

Edinburgh Research Explorer

Efficient ancestry and mutation simulation with msprime 1.0
Citation for published version:
Baumdicker, F, Bisschop, G, Goldstein, D, Gower, G, Ragsdale, AP, Tsambos, G, Zhu, S, Eldon, B,
Ellerman, CE, Galloway, JG, Gladstein, AL, Gorjanc, G, Guo, B, Jeffery, B, Kretzschmar, WW, Lohse, K,
Matschiner, M, Nelson, D, Pope, NS, Quinto-Cortés, CD, Rodrigues, MF, Saunack, K, Sellinger, T,
Thornton, K, van Kemenade, H, Wohns, AW, Wong, HY, Gravel, S, Kern, AD, Koskela, J, Ralph, PL &
Kelleher, J 2021, 'Efficient ancestry and mutation simulation with msprime 1.0', Genetics.
https://doi.org/10.1093/genetics/iyab229

Digital Object Identifier (DOI):
10.1093/genetics/iyab229

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genetics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://doi.org/10.1093/genetics/iyab229
https://doi.org/10.1093/genetics/iyab229
https://www.research.ed.ac.uk/en/publications/405d929a-e076-41c0-a130-a39a920fed4e

GENETICS | INVESTIGATION

Efficient ancestry and mutation simulation with
msprime 1.0

Franz Baumdicker1,?, Gertjan Bisschop2,?, Daniel Goldstein3,24,?, Graham Gower4,?, Aaron P. Ragsdale5,?, Georgia Tsambos6,?,
Sha Zhu7,?, Bjarki Eldon8, E. Castedo Ellerman9, Jared G. Galloway10,11, Ariella L. Gladstein12,13, Gregor Gorjanc14, Bing Guo15,

Ben Jeffery7, Warren W. Kretzschmar16, Konrad Lohse2, Michael Matschiner17, Dominic Nelson18, Nathaniel S. Pope19, Consuelo
D. Quinto-Cortés20, Murillo F. Rodrigues10, Kumar Saunack21, Thibaut Sellinger22, Kevin Thornton23, Hugo van Kemenade24,
Anthony W. Wohns7,25, Yan Wong7, Simon Gravel18,†, Andrew D. Kern10,†, Jere Koskela26,†, Peter L. Ralph10,27,† and Jerome

Kelleher7,‡

1Cluster of Excellence “Controlling Microbes to Fight Infections”, Mathematical and Computational Population Genetics, University of Tübingen, 72076
Tübingen, Germany, 2Institute of Evolutionary Biology, The University of Edinburgh, EH9 3FL, UK, 3Khoury College of Computer Sciences, Northeastern
University, MA 02115, USA, 4Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark, 5Department of

Integrative Biology, University of Wisconsin–Madison, WI 53706, USA, 6Melbourne Integrative Genomics, School of Mathematics and Statistics, University of
Melbourne, Victoria, 3010, Australia, 7Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF, UK, 8Leibniz

Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, 10115, Germany , 9Fresh Pond Research Institute, Cambridge, MA 02140,
USA, 10Institute of Ecology and Evolution, Department of Biology, University of Oregon, OR 97403-5289, USA, 11Computational Biology Program, Fred

Hutchinson Cancer Research Center, Seattle, WA 98102, USA, 12Department of Genetics, University of North Carolina at Chapel Hill, NC 27599-7264, USA,
13Embark Veterinary, Inc., Boston, MA 02111, USA, 14The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG,

UK, 15Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA, 16Center for Hematology and Regenerative
Medicine, Karolinska Institute, 141 83 Huddinge, Sweden, 17Natural History Museum, University of Oslo, Blindern 0318 Oslo, Norway, 18Department of Human

Genetics, McGill University, Montréal, QC H3A 0C7, Canada, 19Department of Entomology, Pennsylvania State University, PA 16802, USA, 20National
Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Mexico, 21IIT Bombay, Powai, Mumbai 400 076,

Maharashtra, India, 22Professorship for Population Genetics, Department of Life Science Systems, Technical University of Munich, 85354 Freising, Germany,
23Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA, 24No affiliation, 25Broad Institute of MIT and Harvard, Cambridge, MA

02142, USA, 26Department of Statistics, University of Warwick, CV4 7AL, UK, 27Department of Mathematics, University of Oregon, OR 97403-5289 USA

ABSTRACT Stochastic simulation is a key tool in population genetics, since the models involved are often analytically intractable
and simulation is usually the only way of obtaining ground-truth data to evaluate inferences. Because of this, a large number of
specialized simulation programs have been developed, each filling a particular niche, but with largely overlapping functionality
and a substantial duplication of effort. Here, we introduce msprime version 1.0, which efficiently implements ancestry and
mutation simulations based on the succinct tree sequence data structure and the tskit library. We summarize msprime’s
many features, and show that its performance is excellent, often many times faster and more memory efficient than specialized
alternatives. These high-performance features have been thoroughly tested and validated, and built using a collaborative, open
source development model, which reduces duplication of effort and promotes software quality via community engagement.

1

2

3

4

5

6

7

8

KEYWORDS Simulation, Coalescent, Mutations, Ancestral Recombination Graphs9

doi: 10.1534/genetics.XXX.XXXXXX
Manuscript compiled: Wednesday 8th December, 2021
?These authors contributed equally to this work.
†These authors contributed equally to this work.

Introduction 1

The coalescent process (Kingman 1982a,b; Hudson 1983b; Tajima 2

1983) models the ancestry of a set of sampled genomes, pro- 3

viding a mathematical description of the genealogical tree that 4

relates the samples to one another. It has proved to be a power- 5

ful model, and is now central to population genetics (Hudson 6

1990; Hein et al. 2004; Wakeley 2008). The coalescent is an ef- 7

‡ jerome.kelleher@bdi.ox.ac.uk

Genetics 1

© The Author(s) (2021) . Published by Oxford University Press on behalf of the Genetics Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

jerome.kelleher@bdi.ox.ac.uk

ficient framework for population genetic simulation, because1

it allows us to simulate the genetic ancestry for a sample from2

an idealized population model, without explicitly representing3

the population in memory or stepping through the generations.4

Indeed, Hudson (1983b) independently derived the coalescent5

in order to efficiently simulate data, and used these simulations6

to characterize an analytically intractable distribution. This in-7

herent efficiency, and the great utility of simulations for a wide8

range of purposes, has led to dozens of different tools being9

developed over the decades (Carvajal-Rodríguez 2008; Liu et al.10

2008; Arenas 2012; Yuan et al. 2012; Hoban et al. 2012; Yang et al.11

2014; Peng et al. 2015).12

Two technological developments of recent years, however,13

pose major challenges to most existing simulation methods.14

Firstly, fourth-generation sequencing technologies have made15

complete chromosome-level assemblies possible (Miga et al.16

2020), and high quality assemblies are now available for many17

species. Thus, modeling genetic variation data as a series of18

unlinked non-recombining loci is no longer a reasonable approx-19

imation, and we must fully account for recombination. However,20

while a genealogical tree relating n samples in the single-locus21

coalescent can be simulated in O(n) time (Hudson 1990), the22

coalescent with recombination is far more complex, and pro-23

grams such as Hudson’s classical ms (Hudson 2002) can only24

simulate short segments under the influence of recombination.25

The second challenge facing simulation methods is that sam-26

ple sizes in genetic studies have grown very quickly in recent27

years, enabled by the precipitous fall in genome sequencing28

costs. Human datasets like the UK Biobank (Bycroft et al. 2018)29

and gnomAD (Karczewski et al. 2020) now consist of hundreds30

of thousands of genomes and many other datasets on a similar31

scale are becoming available (Tanjo et al. 2021). Classical simu-32

lators such as ms and even fast approximate methods such as33

scrm (Staab et al. 2015) simply cannot cope with such a large34

number of samples.35

The msprime simulator (Kelleher et al. 2016; Kelleher and36

Lohse 2020) has greatly increased the scope of coalescent simula-37

tions, and it is now straightforward to simulate millions of whole38

chromosomes for a wide range of organisms. The “succinct tree39

sequence” data structure (Kelleher et al. 2016, 2018, 2019; Wohns40

et al. 2021), originally introduced as part of msprime, makes it41

possible to store such large simulations in a few gigabytes, sev-42

eral orders of magnitude smaller than commonly used formats.43

The succinct tree sequence has also led to major advances in44

forwards-time simulation (Kelleher et al. 2018; Haller et al. 2018),45

ancestry inference (Kelleher et al. 2019; Wohns et al. 2021) and46

calculation of population genetic statistics (Kelleher et al. 2016;47

Ralph et al. 2020). Through a rigorous open-source community48

development process, msprime has gained a large number of49

features since its introduction, making it a highly efficient and50

flexible platform for population genetic simulation. This paper51

marks the release of msprime 1.0. We provide an overview of52

its extensive features, demonstrate its performance advantages53

over alternative software, and discuss opportunities for ongoing54

open-source community-based development.55

The efficiency of coalescent simulations depends crucially56

on the assumption of neutrality, and it is important to note that57

there are many situations in which this will be a poor approx-58

imation of biological reality (Johri et al. 2021). In particular,59

background selection has been shown to affect genome wide60

sequence variation in a wide range of species (Charlesworth et al.61

1993, 1995; Charlesworth and Jensen 2021). Thus care must be62

Interface Separation of ancestry and mutation simulations.
Ability to store arbitrary metadata along with sim-
ulation results, and automatic recording of prove-
nance information for reproducibility. Jupyter note-
book (Kluyver et al. 2016) integration. Rich suite of
analytical and visualization methods via the tskit
library.

Ancestry SMC, SMC’, Beta- and Dirac-coalescent, discrete time
Wright-Fisher, and selective sweep models. Instanta-
neous bottlenecks. Discrete or continuous genomic co-
ordinates, arbitrary ploidy, gene conversion. Output
full ARG with recombination nodes, ARG likelihood
calculations. Record full migration history and cen-
sus events. Improved performance for large numbers
of populations. Integration with forward simulators
such as SLiM and fwdpy11 (“recapitation”).

Demography Improved interface with integrated metadata and ref-
erencing populations by name. Import from Newick
species tree, *BEAST (Heled and Drummond 2009),
and Demes (Gower et al. 2022). Numerical methods
to compute coalescence rates.

Mutations JC69, HKY, F84, GTR, BLOSUM62, PAM, infinite alle-
les, SLiM and general matrix mutation models. Vary-
ing rates along the genome, recurrent/back muta-
tions, discrete or continuous genomic coordinates,
overlaying multiple layers of mutations, exact times
associated with mutations.

Table 1 Major features of msprime 1.0 added since version 0.3.0
(Kelleher et al. 2016).

taken to ensure that the results of purely neutral simulations are 63

appropriate for the question and genomic partition under study. 64

A major strength of msprime, however, is that it can be used in 65

conjunction with forwards-time simulators, enabling the simula- 66

tion of more realistic models than otherwise possible (Kelleher 67

et al. 2018; Haller et al. 2018). 68

Results 69

In the following sections we describe the main features of 70

msprime 1.0, focusing on the aspects that are either new for 71

this version, or in which our approach differs significantly from 72

classical methods (summarized in Table 1). Where appropriate, 73

we benchmark msprime against other simulators, but the com- 74

parisons are illustrative and not intended to be systematic or 75

exhaustive. Please see Kelleher et al. (2016) for a performance 76

comparison of msprime against simulators such as ms, msms, and 77

scrm. 78

User interface 79

The majority of simulation packages are controlled either 80

through a command line interface (e.g. Hudson 2002; Kern and 81

Schrider 2016), a text-based input file format (e.g. Guillaume 82

and Rougemont 2006; Excoffier and Foll 2011; Shlyakhter et al. 83

2014), or a mixture of both. Command line interfaces make it 84

easy to run simple simulations, but as model complexity and the 85

number of parameters increase, they become difficult to under- 86

stand and error-prone (Ragsdale et al. 2020; Gower et al. 2022). 87

Specifying parameters through a text file alleviates this problem 88

to a degree, but lacks flexibility, for example, when running sim- 89

ulations with parameters drawn from a distribution. In practice, 90

for any reproducible simulation project users will write a script 91

to generate the required command lines or input parameter files, 92

invoke the simulation engine, and process the results in some 93

2 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

way. This process is cumbersome and labor intensive, and a1

number of packages have been developed to allow simulations2

to be run directly in a high-level scripting language (Staab and3

Metzler 2016; Parobek et al. 2017; Gladstein et al. 2018).4

The more recent trend has been to move away from this5

file and command-line driven approach and to instead pro-6

vide direct interfaces to the simulation engines via an Applica-7

tion Programming Interface (API) (e.g. Thornton 2014; Kelleher8

et al. 2016; Becheler et al. 2019; Haller and Messer 2019). The9

primary interface for msprime is through a thoroughly docu-10

mented Python API, which has encouraged the development of11

an ecosystem of downstream tools (Terhorst et al. 2017; Chan et al.12

2018; Spence and Song 2019; Adrion et al. 2020a,b; Kamm et al.13

2020; McKenzie and Eaton 2020; Montinaro et al. 2020; Terasaki14

Hart et al. 2021; Rivera-Colón et al. 2021). As well as providing15

a stable and efficient platform for building downstream appli-16

cations, msprime’s Python API makes it much easier to build17

reproducible simulation pipelines, as the entire workflow can18

be encapsulated in a single script, and package and version19

dependencies explicitly stated using the pip or conda package20

managers. For example, the errors made in the influential simu-21

lation analysis of Martin et al. (2017) were only detected because22

the pipeline could be easily run and reanalyzed (Ragsdale et al.23

2020; Martin et al. 2020).24

A major change for the msprime 1.0 release is the introduction25

of a new set of APIs, designed in part to avoid sources of error26

(see the Demography section) but also to provide more appro-27

priate defaults while keeping compatibility with existing code.28

In the new APIs, ancestry and mutation simulation are fully sep-29

arated (see Fig. 1), with the sim_ancestry and sim_mutations30

functions replacing the legacy simulate function. Among other31

changes, the new APIs default to discrete genome coordinates32

and finite sites mutations, making the default settings more real-33

istic and resolving a major source of confusion and error. The34

previous APIs are fully supported and tested, and will be main-35

tained for the foreseeable future. The msp program (a command36

line interface to the library) has been extended to include new37

commands for simulating ancestry and mutations separately. A38

particularly useful feature is the ability to specify demographic39

models in Demes format (Gower et al. 2022) from the command40

line, making simulation of complex demographies straightfor-41

ward. We also provide an ms compatible command line interface42

to support existing workflows.43

Tree sequences44

One of the key reasons for msprime’s substantial performance45

advantage over other simulators (Kelleher et al. 2016) is its use46

of the “succinct tree sequence” data structure to represent simu-47

lation results. The succinct tree sequence (usually abbreviated to48

“tree sequence”) was introduced by Kelleher et al. (2016) to con-49

cisely encode genetic ancestry and sequence variation and was50

originally implemented as part of msprime. We subsequently51

extracted the core tree sequence functionality from msprime to52

create the tskit library, which provides a large suite of tools for53

processing genetic ancestry and variation data via APIs in the54

Python and C languages (Tskit developers 2022). The availability55

of tskit as a liberally licensed (MIT) open source toolkit has56

enabled several other projects (e.g. Kelleher et al. 2019; Haller57

and Messer 2019; Wohns et al. 2021; Terasaki Hart et al. 2021)58

to take advantage of the same efficient data structures used in59

msprime, and we hope that many more will follow. While a60

full discussion of tree sequences and the capabilities of tskit61

A

ts = sim_ancestry(3, ...)

Genome position

0 686 1000

B

mts = sim_mutations(ts, ...)

Genome position

0 686 1000

G

G

C

G

A

A

G

T

Figure 1 Visualization of the separation between ancestry
and mutation simulation. (A) The result of an invocation of
sim_ancestry is two trees along a 1kb chunk of genome relat-
ing three diploid samples. Each diploid individual consists of
two genomes (or nodes), indicated by color. (B) This ancestry
is provided as the input to sim_mutations, which adds muta-
tions. Graphics produced using tskit’s draw_svg method.

Efficient simulation with msprime 1.0 3

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

Nodes
ID timeEdges

left right
0

0

20

10

parent child
0

2

6

4

4

4
0 45
0 35

Sites
positionID ancestral

ID site node

Mutations
derived

0
1

1
2

3
2

T
G

3
4

6
8

6
2

G
T

sa
m

p
le

s

sites

0 20 14

36
26

10
10

20
20
20

10
10
10

2 4 4 T

0.0
0.0
0.0
0.0
2.0
3.0
1.0

0
1
2
3
4
5
6

0
1
2
3
4
5
6
7
8
9

2
4
5
7
8
9
12
15
18
19

C
A
C
G
C
T
T
C
G
C

T
im

e
 a

g
o 2

1

0

3

Tree topologies and mutations

5

4

03 1

4

023

6

Genotype matrix

Positions: 0 - 10 10-20

2 1

Tables

0

3

4

0
1

2

1

C
C
C

A
A
A

C
C
G

G
G
G

T
T
T

T
T
T

T
T
G

C
C
C

G
G
T

C
C
C

0 1 2 3 4 5 6 7 8 9

3 C T G C T G C G CC

2

Figure 2 An example tree sequence describing genealogies and sequence variation for four samples at ten sites on a chromosome
of twenty bases long. Information is stored in a set of tables (the tables shown here include only essential columns, and much more
information can be associated with the various entities). The node table stores information about sampled and ancestral genomes.
The edge table describes how these genomes are related along a chromosome, and defines the genealogical tree at each position.
The site and mutation tables together describe sequence variation among the samples. The genotype matrix and tree topologies
shown on the left are derived from these tables.

is beyond the scope of this article, we summarize some aspects1

that are important for simulation.2

Let us define a genome as the complete set of genetic material3

that a child inherits from one parent. Thus, a diploid individual4

has two (monoploid) genomes, one inherited from each parent.5

Since each diploid individual lies at the end of two distinct lin-6

eages of descent, they will be represented by two places (nodes)7

in any genealogical tree. In the tree sequence encoding a node8

therefore corresponds to a single genome, which is associated9

with its creation time (and other optional information), and10

recorded in a simple tabular format (Fig. 2). Genetic inheritance11

between genomes (nodes) is defined by edges. An edge consists12

of a parent node, a child node and the left and right coordinates13

of the contiguous chromosomal segment over which the child14

genome inherited genetic material from the parent genome. Par-15

ent and child nodes may correspond to ancestor and descendant16

genomes separated by many generations. Critically, edges can17

span multiple trees along the genome (usually referred to as18

“marginal” trees), and identical node IDs across different trees19

corresponds to the same ancestral genome. For example, in20

Fig. 2 the branch from node 0 to 4 is present in both marginal21

trees, and represented by a single edge (the first row in the edge22

table). This simple device, of explicitly associating tree nodes23

with specific ancestral genomes and recording the contiguous24

segments over which parent-child relationships exist, general-25

izes the original “coalescence records” concept (Kelleher et al.26

2016), and is the key to the efficiency of tree sequences (Kelleher27

et al. 2018, 2019; Ralph et al. 2020). Note that this formulation28

is fully compatible with the concept of an Ancestral Recombi-29

nation Graph (ARG) and any ARG topology can be fully and30

efficiently encoded in the node and edge tables illustrated in31

Fig. 2; see the section below for more details.32

The final output of most population genetic simulations is33

some representation of sequence variation among the specified34

samples. For coalescent simulations, we usually have three 35

steps: (1) simulate the genetic ancestry, and optionally output 36

the resulting marginal trees; (2) simulate sequence evolution 37

conditioned on this ancestry by generating mutations (see the 38

section); and (3) output the resulting nucleotide sequences by 39

percolating the effects of the mutations through the trees. In- 40

formation about the mutations themselves—e.g., where they 41

have occurred on the trees—is usually not retained or made 42

available for subsequent analysis. In msprime, however, we skip 43

step (3), instead using tskit’s combined data model of ancestry 44

and mutations to represent the simulated sequences. As illus- 45

trated in Fig. 2, mutations are a fully integrated part of tskit’s 46

tree sequence data model, and genetic variation is encoded by 47

recording sites at which mutations have occurred, and where 48

each mutation at those sites has occurred on the marginal tree. 49

Crucially, the genome sequences themselves are never stored, 50

or indeed directly represented in memory (although tskit can 51

output the variant matrix in various formats, if required). It may 52

at first seem inconvenient to have only this indirect represen- 53

tation of the genome sequences, but it is extremely powerful. 54

Firstly, the storage space required for simulations is dramatically 55

reduced. For a simulation of n samples with m variant sites, 56

we would require O(nm) space to store the sequence data as a 57

variant matrix. However, if this simulation was of a recombin- 58

ing genome with t trees, then the tskit tree sequence encoding 59

requires O(n + t + m) space, assuming we have O(1) mutations 60

at each site (Kelleher et al. 2016). For large sample sizes, this 61

difference is profound, making it conceivable, for example, to 62

store the genetic ancestry and variation data for the entire hu- 63

man population on a laptop (Kelleher et al. 2019). As well as 64

the huge difference in storage efficiency, it is often far more ef- 65

ficient to compute statistics of the sequence data from the trees 66

and mutations than it is to work with the sequences themselves. 67

For example, computing Tajima’s D from simulated data stored 68

4 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

in the tskit format is several orders of magnitude faster than1

efficient variant matrix libraries for large sample sizes (Ralph2

et al. 2020).3

The vast genomic datasets produced during the SARS-CoV-24

pandemic have highlighted the advantages of storing genetic5

variation data using the underlying trees. Turakhia et al. (2021)6

propose the Mutation Annotated Tree (MAT) format (consist-7

ing of a Newick tree and associated mutations in a binary for-8

mat) and the matUtils program as an efficient way to store and9

process large viral datasets (McBroome et al. 2021), achieving10

excellent compression and processing performance. Similarly,11

phastsim (De Maio et al. 2021) was developed to simulate se-12

quence evolution on such large SARS-CoV-2 phylogenies, and13

also outputs a Newick tree annotated with mutations (not in14

MAT format) to avoid the bottleneck of generating and storing15

the simulated sequences. While these methods illustrate the16

advantages of the general approach of storing ancestry and mu-17

tations rather than sequences, they do not generalize beyond18

their immediate settings, and no software library support is19

available.20

The software ecosystem built around tskit is stable, mature21

and rapidly growing. Simulators such as fwdpy11 (Thornton22

2014), SLiM (Haller and Messer 2019), stdpopsim (Adrion et al.23

2020a), Geonomics (Terasaki Hart et al. 2021) and GSpace (Vir-24

goulay et al. 2021), and inference methods such as tsinfer (Kelle-25

her et al. 2019), tsdate (Wohns et al. 2021) and Relate (Speidel26

et al. 2019) use either the Python or C APIs to support outputting27

results in tree sequence format. Tree sequences are stored in an ef-28

ficient binary file format, and are fully portable across operating29

systems and processor architectures. The tskit library ensures30

interoperability between programs by having strict definitions31

of how the information in each of the tables is interpreted, and32

stringent checks for the internal consistency of the data model.33

Data analysis34

The standard way of representing simulation data is to render35

the results in a text format, which must subsequently be parsed36

and processed as part of some analysis pipeline. For example,37

ms outputs a set of sequences and can also optionally output the38

marginal trees along the genome in Newick format, and variants39

of this approach are used by many simulators. Text files have40

many advantages, but are slow to process at scale. The ability to41

efficiently process simulation results is particularly important42

in simulation-based inference methods such as Approximate43

Bayesian Computation (ABC) (Beaumont et al. 2002; Csilléry44

et al. 2010; Wegmann et al. 2010) and machine learning based45

approaches (Sheehan and Song 2016; Chan et al. 2018; Schrider46

and Kern 2018; Flagel et al. 2019; Sanchez et al. 2021). Clearly,47

simulation efficiency is crucial since the size and number of sim-48

ulations that can be performed determines the depth to which49

one can sample from the model and parameter space. Equally50

important, however, is the efficiency with which the simulation51

results can be transformed into the specific input required by52

the inference method. In the case of ABC, this is usually a set of53

summary statistics of the sequence data, and methods avoid the54

bottleneck of parsing text-based file formats to compute these55

statistics by either developing their own simulators (e.g. Cor-56

nuet et al. 2008; Lopes et al. 2009) or creating forked versions57

(i.e., modified copies) of existing simulators (e.g. Thornton and58

Andolfatto 2006; Hickerson et al. 2007; Pavlidis et al. 2010; Huang59

et al. 2011; Quinto-Cortés et al. 2018), tightly integrated with the60

inference method. Modern approaches to ABC such as ABC-61

RF (Raynal et al. 2019; Pudlo et al. 2016) and ABC-NN (Csilléry 62

et al. 2012; Blum and François 2010) use large numbers of weakly 63

informative statistics, making the need to efficiently compute 64

statistics from simulation results all the more acute. By using 65

the stable APIs and efficient data interchange mechanisms pro- 66

vided by tskit, the results of an msprime simulation can be 67

immediately processed, without format conversion overhead. 68

The tskit library has a rich suite of population genetic statistics 69

and other utilities, and is in many cases orders of magnitude 70

faster than matrix-based methods for large sample sizes (Ralph 71

et al. 2020). Thus, the combination of msprime and tskit sub- 72

stantially increases the overall efficiency of many simulation 73

analysis pipelines. 74

Classical text based output formats like ms are inefficient to 75

process, but also lack a great deal of important information about 76

the simulated process. The tree-by-tree topology information 77

output by simulators in Newick format lacks any concept of 78

node identity, and means that we cannot reliably infer informa- 79

tion about ancestors from the output. Because Newick stores 80

branch lengths rather than node times, numerical precision is- 81

sues also arise for large trees (McGill et al. 2013). Numerous 82

forks of simulators have been created to access information 83

not provided in the output. For example, ms has been forked 84

to output information about migrating segments (Rosenzweig 85

et al. 2016), ancestral lineages (Chen and Chen 2013), and ms’s 86

fork msHOT (Hellenthal and Stephens 2007) has in turn been 87

forked to output information on local ancestry (Racimo et al. 88

2017). All of this information is either directly available by de- 89

fault in msprime, or can be optionally stored via options such as 90

record_migrations or record_full_arg (see the section) and 91

can be efficiently and conveniently processed via tskit APIs. 92

Simulating mutations 93

Because coalescent simulations are usually concerned with neu- 94

tral evolution (see the section, however) the problem of gener- 95

ating synthetic genetic variation can be decomposed into two 96

independent steps: firstly, simulating genetic ancestry (the trees), 97

then subsequently simulating variation by superimposing mu- 98

tation processes on those trees (see Fig. 1). A number of pro- 99

grams exist to place mutations on trees: for instance, the classical 100

Seq-Gen program (Rambaut and Grassly 1997) supports a range 101

of different models of sequence evolution, and various exten- 102

sions to the basic models have been proposed (e.g. Cartwright 103

2005; Fletcher and Yang 2009). Partly for efficiency and partly in 104

the interest of simplicity for users (i.e., to avoid intermediate text 105

format conversions), population genetic simulators have tended 106

to include their own implementations of mutation simulation, 107

with most supporting the infinite sites model (e.g. Hudson 2002) 108

but with several supporting a wide range of different models of 109

sequence evolution (e.g. Mailund et al. 2005; Excoffier and Foll 110

2011; Virgoulay et al. 2021). Thus, despite the logical separation 111

between the tasks of simulating ancestry and neutral sequence 112

evolution, the two have been conflated in practice. 113

Part of the reason for this poor record of software reuse and 114

modularity is the lack of standardized file formats, and in par- 115

ticular, the absence of common library infrastructure to abstract 116

the details of interchanging simulation data. Although msprime 117

also supports simulating both ancestry and mutations, the two 118

aspects are functionally independent within the software; both 119

ancestry and mutation simulators are present in msprime for rea- 120

sons of convenience and history, and could be split into separate 121

packages. The efficient C and Python interfaces for tskit make 122

Efficient simulation with msprime 1.0 5

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

0 50000 100000
Sample size (haploid)

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

ec
on

ds
)

A
Mutation rate=10 9

Mutation rate=10 8

Mutation rate=10 7

0 50 100
Sequence length (Megabases)

B

Figure 3 Time required to run sim_mutations on tree se-
quences generated by sim_ancestry (with a population size
of 104 and recombination rate of 10−8) for varying (haploid)
sample size and sequence length. We ran 10 replicate mutation
simulations each for three different mutation rates, and report
the average CPU time required (Intel Core i7-9700). (A) Hold-
ing sequence length fixed at 10 megabases and varying the
number of samples (tree tips) from 10 to 100,000. (B) Holding
number of samples fixed at 1000, and varying the sequence
length from 1 to 100 megabases. 250.14749pt

it straightforward to add further information to an existing file,1

and because of its efficient data interchange mechanisms, there2

is no performance penalty for operations being performed in3

a different software package. Thanks to this interoperability,4

msprime’s mutation generator can work with any tskit tree se-5

quence, be it simulated using SLiM (Haller and Messer 2019) or6

fwdpy11 (Thornton 2014), or estimated from real data (Kelleher7

et al. 2019; Speidel et al. 2019; Wohns et al. 2021). It is a modular8

component intended to fit into a larger software ecosystem, and9

is in no way dependent on msprime’s ancestry simulator.10

We have greatly extended the sophistication of msprime’s mu-11

tation generation engine for version 1.0, achieving near feature-12

parity with Seq-Gen. We support a large number of mutation13

models, including the JC69 (Jukes et al. 1969), F84 (Felsenstein14

and Churchill 1996), and GTR (Tavaré et al. 1986) nucleotide15

models and the BLOSUM62 (Henikoff and Henikoff 1992) and16

PAM (Dayhoff et al. 1978) amino acid models. Other models,17

such as the Kimura two and three parameter models (Kimura18

1980, 1981), can be defined easily and efficiently in user code by19

specifying a transition matrix between any number of alleles.20

Mutation rates can vary along the genome, and multiple muta-21

tion models can be imposed on a tree sequence by overlaying22

mutations in multiple passes. We have extensively validated the23

results of mutation simulations against both theoretical expecta-24

tions and output from Seq-Gen (Rambaut and Grassly 1997) and25

Pyvolve (Spielman and Wilke 2015).26

Simulating mutations in msprime is efficient. Fig. 3 shows27

the time required to generate mutations (using the default JC6928

model) on simulated tree sequences for a variety of mutation29

rates as we vary the number of samples (Fig. 3A) and the se-30

quence length (Fig. 3B). For example, the longest running sim-31

ulation in Fig. 3B required less than 2 seconds to generate an32

average of 1.5 million mutations over 137,081 trees in a tree se-33

quence with 508,125 edges. This efficiency for large numbers of34

trees is possible because the tree sequence encoding allows us35

to generate mutations on an edge-by-edge basis (see Fig. 2 and36

the appendix), rather than tree-by-tree and branch-by-branch37

as would otherwise be required. Simulating mutations on a38

single tree is also very efficient; for example, we simulated mu-39

tations under the BLOSUM62 amino acid model for a tree with 40

106 leaves over 104 sites (resulting in ∼260,000 mutations) in 41

about 0.8 seconds, including the time required for file input 42

and output. We do not attempt a systematic benchmarking 43

of msprime’s mutation generation code against other methods, 44

because at this scale it is difficult to disentangle the effects of 45

inefficient input and output formats from the mutation genera- 46

tion algorithms. Given the above timings, it seems unlikely that 47

generating mutations with msprime would be a bottleneck in 48

any realistic analysis. 49

There are many ways in which the mutation generation 50

code in msprime could be extended. For example, we intend 51

to add support for microsatellites (Mailund et al. 2005), codon 52

models (Arenas and Posada 2007) and indels (Cartwright 2005; 53

Fletcher and Yang 2009), although changes may be required to 54

tskit’s data model which is currently based on the assumption 55

of independent sites. 56

Recombination 57

Crossover recombination is implemented in msprime using Hud- 58

son’s algorithm, which works backwards in time, generating 59

common ancestor and recombination events and tracking their 60

effects on segments of ancestral material inherited from the 61

sample (Hudson 1983a, 1990; Kelleher et al. 2016). Common 62

ancestor events merge the ancestral material of two lineages, 63

and result in coalescences in the marginal trees when ancestral 64

segments overlap. Recombination events split the ancestral ma- 65

terial for some lineage at a breakpoint, creating two independent 66

lineages. Using the appropriate data structures (Kelleher et al. 67

2016), this process is much more efficient to simulate than the 68

equivalent left-to-right approach (Wiuf and Hein 1999b,a). In 69

msprime 1.0, recombination rates can vary along a chromosome, 70

allowing us to simulate recombination hotspots and patterns 71

of recombination from empirical maps. The implementation of 72

recombination in msprime is extensively validated against an- 73

alytical results (Hudson 1983a; Kaplan and Hudson 1985) and 74

simulations by ms, msHOT and SLiM. 75

The Sequentially Markovian Coalescent (SMC) is an approx- 76

imation of the coalescent with recombination (McVean and 77

Cardin 2005; Marjoram and Wall 2006), and was primarily moti- 78

vated by the need to simulate longer genomes than was possible 79

using tools like ms. The SMC is a good approximation to the 80

coalescent with recombination when we have fewer than five 81

sampled genomes (Hobolth and Jensen 2014; Wilton et al. 2015), 82

but the effects of the approximation are less well understood 83

for larger sample sizes, and several approaches have been pro- 84

posed that allow simulations to more closely approximate the 85

coalescent with recombination (Chen et al. 2009; Wang et al. 2014; 86

Staab et al. 2015). The SMC and SMC’ models are supported in 87

msprime 1.0. However, they are currently implemented using a 88

naive rejection sampling approach, and are somewhat slower to 89

simulate than the exact coalescent with recombination. These 90

models are therefore currently only appropriate for studying 91

the SMC approximations themselves, although we intend to 92

implement them more efficiently in future versions. 93

In human-like parameter regimes and for large sample sizes,
msprime’s implementation of the exact coalescent with recom-
bination comprehensively outperforms all other simulators, in-
cluding those based on SMC approximations (Kelleher et al.
2016). However, it is important to note that although the im-
plementation of Hudson’s algorithm is very efficient, it is still
quadratic in the population scaled recombination rate ρ = 4NeL,

6 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

where L is the length of the genome in units of recombination
distance. This is because Hudson’s algorithm tracks recombi-
nations not only in segments ancestral to the sample, but also
between ancestral segments. As mentioned above, common
ancestor events in which the ancestral material of two lineages is
merged only result in coalescences in the marginal trees if their
ancestral segments overlap. If there is no overlap, the merged
segments represent an ancestral chromosome that is a genetic
ancestor of the two lineages, but not the most recent common
genetic ancestor at any location along the genome. When this
happens, the merged lineage carries “trapped” genetic material
that is not ancestral to any samples, but where recombinations
can still occur (Wiuf and Hein 1999b). For large ρ, recombina-
tion events in trapped ancestral material will dominate, and so
we can use this as a proxy for the overall number of events in
Hudson’s algorithm. Hein et al. (2004, Eq. 5.10) gave

ρ(ρ + 1)

(
n−1

∑
i=1

1
i

)2

(1)

as an upper bound on the number of recombination events1

within trapped ancestral material for n samples. As discussed in2

the appendix, the quadratic dependence of simulation running3

time on ρ implied by (1) is well supported by observations, and4

provides a useful means of predicting how long a particular5

simulation might require.6

Gene conversion7

Gene conversion is a form of recombination that results in the8

transfer of a short segment of genetic material, for example be-9

tween homologous chromosomes (Chen et al. 2007). Since gene10

conversion impacts much shorter segments than crossover re-11

combination (typically below 1kb) it affects patterns of linkage12

disequilibrium differently (Korunes and Noor 2017). Wiuf and13

Hein (2000) modeled gene conversion in the coalescent via a rate14

at which gene conversion events are initiated along the genome15

and a geometrically distributed tract length. In terms of the16

ancestral process, gene conversion differs from crossover recom-17

bination (as described in the previous section) in that it extracts18

a short tract of ancestry into an independent lineage, rather than19

splitting ancestry to the left and right of a given breakpoint. We20

have implemented this model of gene conversion in msprime 1.0,21

and validated the output against ms and analytical results (Wiuf22

and Hein 2000).23

Gene conversion is particularly useful to model homolo-24

gous recombination in bacterial evolution, and so we compare25

the performance of msprime with gene conversion to two spe-26

cialized bacterial simulators, SimBac (Brown et al. 2016) and27

fastSimBac (De Maio and Wilson 2017). Figure 4A shows28

that msprime is far more efficient than both SimBac and the29

SMC-based approximation fastSimBac. Figure 4B shows that30

msprime requires somewhat more memory than fastSimBac,31

(as expected since fastSimBac uses a left-to-right SMC approx-32

imation) but is still reasonably modest at around 1GiB for a33

simulation of 500 whole E. coli genomes. However, msprime is34

currently lacking many of the specialized features required to35

model bacteria, and so an important avenue for future work36

is to add features such as circular genomes and bacterial gene37

transfer (Baumdicker and Pfaffelhuber 2014).38

Demography39

One of the key applications of population genetic simulations is40

to generate data for complex demographies. Beyond idealized41

0 200 400
Sample size (haploid)

0

2

4

Ti
m

e
(h

ou
rs

)

11 mins

A

0 200 400
Sample size (haploid)

0.00

0.25

0.50

0.75

1.00

M
em

or
y

(G
iB

)

B

msprime
SimBac
fastSimBac

Figure 4 Comparison of simulation performance using
msprime (sim_ancestry), SimBac, and fastSimBac for varying
(haploid) sample sizes, and the current estimates for E. coli pa-
rameters (Lapierre et al. 2016): a 4.6Mb genome, Ne = 1.8× 108,
gene conversion rate of 8.9× 10−11 per base and mean tract
length of 542. We report (A) the total CPU time and (B) max-
imum memory usage averaged over 5 replicates (Intel Xeon
E5-2680 CPU). We did not run SimBac beyond first two data
points because of the very long running times.

cases such as stepping-stone or island models, or specialized 42

cases such as isolation-with-migration models, analytical results 43

are rarely possible. Simulation is therefore integral to the devel- 44

opment and evaluation of methods for demographic inference. 45

The demography model in msprime is directly derived from the 46

approach used in ms, and supports an arbitrary number of ran- 47

domly mating populations exchanging migrants at specified 48

rates. A range of demographic events are supported, which 49

allow for varying population sizes and growth rates, changing 50

migration rates over time, as well as population splits, admix- 51

tures and pulse migrations. 52

A major change for msprime 1.0 is the introduction of the 53

new Demography API, designed to address a design flaw in 54

the msprime 0.x interface which led to avoidable errors in down- 55

stream simulations (Ragsdale et al. 2020). The new API is more 56

user-friendly, providing the ability, for example, to refer to pop- 57

ulations by name rather than their integer identifiers. We also 58

provide numerical methods to compute the coalescence rates 59

for two or more lineages which can be inverted to obtain the 60

“inverse instantaneous coalescence rate” of Chikhi et al. (2018). 61

Many popular approaches in population genetics use the dis- 62

tribution of coalescence rates between pairs of lineages to infer 63

effective population sizes over time (Li and Durbin 2011; Shee- 64

han et al. 2013; Schiffels and Durbin 2014) or split times and 65

subsequent migration rates between populations (Wang et al. 66

2020). These numerical methods provide a valuable ground- 67

truth when evaluating such inference methods, as illustrated by 68

Adrion et al. (2020a). 69

Instantaneous bottlenecks 70

A common approach to modeling the effect of demographic 71

history on genealogies is to assume that effective population 72

size (Ne) changes in discrete steps which define a series of 73

epochs (Griffiths et al. 1994; Marth et al. 2004; Keightley and Eyre- 74

Walker 2007; Li and Durbin 2011). In this setting of piecewise 75

constant Ne, capturing a population bottleneck requires three 76

epochs: Ne is reduced by some fraction b at the start of the bottle- 77

neck, Tstart, and recovers to its initial value at time Tend (Marth 78

et al. 2004). If bottlenecks are short both on the timescale of coa- 79

Efficient simulation with msprime 1.0 7

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

lescence and mutations, there may be little information about the1

duration of a bottleneck (Tend − Tstart) in sequence data. Thus2

a simpler, alternative model is to assume that bottlenecks are3

instantaneous (Tend − Tstart → 0) and generate a sudden burst4

of coalescence events (a multiple merger event) in the geneal-5

ogy. The strength of the bottleneck B can be thought of as an6

(imaginary) time period during which coalescence events are7

collapsed, i.e. there is no growth in genealogical branches during8

B and the probability that a single pair of lineages entering the9

bottleneck coalesce during the bottleneck is 1− e−B. Although10

this simple two parameter model of bottlenecks is attractive11

and both analytic results and empirical inference (Griffiths et al.12

1994; Birkner et al. 2009; Galtier et al. 2000; Bunnefeld et al. 2015)13

have been developed under this model, there has been no soft-14

ware available to simulate data under instantaneous bottleneck15

histories.16

We have implemented instantaneous bottlenecks in17

msprime 1.0 using a variant of Hudson’s linear time single-locus18

coalescent algorithm (Hudson 1990), and validated the results19

by comparing against analytical expectations (Bunnefeld et al.20

2015).21

Multiple merger coalescents22

Kingman’s coalescent assumes that only two ancestral lineages23

can merge at each merger event. Although this is generally a rea-24

sonable approximation, there are certain situations in which the25

underlying mathematical assumptions are violated. For example26

in certain highly fecund organisms (Hedgecock 1994; Becken-27

bach 1994; Hedgecock and Pudovkin 2011; Árnason 2004; Irwin28

et al. 2016; Vendrami et al. 2021), where individuals have the29

ability to produce numbers of offspring on the order of the popu-30

lation size and therefore a few individuals may produce the bulk31

of the offspring in any given generation (Hedgecock 1994). These32

population dynamics violate basic assumptions of the Kingman33

coalescent, and are better modeled by ‘multiple-merger’ coa-34

lescents (Donnelly and Kurtz 1999; Pitman 1999; Sagitov 1999;35

Schweinsberg 2000; Möhle and Sagitov 2001), in which more36

than two lineages can merge in a given event. Multiple-merger37

coalescent processes have also been shown to be relevant for38

modeling the effects of selection on gene genealogies (Gillespie39

2000; Durrett and Schweinsberg 2004; Desai et al. 2013; Neher40

and Hallatschek 2013; Schweinsberg 2017).41

Although multiple merger coalescents have been of signifi-42

cant theoretical interest for around two decades, there has been43

little practical software available to simulate these models. Kelle-44

her et al. (2013, 2014) developed packages to simulate a related45

spatial continuum model (Barton et al. 2010), Zhu et al. (2015)46

simulate genealogies within a species tree based on a multiple-47

merger model, and Becheler and Knowles (2020) provide a gen-48

eral method for simulating multiple merger processes as part of49

the Quetzal framework (Becheler et al. 2019). The Beta-Xi-Sim50

simulator (Koskela 2018; Koskela and Wilke Berenguer 2019) also51

includes a number of extensions to the Beta-coalescent. None of52

these methods work with large genomes, and very little work53

has been performed on simulating multiple merger processes54

with recombination.55

We have added two multiple merger coalescent models56

in msprime 1.0, the Beta-coalescent (Schweinsberg 2003) and57

“Dirac”-coalescent (Birkner et al. 2013a), allowing us to effi-58

ciently simulate such models with recombination for the first59

time. These simulation models have been extensively vali-60

dated against analytical results from the site frequency spec-61

(A)

x = 0.3
0 1 2

4
5

3

6

(B)

0 1 2 0 1 2
3 3

4 4
5 5

6 6

0.0 0.3 1.0
Genome position

(C)

0 1 2 0 1 2

4
5

6 6

0.0 0.3 1.0
Genome position

Figure 5 (A) A simple ARG in which a recombination occurs
at position 0.3; (B) the equivalent topology depicted as a tree
sequence, including the recombination node; (C) the same
tree sequence topology “simplified” down to its minimal tree
sequence representation. Note the original node IDs have been
retained for clarity.

trum (Birkner et al. 2013b; Blath et al. 2016; Hobolth et al. 2019) 62

as well as more general properties of coalescent processes. See 63

the appendix for more details and model derivations. 64

Ancestral Recombination Graphs 65

The Ancestral Recombination Graph (ARG) was introduced by 66

Griffiths (Griffiths 1991; Griffiths and Marjoram 1997) to repre- 67

sent the stochastic process of the coalescent with recombination 68

as a graph. This formulation is complementary to Hudson’s 69

earlier work (Hudson 1983a), and substantially increased our 70

theoretical understanding of recombination. In Griffiths’ ARG 71

formulation, a realization of the coalescent with recombination 72

is a graph in which vertices represent common ancestor or re- 73

combination events, and edges represent lineages. There is the 74

“big” ARG, in which we track lineages arising out of recombina- 75

tions regardless of whether they carry ancestral material (Ethier 76

and Griffiths 1990), and the “little” ARG in which we only track 77

genetic ancestors. Over time, usage of the term has shifted away 78

from its original definition as a stochastic process, to being inter- 79

preted as a representation of a particular genetic ancestry as a 80

graph, without necessarily following the specific details of the 81

Griffiths formulation (e.g. Minichiello and Durbin 2006; Math- 82

ieson and Scally 2020). Under the latter interpretation, the tree 83

sequence encoding of genetic ancestry (described above) clearly 84

is an ARG: the nodes and edges define a graph in which edges 85

are annotated with the set of disjoint genomic intervals through 86

which ancestry flows. 87

For our purposes, an ARG is a realization of the coalescent 88

with recombination, in the Griffiths (little ARG) sense. As de- 89

8 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

scribed in detail by Kelleher et al. (2016), Hudson’s algorithm1

works by dynamically traversing a little ARG. The graph is2

not explicitly represented in memory, but is partially present3

through the extant lineages and the ancestral material they carry4

over time. We do not output the graph directly, but rather store5

the information required to recover the genealogical history as6

nodes and edges in a tree sequence. This is far more efficient7

than outputting the simulated ARG in its entirety. For a given8

scaled recombination rate ρ (setting aside the dependency on the9

sample size n) we know from Eq. (1) that the number of nodes in10

an ARG is O(ρ2), whereas the size of the tree sequence encoding11

is O(ρ) (Kelleher et al. 2016). This difference between a quadratic12

and a linear dependency on ρ is profound, and shows why large13

simulations cannot output an ARG in practice.14

Although by default msprime outputs tree sequences that con-15

tain full information about the genealogical trees, their correla-16

tion structure along the chromosome, and the ancestral genomes17

on which coalescences occurred, some information is lost in18

this mapping down from ARG space to the minimal tree se-19

quence form. In particular, we lose information about ancestral20

genomes that were common ancestors but in which no coales-21

cences occurred, and also information about the precise time22

and chromosomal location of recombination events. In most23

cases, such information is of little relevance as it is in principle24

unknowable, but there are occasions such as visualization or25

computing likelihoods (see below) in which it is useful. We26

therefore provide the record_full_arg option in msprime to27

store a representation of the complete ARG traversed during28

simulation. This is done by storing extra nodes (marked with29

specific flags, so they can be easily identified later) and edges in30

the tree sequence (Fig. 5). One situation in which a record of the31

full ARG is necessary is when we wish to compute likelihoods32

during inference. The likelihood is a central quantity in evalu-33

ating the plausibility of a putative ancestry as an explanation34

of DNA sequence data, both directly through e.g. approaches35

based on maximum likelihood, and as an ingredient of methods36

such as Metropolis-Hastings (Kuhner et al. 2000; Nielsen 2000;37

Wang and Rannala 2008). We provide functions to compute the38

likelihood of ARG realizations and mutational patterns under39

the standard coalescent and infinite sites mutation model. For40

details, see the appendix: .41

Selective sweeps42

Another elaboration of the standard neutral coalescent with re-43

combination is the addition of selective sweeps (Kaplan et al.44

1989; Braverman et al. 1995; Kim and Stephan 2002). Sweeps are45

modeled by creating a structured population during the sojourn46

of the beneficial mutation through the population (i.e., the sweep47

phase) in which lineages may transit between favored and un-48

favoured backgrounds through recombination. This approach49

allows for many selective sweep scenarios to be simulated effi-50

ciently, including recurrent, partial, and soft selective sweeps.51

However this efficiency comes at the cost of flexibility in compar-52

ison to forwards in time simulation. Several specialized simula-53

tors have been developed to simulate sweeps in the coalescent,54

including SelSim (Spencer and Coop 2004), mbs (Teshima and In-55

nan 2009), msms (Ewing and Hermisson 2010), cosi2 (Shlyakhter56

et al. 2014) and discoal (Kern and Schrider 2016).57

Selective sweeps are implemented in the coalescent as a two58

step-process: first generating an allele frequency trajectory, and59

then simulating a structured coalescent process conditioned on60

that trajectory. Following discoal, we generate sweep trajec-61

0 1 2 3
Sequence length (Megabases)

0

2

4

Ti
m

e
(m

in
ut

es
)

0.1 seconds

A
msprime
discoal

0 1 2 3
Sequence length (Megabases)

0

50

100

150

200

M
em

or
y

(G
iB

)

73 MiB

B

Figure 6 Comparison of selective sweep simulation perfor-
mance in msprime (sim_ancestry) and discoal (Intel Xeon
Gold 6148 CPU). We report the average CPU time and max-
imum memory usage when simulating 3 replicates for 100
diploid samples in a model with a single selective sweep in its
history, where the beneficial allele had a selection coefficient
of s = 0.05, a per-base recombination rate of 10−8, population
size of N = 104, and sequence length varying from 100kb–
3000kb.

tories in msprime using a jump process approximation to the 62

conditional diffusion of an allele bound for fixation (Coop and 63

Griffiths 2004), as detailed in the appendix. Given a randomly 64

generated allele frequency trajectory, the simulation of a sweep 65

works by assigning lineages to two different structured coales- 66

cent “labels”, based on whether they carry the beneficial allele. 67

The allele frequency trajectory determines the relative sizes of 68

the “populations” in these labels over time, and therefore the 69

rates at which various events occur. Common ancestor events 70

can then only merge lineages from within a label, but lineages 71

can transfer from one label to the other (i.e., from the advan- 72

tageous to disadvantageous backgrounds, and vice versa) as a 73

result of recombination events. Once we have reached the end of 74

the simulated trajectory the sweep is complete, and we remove 75

the structured coalescent labels. Simulation may then resume 76

under any other ancestry model. 77

Fig. 6 compares the performance of msprime and discoal 78

under a simple sweep model, and shows that msprime has far 79

better CPU time and memory performance. Since our implemen- 80

tation uses the abstract label system mentioned above, adding 81

support for similar situations, such as inversions (Peischl et al. 82

2013), should be straightforward. 83

Discrete time Wright-Fisher 84

The coalescent is an idealized model and makes many simplify- 85

ing assumptions, but it is often surprisingly robust to violations 86

of these assumptions (Wakeley et al. 2012). One situation in 87

which the model does break down is the combination of large 88

sample size and long recombining genomes, where the large 89

number of recombination events in the recent past results in 90

more than the biologically possible 2t ancestors in t diploid gen- 91

erations (Nelson et al. 2020). This pathological behavior results 92

in identity-by-descent, long-range linkage disequilibrium and 93

ancestry patterns deviating from Wright-Fisher expectations, 94

and the bias grows with larger sample sizes (Wakeley et al. 2012; 95

Bhaskar et al. 2014; Nelson et al. 2020). Precisely this problem 96

occurs when simulating modern human datasets, and we have 97

implemented a Discrete Time Wright-Fisher (DTWF) model in 98

msprime to address the issue. The DTWF simulates backwards in 99

Efficient simulation with msprime 1.0 9

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

0 50 100
Sequence length (Megabases)

0

50

100

150

200

Ti
m

e
(s

ec
on

ds
)

A
DTWF
Hybrid
ARGON

0 50 100
Sequence length (Megabases)

0
2
4
6
8

M
em

or
y

(G
iB

)

185 MiB

B

Figure 7 Comparison of Discrete Time Wright-Fisher (DTWF)
simulation performance in msprime (sim_ancestry) and ARGON
(Intel Xeon E5-2680 CPU). We ran simulations with a popu-
lation size of 104 and recombination rate of 10−8, with 500
diploid samples and varying sequence length. We report (A)
total CPU time and (B) maximum memory usage; each point
is the average over 5 replicate simulations. We show observa-
tions for ARGON, msprime’s DTWF implementation (“DTWF”)
and a hybrid simulation of 100 generations of the DTWF fol-
lowed by the standard coalescent with recombination (“Hy-
brid”). We ran ARGON with a mutation rate of 0 and with mini-
mum output options, with a goal of measuring only ancestry
simulation time. Memory usage for msprime’s DTWF and hy-
brid simulations are very similar.

time generation-by-generation so that each gamete has a unique1

diploid parent, and multiple recombinations within a genera-2

tion results in crossover events between the same two parental3

haploid copies. The method is described in detail by Nelson et al.4

(2020).5

Fig. 7 shows that msprime simulates the DTWF more quickly6

and requires substantially less memory than ARGON (Palamara7

2016), a specialized DTWF simulator. However, the generation-8

by-generation approach of the DTWF is less efficient than the9

coalescent with recombination when the number of lineages is10

significantly less than the population size (the regime where the11

coalescent is an accurate approximation), which usually hap-12

pens in the quite recent past (Bhaskar et al. 2014). We therefore13

support changing the simulation model during a simulation so14

that we can run hybrid simulations, as proposed by Bhaskar et al.15

(2014). Any number of different simulation models can be com-16

bined, allowing for the flexible choice of simulation scenarios.17

As the DTWF improves accuracy of genealogical patterns in the18

recent past, we can simulate the recent history using this model19

and then switch to the standard coalescent to more efficiently20

simulate the more ancient history.21

Integration with forward simulators22

A unique feature of msprime is its ability to simulate genetic an-23

cestries by extending an existing partial genetic ancestry. Given24

a tree sequence that is complete up until time t ago as input25

(where marginal trees may or may not have fully coalesced),26

msprime can efficiently obtain the segments of ancestral material27

present at this time, and then run the simulation backwards in28

time from there. This allows a simulated ancestry to be produced29

by any number of different processes across disjoint time slices.30

In practice this feature is used to “complete” forwards-time an-31

cestry simulations (Kelleher et al. 2018) that may have not fully32

coalesced. This process (“recapitation”) can be orders of magni-33

tude faster than the standard approach of neutral burn-in; see 34

Haller et al. (2018) for more details and examples. This interoper- 35

ability between simulators, where a partial ancestry simulation 36

produced by SLiM (Haller and Messer 2019) or fwdpy11 (Thorn- 37

ton 2014) can be picked up and completed by another simulator, 38

with complete information retained—at scale—is unprecedented. 39

There may be an opportunity for other forward genetic simula- 40

tors (e.g. Gaynor et al. 2021) to leverage the tree sequence data 41

format and associated tools. 42

Development model 43

Msprime has a large number of features, encompassing the func- 44

tionality of several more specialized simulators while maintain- 45

ing excellent performance. It is developed by a geographically 46

distributed team of volunteers under an open source community 47

development model, with a strong emphasis on code quality, 48

correctness, good documentation, and inclusive development. 49

As in any large code base, unit tests play a key role in ensur- 50

ing that new additions behave as expected and msprime has an 51

extensive suite. These tests are run automatically on different 52

operating systems on each pull request (where a contributor pro- 53

poses a code change), using standard Continuous Integration 54

(CI) methodology. Other CI services check for common errors, 55

code formatting issues, and produce reports on the level of test 56

coverage for the proposed change. 57

Unit tests are vital for ensuring software quality and correct- 58

ness, but they are usually of little value in assessing the statistical 59

properties of simulations. To validate the correctness of simu- 60

lation output we maintain a suite of statistical tests (as of 1.0.0, 61

217 validation tests). These consist of running many replicate 62

simulations to check the properties of the output against other 63

simulators, and where possible against analytical results. For 64

example, simulations of complex demography are validated 65

against ms, selective sweeps against discoal, and Wright-Fisher 66

simulations against forwards in time simulations in SLiM. This 67

suite of tests is run before every release, to ensure that statistical 68

errors have not been introduced. 69

More visibly to the end user, we also have a high standard for 70

documentation, with precise, comprehensive, and cross-linked 71

documentation that is automatically built from the code base 72

and served through the website https://tskit.dev. With the 73

goal of lowering the entry barrier to new users, we have in- 74

vested significant effort in writing examples and introductions, 75

and making common tasks discoverable. We also view contri- 76

butions to documentation as equally important to the project 77

as writing code or designing methods: what use would it be to 78

write reliable, stable software if no-one used it? 79

An important goal of msprime’s development model is to 80

maximize accessibility for prospective users and contributors, 81

and to encourage diversity in our community. Gender and 82

racial inequality caused by discrimination and marginalization 83

is a major problem across the sciences (Wellenreuther and Otto 84

2016; Shannon et al. 2019) and in open source software develop- 85

ment (Trinkenreich et al. 2021). Within our field, the contribution 86

of women to early computational methods in population genet- 87

ics was marginalized (Dung et al. 2019), and women continue to 88

be under-represented in computational biology (Bonham and 89

Stefan 2017). The authorship of our paper reflects these trends, 90

with a skew towards men and affiliations in the USA and Europe. 91

We know the importance of creating and strengthening networks 92

to develop and maintain a diverse community of contributors, 93

and we are committed to fostering a supportive and collabora- 94

10 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

tive environment that helps to address these inequalities in our1

field.2

Discussion3

The 1.0 release of msprime marks a major increase in the breadth4

of available features and the potential biological realism of sim-5

ulations. These abilities will allow researchers to perform more6

robust power analyses, more reliably test new methods, carry7

out more reliable inferences, and more thoroughly explore the8

properties of theoretical models. Despite this complexity and9

generality, msprime’s performance is state-of-the-art and all fea-10

tures are extensively tested and statistically validated. These11

advances have only been possible thanks to a distributed, collab-12

orative model of software development, and the work of many13

people.14

Even though simulation has long been a vital tool in popu-15

lation genetics, such collaborative software development has16

historically been uncommon. A huge proliferation of tools have17

been published (the references here are not exhaustive) and only18

a small minority of these are actively developed and maintained19

today. The ecosystem is highly fragmented, with numerous dif-20

ferent ways of specifying parameters and representing results,21

and there are significant software quality issues at all stages.22

This is unsurprising, since the majority of simulation software23

development is performed by students, often without formal24

training in software development. The result resembles Hal-25

dane’s sieve for new mutations: many new pieces of software26

stay permanently on a dusty shelf of supplementary materials,27

while some of those that prove particularly useful when new28

(like dominant alleles) are quickly adopted. Although this has29

produced many good tools and enabled decades of research,30

it also represents a missed opportunity to invest as a commu-31

nity in shared infrastructure and mentorship in good software32

development practice.33

Scientific software is vital apparatus, and must be engineered34

to a high quality if we are to trust its results. There is a grow-35

ing realization across the sciences (e.g. Siepel 2019; Harris et al.36

2020; Gardner et al. 2021) that investing in shared community37

infrastructure produces better results than a proliferation of in-38

dividually maintained tools, allowing scientists to focus on their39

specific questions rather than software engineering. Msprime 1.040

is the result of such a community process, with features added41

by motivated users, taking advantage of the established devel-42

opment practices and infrastructure. Software development in43

a welcoming community, with mentorship by experienced de-44

velopers, is a useful experience for many users. The skills that45

contributors learn can lead to greatly increased productivity in46

subsequent work (e.g., through more reliable code and better47

debugging skills). We hope that users who find that features48

they require are missing will continue to contribute to msprime,49

leading to a community project that is both high quality and50

sustainable in the long term.51

The succinct tree sequence data structure developed for52

msprime provides a view of not only genetic variation, but also53

the genetic ancestry that produced that variation. Recent break-54

throughs in methods to infer genetic ancestry in recombining55

organisms (Rasmussen et al. 2014; Kelleher et al. 2019; Speidel56

et al. 2019; Wohns et al. 2021; Schaefer et al. 2021; Speidel et al.57

2021) have made it possible to estimate such ancestry from real58

data at scale for the first time (Harris 2019; Tang 2019). Given59

such inferred ancestry, many exciting applications become possi-60

ble. For example, Osmond and Coop (2021) developed a method61

to estimate the location of genetic ancestors based on inferred 62

trees, and other uses are sure to follow. Since the inferred genetic 63

ancestry becomes the input for other downstream inferences, it 64

is vitally important that these primary inferences are thoroughly 65

validated, with the detailed properties of the inferred ancestries 66

cataloged and understood. Msprime will continue to be an im- 67

portant tool for these inferences and validations, and in this con- 68

text the ability to interoperate with other methods—particularly 69

forwards simulators—through the succinct tree sequence data 70

structure and tskit library will be essential. 71

Availability 72

Msprime is freely available under the terms of the GNU General 73

Public License v3.0, and can be installed from the Python 74

Package Index (PyPI) or the conda-forge (conda-forge commu- 75

nity 2015) conda channel. Development is conducted openly 76

on GitHub at https://github.com/tskit-dev/msprime/. 77

The documentation for msprime is available at 78

https://tskit.dev/msprime/docs/. The source code for 79

all the evaluations and figures in this manuscript is available at 80

https://github.com/tskit-dev/msprime-1.0-paper/. 81

Acknowledgments 82

We acknowledge the contributions of Ivan Krukov who we con- 83

sider eligible for authorship, but were unable to contact for 84

approval. We would like to thank Iain Mathieson and Alywyn 85

Scally for helpful comments on the manuscript. 86

Funding 87

ADK was supported by NIH awards R01GM117241 and 88

R01HG010774. AG was supported by NIH award R00HG008696 89

to Daniel R Schrider. BE was supported by DFG grant 273887127 90

through Priority Programme SPP 1819: Rapid Evolutionary 91

Adaptation (grant STE 325/17-2) to Wolfgang Stephan; BE 92

would also like to acknowledge funding through The Icelandic 93

Research Centre (Rannís) through an Icelandic Research Fund 94

Grant of Excellence nr. 185151-051 to Einar Árnason, Katrín 95

Halldórsdóttir, Alison Etheridge, Wolfgang Stephan, and BE. 96

FB is funded by the Deutsche Forschungsgemeinschaft EXC 97

2064/1 – Project number 390727645, and EXC 2124 – Project 98

number 390838134. GB and KL are supported by an ERC start- 99

ing grant (ModelGenomLand 757648) to KL. Graham Gower 100

was supported by a Villum Fonden Young Investigator award 101

to Fernando Racimo (project no. 00025300). Gregor Gorjanc 102

is supported by the Chancellor’s Fellowship of the Univer- 103

sity of Edinburgh and the BBSRC grant to The Roslin Institute 104

BBS/E/D/30002275. Jere Koskela is supported in part by EP- 105

SRC grant EP/R044732/1. Jerome Kelleher is supported by 106

the Robertson Foundation. PLR was supported by NIH award 107

R01HG010774. SG acknowledges funding from the Canada Re- 108

search Chairs Program, from the Canadian Institutes of Health 109

Research PJT 173300, and from the Canadian Foundation for 110

Innovation. 111

Literature Cited 112

Adrion, J. R., C. B. Cole, N. Dukler, J. G. Galloway, A. L. Glad- 113

stein, et al., 2020a A community-maintained standard library 114

of population genetic models. Elife 9: e54967. 115

Adrion, J. R., J. G. Galloway, and A. D. Kern, 2020b Predicting the 116

landscape of recombination using deep learning. Molecular 117

biology and evolution 37: 1790–1808. 118

Efficient simulation with msprime 1.0 11

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

Arenas, M., 2012 Simulation of molecular data under diverse evo-1

lutionary scenarios. PLoS Computational Biology 8: e1002495.2

Arenas, M. and D. Posada, 2007 Recodon: coalescent simulation3

of coding DNA sequences with recombination, migration and4

demography. BMC bioinformatics 8: 1–4.5

Árnason, E., 2004 Mitochondrial cytochrome b DNA variation6

in the high-fecundity Atlantic cod: trans-Atlantic clines and7

shallow gene genealogy. Genetics 166: 1871–1885.8

Barton, N. H., J. Kelleher, and A. M. Etheridge, 2010 A new9

model for extinction and recolonization in two dimensions:10

quantifying phylogeography. Evolution: International journal11

of organic evolution 64: 2701–2715.12

Baumdicker, F. and P. Pfaffelhuber, 2014 The infinitely many13

genes model with horizontal gene transfer. Electronic Journal14

of Probability 19: 1–27.15

Beaumont, M. A., W. Zhang, and D. J. Balding, 2002 Approxi-16

mate Bayesian computation in population genetics. Genetics17

162: 2025–2035.18

Becheler, A., C. Coron, and S. Dupas, 2019 The quetzal coales-19

cence template library: A C++ programmers resource for in-20

tegrating distributional, demographic and coalescent models.21

Molecular ecology resources 19: 788–793.22

Becheler, A. and L. L. Knowles, 2020 Occupancy spectrum dis-23

tribution: application for coalescence simulation with generic24

mergers. Bioinformatics btaa090.25

Beckenbach, A. T., 1994 Mitochondrial haplotype frequencies26

in oysters: neutral alternatives to selection models. In Non-27

neutral evolution, pp. 188–198, Springer.28

Bhaskar, A., A. G. Clark, and Y. S. Song, 2014 Distortion of29

genealogical properties when the sample is very large. Pro-30

ceedings of the National Academy of Sciences 111: 2385–2390.31

Birkner, M., J. Blath, and B. Eldon, 2013a An ancestral recombi-32

nation graph for diploid populations with skewed offspring33

distribution. Genetics 193: 255–290.34

Birkner, M., J. Blath, and B. Eldon, 2013b Statistical properties35

of the site-frequency spectrum associated with Λ-coalescents.36

Genetics 195: 1037–1053.37

Birkner, M., J. Blath, M. Möhle, M. Steinrücken, and J. Tams,38

2009 A modified lookdown construction for the xi-fleming-39

viot process with mutation and populations with recurrent40

bottlenecks. Alea 6: 25–61.41

Birkner, M., H. Liu, and A. Sturm, 2018 Coalescent results for42

diploid exchangeable population models. Electronic Journal43

of Probability 23: 1–44.44

Blath, J., M. C. Cronjäger, B. Eldon, and M. Hammer, 2016 The45

site-frequency spectrum associated with Ξ-coalescents. Theo-46

retical Population Biology 110: 36–50.47

Blum, M. G. and O. François, 2010 Non-linear regression models48

for Approximate Bayesian Computation. Statistics and Com-49

puting 20: 63–73.50

Bonham, K. S. and M. I. Stefan, 2017 Women are underrepre-51

sented in computational biology: An analysis of the scholarly52

literature in biology, computer science and computational53

biology. PLoS computational biology 13: e1005134.54

Braverman, J. M., R. R. Hudson, N. L. Kaplan, C. H. Langley, and55

W. Stephan, 1995 The hitchhiking effect on the site frequency56

spectrum of DNA polymorphisms. Genetics 140: 783–796.57

Brown, T., X. Didelot, D. J. Wilson, and N. D. Maio, 2016 Sim-58

Bac: simulation of whole bacterial genomes with homologous59

recombination. Microbial Genomics 2: 1–6.60

Bunnefeld, L., L. A. F. Frantz, and K. Lohse, 2015 Inferring bot-61

tlenecks from genome-wide samples of short sequence blocks.62

Genetics 201: 1157–1169. 63

Bycroft, C., C. Freeman, D. Petkova, G. Band, L. T. Elliott, et al., 64

2018 The UK Biobank resource with deep phenotyping and 65

genomic data. Nature 562: 203–209. 66

Cartwright, R. A., 2005 DNA assembly with gaps (Dawg): simu- 67

lating sequence evolution. Bioinformatics 21: iii31–iii38. 68

Carvajal-Rodríguez, A., 2008 Simulation of genomes: a review. 69

Curr Genomics 9: 155. 70

Chan, J., V. Perrone, J. P. Spence, P. A. Jenkins, S. Mathieson, et al., 71

2018 A likelihood-free inference framework for population 72

genetic data using exchangeable neural networks. Advances 73

in neural information processing systems 31: 8594. 74

Charlesworth, B. and J. D. Jensen, 2021 Effects of selection at 75

linked sites on patterns of genetic variability. Annual Review 76

of Ecology, Evolution, and Systematics 52: 177–197. 77

Charlesworth, B., M. Morgan, and D. Charlesworth, 1993 The 78

effect of deleterious mutations on neutral molecular variation. 79

Genetics 134: 1289–1303. 80

Charlesworth, D., B. Charlesworth, and M. Morgan, 1995 The 81

pattern of neutral molecular variation under the background 82

selection model. Genetics 141: 1619–1632. 83

Chen, G. K., P. Marjoram, and J. D. Wall, 2009 Fast and flexible 84

simulation of DNA sequence data. Genome research 19: 136– 85

142. 86

Chen, H. and K. Chen, 2013 Asymptotic distributions of coales- 87

cence times and ancestral lineage numbers for populations 88

with temporally varying size. Genetics 194: 721–736. 89

Chen, J.-M., D. N. Cooper, N. Chuzhanova, C. Férec, and G. P. 90

Patrinos, 2007 Gene conversion: mechanisms, evolution and 91

human disease. Nature Reviews Genetics 8: 762–775. 92

Chetwynd-Diggle, J. A., B. Eldon, and A. M. Etheridge, 2022 93

Beta-coalescents when sample size is large. in preparation. 94

Chikhi, L., W. Rodríguez, S. Grusea, P. Santos, S. Boitard, et al., 95

2018 The IICR (inverse instantaneous coalescence rate) as a 96

summary of genomic diversity: insights into demographic 97

inference and model choice. Heredity 120: 13–24. 98

conda-forge community, 2015 The conda-forge Project: 99

Community-based Software Distribution Built on the conda 100

Package Format and Ecosystem. 101

Coop, G. and R. C. Griffiths, 2004 Ancestral inference on gene 102

trees under selection. Theoretical population biology 66: 219– 103

232. 104

Cornuet, J.-M., F. Santos, M. A. Beaumont, C. P. Robert, J.-M. 105

Marin, et al., 2008 Inferring population history with DIY ABC: 106

a user-friendly approach to approximate Bayesian computa- 107

tion. Bioinformatics 24: 2713–2719. 108

Csilléry, K., M. G. Blum, O. E. Gaggiotti, and O. François, 2010 109

Approximate Bayesian computation (ABC) in practice. Trends 110

in ecology & evolution 25: 410–418. 111

Csilléry, K., O. François, and M. G. B. Blum, 2012 abc: An R pack- 112

age for approximate Bayesian computation (ABC). Methods 113

in Ecology and Evolution 3: 475–479. 114

Dayhoff, M., R. Schwartz, and B. Orcutt, 1978 A model of evo- 115

lutionary change in proteins. Atlas of protein sequence and 116

structure 5: 345–352. 117

De Maio, N., L. Weilguny, C. R. Walker, Y. Turakhia, R. Corbett- 118

Detig, et al., 2021 phastsim: efficient simulation of sequence 119

evolution for pandemic-scale datasets. bioRxiv . 120

De Maio, N. and D. J. Wilson, 2017 The bacterial sequential 121

markov coalescent. Genetics 206: 333–343. 122

Der, R., C. Epstein, and J. B. Plotkin, 2012 Dynamics of neutral 123

and selected alleles when the offspring distribution is skewed. 124

12 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

Genetics 191: 1331–1344.1

Desai, M. M., A. M. Walczak, and D. S. Fisher, 2013 Genetic2

diversity and the structure of genealogies in rapidly adapting3

populations. Genetics 193: 565–585.4

Donnelly, P. and T. G. Kurtz, 1999 Particle representations for5

measure-valued population models. The Annals of Probability6

27: 166–205.7

Dung, S. K., A. López, E. L. Barragan, R.-J. Reyes, R. Thu, et al.,8

2019 Illuminating women’s hidden contribution to historical9

theoretical population genetics. Genetics 211: 363–366.10

Durrett, R. and J. Schweinsberg, 2004 Approximating selective11

sweeps. Theoretical population biology 66: 129–138.12

Eldon, B. and F. Freund, 2018 Genealogical properties of sub-13

samples in highly fecund populations. Journal of Statistical14

Physics 172: 175–207.15

Eldon, B. and W. Stephan, 2018 Evolution of highly fecund hap-16

loid populations. Theoretical population biology 119: 48–56.17

Eldon, B. and J. Wakeley, 2006 Coalescent processes when the18

distribution of offspring number among individuals is highly19

skewed. Genetics 172: 2621–2633.20

Ethier, S. and R. Griffiths, 1990 On the two-locus sampling dis-21

tribution. Journal of Mathematical Biology 29: 131–159.22

Ewing, G. and J. Hermisson, 2010 MSMS: a coalescent simulation23

program including recombination, demographic structure,24

and selection at a single locus. Bioinformatics 26: 2064–2065.25

Excoffier, L. and M. Foll, 2011 Fastsimcoal: a continuous-time26

coalescent simulator of genomic diversity under arbitrarily27

complex evolutionary scenarios. Bioinformatics 27: 1332–1334.28

Felsenstein, J. and G. A. Churchill, 1996 A hidden markov model29

approach to variation among sites in rate of evolution. Molec-30

ular biology and evolution 13: 93–104.31

Flagel, L., Y. Brandvain, and D. R. Schrider, 2019 The unreason-32

able effectiveness of convolutional neural networks in popu-33

lation genetic inference. Molecular biology and evolution 36:34

220–238.35

Fletcher, W. and Z. Yang, 2009 INDELible: a flexible simula-36

tor of biological sequence evolution. Molecular biology and37

evolution 26: 1879–1888.38

Freund, F., 2020 Cannings models, population size changes and39

multiple-merger coalescents. Journal of mathematical biology40

80: 1497–1521.41

Galtier, N., F. Depaulis, and N. H. Barton, 2000 Detecting bot-42

tlenecks and selective sweeps from DNA sequence polymor-43

phism. Genetics 155: 981–987.44

Gardner, P. P., J. M. Paterson, S. R. McGimpsey, F. A. Ghomi,45

S. U. Umu, et al., 2021 Sustained software development, not46

number of citations or journal choice, is indicative of accurate47

bioinformatic software. bioRxiv p. 092205.48

Gaynor, R. C., G. Gorjanc, and J. M. Hickey, 2021 AlphaSimR:49

An R-package for breeding program simulations. G3: Genes,50

Genomes, Genetics 11.51

Gillespie, J. H., 2000 Genetic drift in an infinite population: the52

pseudohitchhiking model. Genetics 155: 909–919.53

Gladstein, A. L., C. D. Quinto-Cortés, J. L. Pistorius, D. Christy,54

L. Gantner, et al., 2018 Simprily: A Python framework to55

simplify high-throughput genomic simulations. SoftwareX56

7: 335–340.57

Gower, G., A. P. Ragsdale, et al., 2022 Demes: a standard format58

for demographic models. In preparation .59

Griffiths, R. C., 1991 The two-locus ancestral graph. Lecture60

Notes-Monograph Series 18: 100–117.61

Griffiths, R. C. and P. Marjoram, 1997 An ancestral recombi-62

nation graph. In Progress in Population Genetics and Human 63

Evolution, IMA Volumes in Mathematics and its Applications, 64

edited by P. Donnelly and S. Tavaré, volume 87, pp. 257–270, 65

Springer-Verlag, Berlin. 66

Griffiths, R. C., S. Tavare, W. F. Bodmer, and P. J. Donnelly, 1994 67

Sampling theory for neutral alleles in a varying environment. 68

Philosophical Transactions of the Royal Society of London. 69

Series B: Biological Sciences 344: 403–410. 70

Guillaume, F. and J. Rougemont, 2006 Nemo: an evolutionary 71

and population genetics programming framework. Bioinfor- 72

matics 22: 2556–2557. 73

Haller, B. C., J. Galloway, J. Kelleher, P. W. Messer, and P. L. Ralph, 74

2018 Tree-sequence recording in SLiM opens new horizons 75

for forward-time simulation of whole genomes. Molecular 76

ecology resources . 77

Haller, B. C. and P. W. Messer, 2019 SLiM 3: forward genetic sim- 78

ulations beyond the Wright–Fisher model. Molecular biology 79

and evolution 36: 632–637. 80

Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Vir- 81

tanen, et al., 2020 Array programming with numpy. Nature 82

585: 357–362. 83

Harris, K., 2019 From a database of genomes to a forest of evolu- 84

tionary trees. Nature genetics 51: 1306–1307. 85

Hedgecock, D., 1994 Does variance in reproductive success limit 86

effective population sizes of marine organisms? Genetics and 87

evolution of aquatic organisms pp. 122–134. 88

Hedgecock, D. and A. I. Pudovkin, 2011 Sweepstakes repro- 89

ductive success in highly fecund marine fish and shellfish: a 90

review and commentary. Bulletin of Marine Science 87: 971– 91

1002. 92

Hein, J., M. Schierup, and C. Wiuf, 2004 Gene genealogies, variation 93

and evolution: a primer in coalescent theory. Oxford University 94

Press, USA. 95

Heled, J. and A. J. Drummond, 2009 Bayesian inference of species 96

trees from multilocus data. Molecular biology and evolution 97

27: 570–580. 98

Hellenthal, G. and M. Stephens, 2007 mshot: modifying Hud- 99

son’s ms simulator to incorporate crossover and gene conver- 100

sion hotspots. Bioinformatics 23: 520–521. 101

Henikoff, S. and J. G. Henikoff, 1992 Amino acid substitution 102

matrices from protein blocks. Proceedings of the National 103

Academy of Sciences 89: 10915–10919. 104

Hickerson, M. J., E. Stahl, and N. Takebayashi, 2007 msBayes: 105

pipeline for testing comparative phylogeographic histories 106

using hierarchical approximate bayesian computation. BMC 107

bioinformatics 8: 1–7. 108

Hoban, S., G. Bertorelle, and O. E. Gaggiotti, 2012 Computer 109

simulations: tools for population and evolutionary genetics. 110

Nature Reviews Genetics 13: 110–122. 111

Hobolth, A. and J. L. Jensen, 2014 Markovian approximation to 112

the finite loci coalescent with recombination along multiple 113

sequences. Theoretical population biology 98: 48–58. 114

Hobolth, A., A. Siri-Jegousse, and M. Bladt, 2019 Phase-type 115

distributions in population genetics. Theoretical population 116

biology 127: 16–32. 117

Huang, W., N. Takebayashi, Y. Qi, and M. J. Hickerson, 2011 118

MTML-msBayes: approximate Bayesian comparative phylo- 119

geographic inference from multiple taxa and multiple loci 120

with rate heterogeneity. BMC bioinformatics 12: 1–14. 121

Hudson, R. R., 1983a Properties of a neutral allele model with 122

intragenic recombination. Theoretical Population Biology 23: 123

183–201. 124

Efficient simulation with msprime 1.0 13

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

Hudson, R. R., 1983b Testing the constant-rate neutral allele1

model with protein sequence data. Evolution 37: 203–217.2

Hudson, R. R., 1990 Gene genealogies and the coalescent process.3

Oxford Surveys in Evolutionary Biology 7: 1–44.4

Hudson, R. R., 2002 Generating samples under a Wright-Fisher5

neutral model of genetic variation. Bioinformatics 18: 337–338.6

Irwin, K. K., S. Laurent, S. Matuszewski, S. Vuilleumier, L. Or-7

mond, et al., 2016 On the importance of skewed offspring8

distributions and background selection in virus population9

genetics. Heredity 117: 393–399.10

Johri, P., C. Aquadro, M. Beaumont, B. Charlesworth, L. Excoffier,11

et al., 2021 Statistical inference in population genomics .12

Jukes, T. H., C. R. Cantor, et al., 1969 Evolution of protein13

molecules. Mammalian protein metabolism 3: 21–132.14

Kamm, J., J. Terhorst, R. Durbin, and Y. S. Song, 2020 Efficiently15

inferring the demographic history of many populations with16

allele count data. Journal of the American Statistical Associa-17

tion 115: 1472–1487.18

Kaplan, N. and R. R. Hudson, 1985 The use of sample genealo-19

gies for studying a selectively neutral m-loci model with re-20

combination. Theoretical Population Biology 28: 382–396.21

Kaplan, N. L., R. R. Hudson, and C. H. Langley, 1989 The “hitch-22

hiking effect” revisited. Genetics 123: 887–899.23

Karczewski, K. J., L. C. Francioli, G. Tiao, B. B. Cummings,24

J. Alföldi, et al., 2020 The mutational constraint spectrum quan-25

tified from variation in 141,456 humans. Nature 581: 434–443.26

Keightley, P. D. and A. Eyre-Walker, 2007 Joint inference of the27

distribution of fitness effects of deleterious mutations and28

population demography based on nucleotide polymorphism29

frequencies. Genetics 177: 2251–2261.30

Kelleher, J., N. H. Barton, and A. M. Etheridge, 2013 Coalescent31

simulation in continuous space. Bioinformatics 29: 955–956.32

Kelleher, J., A. M. Etheridge, and N. H. Barton, 2014 Coalescent33

simulation in continuous space: Algorithms for large neigh-34

bourhood size. Theoretical population biology 95: 13–23.35

Kelleher, J., A. M. Etheridge, and G. McVean, 2016 Efficient coa-36

lescent simulation and genealogical analysis for large sample37

sizes. PLoS computational biology 12: e1004842.38

Kelleher, J. and K. Lohse, 2020 Coalescent simulation with39

msprime. In Statistical Population Genomics, edited by J. Y.40

Dutheil, pp. 191–230, Springer US, New York, NY.41

Kelleher, J., K. R. Thornton, J. Ashander, and P. L. Ralph, 201842

Efficient pedigree recording for fast population genetics simu-43

lation. PLoS Computational Biology 14: 1–21.44

Kelleher, J., Y. Wong, A. W. Wohns, C. Fadil, P. K. Albers, et al.,45

2019 Inferring whole-genome histories in large population46

datasets. Nature Genetics 51: 1330–1338.47

Kern, A. D. and D. R. Schrider, 2016 Discoal: flexible coalescent48

simulations with selection. Bioinformatics 32: 3839–3841.49

Kim, Y. and W. Stephan, 2002 Detecting a local signature of ge-50

netic hitchhiking along a recombining chromosome. Genetics51

160: 765–777.52

Kimura, M., 1980 A simple method for estimating evolutionary53

rates of base substitutions through comparative studies of54

nucleotide sequences. Journal of molecular evolution 16: 111–55

120.56

Kimura, M., 1981 Estimation of evolutionary distances between57

homologous nucleotide sequences. Proceedings of the Na-58

tional Academy of Sciences 78: 454–458.59

Kingman, J. F., 1982a On the genealogy of large populations.60

Journal of applied probability 19: 27–43.61

Kingman, J. F. C., 1982b The coalescent. Stochastic processes and62

their applications 13: 235–248. 63

Kluyver, T., B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, 64

et al., 2016 Jupyter notebooks – a publishing format for repro- 65

ducible computational workflows. In Positioning and Power 66

in Academic Publishing: Players, Agents and Agendas, edited by 67

F. Loizides and B. Schmidt, pp. 87 – 90, IOS Press. 68

Korunes, K. L. and M. A. F. Noor, 2017 Gene conversion and link- 69

age: effects on genome evolution and speciation. Molecular 70

Ecology 26: 351–364. 71

Koskela, J., 2018 Multi-locus data distinguishes between pop- 72

ulation growth and multiple merger coalescents. Statistical 73

applications in genetics and molecular biology 17. 74

Koskela, J. and M. Wilke Berenguer, 2019 Robust model selection 75

between population growth and multiple merger coalescents. 76

Mathematical biosciences 311: 1–12. 77

Kuhner, M. K., J. Yamato, and J. Felsenstein, 2000 Maximum 78

likelihood estimation of recombination rates from population 79

data. Genetics 156: 1393–1401. 80

Lapierre, M., C. Blin, A. Lambert, G. Achaz, and E. P. C. Rocha, 81

2016 The impact of selection, gene conversion, and biased sam- 82

pling on the assessment of microbial demography. Molecular 83

Biology and Evolution 33: 1711–1725. 84

Li, H. and R. Durbin, 2011 Inference of human population history 85

from individual whole-genome sequences. Nature 475: 493– 86

496. 87

Li, H. and W. Stephan, 2006 Inferring the demographic history 88

and rate of adaptive substitution in Drosophila. PLOS Genet- 89

ics 2: 1–10. 90

Liu, Y., G. Athanasiadis, and M. E. Weale, 2008 A survey of ge- 91

netic simulation software for population and epidemiological 92

studies. Human genomics 3: 79. 93

Lopes, J. S., D. Balding, and M. A. Beaumont, 2009 Popabc: a 94

program to infer historical demographic parameters. Bioinfor- 95

matics 25: 2747–2749. 96

Mailund, T., M. H. Schierup, C. N. Pedersen, P. J. Mechlenborg, 97

J. N. Madsen, et al., 2005 CoaSim: a flexible environment 98

for simulating genetic data under coalescent models. BMC 99

bioinformatics 6: 1–6. 100

Marjoram, P. and J. D. Wall, 2006 Fast “coalescent” simulation. 101

BMC Genet 7: 16. 102

Marth, G. T., E. Czabarka, J. Murvai, and S. T. Sherry, 2004 The 103

allele frequency spectrum in genome-wide human variation 104

data reveals signals of differential demographic history in 105

three large world populations. Genetics 166: 351–372. 106

Martin, A. R., C. R. Gignoux, R. K. Walters, G. L. Wojcik, B. M. 107

Neale, et al., 2017 Human demographic history impacts ge- 108

netic risk prediction across diverse populations. The American 109

Journal of Human Genetics 100: 635–649. 110

Martin, A. R., C. R. Gignoux, R. K. Walters, G. L. Wojcik, 111

B. M. Neale, et al., 2020 Erratum: Human demographic 112

history impacts genetic risk prediction across diverse pop- 113

ulations (the american journal of human genetics (2020) 114

107 (4)(583–588),(s000292972030286x),(10.1016/j. ajhg. 2020.08. 115

017)). American journal of human genetics 107: 788–789. 116

Mathieson, I. and A. Scally, 2020 What is ancestry? PLoS Genet- 117

ics 16: e1008624. 118

Matuszewski, S., M. E. Hildebrandt, G. Achaz, and J. D. Jensen, 119

2018 Coalescent processes with skewed offspring distributions 120

and nonequilibrium demography. Genetics 208: 323–338. 121

McBroome, J., B. Thornlow, A. S. Hinrichs, N. De Maio, N. Gold- 122

man, et al., 2021 A daily-updated database and tools for com- 123

prehensive SARS-CoV-2 mutation-annotated trees. bioRxiv 124

14 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

.1

McGill, J. R., E. A. Walkup, and M. K. Kuhner, 2013 GraphML2

specializations to codify ancestral recombinant graphs. Fron3

Genet 4: 146.4

McKenzie, P. F. and D. A. Eaton, 2020 ipcoal: An interactive5

Python package for simulating and analyzing genealogies6

and sequences on a species tree or network. Bioinformatics 36:7

4193–4196.8

McVean, G. A. T. and N. J. Cardin, 2005 Approximating the9

coalescent with recombination. Philos Trans R Soc Lond B Biol10

Sci 360: 1387–1393.11

Miga, K. H., S. Koren, A. Rhie, M. R. Vollger, A. Gershman, et al.,12

2020 Telomere-to-telomere assembly of a complete human X13

chromosome. Nature 585: 79–84.14

Minichiello, M. J. and R. Durbin, 2006 Mapping trait loci by15

use of inferred ancestral recombination graphs. The American16

Journal of Human Genetics 79: 910–922.17

Möhle, M. and S. Sagitov, 2001 A classification of coalescent pro-18

cesses for haploid exchangeable population models. Annals19

of Probability pp. 1547–1562.20

Montinaro, F., V. Pankratov, B. Yelmen, L. Pagani, and M. Mon-21

dal, 2020 Revisiting the Out of Africa event with a novel deep22

learning approach. bioRxiv .23

Neher, R. A. and O. Hallatschek, 2013 Genealogies of rapidly24

adapting populations. Proceedings of the National Academy25

of Sciences 110: 437–442.26

Nelson, D., J. Kelleher, A. P. Ragsdale, C. Moreau, G. McVean,27

et al., 2020 Accounting for long-range correlations in genome-28

wide simulations of large cohorts. PLoS genetics 16: e1008619.29

Nielsen, R., 2000 Estimation of population parameters and re-30

combination rates from single nucleotide polymorphism. Ge-31

netics 154: 931–942.32

Osmond, M. and G. Coop, 2021 Estimating dispersal rates and33

locating genetic ancestors with genome-wide genealogies.34

bioRxiv .35

Palamara, P. F., 2016 ARGON: fast, whole-genome simulation36

of the discrete time Wright-Fisher process. Bioinformatics 32:37

3032–3034.38

Parobek, C. M., F. I. Archer, M. E. DePrenger-Levin, S. M. Hoban,39

L. Liggins, et al., 2017 skelesim: an extensible, general frame-40

work for population genetic simulation in r. Molecular ecology41

resources 17: 101–109.42

Pavlidis, P., S. Laurent, and W. Stephan, 2010 msABC: a modifi-43

cation of Hudson’s ms to facilitate multi-locus ABC analysis.44

Molecular Ecology Resources 10: 723–727.45

Peischl, S., E. Koch, R. Guerrero, and M. Kirkpatrick, 2013 A46

sequential coalescent algorithm for chromosomal inversions.47

Heredity 111: 200–209.48

Peng, B., H.-S. Chen, L. E. Mechanic, B. Racine, J. Clarke,49

et al., 2015 Genetic data simulators and their applications:50

an overview. Genetic epidemiology 39: 2–10.51

Pitman, J., 1999 Coalescents with multiple collisions. Annals of52

Probability pp. 1870–1902.53

Pudlo, P., J. M. Marin, A. Estoup, J. M. Cornuet, M. Gautier,54

et al., 2016 Reliable ABC model choice via random forests.55

Bioinformatics 32: 859–866.56

Quinto-Cortés, C. D., A. E. Woerner, J. C. Watkins, and M. F.57

Hammer, 2018 Modeling SNP array ascertainment with Ap-58

proximate Bayesian Computation for demographic inference.59

Scientific reports 8: 1–10.60

Racimo, F., D. Gokhman, M. Fumagalli, A. Ko, T. Hansen, et al.,61

2017 Archaic adaptive introgression in TBX15/WARS2. Molec-62

ular Biology and Evolution 34: 509–524. 63

Ragsdale, A. P., D. Nelson, S. Gravel, and J. Kelleher, 2020 64

Lessons learned from bugs in models of human history. Amer- 65

ican Journal of Human Genetics 107: 583–588. 66

Ralph, P., K. Thornton, and J. Kelleher, 2020 Efficiently sum- 67

marizing relationships in large samples: a general duality 68

between statistics of genealogies and genomes. Genetics 215: 69

779–797. 70

Rambaut, A. and N. C. Grassly, 1997 Seq-Gen: an application 71

for the Monte Carlo simulation of DNA sequence evolution 72

along phylogenetic trees. Bioinformatics 13: 235–238. 73

Rasmussen, M. D., M. J. Hubisz, I. Gronau, and A. Siepel, 2014 74

Genome-wide inference of ancestral recombination graphs. 75

PLoS genetics 10: e1004342. 76

Raynal, L., J. M. Marin, P. Pudlo, M. Ribatet, C. P. Robert, et al., 77

2019 ABC random forests for Bayesian parameter inference. 78

Bioinformatics 35: 1720–1728. 79

Rivera-Colón, A. G., N. C. Rochette, and J. M. Catchen, 2021 80

Simulation with RADinitio improves RADseq experimental 81

design and sheds light on sources of missing data. Molecular 82

ecology resources 21: 363–378. 83

Rosenzweig, B. K., J. B. Pease, N. J. Besansky, and M. W. Hahn, 84

2016 Powerful methods for detecting introgressed regions 85

from population genomic data. Molecular ecology 25: 2387– 86

2397. 87

Sagitov, S., 1999 The general coalescent with asynchronous merg- 88

ers of ancestral lines. Journal of Applied Probability 36: 1116– 89

1125. 90

Sanchez, T., J. Cury, G. Charpiat, and F. Jay, 2021 Deep learning 91

for population size history inference: Design, comparison 92

and combination with approximate bayesian computation. 93

Molecular Ecology Resources 21: 2645–2660. 94

Schaefer, N. K., B. Shapiro, and R. E. Green, 2021 An ancestral 95

recombination graph of human, Neanderthal, and Denisovan 96

genomes. Science Advances 7: eabc0776. 97

Schiffels, S. and R. Durbin, 2014 Inferring human population 98

size and separation history from multiple genome sequences. 99

Nat Genet 46: 919–925. 100

Schrider, D. R. and A. D. Kern, 2018 Supervised machine learn- 101

ing for population genetics: a new paradigm. Trends in Genet- 102

ics 34: 301–312. 103

Schweinsberg, J., 2000 Coalescents with simultaneous multiple 104

collisions. Electron Journal of Probability 5: 1–50. 105

Schweinsberg, J., 2003 Coalescent processes obtained from su- 106

percritical Galton–Watson processes. Stochastic processes and 107

their Applications 106: 107–139. 108

Schweinsberg, J., 2017 Rigorous results for a population model 109

with selection II: genealogy of the population. Electronic Jour- 110

nal of Probability 22: 1–54. 111

Shannon, G., M. Jansen, K. Williams, C. Cáceres, A. Motta, et al., 112

2019 Gender equality in science, medicine, and global health: 113

where are we at and why does it matter? The Lancet 393: 114

560–569. 115

Sheehan, S., K. Harris, and Y. S. Song, 2013 Estimating variable ef- 116

fective population sizes from multiple genomes: a sequentially 117

markov conditional sampling distribution approach. Genetics 118

194: 647–662. 119

Sheehan, S. and Y. S. Song, 2016 Deep learning for population 120

genetic inference. PLoS computational biology 12: e1004845. 121

Shlyakhter, I., P. C. Sabeti, and S. F. Schaffner, 2014 Cosi2: an 122

efficient simulator of exact and approximate coalescent with 123

selection. Bioinformatics 30: 3427–3429. 124

Efficient simulation with msprime 1.0 15

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

Siepel, A., 2019 Challenges in funding and developing genomic1

software: roots and remedies. Genome Biology 20.2

Speidel, L., L. Cassidy, R. W. Davies, G. Hellenthal, P. Skoglund,3

et al., 2021 Inferring population histories for ancient genomes4

using genome-wide genealogies. Molecular Biology and Evo-5

lution .6

Speidel, L., M. Forest, S. Shi, and S. R. Myers, 2019 A method for7

genome-wide genealogy estimation for thousands of samples.8

Nature Genetics 51: 1321–1329.9

Spence, J. P. and Y. S. Song, 2019 Inference and analysis of10

population-specific fine-scale recombination maps across 2611

diverse human populations. Science Advances 5: eaaw9206.12

Spencer, C. C. and G. Coop, 2004 SelSim: a program to simulate13

population genetic data with natural selection and recombina-14

tion. Bioinformatics 20: 3673–3675.15

Spielman, S. J. and C. O. Wilke, 2015 Pyvolve: a flexible Python16

module for simulating sequences along phylogenies. PloS one17

10.18

Staab, P. R. and D. Metzler, 2016 Coala: an R framework for19

coalescent simulation. Bioinformatics 32: 1903–1904.20

Staab, P. R., S. Zhu, D. Metzler, and G. Lunter, 2015 scrm: Ef-21

ficiently simulating long sequences using the approximated22

coalescent with recombination. Bioinformatics 31: 1680–1682.23

Tajima, F., 1983 Evolutionary relationship of DNA sequences in24

finite populations. Genetics 105: 437–460.25

Tang, L., 2019 Genealogy at the genome scale. Nature methods26

16: 1077–1077.27

Tanjo, T., Y. Kawai, K. Tokunaga, O. Ogasawara, and M. Na-28

gasaki, 2021 Practical guide for managing large-scale human29

genome data in research. Journal of Human Genetics 66: 39–30

52.31

Tavaré, S. et al., 1986 Some probabilistic and statistical problems32

in the analysis of DNA sequences. Lectures on mathematics33

in the life sciences 17: 57–86.34

Terasaki Hart, D. E., A. P. Bishop, and I. J. Wang, 2021 Geonomics:35

forward-time, spatially explicit, and arbitrarily complex land-36

scape genomic simulations. Molecular Biology and Evolution37

38: 4634–4646.38

Terhorst, J., J. A. Kamm, and Y. S. Song, 2017 Robust and scalable39

inference of population history from hundreds of unphased40

whole genomes. Nature genetics 49: 303–309.41

Teshima, K. M. and H. Innan, 2009 mbs: modifying Hudson’s42

ms software to generate samples of DNA sequences with a43

biallelic site under selection. BMC Bioinformatics 10: 166.44

Thornton, K. and P. Andolfatto, 2006 Approximate Bayesian45

inference reveals evidence for a recent, severe bottleneck in a46

Netherlands population of Drosophila melanogaster. Genetics47

172: 1607–1619.48

Thornton, K. R., 2014 A C++ template library for efficient49

forward-time population genetic simulation of large popu-50

lations. Genetics 198: 157–166.51

Trinkenreich, B., I. Wiese, A. Sarma, M. Gerosa, and I. Stein-52

macher, 2021 Women’s participation in open source software:53

A survey of the literature. arXiv preprint arXiv:2105.08777 .54

Tskit developers, 2022 Tskit: a portable library for population55

scale genealogical analysis. In preparation .56

Turakhia, Y., B. Thornlow, A. S. Hinrichs, N. De Maio, L. Goza-57

shti, et al., 2021 Ultrafast sample placement on existing trees58

(UShER) enables real-time phylogenetics for the SARS-CoV-259

pandemic. Nature Genetics pp. 1–8.60

Vendrami, D. L., L. S. Peck, M. S. Clark, B. Eldon, M. Meredith,61

et al., 2021 Sweepstake reproductive success and collective62

dispersal produce chaotic genetic patchiness in a broadcast 63

spawner. Science advances 7: eabj4713. 64

Virgoulay, T., F. Rousset, C. Noûs, and R. Leblois, 2021 Gspace: 65

an exact coalescence simulator of recombining genomes under 66

isolation by distance. Bioinformatics 37: 3673–3675. 67

Wakeley, J., 2008 Coalescent theory: an introduction. Roberts and 68

Company, Englewood, Colorado. 69

Wakeley, J., L. King, B. S. Low, and S. Ramachandran, 2012 Gene 70

genealogies within a fixed pedigree, and the robustness of 71

Kingman’s coalescent. Genetics 190: 1433–1445. 72

Wang, K., I. Mathieson, J. O’Connell, and S. Schiffels, 2020 Track- 73

ing human population structure through time from whole 74

genome sequences. PLoS Genetics 16: e1008552. 75

Wang, Y. and B. Rannala, 2008 Bayesian inference of fine-scale 76

recombination rates using population genomic data. Philo- 77

sophical Transactions of the Royal Society of London. Series 78

B: Biological Sciences 363: 3921–3930. 79

Wang, Y., Y. Zhou, L. Li, X. Chen, Y. Liu, et al., 2014 A new 80

method for modeling coalescent processes with recombination. 81

BMC Bioinformatics 15: 273. 82

Wegmann, D., C. Leuenberger, S. Neuenschwander, and L. Ex- 83

coffier, 2010 ABCtoolbox: a versatile toolkit for approximate 84

Bayesian computations. BMC bioinformatics 11: 1–7. 85

Wellenreuther, M. and S. Otto, 2016 Women in evolution– 86

highlighting the changing face of evolutionary biology. Evolu- 87

tionary Applications 9: 3–16. 88

Wilton, P. R., S. Carmi, and A. Hobolth, 2015 The SMC’ is a 89

highly accurate approximation to the ancestral recombination 90

graph. Genetics 200: 343–355. 91

Wiuf, C. and J. Hein, 1999a The ancestry of a sample of sequences 92

subject to recombination. Genetics 151: 1217–1228. 93

Wiuf, C. and J. Hein, 1999b Recombination as a point process 94

along sequences. Theoretical Population Biology 55: 248–259. 95

Wiuf, C. and J. Hein, 2000 The coalescent with gene conversion. 96

Genetics 155: 451–462. 97

Wohns, A. W., Y. Wong, B. Jeffery, A. Akbari, S. Mallick, et al., 98

2021 A unified genealogy of modern and ancient genomes. 99

bioRxiv . 100

Yang, T., H.-W. Deng, and T. Niu, 2014 Critical assessment of 101

coalescent simulators in modeling recombination hotspots in 102

genomic sequences. BMC Bioinformatics 15: 3. 103

Yuan, X., D. J. Miller, J. Zhang, D. Herrington, and Y. Wang, 2012 104

An overview of population genetic data simulation. Journal 105

of Computational Biology 19: 42–54. 106

Zhu, S., J. H. Degnan, S. J. Goldstien, and B. Eldon, 2015 Hybrid- 107

Lambda: simulation of multiple merger and Kingman gene 108

genealogies in species networks and species trees. BMC Bioin- 109

formatics 16. 110

Appendix 111

Mutation generation 112

The algorithm that msprime uses to simulate mutations on a tree 113

sequence proceeds in two steps: first, mutations are “placed” on 114

the tree sequence (i.e., sampling their locations in time, along 115

the genome, and on the marginal tree), and then the ancestral 116

and derived alleles of each mutation are generated. All mutation 117

models share the code to place mutations, but choose alleles in 118

different ways. 119

First, mutations are placed on the tree sequence under an in- 120

homogeneous Poisson model by applying them independently 121

to each edge. If an edge spans a region [a, b) of the genome 122

16 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

and connected parent and child nodes with times s < t, and1

the mutation rate locally is µ, then the number of mutations on2

the edge is Poisson with mean µ(t− s)(b− a), and each muta-3

tion is placed independently at a position chosen uniformly in4

[a, b) and a time uniformly in [s, t). In a discrete genome, all5

positions are integers and so more than one mutation may occur6

at the same position on the same edge. Otherwise (i.e., for an7

infinite-sites model), positions are rejection sampled to obtain a8

unique floating-point number. If an edge spans a region of the9

genome with more than one mutation rate, this is done sepa-10

rately for each sub-region on which the mutation rate is constant.11

Since each edge is processed independently, the algorithm scales12

linearly with the number of edges in the tree sequence.13

Next, alleles are chosen for each mutation. If the site was not14

previously mutated, then a new ancestral allele is chosen for the15

site, according to an input distribution of ancestral state allele16

probabilities. Then, each mutation on the tree is considered17

in turn, and a derived allele is randomly chosen based on the18

parental allele (which may be the ancestral allele or the derived19

allele of a previous mutation). Finally, information about the20

mutations are recorded in the site and mutation tables of the tree21

sequence.22

A mutation model must, therefore, provide two things: a way23

of choosing an ancestral allele for each new variant site, and a24

way of choosing a derived allele given the parental allele at each25

mutation. Perhaps the simplest mutation model implemented in26

msprime is the InfiniteAlleles mutation model, which keeps27

an internal counter so that the requested alleles are assigned28

subsequent (and therefore unique) integers.29

The distribution of ancestral alleles is used to choose the30

allele present at the root of the tree at each mutated site, i.e.,31

the root_distribution. Mutation models with a finite possible32

set of alleles have a natural choice for this distribution—the33

stationary distribution of the mutation process. (All mutation34

models are Markovian, so this may be found as the top left35

eigenvector of the mutation matrix.) This is the default in most36

models, except, e.g., the BinaryMutationModel, whose alleles37

are 0 and 1 and always labels the ancestral allele “0”. However,38

mutational processes are not in general stationary, so we often39

allow a different root distribution to be specified.40

Since the general algorithm above applies mutations at a41

single rate independent of ancestral state, a model in which dif-42

ferent alleles mutate at different rates must necessarily produce43

some silent mutations, i.e., mutations in which the derived al-44

lele is equal to the parental allele. To illustrate this, consider a45

mutation model in which A or T mutates to a randomly chosen46

different nucleotide at rate α and C or G mutates at rate β, with47

β < α. To implement this, first place mutations at the largest48

total rate, which is α. Then, at each site, choose an ancestral49

allele from the root distribution, and for each mutation, choose50

a derived allele as follows: if the parental allele is A or T, then51

choose a random derived allele different to the parental allele; if52

the parental allele is C or G, then choose the derived allele to be53

equal to the parent allele with probability β/(α + β), and ran-54

domly choose a different nucleotide otherwise. This produces55

the correct distribution by Poisson thinning: a Poisson process56

with rate α in which each point is discarded independently with57

probability β/(α + β) is equivalent to a Poisson process with58

rate β. All finite-state models (implemented under the generic59

MatrixMutationModel class) work in this way: mutations are60

placed at the maximum mutation rate, and then some silent61

mutations will result.62

In previous versions of msprime, silent mutations were dis- 63

allowed, and we could have removed them from the output 64

entirely. However, we have chosen to leave them in, so that 65

for instance simulating with the HKY mutation model will re- 66

sult in silent mutations if not all equilibrium frequencies are 67

the same. The presence of silent mutations may at first be sur- 68

prising but there is a good reason to leave them in: to allow 69

layering of different mutation models. Suppose that we wanted 70

to model the mutation process as a mixture of more than one 71

model, e.g., Jukes-Cantor mutations at rate µ1, and HKY muta- 72

tions occur at rate µ2. Layering multiple calls to sim_mutations 73

is allowed, so we could first apply mutations with the JC69 74

model at rate µ1 and then add more with the HKY model at rate 75

µ2. However, there is a small statistical problem: suppose that 76

after applying Jukes-Cantor mutations we have an A→ C mu- 77

tation, but then the HKY mutations inserts another mutation 78

in the middle, resulting in A → C → C. If neither mutation 79

model allows silent transitions, then this is clearly not correct, 80

i.e., it is not equivalent to a model that simultaneously applies 81

the two models. (The impact is small, however, as it only affects 82

sites with more than one mutation.) The solution is to make 83

the Jukes-Cantor model state-independent (also called “parent- 84

independent”), by placing mutations at rate 4/3µ1 and then 85

choosing the derived state for each mutation independently of 86

the parent (so that 1/4 of mutations will be silent). If so—and, 87

more generally, if the first mutational process put down is state- 88

independent—then the result of sequentially applying the two 89

mutation models is equivalent to the simultaneous model. To fa- 90

cilitate this, many mutation models have a state_independent 91

option that increases the number of silent mutations and makes 92

the model closer to state-independent. 93

Silent mutations are fully supported by tskit, which cor- 94

rectly accounts for their presence when computing statistics and 95

performing other operations. For example, silent mutations have 96

no effect on calculations of nucleotide site diversity. 97

Time complexity of Hudson’s algorithm 98

As discussed in the section, the time complexity of Hudson’s 99

algorithm is predicted to be quadratic in the population scaled re- 100

combination rate ρ = 4NeL (where L is the length of the genome 101

in units of recombination distance) by Eq. (1). Fig. 8 shows the 102

running time for simulations with a variety of population sizes, 103

chromosome length and sample sizes, and shows this quadratic 104

prediction is well supported by observations (see also Kelleher 105

et al. 2016, Fig. 2). We also see that the dependence on n is quite 106

weak, since increasing sample size 100-fold only increases run 107

time by a factor of 2 or so. However, the log2 n factor implied 108

by Eq. (1) (the sum is a harmonic number and can be approxi- 109

mated by log n) is not well supported by observed run times (or 110

numbers of events) except possibly at very large values of ρ. It 111

therefore appears that a different dependence on n is required 112

to accurately predict simulation time for a given ρ and n. 113

Fig. 8 is a useful yardstick, allowing us to predict how long 114

simulations should take for a wide range of species. Taking a 115

typical chromosome to be 1 Morgan in length, these plots show, 116

roughly, that simulating chromosome-length samples from a 117

population of thousands of individuals takes seconds, while 118

samples from a population of tens of thousands take minutes. 119

Simulating whole chromosomes for many species is very fast, 120

with 1000 samples of chromosome 1 for Arabidopsis thaliana tak- 121

ing less than a second, and a few minutes for dogs and hu- 122

mans. However, the dependence on ρ is quadratic, and if ρ is 123

Efficient simulation with msprime 1.0 17

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

0 1000 2000 3000
NeL (= scaled recombination rate /4)

0

1

2

3

4

5

Ti
m

e
(s

ec
on

ds
)

Arabidopsis
thaliana

A

quadratic
n=1000
n=100000

0 10000 20000 30000
NeL (= scaled recombination rate /4)

0

200

400

600

800

1000

Ti
m

e
(s

ec
on

ds
)

Homo sapiens

Canis familiaris

B

quadratic
Ne = 1000
Ne = 5000
Ne = 10000
Ne = 50000
Ne = 100000
Ne = 200000
Ne = 300000

Figure 8 Running time of sim_ancestry for (A) small and (B) larger simulations on an Intel i7-6600U CPU. Each point is the run
time of one simulation, for various values of effective population size (Ne), chromosome length in Morgans (L), and number of
diploid samples (n). Run time scales quadratically with the product of Ne and L, shown on the horizontal axis. For example, (A)
shows that 1,000 samples of 1 Morgan-length chromosomes from a population of Ne = 2, 000 diploids would take about 2 seconds,
and (equivalently) that the same number of 0.01 Morgan segments with Ne = 200, 000 would take the same time. Since recombina-
tion rate in these simulations was 10−8, L is the number of base pairs divided by 108. The black lines are quadratic fits separately in
each panel and sample size. Vertical gray lines show the approximate values of NeL for chromosome 1 in three species, using values
from the stdpopsim catalog (Adrion et al. 2020a).

sufficiently large simulations may not be feasible. For exam-1

ple, the Drosophila melanogaster chromosome 2L is about 23.5Mb2

long with an average recombination rate of around 2.4× 10−8,3

so L ≈ 0.57, and with Ne = 1.7× 106 (Li and Stephan 2006),4

NeL ≈ 106, so extrapolating the curve in Fig. 8B predicts that5

simulation would require around 177 hours for 1000 samples.6

For such large values of ρ we recommend users consider ap-7

proximate simulations. Since msprime does not currently have8

efficient implementations of approximate coalescent with recom-9

bination models, in these cases we recommend using SMC based10

methods such as scrm, particularly if sample sizes are small. In11

practice, to predict the running time of a given simulation in12

msprime, we recommend that users measure run time in a se-13

ries of simulations with short genome lengths and the desired14

sample size, and then predict run time by fitting a quadratic15

curve to genome length as in Fig. 8. It is important to note that16

the quadratic curves in the two panels of Fig. 8 are different,17

and predicting the run times of days-long simulations using the18

timing of seconds-long runs is unlikely to be very accurate.19

What about simulations with changing population size? To20

understand how run time depends on demography it helps21

to consider why run time is quadratic in ρ. At any point in22

time, msprime must keep track of some number of lineages, each23

of which contains some number of chunks of genetic material.24

Common ancestor events reduce the number of lineages, and25

recombination events increase their number. However, with26

long genomes, only a small fraction of the common ancestor27

events will involve overlapping segments of ancestry and lead28

to coalescence in the marginal trees. Such disjoint segments are29

often far apart (on average, about distance L/2), and so recom-30

bine apart again immediately; it is these large numbers of rapid31

and inconsequential events that lead to the quadratic run time.32

The maximum number of lineages occurs when the increase and 33

decrease in numbers of lineages due to common ancestor and 34

recombination events balance out. To get an idea of run time we 35

can estimate when this balance occurs. Suppose that the maxi- 36

mum number of lineages is M; at this time the rate of common 37

ancestor events is M(M− 1)/(4Ne) and the total rate of recom- 38

bination is M`, where ` is the mean length of genome carried by 39

each lineage (including “trapped” non-ancestral material). At 40

the maximum, coalescence and recombination rates are equal, 41

so a typical segment of ancestry will spend roughly half its time 42

in a lineage with at least one other such segment—and, since 43

such lineages carry at least two segments, at most one-third of 44

the lineages carry long trapped segments of ancestry. Since the 45

maximum number of lineages is reached very quickly (Nelson 46

et al. 2020), this implies that ` ≈ L/6. Setting the rates of recom- 47

bination and common ancestor events to be equal and solving 48

for M, we find that M is roughly equal to LNe. The number of 49

lineages then decreases gradually from this maximum on the 50

coalescent time scale, and therefore over roughly 2Ne genera- 51

tions. Since the total rate of events when the maximum number 52

of lineages is present is roughly L2Ne/6, then the total number 53

of events is proportional to (LNe)2—i.e., proportional to ρ2. 54

What does this tell us about run time for simulating time- 55

varying population sizes? Suppose that population size today 56

is N1, while T generations ago it was N2. Does the run time 57

depend more on 4N1L or 4N2L? The answer depends on how T 58

compares to N1: if T/N1 � 1 then the number of extant lineages 59

remaining after T generations is likely to be substantial, and the 60

algorithm runtime is primarily determined by N2. Conversely, if 61

T/N1 � 1, then few extant lineages are likely to remain by time 62

T and runtime depends mainly on N1. For instance, in many 63

agricultural species N1 ≈ 100, while N2 ≈ 105, and the run time 64

18 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

will depend critically on T—in other words, simulation will be1

quick in a species with a strong domestication bottleneck, and2

slow otherwise.3

Selective sweeps model4

Sweep trajectories are generated in msprime using a jump pro-
cess approximation to the conditional diffusion of an allele
bound for fixation (Coop and Griffiths 2004). The jump process
moves back in time following the beneficial allele frequency, p,
from some initial frequency (e.g., p = 1) back to the origination
of the allele at p = 1/(2N), tracking time in small increments δt.
Then, given the frequency p at time t, the frequency p′ at time
t + δt is given by

p′ =

{
p + µ(p)δt +

√
p(1− p)δt with probability 1/2

p + µ(p)δt−
√

p(1− p)δt with probability 1/2

where5

µ(p) =
αp(1− p)

tanh(α(1− p))
.

Here, α = 2Ns and s is the fitness advantage in homozygotes.6

This model assumes genic selection (i.e., that the dominance7

coefficient h = 0.5), but can be generalized straightforwardly to8

include arbitrary dominance. We can also define trajectories to9

model neutral alleles and soft selective sweeps, which we plan10

as future additions to msprime.11

Likelihood calculations12

We provide two functions to facilitate likelihood-based infer-13

ence. Both are implemented only for the simplest case of the14

standard ARG with a constant population size, and require tree15

sequences compatible with the record_full_arg option as their16

arguments.17

The msprime.log_arg_likelihood(ts, r, N) function re-
turns the natural logarithm of the sampling probability of the
tree sequence ts under the ARG with per-link, per-generation
recombination probability r and population size N (e.g. Kuhner
et al. 2000, equation (1)). Specifically, the function returns the
logarithm of(

1
2N

)qc(
∏
i:R

rgi

)
exp

(
−

q

∑
i=1

[1
2N

(
ki
2

)
+ rli

]
ti

)
,

where ti is the number of generations between the (i− 1)th and18

ith event, ki is the number of extant ancestors in that interval, li19

is the number of links in that interval that would split ancestral20

material should they recombine, q is the total number of events21

in the tree sequence ts, qc is the number of coalescences, R is22

the set of indices of time intervals which end in a recombina-23

tion, and gi is the corresponding gap: the length of contiguous24

non-ancestral material around the link at which the recombina-25

tion in question took place. The gap indicates the number of26

links (or length of genome in a continuous model) at which a27

recombination would result in exactly the observed pattern of28

ancestral material in the ARG. For a continuous model of the29

genome and a recombination in ancestral material, we set gi = 130

and interpret the result as a density.31

The msprime.unnormalised_log_mutation_likelihood(ts,
m) function returns the natural logarithm of the probability
of the mutations recorded in the tree sequence ts given the
corresponding ancestry, assuming the infinite sites model,

up to a normalizing constant which depends on the pattern
of mutations, but not on the tree sequence or the per-site,
per-generation mutation probability m. Specifically, the function
returns the logarithm of

e−Tm/2 (Tm/2)M

M! ∏
γ∈M

hγ

T
,

where T andM are the total branch length and set of mutations 32

in ts, respectively, and for a mutation γ, hγ is the total branch 33

length on which γ could have arisen while appearing on all 34

of the leaves of ts it does, and on no others. Unary nodes on 35

marginal trees arising from the record_full_arg option mean 36

that, in general hγ corresponds to the length of one or more 37

edges. 38

Multiple merger coalescent model 39

Multiple merger coalescents, in which no more than one group
of a random number of ancestral lineages may merge into a com-
mon ancestor at a given time, are referred to as Λ-coalescents.
The rate at which a given group of k out of a total of b lineages
merges is

λb,k =
∫ 1

0
xk−2(1− x)b−kΛ(dx) + a1{k=2}, 2 ≤ k ≤ b, (2)

where 1{A} := 1 if A holds, and zero otherwise, a ≥ 0 is a
constant, and Λ is a finite measure on the unit interval without
an atom at zero (Donnelly and Kurtz 1999; Pitman 1999; Sagi-
tov 1999). There is also a larger class of simultaneous multiple
merger coalescents involving simultaneous mergers of distinct
groups of lineages into several common ancestors (Schweins-
berg 2000). These are commonly referred to as Ξ-coalescents,
and often arise from population models incorporating diploidy
or more general polyploidy (Birkner et al. 2013a; Blath et al. 2016).
To describe a general Ξ-coalescent, let ∆ denote the infinite sim-
plex

∆ :=

{
(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞

∑
j=1

xj ≤ 1

}
.

The rate of mergers is determined by Ξ = Ξ0 + aδ0, where a ≥ 0
is a constant, δ0 is the Dirac delta measure, and Ξ0 is a finite
measure on ∆ with no atom at (0, 0, . . .). For an initial number
of blocks b ≥ 2 and r ∈ {1, 2, . . . , b− 1}, let k1 ≥ 2, . . . , kr ≥ 2
be the sizes of r merger events and s = b− k1 − · · · − kr be the
number of blocks not participating in any merger. The rate of
each possible set of mergers with sizes (k1, . . . , kr) is

λn;k1,...,kr ;s =
∫

∆

s

∑
`=0

∞

∑
i1,...,ir+`=1
all distinct

(
s
`

)
xk1

i1
· · · xkr

ir
xir+1 · · · xir+`

×

1−
∞

∑
j=1

xj

s−`
1

∑∞
j=1 x2

j
Ξ0(dx)

+ a1{r=1,k1=2},

and the number of such (k1, . . . , kr) mergers is

N (b; k1, . . . , kr) =

(
b

k1 . . . kr s

)
1

∏b
j=2 `j!

,

where `j := #{i ∈ {1, . . . , r} : ki = j} is the number of mergers 40

of size j ≥ 2 (Schweinsberg 2000). 41

Efficient simulation with msprime 1.0 19

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

Viewing coalescent processes strictly as mathematical objects,1

it is clear that the class of Ξ-coalescents contains Λ-coalescents2

as a specific example in which at most one group of lineages3

can merge at each time, and the class of Λ-coalescents contain4

the Kingman-coalescent as a special case. However, viewed5

as limits of ancestral processes derived from specific popula-6

tion models they are not nested. For example, one can obtain7

Λ-coalescents from haploid population models incorporating8

sweepstakes reproduction and high fecundity, and Ξ-coalescents9

for the same models for diploid populations (Birkner et al. 2013a).10

One should therefore apply the models as appropriate, i.e. Λ-11

coalescents to haploid (e.g. mtDNA) data, and Ξ-coalescents to12

diploid or polyploid (e.g. autosomal) data (Blath et al. 2016).13

In msprime we have incorporated two examples of multiple-
merger coalescents. One is a diploid extension (Birkner et al.
2013a) of the haploid Moran model adapted to sweepstakes re-
production considered by Eldon and Wakeley (2006). Let N de-
note the population size, and take ψ ∈ (0, 1] to be fixed. In every
generation, with probability 1− εN a single individual (picked
uniformly at random) perishes. With probability εN , bψNc indi-
viduals picked uniformly without replacement perish instead. In
either case, a surviving individual picked uniformly at random
produces enough offspring to restore the population size back
to N. Taking εN = 1/Nγ for some γ > 0, Eldon and Wakeley
(2006) obtain Λ-coalescents for which the Λ measure in (2) is a
point mass at ψ. The simplicity of this model does allow one
to obtain some explicit mathematical results (see e.g. Der et al.
(2012); Eldon and Freund (2018); Freund (2020); Matuszewski
et al. (2018)), and the model has also been used to simulate gene
genealogies within phylogenies (Zhu et al. 2015). As well as the
haploid model of Eldon and Wakeley (2006), msprime provides
the diploid version of Birkner et al. (2013a), in which individuals
perish as above, but replacements are generated by sampling
a single pair of diploid individuals as parents, with children
sampling one chromosome from each parent. Hence, there are
four parent chromosomes involved in each reproduction event,
which can lead to up to four simultaneous mergers, giving rise
to a Ξ-coalescent with merger rate

λDirac
b;k1,...,kr ;s =

cψ2/4
1 + cψ2/4

4
ψ2

s∧(4−r)

∑
`=0

(
s
`

)
(4)r+`(1− ψ)s−`

×
(

ψ

4

)k1+···+kr+`

+
1{r=1,k1=2}
1 + cψ2/4

,

(3)

The interpretation of (3) is that ‘small’ reproduction events in14

which two lineages merge occur at rate 1/(1 + cψ2/4), while15

large reproduction events with the potential to result in simulta-16

neous multiple mergers occur at rate (cψ2/4)/(1 + cψ2/4).17

The other multiple merger coalescent model incorporated
in msprime is the haploid population model considered by
Schweinsberg (2003), as well as its diploid extension (Birkner
et al. 2018). In the haploid version, in each generation of
fixed size N, individuals produce random numbers of juve-
niles (X1, . . . , XN) independently, each distributed according to
a stable law satisfying

lim
k→∞

CkαP (X ≥ k) = 1 (4)

with index α > 0, and where C > 0 is a normalizing constant. If
the total number of juveniles SN := X1 + . . . + XN produced in
this way is at least N, then N juveniles are sampled uniformly
at random without replacement to form the next generation. As

long as E [X1] > 1, one can show that {SN < N} has exponen-
tially small probability in N, and does not affect the resulting
coalescent as N → ∞ (Schweinsberg 2003). If α ≥ 2 the ancestral
process converges to the Kingman-coalescent; if 1 ≤ α < 2 the
ancestral process converges to a Λ-coalescent with Λ in (2) given
by the Beta(2− α, α) distribution, i.e.

Λ(dx) = 1{0<x≤1}
1

B(2− α, α)
x1−α(1− x)α−1dx, (5)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) for a, b > 0 is the beta
function (Schweinsberg 2003). This model has been adapted
to diploid populations by Birkner et al. (2018), and the resulting
coalescent is Ξ-coalescent with merger rate

λBeta
b;k1,...,kr ;s =

s∧(4−r)

∑
`=0

(
s
`

)
(4)r+`

4k+`

B(k + `− α, s− `+ α)

B(2− α, α)
, (6)

where k := k1 + . . .+ kr (Blath et al. 2016; Birkner et al. 2018). The 18

interpretation of (6) is that the random number of lineages par- 19

ticipating in a potential merger is governed by the Λ-coalescent 20

with rate (5), and all participating lineages are randomly allo- 21

cated into one of four groups corresponding to the four parental 22

chromosomes, giving rise to up to four simultaneous mergers. 23

The stable law (4) assumes that individuals can produce ar-
bitrarily large numbers of juveniles. Since juveniles are at least
fertilized eggs, it may be desirable to suppose that the num-
ber of juveniles surviving to reproductive maturity cannot be
arbitrarily large. Hence we also consider an adaptation of the
Schweinsberg (2003) model, where the random number of juve-
niles has a deterministic upper bound φ(N), and the distribution
of the number of juveniles produced by a given parent (or pair
of parents in the diploid case) is

P (X = k) = 1{1≤k≤φ(N)}
φ(N + 1)α

φ(N + 1)α − 1

(
1
kα
− 1

(k + 1)α

)
.

(7)
See Eldon and Stephan (2018) for a related model. One can
follow the calculations of Schweinsberg (2003) or Birkner et al.
(2018) to show that if 1 < α < 2 then, recalling that k = k1 +
· · ·+ kr, the merger rate is

λBeta,M
b;k1,...,kr ;s =

s∧(4−r)

∑
`=0

(
s
`

)
(4)r+`

4k+`

B(M; k + `− α, s− `+ α)

B(M; 2− α, α)
(8)

where B(z; a, b) :=
∫ z

0 ta−1(1− t)b−1dt for a, b > 0 and 0 < z ≤ 1
is the incomplete beta function, and

M := lim
N→∞

φ(N)/N
φ(N)/N +E [X1]

∈ (0, 1]

(Chetwynd-Diggle et al. 2022). In other words, the measure Λ 24

driving the multiple mergers is of the same form as in (5) with 25

0 < x ≤ M in the case 1 < α < 2 and limN→∞ φ(N)/N > 0. If 26

α ≥ 2 or φ(N)/N → 0 then the ancestral process converges to 27

the Kingman-coalescent (Chetwynd-Diggle et al. 2022). 28

20 Baumdicker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab229/6460344 by Edinburgh U

niversity user on 06 January 2022

