

(
3L0 − x

)
+

10Fx

9GAb

where the first term on the right-hand size is the bending 
contribution while the second term is the shear contribu-
tion which can be significant for short beams. If the second 
term is ignored, the solution reduces to be the theoretical 
solution of Euler–Bernoulli beam theory. Compared with 
Euler–Bernoulli beam theory, Timoshenko beam theory is 
known to be superior in predicting the response of beams, 
especially for thick beams. Therefore, the analytical solution 
of Timoshenko beam theory is used as the benchmark solu-
tion to compare with the numerical predictions in this paper. 
The relative error of the models to the Timoshenko beam 
theory analytical solution in Eq. (29) is used to evaluate the 
respective performance.

3.1  Case 1: reference problem

The schematic of the reference cantilever beam used in this 
case is shown in Fig. 7. The numerical predictions of the 
tip deflection for the PBM, EBBM and TBBM are shown 
in Table 4 along with the relative error from Timoshenko 
beam theory. All the three bond models produce satisfac-
tory result in this case where the relative errors are all less 
than 1%. In particular, the EBBM prediction is very close to 
the Euler–Bernoulli theory analytical solution and TBBM 
prediction is close to the Timoshenko theory analytical solu-
tion. The final positions in the DEM simulations are used to 
determine the deflection at points along the beam and shown 
in Fig. 8a where the predictions by all the three models are 
also found to match the analytical values well. In general, 
the relative errors of the TBBM predictions are less than 
1% while relative errors of PBM and EBBM predictions 

(29)�B =
FL3

0

3EbIb
+

10FL0

9GAb

Fig. 7  Schematic of the 
simulated cantilever beam in the 
reference case

Table 4  Numerical and 
analytical bending deformation 
of case 1

Timoshenko 
beam solution

EB analytical TBBM numerical EBBM numerical PBM numerical

Maximum 
deformation 
(mm)

8.534 8.488 8.537 8.489 8.508

Relative error – 0.54% 0.04% 0.53% 0.30%
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increases approaching the fixed end of the cantilever beam. 
Nevertheless, all the prediction errors are less than 4%.

3.2  Case 2: slender and deep beams

According to the Eurocode 2 on the designing of concrete 
structure [57], any beam with a slenderness ratio less than 3 
should be considered a deep beam. The slenderness ratio of 
a beam ( �0 ) is calculated as

When a beam is classed as a deep beam, the Timoshenko 
beam theory is more applicable than Euler–Bernoulli the-
ory. Since shear deformation is important in the case of 
short, deep beams, case 2 is designed to study the effect 

(30)�0 =
L0

2rb

of this changing slenderness ratio in the various models. 
A series of simulations were conducted where the length 
of the beam is gradually decreasing as shown in Fig. 9. As 
the cantilever beam shortens, the slenderness ratio of the 
cantilever beam increases. Each beam is formed by bond-
ing a row of particles with equal radius. The bond radius 
is set to be the same as the particle radius and each particle 
is in physical contact with its neighbour.

Since the bond radius does not change in these cases, 
shortening the cantilever beam length will lead to a decrease 
of the deformation under same loading force according to 
Eq. (29) The simulation results are compared in Fig. 10 
where the relative displacement is calculated as the displace-
ment at the tip normalized by the beam length. The reference 
case results appear in Fig. 10 as the smallest beam slender-
ness ratio, with λ0 equal to 0.1. It is observed that all the 

Fig. 8  Cantilever beam deflection for case 1: comparison of numerical predictions with Timoshenko beam theory. a absolute displacement along 
the beam b absolute error of bond model predictions compared with Timoshenko theory

Fig. 9  Schematic of case 2: 
shortening the cantilever beam 
length
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three models follow the correct trend with increasing beam 
slenderness ratio. It is not surprising that TBBM predic-
tions have close agreement with the analytical solutions of 
Timoshenko beam theory and that the EBBM predictions 
closely match the Euler–Bernoulli theorical solution. How-
ever, for deep beams, the Euler–Bernoulli theory predicts 
a lower relative displacement than the Timoshenko theory 
due to neglecting the shear deformation. At this point it is 
worth considering that the EBBM DEM models used in the 
literature such as André [9] may not be producing the cor-
rect behaviour of beam bending especially when the bond 
lengths are short, which is common in many DEM appli-
cations where densely bonded configurations are involved. 
The predictions of the PBM are observed to be in between 
Euler–Bernoulli theory and Timoshenko theory analytical 
solutions for this series of cases.

3.3  Case 3: effect of the discretization of the beam

Bonded-particle models are usually employed in the study 
of a cementitious material such as rock or concrete. For 
these cases, the particles in the bonded-particle models are 
typically considered as coarse-grained particles that are 
larger than the realistic constituent particle in the material. 
A critical issue of using Bonded-particle models to study 
the mechanical behaviour of a cementitious material is the 
need to choose an appropriate number of particles to rep-
resent the macroscopic fabric. This choice on the level of 
fidelity of the model will determine the level of detail and 
type of feature that can be studied with that model. As the 
number of particles in a simulation increases, the resolution 
of the DEM simulation and its ability to capture phenomena 
occurring at the microscale will increase. However, due to 

the computational cost associated with DEM simulations 
there is a compromise between using a sufficient number of 
particles to capture the bulk properties of the material and 
using large enough number of particles to study micro-scale 
phenomena such as cracking.

Simulation resolution can be described as the amount of 
detail that a simulation holds with a higher resolution mean-
ing more detail is captured. Resolution of a DEM simulation 
can be defined in a number of ways, but is usually described 
in terms of the ratio of the particle size to the system feature 
of interest. In the case of beam bending, the resolution may 
be taken as the ratio of the length of an individual bond to 
the overall beam length. Therefore, in this case 3, the effect 
of the resolution of the beam model is studied by varying the 
number of particles (and bonds) used to represent the beam. 
The schematic of this series of cases is shown in Fig. 11.

Fig. 10  Numerical and analytical maximum displacement while 
shortening the beam length

Fig. 11  Schematic of case 3: refining the beam resolutions by increas-
ing the number of bonds

Fig. 12  Numerical and analytical maximum displacement of case3: 
refining the beam resolutions
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Figure 12 compares the numerical predictions of the 
different bond models with the analytical solution of maxi-
mum displacement at the tip. An excellent agreement is 
achieved between TBBM predictions and the Timoshenko 
theoretical solutions, irrespective of the number of bonds 
used to form the cantilever beam. A similar trend is 
observed for the EBBM predictions whereas the PBM pre-
diction is found to be significantly affected by the beam 
resolution in this simple test case. However, the relative 
error observed with the PBM prediction with respect to the 
Timoshenko theory reduces with increasing the number 
of bonds. Note that this dependency was also reported by 
Guo [53] who found that in order to reduce the error it 
was necessary to use 10 particles to form a fibre. Because 
refining the beam resolution will inevitably increase the 
computational cost, this series of cases indicates that the 
TBBM implementation is more attractive for simulating 
structural elements such as beams and flexible materials 
such as fibres or sheets.

3.4  Case 4: effect of gap length

As case 3 indicates that the PBM prediction is sensitive 
to the beam resolution, it is not clear if it is because of 
the decrease of the number of bonds in the beam or the 
increase of the gap between a bond pair of two neighbour 
particles. In case 4, we increase the particle radius when 
the number of particles is decreasing so that a bonded pair 
of particles remain in physical contact. Note that the bond 
radius is kept constant so that both the beam radius and 
beam length do not change. The schematic of this series 
of cases is shown in Fig. 13.

Figure 14 shows the simulation results of this series of 
cases. The same trends as the previous case are observed 
for all the three models. Therefore, it is confirmed that 

the deterioration of PBM prediction is because of the lack 
of resolution–a certain resolution (number of bonds) is 
required to produce the theoretical result. The fundamen-
tal reason is the difference of shear stiffness calculation 
between the spring bond model and beam bond model, 
which will be further illuminated in the later discussions 
section. Note that the bond radius is intentionally set to be 
half of the reference case, which is to demonstrate that the 
conclusion will still hold when the bond radius is not the 
same as the particle radius.

3.5  Case 5: effect of polydispersity of bonded 
particles

This case is designed not only to test if one could improve 
the prediction of PBM with a low beam resolution, but also 
to investigate the different bond models’ prediction for poly-
disperse cases. In this case, the bond shear stiffness is cal-
culated using the Euler–Bernoulli beam theory in advance 
and is then used as the input for the parallel bond model. 
Because the cases studies here are pure bending loading, the 
twisting moments are zero. Therefore, one does not need to 
consider the difference of twisting stiffness caused by chang-
ing the shear stiffness in this test case. The schematic of the 
series of tests involved in this test cases is shown in Fig. 15. 
A beam is formed by three particles with the size of the mid-
dle particle varied. The polydispersity index of the simula-
tion system is defined as the dispersion factor here, which 
can be calculated as follows,

(31)df =
Rmax − Rmin

Ravg

Fig. 13  Schematic of case 4: decreasing the sizes of bonded particles

Fig. 14  Numerical and analytical maximum displacement of case 4: 
decreasing the sizes of bonded particles
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where Rmax , Rmin and Ravg are the maximum, minimum and 
average discrete particle radius values.

Figure 16 shows the relative errors of numerical predic-
tions of PBM, EBBM and TBBM for these three simulations. 
Note that the shear stiffness used in PBM is now calculated 
using the Euler–Bernoulli beam theory, i.e. Equation (26), 
and due to this, the predictions from the PBM and EBBM 
are almost identical for the monodisperse configuration. It can 
be seen that for the monodisperse case, the relative error of 
PBM is 0.62%, which is over 10 times smaller than the same 
two-bond layout in case 3 (see Figs. 12 and 14) because the 

shear stiffness has been specified correctly. However, with an 
increase in the size of the middle particle, the PBM prediction 
starts to deteriorate, even though the shear stiffness is already 
specified according to beam theory and remains unchanged. In 
contrast, the relative errors of the TBBM predictions are less 
than 0.1% for all the three simulations as shown in Fig. 16. 
This case highlights a crucial difference between the PBM 
and TBBM (or EBBM). Recalling Figures 2, 3 we can see 
that there is a difference in how the contact point location is 
calculated in the respective models. In the poly-disperse case, 
the contact point location is adjusted to be closer to the smaller 
particle in the PBM while it remains exactly in the centre of 
the beam connecting the two-bonded particles in the TBBM 
and EBBM. In the parallel bond model, the contact point shifts 
further away from the beam centroid as the size ratio of the 
particles increases, leading to increased errors. This case high-
lights a key limitation of the PBM where bond bending and 
twisting are important as it will only provide accurate results 
for monodisperse particle pairs.

4  Discussions

4.1  Bond slenderness ratio effect

It has been shown above in the reference problem that all three 
bond models (i.e. PBM, EBBM and TBBM) can predict the 
bending behaviour of a thin cantilever beam consisting of a 
number of contacting particles. In the investigation of the 
effects of beam resolution (case 3) and gap length (case 4) the 
simulation results indicate that the predictions of the EBBM 
and TBBM are insensitive to the beam resolutions whereas the 
PBM can give rise to a large relative error if there is not a large 
enough number of constituent bonds in the beam. Therefore, 
the EBBM and TBBM can be considered to be independent 
of the number of bonds used.

Fig. 15  Schematic of case 5: increasing the sizes of the middle parti-
cle. a equal particle size, df = 0 b middle particle size is twice of the 
size of the particles at the two ends, df = 0.75  c middle particle size 
is four times of the size of the particles at the two ends,df = 1.5

Fig. 16  Relative errors of the 
bond model predictions from 
Timoshenko beam theory for 
case 5 (theoretical deflection 
8.541 mm)
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Another difference between the models is the shear stiff-
ness as mentioned in Sect. 2 above. The ratio of the axial to 
shear stiffness adopted in the PBM, the EBBM and the TBBM 
models can be summarised as follows,

where the bond slenderness ratio is defined as λb = Lb/2rb.
It can be observed that the axial to shear stiffness ratio of 

EBBM is a function of the bond’s geometry alone whereas 
that of PBM is only a function of the Poisson’s ratio of the 
bond but not the bond’s geometry. The stiffness ratio of the 
TBBM, however, includes both the bond’s geometry and the 
Poisson’s ratio. André [9] reported that the bond Poisson’s 
ratio has a negligible effect on the bulk scale behaviour of 
the material in EBBM simulation. This comparative study 
has shown that it is because of the lack of inclusion of the 
bond Poisson’s ratio in the bond shear stiffness in EBBM. 
The bond Poisson’s ratio only plays a role in the torsional 
stiffness in EBBM.

5 presents the values of axial stiffness and shear stiffness 
of each bond calculated in case 3 where different numbers 
of particles are used to discretise the beam (Fig. 12). As the 
length of bond decreases with increasing number of bonds 
in the beam, both the axial and shear stiffnesses increase 
for all three models. In the case of a single bond, the shear 
stiffness of the PBM is the largest while that of the TBBM is 
the smallest among these three models, which means that the 
deformation of TBBM under same point load would be larg-
est. In particular, the shear stiffness of the PBM is around 52 
times larger than that of TBBM for the lowest beam resolu-
tion simulation. With such a high shear stiffness, the deflec-
tion is significantly under-estimated in the PBM. As the 
number of the constituent bonds in the beam increases, the 
relative difference of the shear stiffness between PBM and 
TBBM decreases. When the number of bonds increases to 
10, the shear stiffness of the parallel bond is 1.6 times larger 
than that of TBBM. The shear stiffness of the EBBM is 3.1 
times larger than that of TBBM at this beam resolution. It 
is also interesting to note that the relative difference of the 
shear stiffness between EBBM and TBBM increases when 
the discretisation of the beam is increasing.

The ratio of axial to shear stiffness of the three bond 
models with increasing number of constituent particles 
representing the beam is shown in Fig. 17. As the num-
ber of constituent particles in the beam increases, the bond 
length decreases which leads to a fall in the axial to shear 
stiffness ratio for the EBBM and TBBM (Eqs. (33), (34) 

(32)�PBM = Eb∕Gb = 2
(
1 + �b

)

(33)�EBBM = 1.33�2
b

(34)�TBBM = 1.33�2
b
+ 2.22

(
1 + �b

)

respectively). However, this stiffness ratio remains a con-
stant in the PBM calculation (Eq. (32)). The difference 
between the PBM and TBBM (or EBBM) decreases with 
increasing the number of constituent particles in the beam, 
which explains the trend observed in case 3 and case 4. This 
constant stiffness ratio, due to a failure to include the bond 
geometry information in the bond shear stiffness, leads to 
the large errors in deflection seen at low beam resolutions 
(Fig. 12). In case 5a, we further showed that if the shear stiff-
ness of PBM was adjusted using beam theory, the PBM can 
also correctly predict the bending deformation when only 
monodisperse particles are used. However, the predictions of 
the PBM for polydisperse particles still lead to a significant 
error as shown in case 5b and 5c. This is attributed to the 
difference of the intrinsic characteristic between a spring 
bond model and beam bond model. To be more specific, the 
implementations of the spring bond model and beam bond 
model are also different apart from the difference in shear 
stiffness calculations. It can be shown that each model uses 
a different method of calculating the contact point location 
for the forces and the moments. The PBM uses the contact 
point from the contact radii while the TBBM (or EBBM) 
always uses the centre point of the beam connecting the two 
particles. This difference was confirmed in case 5b and case 
5c, where polydisperse particles were used with beams of 
the same length connecting them.

4.2  Beam slenderness ratio effect

It is also worth addressing the differences between the 
Timoshenko theory and Euler–Bernoulli theory since 
they are both used in beam bond models. In Case 2, 
where the effect of beam slenderness is investigated, a 

Fig. 17  The ratio of axial stiffness to shear stiffness for different bond 
models in case 3
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difference between the TBBM and EBBM predictions has 
been shown for varying beam slenderness ratios (Fig. 10) 
– the Euler–Bernoulli and Timoshenko solutions diverge 
as the depth of the beam increases. The key advantage of 
the Timoshenko theory is that it takes into account the 
shear deformation, making it suitable for describing the 
behaviour of both thick and slender beams and vibration 
of beams under high frequencies. As shown in Fig. 18, 
the Timoshenko theory allows a rotation between the 
cross-section and the bending axis. This rotation comes 
from a shear deformation that is more noticeable for 
stocky beams. The Euler–Bernoulli theory assumes that 
the cross-section perpendicular to the neutral axis of the 
beam will remain both plane and perpendicular after a 
deflection. This assumption is known to be applicable for 
slender beams when the deflections are small compared to 
the depth [56, 58]. According to Eq. (29), the Euler–Ber-
noulli theory neglects the shear contribution term which 
results in a stiffer beam. This behaviour can be observed 
even in the reference case (case 1). As shown in Fig. 8b, 
the displacement prediction of EBBM along the beam 
deteriorates as it approaches the fixed end. The load force 
is equal along the beam while the “effective beam length” 
becomes shorter as the position gets closer to the fixed 
end. This indicates that the point near the fixed end has 
a larger effective beam slenderness ratio, which makes 
EBBM prediction worse compared with the Timoshenko 
theory. It can be also confirmed through Eq. (28), as the 
distance from the fixed end ( x ) becomes smaller, the rela-
tive contribution of the second term (shear contribution) 
becomes more important.

The relative error of Euler–Bernoulli theory compared 
with Timoshenko theory in the bending case studied here 
is related to the slenderness ratio and Poisson’s ratio of 
the beam. The theoretical relative error of Euler–Bernoulli 
theory can be calculated as follows,

(35)� =
�TB − �EB

�TB
= 1 −

1

1 + 0.417
(
1 + �b

)
�−2
0

Figure 19 presents the analytical difference between 
Euler–Bernoulli and Timoshenko theory for different 
slenderness ratios. It can be seen that the maximum rela-
tive error can be as high as 38% when the beam diameter 
equals the beam length. Recall that the shear bond stiffness 
in EBBM is always larger than TBBM (Table 5), which 
results in an under prediction of the beam deformation. 
Additionally, the damage caused by shear is an impor-
tant failure mechanism for cementitious materials [59, 
60]. Therefore, for stocky beams such as those concerned 
in the majority of DEM of bonded materials, the TBBM 
should be superior to EBBM for the failure simulations of 
the cementitious materials.

4.3  General formulation of bond models

In order to better understand the differences between the 
parallel bond model and the beam bond models, it is first 
required to convert the beam bond models into a similar 

Fig. 18  Projection view of a bending moment acting on a beam

Fig. 19  Analytical deformation of beam bending by Euler–Bernoulli 
and Timoshenko theory for different slenderness ratios

Table 5  The axial stiffness, shear stiffness for different bond models 
in case 3

Total 
number of 
bonds
(–)

Bond to 
beam length 
ratio
(–)

Bond axial 
stiffness

Bond shear stiffness 
(GPa·m)

(GPa·m) PBM EBBM TBBM

1 1 6.283 2.416 0.04712 0.04612
2 0.5 12.56 4.833 0.3769 0.3469
4 0.25 25.13 9.66 3.016 2.240
6 0.167 37.69 14.50 10.18 5.718
8 0.125 50.26 19.33 24.13 10.11
10 0.1 62.83 24.17 47.12 14.88
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format to that of the parallel bond model where force and 
moments at the contact point and at the particle centroids 
are presented in Tables1 and 2 respectively.

Here we start with the Timoshenko beam bond model. 
Substituting the stiffness matrix into Eqs. (13) and (14), one 
can get the following relations after some re-arrangements:

(36)ΔF�x = −ΔF�x =
EbAb

Lb

(
U�x − U�x

)
Δt

(37)

ΔF�y = −ΔF�y =
12EbIb

L3
b

(
1 + Φs

)(U�y − U�y − 0.5Lb��z − 0.5Lb��z

)
Δt

(38)

ΔF�z = −ΔF�z =
12EbIb

L3
b

(
1 + Φs

)(U�z − U�z − 0.5Lb��y − 0.5Lb��y

)
Δt

(39)ΔM�x = −ΔM�x =
EbIb

Lb(1 + �)

(
��x − ��x

)

(40)ΔM�y = −
EbIb

Lb

(
��y − ��y

)
− 0.5LbΔF�z

(41)ΔM�y =
EbIb

Lb

(
��y − ��y

)
+ 0.5LbΔF�z

(42)ΔM�z = −
EbIb

Lb

(
��z − ��z

)
+ 0.5LbΔF�y

As shown in Fig. 3, we define that the contact point is 
located at the centroid of the beam, i.e.,

Combined with Eqs. (6) and (7), both the force and 
moment relations at the contact point can now be rear-
ranged to give the concise forms outlined in Table 6. Fur-
thermore, the force and moment relations calculated at the 
centroid of each particle in the bonded pair can also be 
rewritten and are given in Table 7 [61].

Comparing Tables 1 with 7, it becomes evident that 
whilst the formulations of the PBM and TBBM bond mod-
els appear quite different in the literature, they are actually 
of a similar formulation, with the key exception being, the 
definition of the contact point location for each model. The 
parallel bond model defines that the contact point is centred 
at the gap or overlap of the bonded particle pair while the 
contact point of the TBBM can be considered as located at 
the centroid of the beam. By substituting Eqs. (2) into (1), 
it can be shown that the contact points for the parallel bond 
model and TBBM are coincident when the two bonded par-
ticles have the same physical and contact radii (Test cases 
1–4). However, if the sizes of bonded particles are differ-
ent, the contact point locations for these two models are 
different (see Test case 5). The contact point location is of 
major importance because it will affect the calculation of 
relative velocity, displacement and lever arms for the bend-
ing moments. The difference lies in the original assumptions 
of the model. Because the TBBM focuses on the mechanical 
behaviour of the beam that connects the bonded particles, 
the contact point is considered to be located at the centroid 
of beam. In contrast for the PBM, the contact point location 
will adjust to be closer to the smaller particle if the sizes of 
bonded particles are different. In this sense, the TBBM can 
be more suitable for modelling continuous materials since it 
has less dependence on the constituent particle size chosen 
in the discretisation of the domain.

The other significant difference between spring bond 
model and beam bond model is the calculation method for 

(43)ΔM�z =
EbIb

Lb

(
��z − ��z

)
− 0.5LbΔF�y

(44)xc = x𝛼 + 0.5Lbêx

Table 6  Summary of TBBM forces and moments calculations at cen-
troid of beam

Contact law Stiffness

Normal force ΔFcx = knvcr,xΔt kn = Eb�r
2

b
∕Lb

Shear force ΔFcy = ksvcr,yΔt ks =
12EbIb

L3
b(1+Φs)

ΔFcz = ksvcr,zΔt

Twisting moment ΔMcx = ktor�cr,xΔt ktor = 0.25knr
2

b
∕
(
1 + �b

)
Bending moment ΔMcy = kben�cr,yΔt kben = 0.25knr

2

b

ΔMcz = kben�cr,zΔt

Table 7  Summary of TBBM 
forces and moments calculations 
at particle centroid

Particle � Particle �

Normal force ΔF�x = −ΔFcx ΔF�x = ΔFcx

Shear force ΔF�y = −ΔFcy ΔF�y = ΔFcy

ΔF�z = −ΔFcz ΔF�z = ΔFcz

Twisting moment ΔM�x = −ΔMcx ΔM�x = ΔMcx

Bending moment ΔM�y = −ΔMcy − 0.5LbΔF�z ΔM�y = ΔMcy + 0.5LbΔF�z

ΔM�z = −ΔMcz + 0.5LbΔF�y ΔM�z = ΔMcz − 0.5LbΔF�y
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the shear stiffness, which in turn will also affect the calcula-
tion of torsional stiffness in the model. The shear stiffness 
in a spring bond model is typically calculated as a ratio of 
the normal to shear stiffness, as shown in Table 1. This ratio 
is often defined with respect to the bond material properties 
and according to Equation (8) [45, 46, 54].

The shear and torsional stiffnesses of TBBM are derived 
from the Timoshenko beam theory which takes into account 
the shear deformation of a beam under loading. Obermayr 
[39] developed another beam bond model and showed that it 
was equivalent to a linear finite-element Timoshenko beam 
element with reduced integration of the shear deformation 
for small deformations. Absolute displacements and rota-
tions using quaternion algebra framework were adopted in 
the force and moment calculations in their proposed model. 
However, we find that the elastic part of the force and 
moment calculations can also be written in a similar form 
to Tables 6 and 7 if incremental formulations are used. The 
shear stiffness of Obermayr et al.’s model can therefore be 
rewritten as:

where �s is a simplified shear coefficient. At this point it 
should be noted the Timoshenko beam model proposed by 
Obermayr [39] is not resolution independent as there is a 
significant difference in the deflections calculated between 
a beam consisting of 2 particles and 10 particles. While 
they compared a 10-particle solution to the solution using 

(45)ks =
�sGbAb

Lb
=

�skn
2(1 + �)

ANSYS BEAM188 finite element method and found a rela-
tively close agreement, no comparison was made with the 
actual Timoshenko theory.

In summary, all the aforementioned bond models can be 
unified in a generic form as shown in Table 8, provided that 
the relative translational velocity and rotational velocity at 
each contact point location are calculated using Eqs. (6) and 
(7) respectively. The differences between the bond models 
lie in the definition of contact point location and contact 
stiffness calculations.

Following the unification of the different bond models 
into the generic formulation, the key aspects (contact point 
location and bond stiffness calculations) of these bond mod-
els can be summarised as shown in Table 9. There are sev-
eral important conclusions to be drawn from this. The first is 
that while the parallel bond model has a different definition 
of the contact point, it will collapse to the same definition as 
both beam bond models if monodisperse particles are being 
used. With this in mind, it is possible to then compare the 
various model stiffnesses to see where the difference lies.

All three models have been found to have the same nor-
mal and bending stiffness while the main difference between 
all the models is the shear stiffness. The parallel bond model 
has the simplest shear stiffness model which is simply related 
to the normal stiffness, a method that is typically employed 
in the cohesionless and cohesive contact model families. The 
Euler–Bernoulli and Timoshenko models use a definition 
that includes both the bond geometry (radius and length) and 
the material properties (Young’s Modulus). The Timoshenko 
shear stiffness is modified by the Timoshenko shear coef-
ficient, which was described in Eq. (25), to account for the 
shear deformations in deep beams. The twisting stiffness 
is the same for both beam models and is again dependent 
on geometric definition (bond radius) and material property 
(Poisson’s ratio), whereas for the parallel bond model, it is 
again simply related to the normal stiffness. This difference 
is the modification proposed by Brendel et al. (Eq. (8)).

5  Conclusions

In this paper, a detailed assessment of the common bond 
models used in DEM bonded particle simulations is pre-
sented. Two fundamental types of bonded contact models 

Table 8  Unification of bond force and moment calculations at contact 
point and at particle centroid

Contact point Particle centroids

Normal force ΔFcx = knvcr,xΔt ΔF�x = −ΔF�x = −ΔFcx

Shear force ΔFcy = ksvcr,yΔt ΔF�y = −ΔF�y = −ΔFcy

ΔFcz = ksvcr,zΔt ΔF�z = −ΔF�z = −ΔFcz

Twisting moment ΔMcx = ktor�cr,xΔt ΔM�x = −ΔM�x = −ΔMcx

Bending moment ΔMcy = kben�cr,yΔt ΔM�y = −ΔMcy − r�cΔF�z

ΔMcz = kben�cr,zΔt ΔM�y = ΔMcy + r�cΔF�z

ΔM�z = −ΔMcz + r�cΔF�y

ΔM�z = ΔMcz − r�cΔF�y

Table 9  Summary of contact 
point location and contact 
stiffness calculations in parallel 
bond model, EBBM and TBBM

Parallel bond model EBBM TBBM

Contact point xc = x� + 0.5(Lb + R� − R� )̂ex xc = x� + 0.5Lbêx

Normal stiffness kn = Eb�r
2

b
∕Lb

Shear stiffness ks = kn∕� ks =
12EbIb

L3
b

ks =
12EbIb

L3
b(1+Φs)

Twisting stiffness ktor = 0.5ksr
2

b
ktor = 0.25knr

2

b
∕
(
1 + �b

)
Bending stiffness kben = 0.25knr

2

b



 X. Chen et al.

1 3

   29  Page 18 of 20

are identified, namely the spring bond model and the beam 
bond model. The spring bond model calculates the bond 
forces and moments at the contact point location and then 
transfer them to the centres of the bonded particles whereas 
the beam bond model directly calculates the bond forces and 
moments acting at the centres of the bonded particles based 
on beam theory.

A series of cantilever beam bending cases have been 
carried out to evaluate the performance of the three typi-
cal bond models, namely, the parallel bond model (PBM), 
the Euler-Bernoullli beam bond model (EBBM) and the 
Timoshenko beam bond model (TBBM). It is found that 
all the three models are capable of quantitatively predicting 
the bending behaviour of a slender cantilever beam. How-
ever, the PBM is very sensitive to the number of constituent 
particles used to represent a beam and could only predict 
the deflection if the number of constituent particles is large 
enough—at least 10 bonds are required to predict the beam 
response to the same results as the beam bond models. As 
expected, the EBBM correctly predicts the deformation for 
slender beams but underpredicts the deformation for deep 
beams due to neglecting the shear deformation contribution. 
The TBBM is found to have excellent predictions of beam 
deformations for all the studied cases due to the rigorous 
nature of the Timoshenko Theory upon which it is based.

A generic formulation is presented for the different bond 
models and used to assess the key differences between the 
models. It is found that the contact point definition varies 
between the parallel bond model and the beam bond models, 
however, in the case of monodisperse particles the contact 
point could be shown to be the same and a direct comparison 
between the models could be made for this configuration. 
Several similarities and differences were found in the various 
stiffness components of the models. All three models share 
the same normal and bending stiffness while the torsional 
stiffness and shear stiffness differ. The Euler–Bernoulli and 
Timoshenko modes share the same definition of torsional 
stiffness. Finally, it is worth mentioning that all the bond 
models can provide reasonably good results with right sets 
of input parameters, i.e., by providing enough resolution 
and considering the right beam slenderness ratios that are 
likely to be encountered in the study phenomena. Therefore, 
appropriate calibration, verification and validation are vital 
before applying DEM in solving real-world problems [62].

Future study on the use of these models with bonded 
particle models to study complicated cases like failure of 
concrete or rock needs to be carried out to understand the 
effects of the fundamental difference in these models to their 
ability to predict real-world cases.

Acknowledgements The authors gratefully acknowledge the support of 
the European Community under the Marie Curie Initial Training Net-
work no. ITN 607453 and the support of the International Fine Particles 

Research Institute (IFPRI). Di Peng would like to acknowledge the 
funding provided by China Scholarship Council (No. 201606260230).

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Potyondy, D., Cundall, P.: A bonded-particle model for rock. Int. 
J. Rock Mech. Min. Sci. 41, 1329–1364 (2004)

 2. Ergenzinger, C., Seifried, R., Eberhard, P.: A discrete element 
model to describe failure of strong rock in uniaxial compression. 
Granular Matter 13, 341–364 (2011)

 3. Cho, N.A., Martin, C., Sego, D.: A clumped particle model for 
rock. Int. J. Rock Mech. Min. Sci. 44, 997–1010 (2007)

 4. Ning, Z., Melrose, J.R.: A numerical model for simulating 
mechanical behavior of flexible fibers. J. Chem. Phys. 111, 
10717–10726 (1999)

 5. Wang, M., Feng, Y., Zhao, T.T., Wang, Y.: Modelling of sand 
production using a mesoscopic bonded particle lattice Boltz-
mann method. Eng. Comput. 36(2), 691 (2019)

 6. Qu, T., Feng, Y., Wang, M., Jiang, S.: Calibration of paral-
lel bond parameters in bonded particle models via physics-
informed adaptive moment optimisation. Powder Technol. 366, 
527–536 (2020)

 7. Tan, Y., Yang, D., Sheng, Y.: Discrete element method (DEM) 
modeling of fracture and damage in the machining process of 
polycrystalline SiC. J. Eur. Ceram. Soc. 29, 1029–1037 (2009)

 8. Kuhl, E., D’Addetta, G.A., Herrmann, H.J., Ramm, E.: A com-
parison of discrete granular material models with continuous 
microplane formulations. Granular Matter 2, 113–121 (2000)

 9. André, D., Iordanoff, I., Charles, J.-L., Néauport, J.: Discrete 
element method to simulate continuous material by using the 
cohesive beam model. Comput. Methods Appl. Mech. Eng. 213, 
113–125 (2012)

 10. Wang, M.: A scale-invariant bonded particle model for simulat-
ing large deformation and failure of continua. Comput. Geotech. 
126, 103735 (2020)

 11. Cundall, P.A., Strack, O.D.: A discrete numerical model for 
granular assemblies. Geotechnique 29, 47–65 (1979)

 12. Mindlin, R.D., Deresiewica, H.: Elastic spheres in contact under 
varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

 13. Luding, S.: Cohesive, frictional powders: contact models for 
tension. Granular Matter 10, 235 (2008)

 14. Pasha, M., Dogbe, S., Hare, C., Hassanpour, A., Ghadiri, M.: A 
linear model of elasto-plastic and adhesive contact deformation. 
Granular Matter 16, 151–162 (2014)

http://creativecommons.org/licenses/by/4.0/


A comparative assessment and unification of bond models in DEM simulations  

1 3

Page 19 of 20    29 

 15. Walton, O.R., Johnson, S.M.: Simulating the effects of inter-
particle cohesion in micron‐scale powders. In: AIP Conference 
Proceedings: AIP, 897–900 2009

 16. Tomas, J.: Adhesion of ultrafine particles—a micromechanical 
approach. Chem. Eng. Sci. 62, 1997–2010 (2007)

 17. Thornton, C.: Coefficient of restitution for collinear collisions of 
elastic-perfectly plastic spheres. J. Appl. Mech. 64, 383–386 (1997)

 18. Thakur, S.C., Morrissey, J.P., Sun, J., Chen, J., Ooi, J.Y.: Micro-
mechanical analysis of cohesive granular materials using the 
discrete element method with an adhesive elasto-plastic contact 
model. Granular Matter 16, 383–400 (2014)

 19. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact 
deformations on the adhesion of particles. J. Colloid Interface 
Sci. 53, 314–326 (1975)

 20. Johnson, K.L., Kendall, K., Roberts, A.: Surface energy and the 
contact of elastic solids. Proc. R. Soc. Lond A. 324, 301–313 
(1971)

 21. Ge, R., Wang, L., Zhou, Z.: DEM analysis of compression 
breakage of 3D printed agglomerates with different structures. 
Powder Technol. 356, 1045–1058 (2019)

 22. Jiang, M., Shen, Z., Wang, J.: A novel three-dimensional contact 
model for granulates incorporating rolling and twisting resist-
ances. Comput. Geotech. 65, 147–163 (2015)

 23. Walton, O.R.: Potential discrete element simulation applications 
ranging from airborne fines to pellet beds. SAE Trans. 113, 
471–483 (2004)

 24. Potyondy, D.O.: The bonded-particle model as a tool for rock 
mechanics research and application: current trends and future 
directions. Geosystem Eng. 18, 1–28 (2015)

 25. Guo, Y., Wassgren, C., Curtis, J.S., Xu, D.: A bonded sphero-
cylinder model for the discrete element simulation of elasto-
plastic fibers. Chem. Eng. Sci. 175, 118–129 (2018)

 26. Vallejos, J.A., Salinas, J.M., Delonca, A., Mas Ivars, D.: Cali-
bration and verification of two bonded-particle models for simu-
lation of intact rock behavior. Int. J. Geomech. 17, 06016030 
(2017)

 27. Hare, C., Ghadiri, M., Guillard, N., Bosworth, T., Egan, G.: 
Analysis of milling of dry compacted ribbons by distinct element 
method. Chem. Eng. Sci. 149, 204–214 (2016)

 28. Ge, R., Ghadiri, M., Bonakdar, T., Zheng, Q., Zhou, Z., Larson, I., 
Hapgood, K.: Deformation of 3D printed agglomerates: multiscale 
experimental tests and DEM simulation. Chem. Eng. Sci. 217, 
115526 (2020)

 29. He, Y., Wang, Z., Evans, T., Yu, A., Yang, R.: DEM study of the 
mechanical strength of iron ore compacts. Int. J. Miner. Process. 
142, 73–81 (2015)

 30. Chung, J., Roos, A., De Hosson, J.T.M., Van der Giessen, E.: Frac-
ture of disordered three-dimensional spring networks: A computer 
simulation methodology. Phys. Rev. B 54, 15094 (1996)

 31. Itasca Consulting Group, I. PFC — Particle Flow Code Ver 5.0. 
Minneapolis, Itasca, (2014)

 32. Bobet, A., Fakhimi, A., Johnson, S., Morris, J., Tonon, F., Yeung, 
M.R.: Numerical models in discontinuous media: review of 
advances for rock mechanics applications. J. Geotech. Geoenvi-
ron. Eng. 135, 1547–1561 (2009)

 33. Zhang, Y., Wong, L.N.Y.: A review of numerical techniques 
approaching microstructures of crystalline rocks. Comput. Geosci. 
115, 167–187 (2018)

 34. Schneider, B., Bischoff, M., Ramm, E.: Modeling of material fail-
ure by the discrete element method. Pamm 10, 685–688 (2010)

 35. Carmona, H., Wittel, F., Kun, F., Herrmann, H.: Fragmentation 
processes in impact of spheres. Phys. Rev. E 77, 051302 (2008)

 36. Schlangen, E., Garboczi, E.: Fracture simulations of concrete 
using lattice models: computational aspects. Eng. Fract. Mech. 
57, 319–332 (1997)

 37. Haddad, H., Leclerc, W., Guessasma, M., Pélegris, C., Ferguen, 
N., Bellenger, E.: Application of DEM to predict the elastic 
behavior of particulate composite materials. Granular Matter 17, 
459–473 (2015)

 38. Brown, N.J., Chen, J.-F., Ooi, J.Y.: A bond model for DEM simu-
lation of cementitious materials and deformable structures. Granu-
lar Matter 16, 299–311 (2014)

 39. Obermayr, M., Dressler, K., Vrettos, C., Eberhard, P.: A bonded-
particle model for cemented sand. Comput. Geotech. 49, 299–313 
(2013)

 40. Brown, N.J.: Discrete Element Modelling of Cementitious Materi-
als The University of Edinburgh, (2013)

 41. Wang, L.G.: Particle breakage mechanics in milling operation: 
The University of Edinburgh, (2016)

 42. Wittel, F.K., Carmona, H.A., Kun, F., Herrmann, H.J.: Mecha-
nisms in impact fragmentation. Int. J. Fract. 154, 105–117 (2008)

 43. DEMSolutions. EDEM 2017 User Guide. DEM Solution Ltd., 
Edinburgh, Scotland, UK. (2016)

 44. Scholtès, L., Donzé, F.-V.: A DEM model for soft and hard rocks: 
role of grain interlocking on strength. J. Mech. Phys. Solids 61, 
352–369 (2013)

 45. Brendel, L., Török, J., Kirsch, R., Bröckel, U.: A contact model 
for the yielding of caked granular materials. Granular Matter 13, 
777–786 (2011)

 46. Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W., Curtis, J.: 
Predicting breakage of high aspect ratio particles in an agitated 
bed using the discrete element method. Chem. Eng. Sci. 158, 
314–327 (2017)

 47. Rojek, J., Labra, C., Su, O., Oñate, E.: Comparative study of 
different discrete element models and evaluation of equivalent 
micromechanical parameters. Int. J. Solids Struct. 49, 1497–1517 
(2012)

 48. Shen, Z., Jiang, M., Thornton, C.: DEM simulation of bonded 
granular material. Part I: contact model and application to 
cemented sand. Comput. Geotech. 75, 192–209 (2016)

 49. Nguyen, D.H., Kang, N., Park, J.: Validation of partially flexible 
rod model based on discrete element method using beam deflec-
tion and vibration. Powder Technol. 237, 147–152 (2013)

 50. Przemieniecki, J.S. Theory of matrix structural analysis: courier 
Corporation, (1985).

 51. Leclerc, W., Haddad, H., Guessasma, M.: On the suitability of a 
Discrete element method to simulate cracks initiation and propa-
gation in heterogeneous media. Int. J. Solids Struct. 108, 98–114 
(2017)

 52. Leclerc, W., Haddad, H., Guessasma, M.: On a discrete element 
method to simulate thermal-induced damage in 2D composite 
materials. Comput. Struct. 196, 277–291 (2018)

 53. Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W., Curtis, J.: 
Validation and time step determination of discrete element mod-
eling of flexible fibers. Powder Technol. 249, 386–395 (2013)

 54. Wolff, M., Salikov, V., Antonyuk, S., Heinrich, S., Schneider, G.: 
Three-dimensional discrete element modeling of micromechanical 
bending tests of ceramic–polymer composite materials. Powder 
Technol. 248, 77–83 (2013)

 55. Timoshenko, S., Goodier, J.: Theory of elasticity, p. 108, New 
York (1951)

 56. Carrera, E., Giunta, G., Petrolo, M.: Beam Structures: Classical 
and Advanced Theories. Chichester, UK (2011)

 57. CEN. Eurocode 2: Design of Concrete Structures. Part 1: Gen-
eral Rules and Rules for Buildings. Structural models for overall 
analysis. Brussels: ENV 1992, cl 5.3.1.

 58. Craig, J.I., Bauchau, O.A.: Structural Analysis. Springer, 
Dordrecht (2009)

 59. Van Mier, J.: Failure of concrete under uniaxial compression: an 
overview. Fract. Mech. Concr Struct 2, 1169–1182 (1998)



 X. Chen et al.

1 3

   29  Page 20 of 20

 60. Irwin, G.R., Kies, J.: Critical energy rate analysis of fracture 
strength. Spie Milest Ser. MS 137, 136–141 (1997)

 61. Peng, D. 3D discrete element simulation on sand with microbially 
induced calcite precipitation (in Chinese) [Master Thesis]: Tongji 
University, (2016).

 62. Ooi, J.Y. Establishing predictive capabilities of DEM–Verification 
and validation for complex granular processes. In: AIP Confer-
ence Proceedings: American Institute of Physics, p. 20–4 (2013).

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A comparative assessment and unification of bond models in DEM simulations
	Abstract
	1 Introduction
	2 Description of DEM bonded contact model
	2.1 Spring bond model
	2.2 Beam bond model

	3 Test cases to evaluate common DEM bond models
	3.1 Case 1: reference problem
	3.2 Case 2: slender and deep beams
	3.3 Case 3: effect of the discretization of the beam
	3.4 Case 4: effect of gap length
	3.5 Case 5: effect of polydispersity of bonded particles

	4 Discussions
	4.1 Bond slenderness ratio effect
	4.2 Beam slenderness ratio effect
	4.3 General formulation of bond models

	5 Conclusions
	Acknowledgements 
	References




