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1 Abstract

2 Treatment for hormone receptor-positive/human epidermal growth factor receptor 
3 2-positive (HR+/HER2+) patients has been debated, as some tumours within this luminal 
4 HER2+ subtype behave like luminal A cancers, while others like non-luminal HER2+ breast 
5 cancers. Recent research and clinical trials have revealed a combination of hormone and 
6 targeted anti-HER2 approaches without chemotherapy provides long-term disease control 
7 for at least some HR+/HER2+ patients. Novel anti-HER2 therapies, including neratinib and 
8 ado-trastuzumab emtansine, and new agents that are effective in HR+ cancers, including the 
9 next generation of oral selective oestrogen receptor downregulators/degraders (SERDS) and 

10 CDK4/6 inhibitors such as palbociclib, are now being evaluated in combination. This review 
11 discusses current trials and results from previous studies that will provide the basis for 
12 current recommendations on how to treat newly diagnosed patients with HR+/HER2+ 
13 disease.

14 Lay abstract

15 About 10% of all breast cancer tumours are both hormone receptor (HR) and human 
16 epidermal growth factor receptor 2 (HER2) positive. It is clear that some patients with this 
17 type of breast cancer will require only hormone therapy (HT) aimed at HRs and others will 
18 require a combination of HT and drugs targeted at HER2. This review discusses current 
19 clinical trials and results from previous studies of patients with HR+/HER2+ disease. 

20 Keywords

21 Breast Cancer, Hormone receptor, HER2-positive, HR+/HER2+, Triple positive breast 
22 cancer, luminal HER2, Clinical trials, Combination treatment, Emerging therapeutics

23 1. Introduction

24 Breast cancer is the most common cancer in women worldwide, with over 2 million 
25 new diagnoses in 2018 alone [1]. Patients with breast cancer are stratified and treated 
26 based on the expression status of certain receptors in their tumour. Identification of the 
27 oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 
28 receptor 2 (HER2) enabled the first stratification according to tumour biology. These 
29 receptors have proved to be important prognostic and predictive biomarkers in women with 
30 breast cancer. To determine the presence and amount of ER, PR and HER2 protein 
31 expressed, immunohistochemistry (IHC) is used and a pathologist assigns a score for each. 
32 For ER and PR, the percentage and intensity of staining is measured. These can be combined 
33 to create what is known as a histoscore or an Allred score; the latter score is 0 when 
34 negative and between 2 and 8 if positive [2]. These receptors are often classified as overall 
35 positive (+) or negative (-) despite there being wide variations in the level of positivity in 
36 both ER and PR. HER2 status is assessed according to the intensity of staining as 0, 1+, 2+ or 
37 3+. HER2 tumours with scores of 0 and 1+ are considered HER2-negative, 2+ tumours are 
38 deemed equivocal and require further testing to determine positive/negative status, while 
39 3+ is considered HER2-positive. A variety of in situ hybridisation tests, including fluorescence 
40 in-situ hybridisation (FISH), are used in 2+ HER2 cancers to assess whether there is 
41 amplification of the HER2 gene and if so, these cancers are also classified as HER2-positive.
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42 Hormone receptor-positive (HR+) breast cancers are those that express ER, PR or 
43 both. These tumours account for 70-80% of all breast cancers [3]. These hormone-
44 dependent cancers can often be treated successfully with a variety of drugs that modulate 
45 the oestrogen receptor or reduce oestrogen. HER2+ breast cancers tend to be associated 
46 with a worse prognosis than HER2- breast cancers [4], although the emergence of targeted 
47 HER2 therapies such as trastuzumab and pertuzumab has improved outcomes for HER2+ 
48 disease [5,6]. There remains a group of women who recur despite these anti-HER2 therapies 
49 and whose outlook remains poor. 

50 Among the most significant discoveries in breast cancer has been the identification 
51 of breast cancer subtypes with distinct biological characteristics that translate into 
52 differences in prognosis and response to treatments [7]. The subtypes are Luminal A, 
53 Luminal B, HER2-enriched, Basal-like and Normal-like. The presence or absence of ER, PR 
54 and HER2 largely align with these five molecular subtypes as shown in Figure 1. Stratification 
55 of breast cancers into these subgroups has been the focus of much research in recent years 
56 in the hopes of allowing each patient to be treated with therapy optimal to their specific 
57 cancer subtype. Several multigene predictive and prognostic signatures are now available 
58 commercially to aid treatment decisions, with Prosigna’s Breast Cancer Prognostic Gene 
59 Signature Assay (previously known as the PAM50 test) designed specifically based on the 
60 intrinsic subtypes [8]. Studies evaluating this are underway. 

61 The aim of this review is to explore the subgroup of patients that have cancers that 
62 are both HR and HER2 positive. Known as the luminal HER2 subgroup, cancers that are both 
63 HR+ and HER2+ have a complex interaction between the endocrine and HER2 pathways 
64 linked to these receptors. Traditionally, there are three main treatment options for this 
65 subgroup of breast tumours: (i) hormone therapy alone, (ii) targeted anti-HER2 therapy and 
66 chemotherapy combined with later hormone therapy, or (iii) primary hormone therapy 
67 followed later by targeted anti-HER2 therapy and chemotherapy. This review will focus on 
68 tumour biology and hormone, anti-HER2 and combination therapies currently available for 
69 the luminal HER2 subgroup. Recently completed clinical trials and those currently underway 
70 will be summarised.

71 2. Hormone and targeted therapies for invasive breast cancer
72 2.1. Hormone therapy 

73 HR+ breast cancer is treated with hormone therapy, also known as endocrine 
74 therapy or anti-oestrogen therapy. The view of HR+ cancers is that they are dependent on 
75 oestrogen for their growth and survival, so targeting this hormone, its signalling and its 
76 downstream effects is an important therapeutic strategy. In premenopausal women, the 
77 main source of oestrogen is the ovaries. Therapeutic strategies include (i) stopping 
78 oestrogen production by ovarian ablation (surgically removing them via oophorectomy) or 
79 temporarily suppressing ovarian function with gonadotropin releasing hormone (GnRH) 
80 agonists (which will initiate menopause), or (ii) blocking the effect of oestrogen on the 
81 cancer with drugs that target the oestrogen receptor. Studies have shown that between 5 
82 and 10 years of hormone therapy in HR+ breast cancers significantly improves survival. In 
83 premenopausal women, hormone therapy options are tamoxifen alone or an LHRH 
84 analogue combined with tamoxifen or an aromatase inhibitor. Tamoxifen is a selective 
85 oestrogen receptor modulator (SERM) that is a partial ER agonist, blocking the activation of 
86 oestrogen receptor by oestrogen in the breast but acting as an agonist on the ER of the 
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87 endometrium and the skeleton. Tamoxifen was first given to women with breast cancer in 
88 the early 1970s [9] and it has saved countless lives. Recent studies in premenopausal 
89 women show that compared with tamoxifen alone, a combination of LHRH or 
90 oophorectomy and tamoxifen or aromatase inhibitors produces an even greater 
91 improvement in survival, although this comes with a greater incidence of adverse events.  

92 In postmenopausal women, most of the body’s oestrogen is synthesised peripherally 
93 in the liver, fat and locally in the breast from androgen precursors released from the adrenal 
94 gland through a reaction catalysed by the enzyme aromatase. An aromatase inhibitor (AI) 
95 given to postmenopausal women thus stops the production of oestrogen. AIs currently 
96 available include the non-steroidal letrozole and anastrozole and the steroidal exemestane. 
97 Tamoxifen together with selective oestrogen receptor downregulators or degraders 
98 (SERDs), such as the ER antagonist fulvestrant are other alternative therapies in ER+ breast 
99 cancers.  SERDS induce a conformational change in ER that prevents the binding of 

100 oestrogen and leads to degradation of the receptor. Fulvestrant, an injectable SERD, is 
101 currently the only SERD available and is most often used to treat recurrent or metastatic 
102 ER+/HER2- breast cancer in postmenopausal women who have recurred on prior endocrine 
103 therapy. New oral SERDS are currently being developed and tested [10–12]. 

104 2.2. HER2-targeted therapy

105 The emergence of anti-HER2 therapies has led to significant improvements in the 
106 prognosis and outcome for patients with HER2+ breast cancers. Trastuzumab, a 
107 recombinant humanised monoclonal antibody, targets an extracellular domain of HER2, 
108 preventing its dimerisation with other HER receptors to halt cancer growth [13,14]. 
109 Pertuzumab, another monoclonal antibody, acts on a different extracellular domain of HER2 
110 and halts dimerisation particularly of HER2 with HER3, the most growth-promoting 
111 dimerisation of the HER family of receptors [15]. Combinations of trastuzumab and 
112 pertuzumab with chemotherapy are more effective that either drug alone with 
113 chemotherapy. Lapatinib is a dual tyrosine kinase inhibitor of both HER2 and HER1 (EGFR) 
114 that was approved by the United States Food and Drug Administration (FDA) for use in 
115 combination with the chemotherapy drug capecitabine in 2007 [16]. Lapatinib can also be 
116 given together with trastuzumab [17] and this combination provides a more complete 
117 blockade of HER signalling than either alone [18]. Neratinib, a tyrosine kinase inhibitor, is a 
118 pan-HER inhibitor, licensed and currently recommended by the UK’s National Institute for 
119 Health and Care Excellence (NICE) in the technology appraisal guidance TA612 for use as 
120 extended adjuvant treatment following trastuzumab in patients with ER+/HER2+ breast 
121 cancer [19]. Trastuzumab emtansine (T-DM1), also known as ado-trastuzumab emtansine, is 
122 an antibody-drug conjugate in which trastuzumab is linked to the cytotoxic agent DM1 [20]. 
123 This was approved by the U.S. FDA in 2013 for the treatment of HER2+ metastatic breast 
124 cancer and in 2019 for patients with HER2+ early breast cancer who have residual disease 
125 following neoadjuvant trastuzumab and a taxane. In the UK, T-DM1 is recommended for the 
126 treatment of HER2+ advanced breast cancer following treatment with trastuzumab and a 
127 taxane [21]. Trastuzumab deruxtecan is an antibody drug combination comprising 
128 trastuzumab and a cytotoxic topoisomerase I inhibitor and has broader anti-tumour activity 
129 than T-DM1, including efficacy against low HER2-expressing tumours [22]. There is a series 
130 of other anti-HER2 drugs in development and in early clinical trials. 

131 2.3. Other targeted therapies for invasive breast cancer
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132 The emergence of CDK4/6 inhibitors in recent years has provided another treatment 
133 option [23]. These inhibitors induce cell cycle arrest, thereby stopping proliferation [24] and 
134 all three drugs currently available (palbociclib, ribociclib and abemaciclib) have been 
135 combined with endocrine therapy to treat HR+/HER2- advanced breast cancer [25]. Not as 
136 much is known about the utility of CDK inhibitors in HR+/HER2+ disease, although trials of 
137 CDK inhibitors in combination with endocrine therapies and anti-HER2 therapies are 
138 currently underway (Table 1). Targeted therapies currently available for the treatment of 
139 HR+ and/or HER2+ breast cancer, as single agents or in combination, are listed in Table 2. 

140 3. Complications treating HR+/HER2+ breast cancer

141 3.1. Worse prognosis for HR+/HER2+ subgroup

142 The subgroup of HR+ breast cancers that also express HER2 has been shown to have 
143 a significantly worse prognosis compared to other HR+ breast tumours [26]. These 
144 HR+/HER2+ tumours account for about 10% of all breast cancers, or about half of all HER2+ 
145 tumours [27,28]. HR status in HER2+ tumours aligns with differences in response to 
146 neoadjuvant treatment, location, type of metastases and survival [29,30]. 

147 Since the approval of trastuzumab (Herceptin), patients with HER2+ breast cancer 
148 (including those that overexpress both ER (and/or PR) and HER2) have been treated with 
149 chemotherapy and anti-HER2 therapy [5]; however, recent data has suggested there may be 
150 other options. Combining hormone therapy with an anti-HER2 agent has proven beneficial 
151 to some specific patients [31,32], particularly those presenting with tumours that are HER2+ 
152 and have high ER expression. These patients have a reduced response to trastuzumab plus 
153 chemotherapy [33] but many are endocrine-sensitive, so combining trastuzumab and 
154 endocrine therapy produces a high response rate and is an attractive option. However, not 
155 all HR+/HER2+ tumours respond is the same manner. Identification of which patients 
156 require single, sequential or combination treatments is an urgent need.  

157 3.2.   Treatment resistance, tumour biology and HR/HER2 crosstalk 

158 Treating luminal HER2 breast cancer is complex; there is not one treatment or 
159 combination of treatments that is suited to all patients with this subtype. Identifying what is 
160 biologically driving the cancer can help (i.e. oestrogen or HER signalling and their 
161 downstream effects), although pathway interaction and crosstalk can cause the cancer to 
162 change course throughout treatment (Figure 2). HR+/HER2+ tumours often respond initially 
163 to hormone therapy and/or HER2-targeted therapy but develop resistance over time [34]. 
164 One reason may be the known crosstalk between the ER and HER2 signalling pathways and 
165 the involvement of other downstream pathways, such as PI3K and MAPK [35–39]. A study of 
166 HER2+ cell lines showed an increase in ER or its downstream signalling targets following 
167 treatment with lapatinib and trastuzumab, indicating ER signalling as a survival mechanism 
168 for HER2+ cells [18]. Upregulation of ER signalling is also evident in HER2+ tumours treated 
169 with trastuzumab, pertuzumab and lapatinib. In one study, 18% of HER2+ tumours that 
170 were originally ER- were converted to ER+ following two weeks of neoadjuvant lapatinib, 
171 providing further evidence of the interconnectedness of the ER and HER pathways [40]. 
172 Another study revealed primary resistance to T-DM1 in metastatic HER2+ breast cancer was 
173 linked to there being negative HER2 gene amplification in circulating tumour DNA and ER-
174 positivity and/or PR-positivity by IHC [41]. Investigations into ER and HER pathway 
175 interactions are ongoing and include a study of Positron Emission Tomography with 18F-
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176 fluoroestradiol (FES-PET) imaging as a tool to detect possible reversion of ER status in 
177 patients with metastatic ER-/HER2+ breast cancer treated with trastuzumab, pertuzumab 
178 and a taxane (Clinical Trial NCT03619044). 

179 The mechanisms by which ER+/HER2+ tumours become resistant to their original 
180 therapy remains unclear. The development of acquired resistance is complex and likely due 
181 to multiple factors rather than just one. In addition to ER and HER2 pathway crosstalk, 
182 resistance could also be caused by a loss or gain of ER overexpression resulting in reduced 
183 efficacy of hormone therapy, existing or acquired mutations in the ER gene ESR1 [42], 
184 reactivation of HER2 [43] or acquired HER2 mutations [44,45]. ER epigenetic changes have 
185 also been described [46]. We are now advancing to the point where the tumour’s endocrine 
186 resistance profile should be assessed. For instance the timing (and measurement) of 
187 acquired ESR1 mutations in resistant cancers may be critical to dictate future endocrine 
188 therapy [47,48]. Allouchery et al identified ESR1 mutations at first relapse and at 
189 progression on metastatic treatment, but these mutations were not present early during 
190 adjuvant therapy [49]. It is also clear that a primary tumour and its recurrence(s) can differ 
191 in hormone receptor positivity and temporal heterogeneity likely plays a role in treatment 
192 resistance [45]. Assessment of ER, PR and HER2 in every breast cancer metastasis will help 
193 improve selection of the most appropriate treatment.   

194 Other potential targets that are involved in ER/HER crosstalk have also been 
195 implicated recently. The enzyme fatty acid synthase (FASN) is known to be involved in 
196 ER/HER2 crosstalk by way of the PI3K/AKT pathway. It was successfully inhibited by the 
197 mTOR inhibitor rapamycin in ER+/HER2+ breast cancer cells and a combination of rapamycin 
198 with the FASN inhibitor cerulenin induced apoptosis and inhibited cell migration and 
199 tumorigenesis in ER+/HER2+ cells, suggesting FASN as a potentially new therapeutic target 
200 [50]. The tyrosine kinase receptor IGF1R is also involved in ER/HER2 pathway crosstalk and 
201 may also be a useful biomarker in ER+/HER2+ cancers. High expression of IGF1R is 
202 associated with shorter disease-free survival in patients in this subgroup and inhibition of 
203 both IGF1R and ER in breast cancer cell lines causes growth inhibition [51]. The addition of 
204 trastuzumab inhibited growth further, suggesting this combined targeting of pathways could 
205 be a successful approach for ER+/HER2+/IGF1R+ cancers. Other novel ideas to eliminate 
206 ER/HER pathway crosstalk and successfully block multiple pathways include the use of 
207 proteasome inhibitors [52] that have been successful in treating other types of cancer 
208 including multiple myeloma, together with standard endocrine treatments. Targeting the 
209 PI3 kinase pathways using PI3K inhibitors [53] such as alpelisib, approved by the U.S. FDA in 
210 2019, combined with fulvestrant is one alternative. Finally, there are new anti-HER2 
211 dendritic cell vaccines on the horizon [54].  

212 As more research emerges regarding signalling pathway crosstalk [55] in triple 
213 positive breast cancer and how this is related to resistance to therapies [56], it is clear that 
214 for some women both ER and HER2 need to be targeted. This can be sequentially or with 
215 combined therapy, but for some a single treatment may suffice. It is critical that we are able 
216 to predict which patients require which treatment as more targeted endocrine and HER2 
217 therapies are being developed and being trialled in combination studies.  

218 4. Treating HR+/HER2+ breast cancer: What we’ve learned so far

219 4.1. Standard-of-care for HR+/HER2+ tumours
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220 Historically, ER+/HER2+ breast cancer was treated with endocrine therapy combined 
221 in some patients with chemotherapy. Following the development of trastuzumab 
222 (Herceptin) in the 1990s [57], this group is now typically given chemotherapy and 
223 trastuzumab followed by endocrine therapy to reduce the risk of recurrence. Some patients 
224 with low risk HR+/HER2+ breast cancers are treated with adjuvant hormone therapy alone. 
225 However, in most cases adjuvant chemotherapy is given in combination with trastuzumab 
226 followed by endocrine therapy [58]. Clinicians take into account all factors including tumour 
227 size and node status to avoid overtreatment, as some small node-negative tumours do well 
228 with adjuvant endocrine therapy followed by trastuzumab and chemotherapy if they recur 
229 [59]. Remarkably, a recent study investigating the treatment of HR+/HER2+ metastatic 
230 breast cancer revealed that only 42% of the 6,234 patients ever received anti-HER2 therapy, 
231 despite previous studies showing survival benefits for patients treated with both hormone 
232 and anti-HER2 therapies [60]. Emerging novel drugs and combinations are being 
233 investigated in clinical trials so eventually clear treatment strategies for patients with 
234 HR+/HER2+ breast cancers should become available.

235 It has been suggested that HR+/HER2+ tumours should be treated as a distinct 
236 molecular subtype of breast cancer. It should also be defined further based on other 
237 characteristics to ensure that patients with these cancers receive appropriate treatment 
238 whilst also avoiding overtreating. Some tumours, particularly early-stage or smaller ones, 
239 may be driven primarily by hormone receptor(s) and thus may not need HER2-targeted 
240 treatment [61]. A recent study of patients with triple-positive breast cancer in Korea 
241 showed that treatment with trastuzumab did not improve overall survival and that many of 
242 these tumours behave clinically more like luminal A than HER2-enriched cancers [62]. 

243 4.2. HR+/HER2+ metastatic breast cancer

244 A number of previous clinical trials, summarised in Table 3, have been instrumental 
245 in identifying new combination treatments for patients with HR+/HER2+ tumours. The 
246 TAnDEM, EGF30008 and eLEcTRA phase III trials, all treating postmenopausal patients with 
247 metastatic breast cancer, showed positive outcomes for the combination of an aromatase 
248 inhibitor and trastuzumab or lapatinib. This included a progression-free survival (PFS) 
249 benefit and, in 15% of TAnDEM patients, no disease progression for two years. However, 
250 there was no overall survival (OS) benefit from the combined treatment [63–65]. 

251 One of the problems with studying HER2+ breast cancer is the variation in scoring 
252 across centres. Discrepancies in testing methods and reproducibility of results have been 
253 and remain a challenge [66,67]. Identifying which tumours are truly HER2 amplified, with 
254 HER2 overexpressed, is critical to both retrospective survival studies and to the current 
255 treatment issues for this subgroup of breast cancer. A retrospective analysis of metastatic 
256 breast cancers showed some tumours that were deemed HER2-negative but were enriched 
257 for HER2 could benefit from combined lapatinib and letrozole treatment [68]. Additionally, 
258 changes to the American Society of Clinical Oncology (ASCO) treatment guidelines in 2018 
259 reclassified some HER2+ tumours. Patients with cancers that were deemed equivocal in 
260 assessment by IHC and FISH were reclassified as HER2-negative as there has not been any 
261 proven benefit from HER2-targeted therapy in these individuals [69].

262 A combined hormone and anti-HER2 therapy approach clearly benefits some 
263 patients, but the challenge lies in accurately identifying the subpopulation of patients likely 
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264 to gain additional benefit from a combined treatment strategy. The addition of pertuzumab 
265 improved overall survival in HER2+ patients in the CLEOPATRA study. The combination of 
266 trastuzumab, pertuzumab and docetaxel compared to just trastuzumab and docetaxel 
267 increased both PFS and OS in patients with HER2+ metastatic breast cancer. However, no 
268 significant difference in response was related to hormone receptor status [70]. NICE now 
269 recommends the combination of trastuzumab, pertuzumab and chemotherapy for 
270 treatment of metastatic HER2+ breast cancer [71] and also suggests the same strategy as an 
271 option in the neoadjuvant setting [72]. 

272 4.3. Neoadjuvant management of HR+/HER2+ breast cancer

273 The best approach to managing HR+/HER2+ breast cancer in the neoadjuvant setting 
274 has been the subject of debate. Chemotherapy has been shown to be much more beneficial 
275 in ER- disease; however, some women, particularly those of advanced age, struggle with 
276 toxic side effects [73,74]. The timing of chemotherapeutic or targeted, sequential or 
277 combined treatments is also being questioned for this group, with new evidence suggesting 
278 reducing or postponing the use of chemotherapy in favour of using targeted therapies, such 
279 as letrozole or trastuzumab [75]. Targeted treatment of breast cancer in the neoadjuvant 
280 setting has been useful, particularly for women with advanced age who may not tolerate 
281 chemotherapy well. Studies have shown neoadjuvant letrozole can shrink tumour size and 
282 induce gene expression changes in HR+ breast cancers [76,77] and that the addition of 
283 trastuzumab to neoadjuvant chemotherapy can increase the pathologic complete response 
284 (pCR) in HER2+ tumours [78]. 

285 Changes in current recommendations for chemotherapy in the neoadjuvant setting 
286 could be near, as new combination regimens have shown promising results. In the 
287 neoadjuvant phase II trial NA-PHER2 that combined palbociclib, fulvestrant and two anti-
288 HER2 drugs (trastuzumab and pertuzumab), an objective clinical response was seen in 29/30 
289 patients, as well as a decrease in proliferation (assessed by Ki67 expression) following two 
290 weeks of treatment prior to surgery [79]. Neoadjuvant palbociclib and letrozole produces 
291 effective clinical responses and decreases expression of the genes IL6ST and RBBP8, which 
292 have been associated with proliferation, in postmenopausal ER+/HER2- patients [80]. 
293 Biomarkers of response to neoadjuvant treatment are also emerging for ER+/HER2+ 
294 tumours, including a gene expression signature of retinoblastoma loss-of-function that has 
295 the potential to identify patients who would benefit from neoadjuvant chemotherapy [81]. 
296 Other predictive markers of poor response to neoadjuvant chemotherapy and HER2-
297 targeted therapy in ER+/HER2+ patients are increased expression of stromal colXα1 and low 
298 levels of tumour-infiltrating lymphocytes [82]. Further research is still needed to identify 
299 which tumours within the complex HR+/HER2+ subgroup of breast cancers might benefit 
300 from specific single-agent and combined treatments in the neoadjuvant settings. 

301 5. Where we are now: current trials and emerging therapeutic strategies

302 5.1. Metastatic and locally advanced HR+/HER2+ breast cancer

303 It is clear now that HR+/HER2- and HR+/HER2+ breast cancers have different 
304 biological characteristics, mechanisms of growth and response to treatment. Even within 
305 these groups of breast cancer there are inherent differences, with some HR+/HER2+ 
306 tumours behaving more like the luminal A subtype (i.e., ER-driven cancer) and others 
307 requiring a multipronged targeted blockade of the ER, PR and HER pathways. An improved 
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308 outcome from combination treatment with anti-HER2 therapy (trastuzumab or lapatinib) 
309 and an AI is evident for some, but not all, HR+/HER2+ patients (TAnDEM, EGF3008, eLEcTRA 
310 trials). Drugs like pertuzumab have improved response for some in this subgroup but its 
311 addition is costly and may cause more adverse events (PERTAIN trial of metastatic or locally 
312 advanced HR+/HER2+ breast cancer) [83]. 

313 Fulvestrant has also proven useful in the treatment of ER+/HER2+ patients with 
314 multiple metastases who have received prior anti-HER2 therapy in combination with 
315 chemotherapy or an AI [84]. A clinical trial (NCT03289039) is currently investigating the 
316 combination treatment of neratinib and fulvestrant in ER+/HER2+ metastatic or locally 
317 advanced breast cancer [85] (Table 1). So far, 46 patients with HR+/HER2-mutant metastatic 
318 breast cancer have been treated with neratinib and fulvestrant. This combination shows 
319 positive results in patients who have been treated previously with various agents; in 
320 particular, patients who had previously received fulvestrant or CDK4/6 inhibitors responded 
321 well to the combined regimen. The rate of diarrhoea was similar to that of single-agent 
322 neratinib and was not dose-limiting and no patients discontinued treatment because of it 
323 [86].

324 Fulvestrant and palbociclib also show great promise when combined and both are 
325 now being tested in combination with anti-HER2 therapies in the metastatic setting (Table 
326 1). Palbociclib has previously been tested in patients with ER+/HER2- advanced breast 
327 cancer who progressed on endocrine therapy and, together with fulvestrant, has been 
328 shown to increase PFS compared to fulvestrant alone (PALOMA3 trial) [87]. Further analysis 
329 of circulating tumour DNA from PALOMA3 trial participants revealed acquired mutations in 
330 RB1, ESR1 and PI3KCA associated with resistance following treatment with fulvestrant [88]. 
331 Combining palbociclib with endocrine therapies other than fulvestrant may avoid these 
332 acquired mutations. A trial designed to determine the recommended dose of palbociclib in 
333 combination with letrozole and T-DM1 in patients with ER+/HER2+ metastatic breast cancer 
334 is currently recruiting patients (Clinical Trial NCT03709082) [89]. 

335 Additional CDK4/6 inhibitors including ribociclib and abemaciclib are also being 
336 tested in current clinical trials of HR+/HER2+ patients (Table 1). Particularly noteworthy is 
337 the treatment of advanced HR+/HER2+ breast cancer with abemaciclib, fulvestrant and 
338 trastuzumab in the monarcHER phase 2 trial. This combination treatment not only proved 
339 tolerable and safe but also improved PFS compared to standard-of-care trastuzumab plus 
340 chemotherapy [90]. Another recent study evaluating a triplet combination is the 
341 ALTERNATIVE phase 3 trial. This study too showed a PFS benefit from treating with a dual 
342 HER2 blockade of lapatinib and trastuzumab plus an aromatase inhibitor in the treatment of 
343 postmenopausal women with HR+/HER2+ metastatic breast cancer [91]. These triplet 
344 combinations of therapies could truly change the way HR+/HER2+ breast cancer is treated 
345 as they eliminate the need for chemotherapy and its often toxic side effects.     

346 5.2. Neoadjuvant management of HR+/HER2+ breast cancer

347 In the neoadjuvant setting, it is unclear whether a combined anti-oestrogen and anti-
348 HER2 approach offers any significant improvement to current practice. While some patients 
349 do have a positive clinical response to neoadjuvant treatment with letrozole and lapatinib 
350 (Neo-ALL-IN), a decrease in the ER Allred score after neoadjuvant treatment was linked to 
351 poor outcome [92]. In addition, depriving oestrogen with a LHRH agonist or with an AI 

Page 19 of 40

https://mc04.manuscriptcentral.com/fm-fon

Future Oncology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

9

352 combined with neoadjuvant docetaxel, carboplatin, trastuzumab and pertuzumab did not 
353 statistically improve response (B-52 trial) [93] (Table 3). 

354 5.3. Adjuvant management of HR+/HER2+ breast cancer

355 One of the most promising drugs for the treatment of HR+/HER2+ breast cancers is 
356 the pan-HER tyrosine kinase inhibitor neratinib. Results from the ExteNET trial showed one 
357 year of extended adjuvant neratinib following neoadjuvant and adjuvant chemotherapy and 
358 trastuzumab significantly reduced the risk of relapse in early-stage HER2+ breast cancer. 
359 Interestingly, a greater benefit from neratinib was seen in HR+/HER2+ patients compared to 
360 HR- patients [94]. Many of the HR+ patients were also receiving endocrine therapy, 
361 suggesting that supressing both pathways was required to improve invasive disease-free 
362 survival. The U.S. FDA approved neratinib (Nerlynx) for extended adjuvant treatment of 
363 early-stage, HER2+ breast cancer in 2017 and in the UK NICE now recommends neratinib for 
364 extended adjuvant treatment of HR+/HER2+ early stage breast cancer after adjuvant 
365 trastuzumab [19]. In a xenograft study, extended adjuvant therapy with neratinib plus 
366 fulvestrant maintained a prolonged complete response and blocked ER/HER2 crosstalk 
367 [95,96]. 

368 6.    The need for a better understanding of the diverse biology of HR+/HER2+ and 
369 associated biomarkers 

370 As shown by the evidence and studies summarised here, selection of the most 
371 appropriate treatment strategy for the management of a patient that has a breast tumour 
372 that is both HR+ and HER2+ poses a conundrum. The crux lies in the difficulty of determining 
373 which receptors and their associated pathways are driving the tumour cells and what is the 
374 interaction and crosstalk between them. A better understanding of the molecular diversity 
375 within the subgroup of HR+/HER2+ breast cancer is essential before we can improve its 
376 management.

377 There is now a need for biomarkers to predict response and recurrence. In the Neo-
378 ALL-IN trial of patients with ER+/HER2+ breast cancer, a number of predictors were 
379 identified. These included a decrease in the ER Allred score after neoadjuvant treatment, an 
380 SUVmax (a measure of activity in PET imaging linked to cell viability and proliferation) lower 
381 than 5.5 on the baseline FES PET-CT and high baseline tumour-infiltrating lymphocytes of 
382 over 20% [92]. These may be useful as biomarkers of response for future patients. Trefoil 
383 factor 3 (TFF3) is another potential biomarker for resistance to trastuzumab, as its 
384 expression is upregulated in trastuzumab-resistant ER+/HER2+ breast cancer cells and it has 
385 been shown to activate HER family receptors [97]. 

386 IL6ST, a surrogate for endocrine therapy response [56], may also be a useful 
387 biomarker for ER+/HER2+ breast cancer. In a study presented at the 2019 San Antonio 
388 Breast Cancer Symposium, higher levels of IL6ST were associated with active ER signalling 
389 and predicted clinical response to neoadjuvant letrozole in ER+/HER2+ tumours [98]. 
390 Importantly, lower levels of IL6ST were associated with a lack of response to endocrine 
391 therapy and more active HER2 signalling. This supports the notion of a diverse underlying 
392 biology within the ER+/HER2+ population, with two subgroups with distinct gene expression 
393 profiles. These subgroups may be linked to differences in endocrine therapy responsiveness 
394 and, importantly, might be easily stratified. IL6ST could potentially select ER+/HER2+ 
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395 patients who need both endocrine and HER2-targeted therapy and others who should 
396 receive endocrine therapy alone. Further work is needed both in the laboratory and within 
397 clinical trials to better characterise those potential predictive signatures within the 
398 ER+/HER2+ subgroup. ER+/HER2+ patient-derived xenografts (PDXs) have recently been 
399 characterised and could provide a useful preclinical testing ground for new drugs and 
400 combinations. Interestingly, the take rate in culture was higher for ER+/HER2+ tumours 
401 compared to ER+/HER2- PDXs, possibly indicating a greater drive for survival [99]. 

402 7.    Conclusion

403 In summary, the HR+/HER2+ breast cancer subtype consists of a range of cancers 
404 with varying interaction between ER and HER2 receptors and pathways. Some HR+/HER2+ 
405 tumours behave more like the luminal A subtype and others are more like non-luminal 
406 HER2+ disease. The latter will likely require more intensive treatment and appears to 
407 respond better to combinations of endocrine and anti-HER2 targeted therapies. The time of 
408 giving the same treatments for all ER+/HER2+ cancers is over.

409 More research into the use of drugs including neratinib, T-DM1, fulvestrant, novel 
410 oral SERDS, and CDK4/6 inhibitors alone or in combination with each other or with more 
411 traditional therapies is required. Such research will hopefully provide information on the 
412 best treatment approaches for individual patients and their cancers, as it is clear not all 
413 HR+/HER2+ cancers behave the same. Results from these studies must be combined with 
414 research to characterise the complex underlying biology of HR+/HER2+ disease, in particular 
415 the intricate interactions of the ER and HER2 pathways. It is imperative that biomarkers of 
416 response, disease progression and resistance are identified in order to fully understand how 
417 the disease progresses and be able to stratify patients for first, second and third-line 
418 treatment if necessary. Additional markers linked to molecular diversity will also be required 
419 to help determine how best to treat individual patients with this breast cancer subtype. To 
420 provide a truly individualised medicine there needs to be better characterisation of each 
421 individual cancer both at diagnosis and recurrence. Markers including IL6ST will provide the 
422 advances needed to achieve this goal. 

423

424 Future perspective 

425 As HR+/HER2+ breast cancer continues to be characterised as its own subgroup of 
426 breast cancer of which there are at least two divisions (those which more closely resemble 
427 luminal A cancers and others more similar to non-luminal HER2+ tumours), we are hopeful 
428 that treatment for this subtype will become more personalised over the next 5-10 years 
429 based on the outcome of recent and currently-ongoing trials. Some patients will require 
430 combined treatment targeting both ER and HER2 signalling and others will need only 
431 endocrine treatment. We can only get better at predicting this. Prognostic and predictive 
432 biomarkers such as IL6ST will help stratify HR+/HER2+ tumours and identify which 
433 treatment plan is best for each patient. We expect additional biomarkers and molecular 
434 signatures for this subgroup to be identified soon, as well as better laboratory research 
435 models developed and new breast cancer treatments and combinations of therapies 
436 approved. Collectively, this will improve personalised care and outcome for this set of 
437 patients.          
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438 Executive summary

439 Hormone and targeted therapies for invasive breast cancer

440 � Here we review hormone, HER2-targeted and other breast cancer treatments 
441 currently available.

442 Hormone therapy 

443 � Hormone receptor positive (HR+) cancers are dependent on oestrogen for 
444 their growth and survival, so targeting this hormone, its signalling and its 
445 downstream effects with hormone therapy is an important therapeutic 
446 strategy.
447 � Tamoxifen, aromatase inhibitors and fulvestrant are hormone (also known as 
448 endocrine or anti-oestrogen) therapies currently available for the treatment 
449 of HR+ disease.  

450 HER2-targeted therapy

451 � HER2-targeted therapies have significantly improved the prognosis and 
452 outcome for patients with HER2+ breast cancer.
453 � Monoclonal antibodies trastuzumab and pertuzumab, tyrosine kinase 
454 inhibitors lapatinib and neratinib and antibody-drug conjugates trastuzumab 
455 emtansine (T-DM1) and trastuzumab deruxtecan are HER2-targeted 
456 therapies currently available. 

457 Other targeted therapies for invasive breast cancer

458 � CDK4/6 inhibitors induce cell cycle arrest, thereby stopping proliferation.
459 � Palbociclib, ribociclib and abemaciclib are CDK4/6 inhibitors currently 
460 available for the treatment of HR+/HER2- breast cancer; not as much is 
461 known about the utility of CDK inhibitors in HR+/HER2+ disease.

462 Complications of the HR+/HER2+ subgroup

463 � HR+/HER2+ tumours account for about 10% of all breast cancers, or about half of all 
464 HER2+ tumours and have been shown to have a significantly worse prognosis 
465 compared to other HR+ breast tumours.
466 � Combining hormone therapy with an anti-HER2 agent has proven beneficial to some 
467 but not all HR+/HER2+ patients. 

468 Treating HR+/HER2+ breast cancer: What we’ve learned so far 

469 � Here we outline how patients with HR+/HER2+ tumours have been treated 
470 historically and that these tumours should be treated as a distinct molecular subtype 
471 of breast cancer. 
472 � Previous clinical trials evaluating combined hormone and HER2-targeted therapies in 
473 the neoadjuvant and adjuvant setting are discussed.  

474 Where we are now: current trials and emerging therapeutic strategies
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475 � Some HR+/HER2+ tumours behave more like the luminal A subtype (i.e., ER-driven 
476 cancer) and others require a multipronged targeted blockade of the ER, PR and HER 
477 pathways.
478 � Clinical trials with HR+/HER2+ patients currently underway are discussed; neratinib, 
479 fulvestrant, palbociclib and T-DM1 show great promise alone and in various 
480 combinations. 

481 Treatment resistance and HR/HER2 crosstalk

482 � HR+/HER2+ tumours often respond initially to hormone therapy and/or HER2-
483 targeted therapy but develop resistance over time.
484 � The reason why some HR+/HER2+ cancers fail to respond to combined therapy or 
485 become resistant to it remains unclear but evidence of ER and HER pathway 
486 crosstalk, mutations in ESR1 and HER2, lower HER2 FISH ratio and activation of other 
487 downstream pathways are likely to play a role.  

488 The need for a better understanding of the diverse biology of HR+/HER2+ and associated 
489 biomarkers

490 � Further investigation into the biology of HR+/HER2+ breast cancer is necessary in 
491 order to have a clearer picture of how these tumours operate. 
492 � Validated prognostic and predictive biomarkers are required to identify the patients 
493 who will need combined endocrine/HER2 therapy and those who will need only 
494 endocrine treatment.

495

496
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1 Table 1 Current clinical trials treating HR+/HER2+ breast cancer. (Oestrogen receptor, ER; Hormone receptor, HR; Aromatase inhibitor, AI; Human 
2 epidermal growth factor receptor, HER; ado-trastuzumab emtansine, T-DM1; Epidermal growth factor receptor, EGFR).

Trial Phase Recruitment Cohort size Menopausal 
status Cancer stage Breast 

cancer type Treatment group (s)

AI in combination 
with lapatinib, 
trastuzumab or 

both 
(ALTERNATIVE) 

(Clinical Trial 
NCT01160211)

III 2011-2020 355 Post Metastatic
HR+/HER2+ 

breast 
cancer

Lapatinib with trastuzumab and an AI v. 
trastuzumab and an AI v. lapatinib and an AI 
[100]. Recently published results show PFS 

benefit in the lapatinib with trastuzumab and 
an AI group compared to trastuzumab plus AI 

group [91]. 

Palbociclib and 
Trastuzumab With 
Endocrine Therapy 

in HER2+ Metastatic 
Breast Cancer 

(PATRICIA) (Clinical 
Trial NCT02448420)

II 2015-
ongoing

232 
(estimated 
enrolment)

Both
Locally 

Advanced or 
Metastatic

HR+/HER2+ 
breast 
cancer

Palbociclib, trastuzumab and endocrine 
therapy v. T-DM1 or chemotherapy in 

combination with trastuzumab (physician’s 
choice) who previously received at least 1 

anti-HER2 regimen [101].

Ribociclib (Lee011) 
In Combination 

With Trastuzumab 
Or T-DM1 (Clinical 

Trial NCT02657343)

1b/II 2016-
ongoing 26 Both Metastatic or 

advanced

HER2+ 
breast 

cancer, some 
of which are 

also ER+

Ribociclib and T-DM1 v. ribociclib and 
trastuzumab v. ribociclib, trastuzumab and 

fulvestrant [102].

Abemaciclib 
(LY2835219) in 

HR+/HER2+ Breast 
Cancer 

(monarcHER) 
(Clinical Trial 

NCT02675231)

II 2016-
ongoing 237 Post

Locally 
Advanced or 
Metastatic

HR+/HER2+ 
breast 
cancer

Abemaciclib with trastuzumab with or 
without fulvestrant or chemotherapy [90]. 

Recently published results show abemaciclib, 
fulvestrant and trastuzumab combination 

treatment not only proved tolerable and safe 
but also improved PFS compared to 
standard-of-care trastuzumab plus 

chemotherapy [103].
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Hemay022 in 
Combination with 

Exemestane 
(Clinical Trial 

NCT03308201)

I 2017-
ongoing

48 
(estimated 
enrolment)

Post Metastatic or 
advanced

ER+/HER2+ 
breast 
cancer

EGFR inhibitor Hemay022 with exemestane 
[104].

Neratinib with 
Fulvestrant in 

HER2+/ER+ 
Metastatic Breast 

Cancer (Clinical Trial 
NCT03289039)

II 2017-
ongoing

152 
(estimated 
enrolment)

Both
Locally 

advanced 
Metastatic

ER+/HER2+ 
breast 
cancer

Neratinib with fulvestrant or neratinib alone 
[65].

Palbociclib to Treat 
Metastatic Breast 
Cancer (PATINA) 

(Clinical Trial 
NCT02947685)

III 2017-
ongoing

496 
(estimated 
enrolment)

Both Metastatic
ER+/HER2+ 

breast 
cancer

Anti-HER2 therapy 
(trastuzumab/pertuzumab) with endocrine 

therapy (letrozole, anastrozole, exemestane 
or fulvestrant) with or without palbociclib 

[105].
Palbociclib in 
ER+/HER2+ 

metastatic breast 
cancer (Clinical Trial 

NCT03709082)

I/II 2018-
ongoing

4 
(estimated 
enrolment)

Post Metastatic
ER+/HER2+ 

breast 
cancer

Palbociclib, letrozole and T-DM1 [106].

TOUCH (Clinical 
Trial NCT03644186) II 2019-

ongoing

144 
(estimated 
enrolment)

Post Early breast 
cancer

Elderly 
patients with 
HR+/HER2+ 

breast 
cancer

Neoadjuvant palbociclib with both hormonal 
therapy and anti-HER2 therapy v. treatment 

with paclitaxel and anti-HER2 therapy 
(standard of care) [107].

3

4

5
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6 Table 2 Targeted treatments available, alone or in combination, for the treatment of HR+ and/or 
7 HER2+ breast cancer. (Oestrogen receptor, ER; Hormone receptor, HR; Aromatase inhibitor, AI; 
8 Selective oestrogen receptor downregulator/degrader, SERD; Human epidermal growth factor 
9 receptor, HER; Epidermal growth factor receptor, EGFR).

Drug
Commercial 

Brand 
Name(s)

Type of drug Target For which patients

Tamoxifen

Nolvadex, 
Tamosin, 
Emblon, 
Tamofen

ER modulator ER HR+ (premenopausal)

Letrozole Femara AI Aromatase HR+ (postmenopausal)
Anastrozole Arimidex AI Aromatase HR+ (postmenopausal)
Exemestane Aromasin AI Aromatase HR+ (postmenopausal)

Fulvestrant Fasodex SERD ER

Metastatic ER+/HER2- 
(postmenopausal who have 

recurred on endocrine 
therapy)

Trastuzumab Herceptin Monoclonal 
antibody

Extracellular 
domain of 

HER2
HER2+

Pertuzumab Perjeta Monoclonal 
antibody

Extracellular 
domain of 

HER2 
(different one 

than 
trastuzumab)

HER2+

Lapatinib Tyverb, 
Tykerb

Tyrosine kinase 
inhibitor

HER1 (EGFR) & 
HER2 HER2+

Neratinib Nerlynx Tyrosine kinase 
inhibitor

HER1, HER2, 
and HER4

Extended adjuvant treatment 
following trastuzumab in 

HER2+ (including ER+/HER2+) 
patients

Trastuzumab 
emtansine

(T-DM1)
Kadcyla Antibody-drug 

conjugate HER2 HER2+ breast cancer that has 
recurred

Trastuzumab 
deruxtecan Enhertu Antibody-drug 

conjugate HER2

Metastatic HER2+ breast 
cancer patients who have 

received two or more prior 
anti-HER2 therapies in the 

metastatic setting 
Palbociclib Ibrance CDK4/6 inhibitor CDK4/6 HR+/HER2- breast cancer
Ribociclib Kisqali CDK4/6 inhibitor CDK4/6 HR+/HER2- breast cancer

Abemaciclib Verzenio, 
Verzenios CDK4/6 inhibitor CDK4/6

Locally advanced or 
metastatic HR+/HER2- breast 

cancer patients who 
previously received 
endocrine therapy

10
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4

11 Table 3 Previous clinical trials treating HR+/HER2+ breast cancer. (Oestrogen receptor, ER; Hormone receptor, HR; Progression-free survival, PFS; Human epidermal 
12 growth factor receptor, HER; Pathological complete response, pCR; Aromatase inhibitor, AI). 

Trial Phase Recruitment Cohort 
size

Menopausal 
status

Cancer
stage

Breast 
cancer type Treatment groups Results (HR+/HER2+ tumours)

Herceptin 
Adjuvant Trial 

(HERA)
III 2001-2005 5099 Post Early-stage

HER2+ 
breast 
cancer

Trastuzumab or no 
trastuzumab for 1 

or 2 years, 
following adjuvant 

chemotherapy

Patients with ER+/HER2+ breast cancers but with 
a low HER2 FISH ratio or higher ESR1 levels 

receive less benefit from adjuvant trastuzumab 
after chemotherapy[108][109][110][111].

TAnDEM 
(Clinical Trial 

NCT00022672)
III 2001-2004 207 Post Metastatic

HR+/HER2+ 
breast 
cancer 

previously 
treated with 

tamoxifen

Anastrozole alone 
or with 

trastuzumab but 
no chemotherapy

There was a significant improvement in PFS for 
the group that received anastrozole plus 

trastuzumab in combination [63].

EGF30008 
(Clinical Trial 

NCT00073528)
III 2003-2006 219 Post Metastatic HR+ breast 

cancer

Lapatinib 
combined with 

letrozole or 
letrozole with 

placebo for first-
line therapy

In HR+/HER2+ cancers, the combination of 
lapatinib and letrozole showed an increase in 

PFS compared to those who received letrozole 
with placebo [112][113].

Efficacy and 
Safety of 
Letrozole 

combined with 
Trastuzumab 

(eLEcTRA)

III 2003-2007 57 Post Metastatic
HR+/HER2+ 

breast 
cancer

Trastuzumab with 
letrozole or 

letrozole alone as 
first-line treatment

Better outcomes, including time to progression 
and clinical benefit, were seen in those treated 
with the combined trastuzumab plus letrozole 

treatment [64].
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5

ExteNET 
(Clinical Trial 

NCT00878709)
III 2009-2011 2840 Post Stage I-III

HER2+ 
breast 
cancer 

previously 
received 

neoadjuvant 
and 

adjuvant 
trastuzumab

Neratinib

12 months treatment with neratinib significantly 
improved 2-year invasive disease-free survival; 
the benefit from neratinib was greater in HR+ 

patients [93][114].

Neo-ALL-IN 
(Clinical Trial 

NCT01275859)
II 2010-2012 24 Post Stage II–III

ER+/HER2+ 
breast 
cancer

Neoadjuvant 
letrozole and 

lapatinib for 18-21 
weeks before 

surgery

Overall clinical response rates were 62.5% 
however no pCR was achieved [92][115].

PERTAIN 
(Clinical Trial 

NCT01491737)
II 2012-2014 258 Post

Metastatic 
or locally 
advanced

HR+/HER2+ 
breast 
cancer 

patients 
who had not 

received 
prior 

therapy, 
with the 

exception of 
endocrine

Trastuzumab and 
an AI or 

trastuzumab, an AI 
and pertuzumab. 

Some also received 
chemotherapy

Greater PFS in the pertuzumab+trastuzumab+AI 
group but also more serious adverse events in 

the pertuzumab+trastuzumab+AI group 
[83][116].

PAMELA 
(Clinical Trial 

NCT01973660)
II 2013-2015 151 Both Stage I–IIIA

HER2+ 
breast 
cancer

Lapatinib 
combined with 

trastuzumab (and 
letrozole or 

tamoxifen if HR+)

41% of patients with the HER2-enriched subtype 
and 10% of patients with non-HER2 enriched 
subtypes achieved pCR at the time of surgery. 
Patients with the HER2-enriched subtype may 

benefit the most from dual HER2 blockade 
[117][118].
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6

NSABP B-52 
trial III 2014-2016 315 Both

Locally 
advanced 
(but not 

metastasis
ed)

HR+/HER2+ 
breast 
cancer

A luteinizing 
hormone-releasing 
hormone agent or 
AI with docetaxel, 

carboplatin, 
trastuzumab, and 

pertuzumab 
neoadjuvant 

therapy

Depriving oestrogen along with docetaxel, 
carboplatin, trastuzumab, and pertuzumab 

treatment in the neoadjuvant setting improved 
pCR however this was not statistically significant 

[93].

NA-PHER2 trial 
(Clinical Trial 

NCT02530424)

II 2015-2016 102 Both

Early (> 1.5 
cm) or 
locally 

advanced 
untreated 

breast 
cancer

ER+/HER2+ 
breast 
cancer

Neoadjuvant 
treatment with 
trastuzumab, 
pertuzumab, 

palbociclib and 
fulvestrant

A clinical objective response was achieved for 
29/30 patients, as well as a decrease in 

proliferation (assessed through Ki67 expression) 
following two weeks of treatment and at the 

time of surgery [79][119].

Page 6 of 40

https://mc04.manuscriptcentral.com/fm-fon

Future Oncology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

7

14
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For Review OnlyFigure 1. Molecular subtypes of breast cancer and key receptor/biomarker expression. 
Oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 
receptor 2 (HER2) and proliferation marker Ki67 expression status in Perou’s five 
molecular subtypes. 
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Figure 2. Crosstalk between the oestrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) 
signalling. In the presence of oestrogen, ER, which resides in both the cytoplasm and nucleus of a breast epithelial cell, 
can activate HER dimers and their downstream pathways (MAPK and AKT). In addition to the effects of these pathways, 
this signalling can also lead to modulation of active nuclear ER, which interacts with other transcription factors (TFs) and 
co-activators (CoAct) to regulate the expression of genes regulating processes essential to cell survival and cancer 
progression. 
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