

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Current trends in the treatment of HR+/HER2+ breast cancer

Citation for published version:

Kay, C, Martínez-Perez, C, Meehan, J, Gray, M, Webber, V, Dixon, JM & Turnbull, AK 2021, 'Current trends in the treatment of HR+/HER2+ breast cancer', Future oncology, vol. 17, no. 13, pp. 1665-1681. https://doi.org/10.2217/fon-2020-0504

Digital Object Identifier (DOI):

10.2217/fon-2020-0504

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

Published In: Future oncology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Future Oncology

Current trends in the treatment of hormone receptor positive/HER2-positive breast cancer

Journal:	Future Oncology
Manuscript ID	FON-2020-0504.R2
Manuscript Type:	Review
Keywords:	Breast Cancer, Hormone receptor, Endocrine therapy, Hormonal therapy, HER2-positive, Triple positive breast cancer, Clinical trials, Combination treatment, HR+/HER2+, Emerging therapeutics

SCHOLARONE [™]	
Manuscripts	

1 Abstract

Treatment for hormone receptor-positive/human epidermal growth factor receptor 2-positive (HR+/HER2+) patients has been debated, as some tumours within this luminal HER2+ subtype behave like luminal A cancers, while others like non-luminal HER2+ breast cancers. Recent research and clinical trials have revealed a combination of hormone and targeted anti-HER2 approaches without chemotherapy provides long-term disease control for at least some HR+/HER2+ patients. Novel anti-HER2 therapies, including neratinib and ado-trastuzumab emtansine, and new agents that are effective in HR+ cancers, including the next generation of oral selective oestrogen receptor downregulators/degraders (SERDS) and CDK4/6 inhibitors such as palbociclib, are now being evaluated in combination. This review discusses current trials and results from previous studies that will provide the basis for current recommendations on how to treat newly diagnosed patients with HR+/HER2+ disease.

14 Lay abstract

About 10% of all breast cancer tumours are both hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) positive. It is clear that some patients with this type of breast cancer will require only hormone therapy (HT) aimed at HRs and others will require a combination of HT and drugs targeted at HER2. This review discusses current clinical trials and results from previous studies of patients with HR+/HER2+ disease.

20 Keywords

Breast Cancer, Hormone receptor, HER2-positive, HR+/HER2+, Triple positive breast
 cancer, luminal HER2, Clinical trials, Combination treatment, Emerging therapeutics

1. Introduction

Breast cancer is the most common cancer in women worldwide, with over 2 million new diagnoses in 2018 alone [1]. Patients with breast cancer are stratified and treated based on the expression status of certain receptors in their tumour. Identification of the oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) enabled the first stratification according to tumour biology. These receptors have proved to be important prognostic and predictive biomarkers in women with breast cancer. To determine the presence and amount of ER, PR and HER2 protein expressed, immunohistochemistry (IHC) is used and a pathologist assigns a score for each. For ER and PR, the percentage and intensity of staining is measured. These can be combined to create what is known as a histoscore or an Allred score; the latter score is 0 when negative and between 2 and 8 if positive [2]. These receptors are often classified as overall positive (+) or negative (-) despite there being wide variations in the level of positivity in both ER and PR. HER2 status is assessed according to the intensity of staining as 0, 1+, 2+ or 3+. HER2 tumours with scores of 0 and 1+ are considered HER2-negative, 2+ tumours are deemed equivocal and require further testing to determine positive/negative status, while 3+ is considered HER2-positive. A variety of in situ hybridisation tests, including fluorescence in-situ hybridisation (FISH), are used in 2+ HER2 cancers to assess whether there is amplification of the HER2 gene and if so, these cancers are also classified as HER2-positive.

Hormone receptor-positive (HR+) breast cancers are those that express ER, PR or both. These tumours account for 70-80% of all breast cancers [3]. These hormone-dependent cancers can often be treated successfully with a variety of drugs that modulate the oestrogen receptor or reduce oestrogen. HER2+ breast cancers tend to be associated with a worse prognosis than HER2- breast cancers [4], although the emergence of targeted HER2 therapies such as trastuzumab and pertuzumab has improved outcomes for HER2+ disease [5,6]. There remains a group of women who recur despite these anti-HER2 therapies and whose outlook remains poor.

Among the most significant discoveries in breast cancer has been the identification of breast cancer subtypes with distinct biological characteristics that translate into differences in prognosis and response to treatments [7]. The subtypes are Luminal A, Luminal B, HER2-enriched, Basal-like and Normal-like. The presence or absence of ER, PR and HER2 largely align with these five molecular subtypes as shown in Figure 1. Stratification of breast cancers into these subgroups has been the focus of much research in recent years in the hopes of allowing each patient to be treated with therapy optimal to their specific cancer subtype. Several multigene predictive and prognostic signatures are now available commercially to aid treatment decisions, with Prosigna's Breast Cancer Prognostic Gene Signature Assay (previously known as the PAM50 test) designed specifically based on the intrinsic subtypes [8]. Studies evaluating this are underway.

The aim of this review is to explore the subgroup of patients that have cancers that are both HR and HER2 positive. Known as the luminal HER2 subgroup, cancers that are both HR+ and HER2+ have a complex interaction between the endocrine and HER2 pathways linked to these receptors. Traditionally, there are three main treatment options for this subgroup of breast tumours: (i) hormone therapy alone, (ii) targeted anti-HER2 therapy and chemotherapy combined with later hormone therapy, or (iii) primary hormone therapy followed later by targeted anti-HER2 therapy and chemotherapy. This review will focus on tumour biology and hormone, anti-HER2 and combination therapies currently available for the luminal HER2 subgroup. Recently completed clinical trials and those currently underway will be summarised.

2. Hormone and targeted therapies for invasive breast cancer

2.1. Hormone therapy

HR+ breast cancer is treated with hormone therapy, also known as endocrine therapy or anti-oestrogen therapy. The view of HR+ cancers is that they are dependent on oestrogen for their growth and survival, so targeting this hormone, its signalling and its downstream effects is an important therapeutic strategy. In premenopausal women, the main source of oestrogen is the ovaries. Therapeutic strategies include (i) stopping oestrogen production by ovarian ablation (surgically removing them via oophorectomy) or temporarily suppressing ovarian function with gonadotropin releasing hormone (GnRH) agonists (which will initiate menopause), or (ii) blocking the effect of oestrogen on the cancer with drugs that target the oestrogen receptor. Studies have shown that between 5 and 10 years of hormone therapy in HR+ breast cancers significantly improves survival. In premenopausal women, hormone therapy options are tamoxifen alone or an LHRH analogue combined with tamoxifen or an aromatase inhibitor. Tamoxifen is a selective oestrogen receptor modulator (SERM) that is a partial ER agonist, blocking the activation of oestrogen receptor by oestrogen in the breast but acting as an agonist on the ER of the

endometrium and the skeleton. Tamoxifen was first given to women with breast cancer in
the early 1970s [9] and it has saved countless lives. Recent studies in premenopausal
women show that compared with tamoxifen alone, a combination of LHRH or
oophorectomy and tamoxifen or aromatase inhibitors produces an even greater
improvement in survival, although this comes with a greater incidence of adverse events.

In postmenopausal women, most of the body's oestrogen is synthesised peripherally in the liver, fat and locally in the breast from androgen precursors released from the adrenal gland through a reaction catalysed by the enzyme aromatase. An aromatase inhibitor (AI) given to postmenopausal women thus stops the production of oestrogen. Als currently available include the non-steroidal letrozole and anastrozole and the steroidal exemestane. Tamoxifen together with selective oestrogen receptor downregulators or degraders (SERDs), such as the ER antagonist fulvestrant are other alternative therapies in ER+ breast cancers. SERDS induce a conformational change in ER that prevents the binding of oestrogen and leads to degradation of the receptor. Fulvestrant, an injectable SERD, is currently the only SERD available and is most often used to treat recurrent or metastatic ER+/HER2- breast cancer in postmenopausal women who have recurred on prior endocrine therapy. New oral SERDS are currently being developed and tested [10–12].

2.2. HER2-

2.2. HER2-targeted therapy

The emergence of anti-HER2 therapies has led to significant improvements in the prognosis and outcome for patients with HER2+ breast cancers. Trastuzumab, a recombinant humanised monoclonal antibody, targets an extracellular domain of HER2, preventing its dimerisation with other HER receptors to halt cancer growth [13,14]. Pertuzumab, another monoclonal antibody, acts on a different extracellular domain of HER2 and halts dimerisation particularly of HER2 with HER3, the most growth-promoting dimerisation of the HER family of receptors [15]. Combinations of trastuzumab and pertuzumab with chemotherapy are more effective that either drug alone with chemotherapy. Lapatinib is a dual tyrosine kinase inhibitor of both HER2 and HER1 (EGFR) that was approved by the United States Food and Drug Administration (FDA) for use in combination with the chemotherapy drug capecitabine in 2007 [16]. Lapatinib can also be given together with trastuzumab [17] and this combination provides a more complete blockade of HER signalling than either alone [18]. Neratinib, a tyrosine kinase inhibitor, is a pan-HER inhibitor, licensed and currently recommended by the UK's National Institute for Health and Care Excellence (NICE) in the technology appraisal guidance TA612 for use as extended adjuvant treatment following trastuzumab in patients with ER+/HER2+ breast cancer [19]. Trastuzumab emtansine (T-DM1), also known as ado-trastuzumab emtansine, is an antibody-drug conjugate in which trastuzumab is linked to the cytotoxic agent DM1 [20]. This was approved by the U.S. FDA in 2013 for the treatment of HER2+ metastatic breast cancer and in 2019 for patients with HER2+ early breast cancer who have residual disease following neoadjuvant trastuzumab and a taxane. In the UK, T-DM1 is recommended for the treatment of HER2+ advanced breast cancer following treatment with trastuzumab and a taxane [21]. Trastuzumab deruxtecan is an antibody drug combination comprising trastuzumab and a cytotoxic topoisomerase I inhibitor and has broader anti-tumour activity than T-DM1, including efficacy against low HER2-expressing tumours [22]. There is a series of other anti-HER2 drugs in development and in early clinical trials.

5960 1312.3. Other targeted therapies for invasive breast cancer

option [23]. These inhibitors induce cell cycle arrest, thereby stopping proliferation [24] and

all three drugs currently available (palbociclib, ribociclib and abemaciclib) have been

The emergence of CDK4/6 inhibitors in recent years has provided another treatment

7	135	combined with endocrine therapy to treat HR+/HER2- advanced breast cancer [25]. Not as
8	136	much is known about the utility of CDK inhibitors in HR+/HER2+ disease, although trials of
9	137	CDK inhibitors in combination with endocrine therapies and anti-HER2 therapies are
10		· · ·
11	138	currently underway (Table 1). Targeted therapies currently available for the treatment of
12	139	HR+ and/or HER2+ breast cancer, as single agents or in combination, are listed in Table 2.
13 14	140	3. Complications treating HR+/HER2+ breast cancer
15	-	
16	141	3.1. Worse prognosis for HR+/HER2+ subgroup
17	1 4 2	The subgroup of UD, breast concern that also supress UED2 has been shown to have
18	142	The subgroup of HR+ breast cancers that also express HER2 has been shown to have
19	143	a significantly worse prognosis compared to other HR+ breast tumours [26]. These
20	144	HR+/HER2+ tumours account for about 10% of all breast cancers, or about half of all HER2+
21	145	tumours [27,28]. HR status in HER2+ tumours aligns with differences in response to
22 23	146	neoadjuvant treatment, location, type of metastases and survival [29,30].
24	147	Since the approval of trastuzumab (Herceptin), patients with HER2+ breast cancer
25 26	148	(including those that overexpress both ER (and/or PR) and HER2) have been treated with
20 27	149	chemotherapy and anti-HER2 therapy [5]; however, recent data has suggested there may be
28	150	other options. Combining hormone therapy with an anti-HER2 agent has proven beneficial
29	151	to some specific patients [31,32], particularly those presenting with tumours that are HER2+
30		
31	152	and have high ER expression. These patients have a reduced response to trastuzumab plus
32	153	chemotherapy [33] but many are endocrine-sensitive, so combining trastuzumab and
33	154	endocrine therapy produces a high response rate and is an attractive option. However, not
34	155	all HR+/HER2+ tumours respond is the same manner. Identification of which patients
35 36	156	require single, sequential or combination treatments is an urgent need.
37 38	157	3.2. Treatment resistance, tumour biology and HR/HER2 crosstalk
39	158	Treating luminal HER2 breast cancer is complex; there is not one treatment or
40	159	combination of treatments that is suited to all patients with this subtype. Identifying what is
41 42	160	biologically driving the cancer can help (i.e. oestrogen or HER signalling and their
43	161	downstream effects), although pathway interaction and crosstalk can cause the cancer to
44	162	change course throughout treatment (Figure 2). HR+/HER2+ tumours often respond initially
45		
46	163	to hormone therapy and/or HER2-targeted therapy but develop resistance over time [34].
47	164	One reason may be the known crosstalk between the ER and HER2 signalling pathways and
48	165	the involvement of other downstream pathways, such as PI3K and MAPK [35–39]. A study of
49	166	HER2+ cell lines showed an increase in ER or its downstream signalling targets following
50	167	treatment with lapatinib and trastuzumab, indicating ER signalling as a survival mechanism
51 52	168	for HER2+ cells [18]. Upregulation of ER signalling is also evident in HER2+ tumours treated
52 53	169	with trastuzumab, pertuzumab and lapatinib. In one study, 18% of HER2+ tumours that
54	170	were originally ER- were converted to ER+ following two weeks of neoadjuvant lapatinib,
55	171	
56		providing further evidence of the interconnectedness of the ER and HER pathways [40].
57	172	Another study revealed primary resistance to T-DM1 in metastatic HER2+ breast cancer was
58	173	linked to there being negative HER2 gene amplification in circulating tumour DNA and ER-
59	174	positivity and/or PR-positivity by IHC [41]. Investigations into ER and HER pathway
60	175	interactions are ongoing and include a study of Positron Emission Tomography with ¹⁸ F-

fluoroestradiol (FES-PET) imaging as a tool to detect possible reversion of ER status in patients with metastatic ER-/HER2+ breast cancer treated with trastuzumab, pertuzumab and a taxane (Clinical Trial NCT03619044).

The mechanisms by which ER+/HER2+ tumours become resistant to their original therapy remains unclear. The development of acquired resistance is complex and likely due to multiple factors rather than just one. In addition to ER and HER2 pathway crosstalk, resistance could also be caused by a loss or gain of ER overexpression resulting in reduced efficacy of hormone therapy, existing or acquired mutations in the ER gene ESR1 [42], reactivation of HER2 [43] or acquired HER2 mutations [44,45]. ER epigenetic changes have also been described [46]. We are now advancing to the point where the tumour's endocrine resistance profile should be assessed. For instance the timing (and measurement) of acquired ESR1 mutations in resistant cancers may be critical to dictate future endocrine therapy [47,48]. Allouchery et al identified ESR1 mutations at first relapse and at progression on metastatic treatment, but these mutations were not present early during adjuvant therapy [49]. It is also clear that a primary tumour and its recurrence(s) can differ in hormone receptor positivity and temporal heterogeneity likely plays a role in treatment resistance [45]. Assessment of ER, PR and HER2 in every breast cancer metastasis will help improve selection of the most appropriate treatment.

Other potential targets that are involved in ER/HER crosstalk have also been implicated recently. The enzyme fatty acid synthase (FASN) is known to be involved in ER/HER2 crosstalk by way of the PI3K/AKT pathway. It was successfully inhibited by the mTOR inhibitor rapamycin in ER+/HER2+ breast cancer cells and a combination of rapamycin with the FASN inhibitor cerulenin induced apoptosis and inhibited cell migration and tumorigenesis in ER+/HER2+ cells, suggesting FASN as a potentially new therapeutic target [50]. The tyrosine kinase receptor IGF1R is also involved in ER/HER2 pathway crosstalk and may also be a useful biomarker in ER+/HER2+ cancers. High expression of IGF1R is associated with shorter disease-free survival in patients in this subgroup and inhibition of both IGF1R and ER in breast cancer cell lines causes growth inhibition [51]. The addition of trastuzumab inhibited growth further, suggesting this combined targeting of pathways could be a successful approach for ER+/HER2+/IGF1R+ cancers. Other novel ideas to eliminate ER/HER pathway crosstalk and successfully block multiple pathways include the use of proteasome inhibitors [52] that have been successful in treating other types of cancer including multiple myeloma, together with standard endocrine treatments. Targeting the PI3 kinase pathways using PI3K inhibitors [53] such as alpelisib, approved by the U.S. FDA in 2019, combined with fulvestrant is one alternative. Finally, there are new anti-HER2 dendritic cell vaccines on the horizon [54].

As more research emerges regarding signalling pathway crosstalk [55] in triple positive breast cancer and how this is related to resistance to therapies [56], it is clear that for some women both ER and HER2 need to be targeted. This can be sequentially or with combined therapy, but for some a single treatment may suffice. It is critical that we are able to predict which patients require which treatment as more targeted endocrine and HER2 therapies are being developed and being trialled in combination studies.

- 4. Treating HR+/HER2+ breast cancer: What we've learned so far
- 4.1. Standard-of-care for HR+/HER2+ tumours

Historically, ER+/HER2+ breast cancer was treated with endocrine therapy combined in some patients with chemotherapy. Following the development of trastuzumab (Herceptin) in the 1990s [57], this group is now typically given chemotherapy and trastuzumab followed by endocrine therapy to reduce the risk of recurrence. Some patients with low risk HR+/HER2+ breast cancers are treated with adjuvant hormone therapy alone. However, in most cases adjuvant chemotherapy is given in combination with trastuzumab followed by endocrine therapy [58]. Clinicians take into account all factors including tumour size and node status to avoid overtreatment, as some small node-negative tumours do well with adjuvant endocrine therapy followed by trastuzumab and chemotherapy if they recur [59]. Remarkably, a recent study investigating the treatment of HR+/HER2+ metastatic breast cancer revealed that only 42% of the 6,234 patients ever received anti-HER2 therapy, despite previous studies showing survival benefits for patients treated with both hormone and anti-HER2 therapies [60]. Emerging novel drugs and combinations are being investigated in clinical trials so eventually clear treatment strategies for patients with HR+/HER2+ breast cancers should become available.

It has been suggested that HR+/HER2+ tumours should be treated as a distinct molecular subtype of breast cancer. It should also be defined further based on other characteristics to ensure that patients with these cancers receive appropriate treatment whilst also avoiding overtreating. Some tumours, particularly early-stage or smaller ones, may be driven primarily by hormone receptor(s) and thus may not need HER2-targeted treatment [61]. A recent study of patients with triple-positive breast cancer in Korea showed that treatment with trastuzumab did not improve overall survival and that many of these tumours behave clinically more like luminal A than HER2-enriched cancers [62].

4.2. HR+/HER2+ metastatic breast cancer

A number of previous clinical trials, summarised in Table 3, have been instrumental in identifying new combination treatments for patients with HR+/HER2+ tumours. The TANDEM, EGF30008 and eLECTRA phase III trials, all treating postmenopausal patients with metastatic breast cancer, showed positive outcomes for the combination of an aromatase inhibitor and trastuzumab or lapatinib. This included a progression-free survival (PFS) benefit and, in 15% of TAnDEM patients, no disease progression for two years. However, there was no overall survival (OS) benefit from the combined treatment [63–65].

One of the problems with studying HER2+ breast cancer is the variation in scoring across centres. Discrepancies in testing methods and reproducibility of results have been and remain a challenge [66,67]. Identifying which tumours are truly HER2 amplified, with HER2 overexpressed, is critical to both retrospective survival studies and to the current treatment issues for this subgroup of breast cancer. A retrospective analysis of metastatic breast cancers showed some tumours that were deemed HER2-negative but were enriched for HER2 could benefit from combined lapatinib and letrozole treatment [68]. Additionally, changes to the American Society of Clinical Oncology (ASCO) treatment guidelines in 2018 reclassified some HER2+ tumours. Patients with cancers that were deemed equivocal in assessment by IHC and FISH were reclassified as HER2-negative as there has not been any proven benefit from HER2-targeted therapy in these individuals [69].

A combined hormone and anti-HER2 therapy approach clearly benefits some patients, but the challenge lies in accurately identifying the subpopulation of patients likely

Future Oncology

to gain additional benefit from a combined treatment strategy. The addition of pertuzumab improved overall survival in HER2+ patients in the CLEOPATRA study. The combination of trastuzumab, pertuzumab and docetaxel compared to just trastuzumab and docetaxel increased both PFS and OS in patients with HER2+ metastatic breast cancer. However, no significant difference in response was related to hormone receptor status [70]. NICE now recommends the combination of trastuzumab, pertuzumab and chemotherapy for treatment of metastatic HER2+ breast cancer [71] and also suggests the same strategy as an option in the neoadjuvant setting [72].

4.3. Neoadjuvant management of HR+/HER2+ breast cancer

The best approach to managing HR+/HER2+ breast cancer in the neoadjuvant setting has been the subject of debate. Chemotherapy has been shown to be much more beneficial in ER- disease; however, some women, particularly those of advanced age, struggle with toxic side effects [73,74]. The timing of chemotherapeutic or targeted, sequential or combined treatments is also being questioned for this group, with new evidence suggesting reducing or postponing the use of chemotherapy in favour of using targeted therapies, such as letrozole or trastuzumab [75]. Targeted treatment of breast cancer in the neoadjuvant setting has been useful, particularly for women with advanced age who may not tolerate chemotherapy well. Studies have shown neoadjuvant letrozole can shrink tumour size and induce gene expression changes in HR+ breast cancers [76,77] and that the addition of trastuzumab to neoadjuvant chemotherapy can increase the pathologic complete response (pCR) in HER2+ tumours [78].

Changes in current recommendations for chemotherapy in the neoadjuvant setting could be near, as new combination regimens have shown promising results. In the neoadjuvant phase II trial NA-PHER2 that combined palbociclib, fulvestrant and two anti-HER2 drugs (trastuzumab and pertuzumab), an objective clinical response was seen in 29/30 patients, as well as a decrease in proliferation (assessed by Ki67 expression) following two weeks of treatment prior to surgery [79]. Neoadjuvant palbociclib and letrozole produces effective clinical responses and decreases expression of the genes IL6ST and RBBP8, which have been associated with proliferation, in postmenopausal ER+/HER2- patients [80]. Biomarkers of response to neoadjuvant treatment are also emerging for ER+/HER2+ tumours, including a gene expression signature of retinoblastoma loss-of-function that has the potential to identify patients who would benefit from neoadjuvant chemotherapy [81]. Other predictive markers of poor response to neoadjuvant chemotherapy and HER2-targeted therapy in ER+/HER2+ patients are increased expression of stromal colXα1 and low levels of tumour-infiltrating lymphocytes [82]. Further research is still needed to identify which tumours within the complex HR+/HER2+ subgroup of breast cancers might benefit from specific single-agent and combined treatments in the neoadjuvant settings.

5. Where we are now: current trials and emerging therapeutic strategies

5.1. Metastatic and locally advanced HR+/HER2+ breast cancer

It is clear now that HR+/HER2- and HR+/HER2+ breast cancers have different biological characteristics, mechanisms of growth and response to treatment. Even within these groups of breast cancer there are inherent differences, with some HR+/HER2+ tumours behaving more like the luminal A subtype (i.e., ER-driven cancer) and others requiring a multipronged targeted blockade of the ER, PR and HER pathways. An improved

outcome from combination treatment with anti-HER2 therapy (trastuzumab or lapatinib) and an AI is evident for some, but not all, HR+/HER2+ patients (TAnDEM, EGF3008, eLEcTRA trials). Drugs like pertuzumab have improved response for some in this subgroup but its addition is costly and may cause more adverse events (PERTAIN trial of metastatic or locally advanced HR+/HER2+ breast cancer) [83].

Fulvestrant has also proven useful in the treatment of ER+/HER2+ patients with multiple metastases who have received prior anti-HER2 therapy in combination with chemotherapy or an AI [84]. A clinical trial (NCT03289039) is currently investigating the combination treatment of neratinib and fulvestrant in ER+/HER2+ metastatic or locally advanced breast cancer [85] (Table 1). So far, 46 patients with HR+/HER2-mutant metastatic breast cancer have been treated with neratinib and fulvestrant. This combination shows positive results in patients who have been treated previously with various agents; in particular, patients who had previously received fulvestrant or CDK4/6 inhibitors responded well to the combined regimen. The rate of diarrhoea was similar to that of single-agent neratinib and was not dose-limiting and no patients discontinued treatment because of it [86].

Fulvestrant and palbociclib also show great promise when combined and both are now being tested in combination with anti-HER2 therapies in the metastatic setting (Table 1). Palbociclib has previously been tested in patients with ER+/HER2- advanced breast cancer who progressed on endocrine therapy and, together with fulvestrant, has been shown to increase PFS compared to fulvestrant alone (PALOMA3 trial) [87]. Further analysis of circulating tumour DNA from PALOMA3 trial participants revealed acquired mutations in RB1, ESR1 and PI3KCA associated with resistance following treatment with fulvestrant [88]. Combining palbociclib with endocrine therapies other than fulvestrant may avoid these acquired mutations. A trial designed to determine the recommended dose of palbociclib in combination with letrozole and T-DM1 in patients with ER+/HER2+ metastatic breast cancer is currently recruiting patients (Clinical Trial NCT03709082) [89].

Additional CDK4/6 inhibitors including ribociclib and abemaciclib are also being tested in current clinical trials of HR+/HER2+ patients (Table 1). Particularly noteworthy is the treatment of advanced HR+/HER2+ breast cancer with abemaciclib, fulvestrant and trastuzumab in the monarcHER phase 2 trial. This combination treatment not only proved tolerable and safe but also improved PFS compared to standard-of-care trastuzumab plus chemotherapy [90]. Another recent study evaluating a triplet combination is the ALTERNATIVE phase 3 trial. This study too showed a PFS benefit from treating with a dual HER2 blockade of lapatinib and trastuzumab plus an aromatase inhibitor in the treatment of postmenopausal women with HR+/HER2+ metastatic breast cancer [91]. These triplet combinations of therapies could truly change the way HR+/HER2+ breast cancer is treated as they eliminate the need for chemotherapy and its often toxic side effects.

5.2. Neoadjuvant management of HR+/HER2+ breast cancer

In the neoadjuvant setting, it is unclear whether a combined anti-oestrogen and anti-HER2 approach offers any significant improvement to current practice. While some patients do have a positive clinical response to neoadjuvant treatment with letrozole and lapatinib (Neo-ALL-IN), a decrease in the ER Allred score after neoadjuvant treatment was linked to poor outcome [92]. In addition, depriving oestrogen with a LHRH agonist or with an AI

352 combined with neoadjuvant docetaxel, carboplatin, trastuzumab and pertuzumab did not
 353 statistically improve response (B-52 trial) [93] (Table 3).

5.3. Adjuvant management of HR+/HER2+ breast cancer

One of the most promising drugs for the treatment of HR+/HER2+ breast cancers is the pan-HER tyrosine kinase inhibitor neratinib. Results from the ExteNET trial showed one year of extended adjuvant neratinib following neoadjuvant and adjuvant chemotherapy and trastuzumab significantly reduced the risk of relapse in early-stage HER2+ breast cancer. Interestingly, a greater benefit from neratinib was seen in HR+/HER2+ patients compared to HR- patients [94]. Many of the HR+ patients were also receiving endocrine therapy, suggesting that supressing both pathways was required to improve invasive disease-free survival. The U.S. FDA approved neratinib (Nerlynx) for extended adjuvant treatment of early-stage, HER2+ breast cancer in 2017 and in the UK NICE now recommends neratinib for extended adjuvant treatment of HR+/HER2+ early stage breast cancer after adjuvant trastuzumab [19]. In a xenograft study, extended adjuvant therapy with neratinib plus fulvestrant maintained a prolonged complete response and blocked ER/HER2 crosstalk [95,96].

368 368 369

As shown by the evidence and studies summarised here, selection of the most appropriate treatment strategy for the management of a patient that has a breast tumour that is both HR+ and HER2+ poses a conundrum. The crux lies in the difficulty of determining which receptors and their associated pathways are driving the tumour cells and what is the interaction and crosstalk between them. A better understanding of the molecular diversity within the subgroup of HR+/HER2+ breast cancer is essential before we can improve its management.

There is now a need for biomarkers to predict response and recurrence. In the Neo-ALL-IN trial of patients with ER+/HER2+ breast cancer, a number of predictors were identified. These included a decrease in the ER Allred score after neoadjuvant treatment, an SUVmax (a measure of activity in PET imaging linked to cell viability and proliferation) lower than 5.5 on the baseline FES PET-CT and high baseline tumour-infiltrating lymphocytes of over 20% [92]. These may be useful as biomarkers of response for future patients. Trefoil factor 3 (TFF3) is another potential biomarker for resistance to trastuzumab, as its expression is upregulated in trastuzumab-resistant ER+/HER2+ breast cancer cells and it has been shown to activate HER family receptors [97].

IL6ST, a surrogate for endocrine therapy response [56], may also be a useful biomarker for ER+/HER2+ breast cancer. In a study presented at the 2019 San Antonio Breast Cancer Symposium, higher levels of IL6ST were associated with active ER signalling and predicted clinical response to neoadjuvant letrozole in ER+/HER2+ tumours [98]. Importantly, lower levels of IL6ST were associated with a lack of response to endocrine therapy and more active HER2 signalling. This supports the notion of a diverse underlying biology within the ER+/HER2+ population, with two subgroups with distinct gene expression profiles. These subgroups may be linked to differences in endocrine therapy responsiveness and, importantly, might be easily stratified. IL6ST could potentially select ER+/HER2+

patients who need both endocrine and HER2-targeted therapy and others who should
receive endocrine therapy alone. Further work is needed both in the laboratory and within
clinical trials to better characterise those potential predictive signatures within the
ER+/HER2+ subgroup. ER+/HER2+ patient-derived xenografts (PDXs) have recently been
characterised and could provide a useful preclinical testing ground for new drugs and
combinations. Interestingly, the take rate in culture was higher for ER+/HER2+ tumours
compared to ER+/HER2- PDXs, possibly indicating a greater drive for survival [99].

7. Conclusion

In summary, the HR+/HER2+ breast cancer subtype consists of a range of cancers
with varying interaction between ER and HER2 receptors and pathways. Some HR+/HER2+
tumours behave more like the luminal A subtype and others are more like non-luminal
HER2+ disease. The latter will likely require more intensive treatment and appears to
respond better to combinations of endocrine and anti-HER2 targeted therapies. The time of
giving the same treatments for all ER+/HER2+ cancers is over.

More research into the use of drugs including neratinib, T-DM1, fulvestrant, novel oral SERDS, and CDK4/6 inhibitors alone or in combination with each other or with more traditional therapies is required. Such research will hopefully provide information on the best treatment approaches for individual patients and their cancers, as it is clear not all HR+/HER2+ cancers behave the same. Results from these studies must be combined with research to characterise the complex underlying biology of HR+/HER2+ disease, in particular the intricate interactions of the ER and HER2 pathways. It is imperative that biomarkers of response, disease progression and resistance are identified in order to fully understand how the disease progresses and be able to stratify patients for first, second and third-line treatment if necessary. Additional markers linked to molecular diversity will also be required to help determine how best to treat individual patients with this breast cancer subtype. To provide a truly individualised medicine there needs to be better characterisation of each individual cancer both at diagnosis and recurrence. Markers including IL6ST will provide the advances needed to achieve this goal.

40 423

424 Future perspective

As HR+/HER2+ breast cancer continues to be characterised as its own subgroup of breast cancer of which there are at least two divisions (those which more closely resemble luminal A cancers and others more similar to non-luminal HER2+ tumours), we are hopeful that treatment for this subtype will become more personalised over the next 5-10 years based on the outcome of recent and currently-ongoing trials. Some patients will require combined treatment targeting both ER and HER2 signalling and others will need only endocrine treatment. We can only get better at predicting this. Prognostic and predictive biomarkers such as IL6ST will help stratify HR+/HER2+ tumours and identify which treatment plan is best for each patient. We expect additional biomarkers and molecular signatures for this subgroup to be identified soon, as well as better laboratory research models developed and new breast cancer treatments and combinations of therapies approved. Collectively, this will improve personalised care and outcome for this set of patients.

3 4	438	Executive summary
5 6	439	Hormone and targeted therapies for invasive breast cancer
7	440	 Here we review hormone, HER2-targeted and other breast cancer treatments
8 9 10	441	currently available.
10 11 12	442	Hormone therapy
13	443	 Hormone receptor positive (HR+) cancers are dependent on oestrogen for
14	444	their growth and survival, so targeting this hormone, its signalling and its
15	445	downstream effects with hormone therapy is an important therapeutic
16 17	446	strategy.
18	447	• Tamoxifen, aromatase inhibitors and fulvestrant are hormone (also known as
19	448	endocrine or anti-oestrogen) therapies currently available for the treatment
20 21	449	of HR+ disease.
22 23	450	HER2-targeted therapy
24 25	451	 HER2-targeted therapies have significantly improved the prognosis and
25 26	452	outcome for patients with HER2+ breast cancer.
27	453	 Monoclonal antibodies trastuzumab and pertuzumab, tyrosine kinase
28	454	inhibitors lapatinib and neratinib and antibody-drug conjugates trastuzumab
29	455	emtansine (T-DM1) and trastuzumab deruxtecan are HER2-targeted
30 31	456	therapies currently available.
32 33	457	Other targeted therapies for invasive breast cancer
34	458	 CDK4/6 inhibitors induce cell cycle arrest, thereby stopping proliferation.
35	459	 Palbociclib, ribociclib and abemaciclib are CDK4/6 inhibitors currently
36 37	460	available for the treatment of HR+/HER2- breast cancer; not as much is
38 39	461	known about the utility of CDK inhibitors in HR+/HER2+ disease.
40 41	462	Complications of the HR+/HER2+ subgroup
42	463	 HR+/HER2+ tumours account for about 10% of all breast cancers, or about half of all
43	464	HER2+ tumours and have been shown to have a significantly worse prognosis
44	465	compared to other HR+ breast tumours.
45 46	466	• Combining hormone therapy with an anti-HER2 agent has proven beneficial to some
40 47 48	467	but not all HR+/HER2+ patients.
49 50	468	Treating HR+/HER2+ breast cancer: What we've learned so far
51	469	 Here we outline how patients with HR+/HER2+ tumours have been treated
52	470	historically and that these tumours should be treated as a distinct molecular subtype
53	471	of breast cancer.
54 55	472	 Previous clinical trials evaluating combined hormone and HER2-targeted therapies in
55 56 57	473	the neoadjuvant and adjuvant setting are discussed.
57 58 59 60	474	Where we are now: current trials and emerging therapeutic strategies

2		
3	475	• Some HR+/HER2+ tumours behave more like the luminal A subtype (i.e., ER-driven
4	476	cancer) and others require a multipronged targeted blockade of the ER, PR and HER
5	477	pathways.
6 7		
8	478	• Clinical trials with HR+/HER2+ patients currently underway are discussed; neratinib,
9	479	fulvestrant, palbociclib and T-DM1 show great promise alone and in various
10	480	combinations.
11		
12	481	Treatment resistance and HR/HER2 crosstalk
13	482	• HB / HEB2 , tymewrs often respond initially to hermone therapy and /or HEB2
14		 HR+/HER2+ tumours often respond initially to hormone therapy and/or HER2-
15	483	targeted therapy but develop resistance over time.
16	484	 The reason why some HR+/HER2+ cancers fail to respond to combined therapy or
17	485	become resistant to it remains unclear but evidence of ER and HER pathway
18	486	crosstalk, mutations in ESR1 and HER2, lower HER2 FISH ratio and activation of other
19	487	downstream pathways are likely to play a role.
20		
21 22	488	The need for a better understanding of the diverse biology of HR+/HER2+ and associated
22	489	biomarkers O
23 24		
25	490	 Further investigation into the biology of HR+/HER2+ breast cancer is necessary in
26	491	order to have a clearer picture of how these tumours operate.
27	492	• Validated prognostic and predictive biomarkers are required to identify the patients
28	493	who will need combined endocrine/HER2 therapy and those who will need only
29		
30	494	endocrine treatment.
31	495	
32	155	
33	496	
34		
35 36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48 49		
49 50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

2 3 4	497	Refe	rences
5 6	498	1.	Breast cancer statistics World Cancer Research Fund
6 7 8 9 10	499 500 501	2.	Qureshi A, Pervez S. Original Article Allred scoring for ER reporting and it 's impact in clearly distinguishing ER negative from ER positive breast cancers Study Population : ER Immunohistochemical Analysis : <i>Am. J. Clin. Pathol.</i> 60(5), 350–353 (2010).
11 12 13 14	502 503 504	3.	Kohler BA, Sherman RL, Howlader N, <i>et al.</i> Annual report to the nation on the status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. <i>J. Natl. Cancer Inst.</i> 107(6) (2015).
15 16 17 18 19	505 506 507	4.	McCann AH, Dervan PA, O'Regan M, <i>et al.</i> Prognostic Significance of c- erbB -2 and Estrogen Receptor Status in Human Breast Cancer. <i>Cancer Res.</i> 51(12), 3296 LP – 3303 (1991).
20 21 22 23	508 509 510	5.	Peintinger F, Buzdar AU, Kuerer HM, <i>et al</i> . Hormone receptor status and pathologic response of HER2-positive breast cancer treated with neoadjuvant chemotherapy and trastuzumab. <i>Ann. Oncol.</i> 19(12), 2020–2025 (2008).
24 25 26 27	511 512 513	6.	Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti–HER-2 Therapy and Personalized Medicine. <i>Oncologist</i> . 14(4), 320–368 (2009).
28 29 30 31	514 515	7.	Perou CM, Sørlie T, Eisen MB, <i>et al</i> . Molecular portraits of human breast tumours. letters to nature 748. 533(May), 747–752 (2000).
31 32 33 34	516 517	8.	Parker JSJS, Mullins M, Cheang MCU, <i>et al.</i> Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. <i>J. Clin. Oncol.</i> 27(8), 1160–1167 (2009).
34 35 36 37	518 519	9.	Ward HWC. Anti-oestrogen Therapy for Breast Cancer: A Trial of Tamoxifen at Two Dose Levels. <i>BMJ</i> . 1(5844), 13–14 (1973).
38 39 40 41	520 521 522	10.	Nardone A, Weir H, Delpuech O, <i>et al.</i> The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance. <i>Br. J. Cancer.</i> 120(3), 331–339 (2019).
42 43 44 45	523 524 525	11.	McDonnell DP, Wardell SE, Norris JD. Oral Selective Estrogen Receptor Downregulators (SERDs), a Breakthrough Endocrine Therapy for Breast Cancer. J. Med. Chem. 58(12), 4883–4887 (2015).
46 47 48 49 50	526 527 528	12.	Hamilton EP, Patel MR, Armstrong AC, <i>et al</i> . A first-in-human study of the new oral selective estrogen receptor degrader AZD9496 for ER+/HER2- advanced breast cancer. <i>Clin. Cancer Res.</i> 24(15), 3510–3518 (2018).
50 51 52 53 54	529 530 531	13.	Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. <i>Clin. Ther.</i> 21(2), 309–318 (1999).
55 56 57	532 533	14.	Mohan N, Jiang J, Dokmanovic M, Wu WJ. Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers. <i>Antib. Ther.</i> 1(1), 13–17 (2018).
58 59 60	534 535	15.	Harbeck N, Beckmann MW, Rody A, <i>et al.</i> HER2 dimerization inhibitor pertuzumab - Mode of action and clinical data in breast cancer. <i>Breast Care</i> . 8(1), 49–55 (2013).

1 2			
3 4 5 6	536 537 538	16.	Ryan Q, Ibrahim A, Cohen MH, <i>et al.</i> FDA Drug Approval Summary: Lapatinib in Combination with Capecitabine for Previously Treated Metastatic Breast Cancer That Overexpresses HER-2. <i>Oncologist</i> . 13(10), 1114–1119 (2008).
7 8 9 10 11	539 540 541	17.	Xu ZQ, Zhang Y, Li N, <i>et al.</i> Efficacy and safety of lapatinib and trastuzumab for HER2- positive breast cancer: A systematic review and meta-analysis of randomised controlled trials. <i>BMJ Open</i> . 7(3), 1–9 (2017).
12 13 14 15	542 543 544	18.	Wang YC, Morrison G, Gillihan R, <i>et al</i> . Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers role of estrogen receptor and HER2 reactivation. <i>Breast Cancer Res.</i> 13(6), R121 (2011).
16 17 18 19	545 546 547	19.	Overview Neratinib for extended adjuvant treatment of hormone receptor-positive, HER2-positive early stage breast cancer after adjuvant trastuzumab Guidance NICE. NICE.
20 21 22 23	548 549 550	20.	Lewis Phillips GD, Li G, Dugger DL, <i>et al.</i> Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. <i>Cancer Res.</i> 68(22), 9280–9290 (2008).
24 25 26 27	551 552	21.	Overview Trastuzumab emtansine for treating HER2-positive advanced breast cancer after trastuzumab and a taxane Guidance NICE. NICE.
28 29 30 31 32	553 554 555 556	22.	Doi T, Shitara K, Naito Y, <i>et al.</i> Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. <i>Lancet Oncol.</i> 18(11), 1512–1522 (2017).
33 34 35 36	557 558 559	23.	Shah M, Nunes MR, Stearns V. CDK4/6 inhibitors: Game changers in the management of hormone receptor– positive advanced breast cancer? <i>Oncol. (United States)</i> . 32(5), 216–222 (2018).
37 38 39 40	560 561	24.	O'Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. <i>Nat. Rev. Clin. Oncol.</i> 13(7), 417–430 (2016).
40 41 42 43 44	562 563 564	25.	Finn RS, Dering J, Conklin D, <i>et al.</i> PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. <i>Breast Cancer Res.</i> 11(5), R77 (2009).
45 46 47	565 566	26.	Ding N hua, Liu C fan, Hu C, Yuan J qi, Liao W hua, Xiao Z. Prognostic Factors for Luminal B-like Breast Cancer. <i>Curr. Med. Sci.</i> 39(3), 396–402 (2019).
48 49 50 51	567 568 569	27.	Konecny G, Pauletti G, Pegram M, <i>et al.</i> Quantitative Association Between HER-2/neu and Steroid Hormone Receptors in Hormone Receptor-Positive Primary Breast Cancer. <i>JNCI J. Natl. Cancer Inst.</i> 95(2), 142–153 (2003).
52 53 54	570 571	28.	Howlader N, Altekruse SF, Li CI, <i>et al.</i> US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. <i>J. Natl. Cancer Inst.</i> 106(5) (2014).
55 56 57 58 59 60	572 573 574	29.	Vaz-Luis I, Winer EP, Lin NU. Human epidermal growth factor receptor-2-positive breast cancer: Does estrogen receptor status define two distinct subtypes? <i>Ann. Oncol.</i> 24(2), 283–291 (2013).

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15	575 576 577	30.	Arciero CA, Guo Y, Jiang R, <i>et al.</i> ER+/HER2+ Breast Cancer Has Different Metastatic Patterns and Better Survival Than ER–/HER2+ Breast Cancer. <i>Clin. Breast Cancer</i> . 19(4), 236–245 (2019).
	578 579 580 581	31.	Montemurro F, Di Cosimo S, Arpino G. Human epidermal growth factor receptor 2 (her2)-positive and hormone receptor-positive breast cancer: New insights into molecular interactions and clinical implications. <i>Ann. Oncol.</i> 24(11), 2715–2724 (2013).
	582 583	32.	Lønning PE. Poor-prognosis estrogen receptor- positive disease: Present and future clinical solutions. <i>Ther. Adv. Med. Oncol.</i> 4(3), 127–137 (2012).
16 17 18 19	584 585 586	33.	Montemurro F, Rossi V, Cossu Rocca M, <i>et al.</i> Hormone-receptor expression and activity of trastuzumab with chemotherapy in HER2-positive advanced breast cancer patients. <i>Cancer</i> . 118(1), 17–26 (2012).
20 21 22 23 24	587 588 589	34.	Ellis MJ, Tao Y, Young O, <i>et al.</i> Estrogen-independent proliferation is present in estrogen-receptor HER2-positive primary breast cancer after neoadjuvant letrozole. <i>J. Clin. Oncol.</i> 24(19), 3019–3025 (2006).
24 25 26 27 28	590 591 592	35.	Shou J, Massarweh S, Osborne CK, <i>et al.</i> Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. <i>J. Natl. Cancer Inst.</i> 96(12), 926–935 (2004).
29 30 31 32 33 34 35 36 37 38 39 40 41	593 594 595	36.	Wu VS, Kanaya N, Lo C, Mortimer J, Chen S. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer? <i>J. Steroid Biochem. Mol. Biol.</i> 153, 45–53 (2015).
	596 597 598	37.	Sengupta S, Schiff R, Katzenellenbogen BS. Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells. <i>Breast Cancer Res. Treat</i> . 117(2), 243–251 (2009).
	599 600 601	38.	Lousberg L, Collignon J, Jerusalem G. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: Progress with latest therapeutic strategies. <i>Ther. Adv. Med. Oncol.</i> 8(6), 429–449 (2016).
42 43 44	602 603	39.	Nahta R, O'Regan RM. Therapeutic implications of estrogen receptor signaling in HER2-positive breast cancers. <i>Breast Cancer Res. Treat.</i> 135(1), 39–48 (2012).
45 46 47 48 49 50 51 52 53 54	604 605 606	40.	Giuliano M, Hu H, Wang Y-C, <i>et al.</i> Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. <i>Clin. Cancer Res.</i> 21(17), 3995 LP – 4003 (2015).
	607 608 609 610	41.	Sakai H, Tsurutani J, Iwasa T, <i>et al.</i> HER2 genomic amplification in circulating tumor DNA and estrogen receptor positivity predict primary resistance to trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer. <i>Breast Cancer</i> . 25(5), 605–613 (2018).
55 56 57	611 612	42.	Robinson DR, Wu Y-M, Vats P, <i>et al.</i> Activating ESR1 mutations in hormone-resistant metastatic breast cancer. <i>Nat. Genet.</i> 45(12), 1446–1451 (2013).
58 59 60	613 614	43.	Xu X, De Angelis C, Burke KA, <i>et al.</i> HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in

2			
3 4	615		HER2+ Breast Cancer. <i>Clin. Cancer Res.</i> 23(17), 5123 LP – 5134 (2017).
5 6 7 8	616 617 618	44.	Nayar U, Cohen O, Kapstad C, <i>et al</i> . Acquired HER2 mutations in ER + metastatic breast cancer confer resistance to estrogen receptor–directed therapies. <i>Nat. Genet.</i> 51(2), 207–216 (2019).
9 10 11 12 13	619 620 621	45.	Martínez-Pérez C, Turnbull AK, Dixon JM. The evolving role of receptors as predictive biomarkers for metastatic breast cancer. <i>Expert Rev. Anticancer Ther.</i> 19(2), 121–138 (2019).
13 14 15 16 17	622 623 624	46.	García-Becerra R, Santos N, Díaz L, Camacho J. Mechanisms of resistance to endocrine therapy in breast cancer: Focus on signaling pathways, miRNAs and genetically based resistance. <i>Int. J. Mol. Sci.</i> 14(1), 108–145 (2013).
18 19 20 21	625 626 627	47.	Fribbens C, O'Leary B, Kilburn L, <i>et al.</i> Plasma ESR1 Mutations and the treatment of estrogen receptor-Positive advanced breast cancer. <i>J. Clin. Oncol.</i> 34(25), 2961–2968 (2016).
22 23 24	628 629	48.	Zhang K, Hong R, Xu F, <i>et al.</i> Clinical value of circulating ESR1 mutations for patients with metastatic breast cancer: a meta-analysis. <i>Cancer Manag. Res.</i> 10, 2573 (2018).
25 26 27 28 29	630 631 632	49.	Allouchery V, Beaussire L, Perdrix A, <i>et al</i> . Circulating ESR1 mutations at the end of aromatase inhibitor adjuvant treatment and after relapse in breast cancer patients. <i>Breast Cancer Res.</i> 20(1), 1–5 (2018).
30 31 32 33	633 634 635	50.	Yan C, Wei H, Minjuan Z, <i>et al.</i> The mTOR inhibitor rapamycin synergizes with a fatty acid synthase inhibitor to induce cytotoxicity in ER/HER2-positive breast cancer cells. <i>PLoS One</i> . 9(5), 1–12 (2014).
34 35 36 37	636 637 638	51.	McDermott MSJ, Canonici A, Ivers L, <i>et al</i> . Dual inhibition of IGF1R and ER enhances response to trastuzumab in HER2 positive breast cancer cells. <i>Int. J. Oncol.</i> 50(6), 2221–2228 (2017).
38 39 40 41 42 43	639 640 641 642	52.	Thaler S, Schmidt M, Thiede G, Schad A, Sleeman J. Abstract P6-12-14: Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. 8(42), P6-12-14-P6-12–14 (2017).
44 45 46 47	643 644 645	53.	McKenna M, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. <i>Biochim. Biophys. Acta - Rev. Cancer</i> . 1870(2), 185–197 (2018).
48 49 50 51 52 53	646 647 648 649	54.	Lowenfeld L, Zaheer S, Oechsle C, <i>et al.</i> Addition of anti-estrogen therapy to anti- HER2 dendritic cell vaccination improves regional nodal immune response and pathologic complete response rate in patients with ERpos/HER2pos early breast cancer. <i>Oncoimmunology</i> . 6(9), 1–12 (2017).
55 54 55 56	650 651	55.	Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between Estrogen Signaling and Breast Cancer Metabolism. <i>Trends Endocrinol. Metab.</i> 30(1), 25–38 (2019).
57 58 59 60	652 653 654	56.	Turnbull AK, Arthur LM, Renshaw L, <i>et al.</i> Accurate Prediction and Validation of Response to Endocrine Therapy in Breast Cancer. <i>J. Clin. Oncol.</i> 33(20), 2270–8 (2015).

2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	655 656	57.	Harries M, Smith I. The development and clinical use of trastuzumab (Herceptin). Endocr. Relat. Cancer. 9(2), 75–85 (2002).
	657 658 659	58.	Tripathy D, Kaufman PA, Brufsky AM, <i>et al.</i> First-Line Treatment Patterns and Clinical Outcomes in Patients With HER2-Positive and Hormone Receptor-Positive Metastatic Breast Cancer From registHER. <i>Oncologist</i> . 18(5), 501–510 (2013).
	660 661 662	59.	Gradishar WJ, Anderson BO, Balassanian R, <i>et al.</i> NCCN Guidelines [®] insights breast cancer, version 1.2017: Featured updates to the NCCN Guidelines. <i>JNCCN J. Natl. Compr. Cancer Netw.</i> 15(4), 433–451 (2017).
	663 664 665	60.	Statler AB, Hobbs BP, Wei W, Gupta A, Blake CN, Nahleh ZA. Real-world Treatment Patterns and Outcomes in HR+/HER2+ Metastatic Breast Cancer Patients: A National Cancer Database Analysis. <i>Sci. Rep.</i> 9(1), 1–10 (2019).
19 20 21	666 667	61.	Vici P, Pizzuti L, Natoli C, <i>et al</i> . Triple positive breast cancer: A distinct subtype? <i>Cancer Treat. Rev.</i> 41(2), 69–76 (2015).
22 23 24 25 26 27 28 20 31 32 33 35 36 37 38 39 41 42 43 44 50 51 52 53 45 56 57 58	668 669 670	62.	You SH, Chae BJ, Eom YH, <i>et al.</i> Clinical differences in triple-positive operable breast cancer subtypes in Korean patients: An analysis of Korean breast cancer registry data. <i>J. Breast Cancer.</i> 21(4), 415–424 (2018).
	671 672 673 674 675	63.	Kaufman B, Mackey JR, Clemens MR, <i>et al.</i> Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: Results from the randomized phase III TAnDEM study. <i>J. Clin. Oncol.</i> 27(33), 5529–5537 (2009).
	676 677 678 679	64.	Huober J, Fasching PA, Barsoum M, <i>et al.</i> Higher efficacy of letrozole in combination with trastuzumab compared to letrozole monotherapy as first-line treatment in patients with HER2-positive, hormone-receptor-positive metastatic breast cancer - Results of the eLEcTRA trial. <i>Breast.</i> 21(1), 27–33 (2012).
	680 681 682	65.	Schettini F, Buono G, Cardalesi C, Desideri I, De Placido S, Del Mastro L. Hormone Receptor/Human Epidermal Growth Factor Receptor 2-positive breast cancer: Where we are now and where we are going. <i>Cancer Treat. Rev.</i> 46, 20–26 (2016).
	683 684 685	66.	Roche PC, Suman VJ, Jenkins RB, <i>et al.</i> Concordance between local and central laboratory HER2 testing in the breast intergroup trial N9831. <i>J. Natl. Cancer Inst.</i> 94(11), 855–857 (2002).
	686 687 688	67.	Rosa M, Khazai L. Comparison of HER2 testing among laboratories: Our experience with review cases retested at Moffitt Cancer Center in a two-year period. <i>Breast J.</i> 24(2), 139–147 (2018).
	689 690 691	68.	Prat A, Cheang MCU, Galván P, <i>et al.</i> Prognostic Value of Intrinsic Subtypes in Hormone Receptor-Positive Metastatic Breast Cancer Treated With Letrozole With or Without Lapatinib. <i>JAMA Oncol.</i> 2(10), 1287–1294 (2016).
	692 693	69.	Viale G, Munzone E. Treatment selection for patients with equivocal HER2 status and in luminal versus HER2-enriched disease. <i>Breast</i> . 48, S49–S52 (2019).
59 60	694	70.	Swain SM, Baselga J, Kim S-B, et al. Pertuzumab, Trastuzumab, and Docetaxel in

1 2			
- 3 4	695		HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 372(8), 724–734 (2015).
4 5 6 7	696 697	71.	Overview Pertuzumab with trastuzumab and docetaxel for treating HER2-positive breast cancer Guidance NICE. NICE.
8 9 10	698 699	72.	Overview Pertuzumab for the neoadjuvant treatment of HER2-positive breast cancer Guidance NICE. NICE.
11 12	700	73.	Berry DA, Ph D, Cirrincione C, <i>et al.</i> NIH Public Access. 295(14), 1658–1667 (2006).
13 14 15 16	701 702 703	74.	Wapnir IL, Price KN, Anderson SJ, <i>et al.</i> Efficacy of chemotherapy for ER-negative and ER-positive isolated locoregional recurrence of breast cancer: Final analysis of the CALOR trial. <i>J. Clin. Oncol.</i> 36(11), 1073–1079 (2018).
17 18 19 20 21	704 705 706	75.	Saleh RR, Bouganim N, Hilton J, Arnaout A, Clemons M. Neoadjuvant endocrine treatment for breast cancer: from bedside to bench and back again? <i>Curr. Oncol.</i> 21(1), e122–e128 (2014).
22 23 24 25	707 708 709	76.	Miller WR, Larionov AA, Renshaw L, <i>et al.</i> Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. <i>Pharmacogenet. Genomics</i> . 17(10), 813–826 (2007).
26 27 28	710 711	77.	Dixon JM. Does presurgical treatment destroy important prognostic information. Breast Cancer Res. 9(S2), 9–11 (2007).
29 30 31 32	712 713 714	78.	Di Cosimo S, Arpino G, Generali D. Neoadjuvant treatment of HER2 and hormone- receptor positive breast cancer - Moving beyond pathological complete response. <i>Breast</i> . 23(2), 188–192 (2014).
33 34 35 36 37 38	715 716 717 718	79.	Gianni L, Bisagni G, Colleoni M, <i>et al.</i> Neoadjuvant treatment with trastuzumab and pertuzumab plus palbociclib and fulvestrant in HER2-positive, ER-positive breast cancer (NA-PHER2): an exploratory, open-label, phase 2 study. <i>Lancet Oncol.</i> 19(2), 249–256 (2018).
39 40 41 42	719 720 721	80.	Chow LWC, Morita S, Chow CYC, Ng WK, Toi M. Neoadjuvant palbociclib on ER+ breast cancer (N007): Clinical response and EndoPredict's value. <i>Endocr. Relat.</i> <i>Cancer</i> . 25(2), 123–130 (2018).
43 44 45 46 47	722 723 724	81.	Risi E, Grilli A, Migliaccio I, <i>et al.</i> A gene expression signature of Retinoblastoma loss- of-function predicts resistance to neoadjuvant chemotherapy in ER-positive/HER2- positive breast cancer patients. <i>Breast Cancer Res. Treat.</i> 170(2), 329–341 (2018).
48 49 50 51 52	725 726 727 728	82.	Brodsky AS, Xiong J, Yang D, <i>et al.</i> Identification of stromal ColXα1 and tumor- infiltrating lymphocytes as putative predictive markers of neoadjuvant therapy in estrogen receptor-positive/HER2-positive breast cancer. <i>BMC Cancer</i> . 16(1), 1–13 (2016).
53 54 55 56 57 58 59 60	729 730 731 732 733	83.	Rimawi M, Ferrero JM, De La Haba-Rodriguez J, <i>et al.</i> First-line trastuzumab plus an aromatase inhibitor, with or without pertuzumab, in human epidermal growth factor receptor 2-positive and hormone receptor-positive metastatic or locally advanced breast cancer (PERTAIN): A randomized, open-label phase II tr. <i>J. Clin. Oncol.</i> 36(28), 2826–2835 (2018).

1 2			
3 4 5 6 7 8 9 10 11 12 13 14	734 735 736	84.	Rusz O, Kószó R, Dobi Á, <i>et al.</i> Clinical benefit of fulvestrant monotherapy in the multimodal treatment of hormone receptor and HER2 positive advanced breast cancer: A case series. <i>Onco. Targets. Ther.</i> 11, 5459–5463 (2018).
	737 738	85.	Neratinib +/- Fulvestrant in HER2+, ER+ Metastatic Breast Cancer - Full Text View - ClinicalTrials.gov
	739 740 741	86.	Smyth LM, Saura C, Piha-Paul SA, <i>et al.</i> Update on the phase II SUMMIT trial: Neratinib + fulvestrant for HER2-mutant, HR-positive, metastatic breast cancer. <i>Ann.</i> <i>Oncol.</i> 30(May), iii10–iii11 (2019).
15 16 17	742 743	87.	Turner NC, Ro J, André F, <i>et al</i> . Palbociclib in hormone-receptor-positive advanced breast cancer. <i>N. Engl. J. Med.</i> 373(3), 209–219 (2015).
18 19 20 21	744 745 746	88.	O'leary B, Cutts RJ, Liu Y, <i>et al.</i> The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. <i>Cancer Discov.</i> 8(11), 1390–1403 (2018).
22 23 24 25	747 748 749	89.	Palbociclib in Estrogen Receptor Positive (ER+) Human Epidermal Growth Factor Receptor 2 Positive (HER2+) Metastatic Breast Cancer - Full Text View - ClinicalTrials.gov
26 27 28 29 30 31 32	750 751 752 753 754	90.	Tolaney SM, Wardley AM, Zambelli S, <i>et al.</i> Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. <i>Lancet Oncol.</i> 21(6), 763–775 (2020).
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	755 756 757 758 759	91.	Johnston SRD, Hegg R, Im S-A, <i>et al.</i> Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor–Positive Metastatic Breast. <i>J. Clin.</i> <i>Oncol.</i> , JCO.20.01894 (2020).
	760 761 762 763 764	92.	Park JH, Kang MJ, Ahn JH, <i>et al.</i> Phase II trial of neoadjuvant letrozole and lapatinib in Asian postmenopausal women with estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2)-positive breast cancer [Neo-ALL-IN]: Highlighting the TILs, ER expressional change after ne. <i>Cancer Chemother. Pharmacol.</i> 78(4), 685–695 (2016).
	765 766 767 768 769	93.	Rimawi M, Cecchini R, Rastogi P, <i>et al.</i> Abstract S3-06: A phase III trial evaluating pCR in patients with HR+, HER2-positive breast cancer treated with neoadjuvant docetaxel, carboplatin, trastuzumab, and pertuzumab (TCHP) +/- estrogen deprivation: NRG Oncology/NSABP B-52. In: <i>General Session Abstracts</i> , American Association for Cancer Research, S3-06-S3-06 (2017).
	770 771 772 773	94.	Martin M, Holmes FA, Ejlertsen B, <i>et al.</i> Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. <i>Lancet Oncol.</i> 18(12), 1688–1700 (2017).
59 60	774	95.	Schwarz LJ, Croessmann SE, Avogadri-Connors F, Cutler RE, Lalani AS, Arteaga CL.

2			
3 4	775 776		Abstract 4818: Neratinib/fulvestrant but not fulvestrant alone maintain complete responses after treatment with trastuzumab/paclitaxel of mice bearing ER+/HER2+
5 6	777		xenografts. <i>Cancer Res.</i> 77(13 Supplement), 4818 LP – 4818 (2017).
7 8 9	778 779	96.	Sudhan DR, Schwarz LJ, Guerrero-Zotano A, <i>et al</i> . Extended adjuvant therapy with neratinib plus fulvestrant blocks ER/HER2 crosstalk and maintains complete
9 10	780		responses of ER β /HER2 β breast cancers: Implications to the EXTENET trial. <i>Clin.</i>
11	781		Cancer Res. 25(2), 771–783 (2019).
12	701		
13 14	782	97.	Chong QY, You ML, Pandey V, et al. Release of HER2 repression of trefoil factor 3
15	783		(TFF3) expression mediates trastuzumab resistance in HER2+/ER+ mammary
16	784		carcinoma. <i>Oncotarget</i> . 8(43), 74188–74208 (2017).
17 18	785	98.	Turnbull AK, Webber V, McStay D, et al. Abstract P1-18-07: Can some ER+/HER2+
19	786		patients be safely spared from treatment with chemotherapy plus herceptin? Cancer
20	787		<i>Res.</i> 80(4 Supplement), P1-18-07 LP-P1-18–07 (2020).
21 22	788	99.	Kanaya N, Somlo G, Wu J, et al. Characterization of patient-derived tumor xenografts
23	789		(PDXs) as models for estrogen receptor positive (ER+HER2– and ER+HER2+) breast
24	790		cancers. J. Steroid Biochem. Mol. Biol. 170, 65–74 (2017).
25 26	791	1.	Breast cancer statistics World Cancer Research Fund
27			
28 29	792	2.	Qureshi A, Pervez S. Original Article Allred scoring for ER reporting and it's impact in
30	793		clearly distinguishing ER negative from ER positive breast cancers Study Population :
31	794		ER Immunohistochemical Analysis : Am. J. Clin. Pathol. 60(5), 350–353 (2010).
32 33	795	3.	Kohler BA, Sherman RL, Howlader N, et al. Annual report to the nation on the status
34	796		of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity,
35 36	797		poverty, and state. J. Natl. Cancer Inst. 107(6) (2015).
37	798	4.	McCann AH, Dervan PA, O'Regan M, et al. Prognostic Significance of c-
38	799		erbB -2 and Estrogen Receptor Status in Human Breast Cancer.
39 40	800		Cancer Res. 51(12), 3296 LP – 3303 (1991).
41	801	5.	Peintinger F, Buzdar AU, Kuerer HM, et al. Hormone receptor status and pathologic
42	802		response of HER2-positive breast cancer treated with neoadjuvant chemotherapy and
43 44	803		trastuzumab. Ann. Oncol. 19(12), 2020–2025 (2008).
45	804	6.	Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The
46 47	805		HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti–HER-2 Therapy and
48	806		Personalized Medicine. Oncologist. 14(4), 320–368 (2009).
49	807	7.	Perou CM, Sørlie T, Eisen MB, <i>et al.</i> Molecular portraits of human breast tumours.
50 51	808		letters to nature 748. 533(May), 747–752 (2000).
52			
53	809	8.	Parker JSJS, Mullins M, Cheang MCU, et al. Supervised Risk Predictor of Breast Cancer
54 55	810		Based on Intrinsic Subtypes. J. Clin. Oncol. 27(8), 1160–1167 (2009).
56	811	9.	Ward HWC. Anti-oestrogen Therapy for Breast Cancer: A Trial of Tamoxifen at Two
57 58	812		Dose Levels. BMJ. 1(5844), 13–14 (1973).
58 59	813	10.	Nardone A, Weir H, Delpuech O, et al. The oral selective oestrogen receptor degrader
60			

1 2			
3 4 5	814 815		(SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance. <i>Br. J. Cancer</i> . 120(3), 331–339 (2019).
6 7 8 9	816 817 818	11.	McDonnell DP, Wardell SE, Norris JD. Oral Selective Estrogen Receptor Downregulators (SERDs), a Breakthrough Endocrine Therapy for Breast Cancer. J. Med. Chem. 58(12), 4883–4887 (2015).
10 11 12 13 14	819 820 821	12.	Hamilton EP, Patel MR, Armstrong AC, <i>et al.</i> A first-in-human study of the new oral selective estrogen receptor degrader AZD9496 for ER+/HER2- advanced breast cancer. <i>Clin. Cancer Res.</i> 24(15), 3510–3518 (2018).
15 16 17 18	822 823 824	13.	Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. <i>Clin. Ther.</i> 21(2), 309–318 (1999).
19 20 21	825 826	14.	Mohan N, Jiang J, Dokmanovic M, Wu WJ. Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers. <i>Antib. Ther.</i> 1(1), 13–17 (2018).
22 23 24	827 828	15.	Harbeck N, Beckmann MW, Rody A, <i>et al.</i> HER2 dimerization inhibitor pertuzumab - Mode of action and clinical data in breast cancer. <i>Breast Care</i> . 8(1), 49–55 (2013).
25 26 27 28	829 830 831	16.	Ryan Q, Ibrahim A, Cohen MH, <i>et al.</i> FDA Drug Approval Summary: Lapatinib in Combination with Capecitabine for Previously Treated Metastatic Breast Cancer That Overexpresses HER-2. <i>Oncologist</i> . 13(10), 1114–1119 (2008).
29 30 31 32 33	832 833 834	17.	Xu ZQ, Zhang Y, Li N, <i>et al.</i> Efficacy and safety of lapatinib and trastuzumab for HER2- positive breast cancer: A systematic review and meta-analysis of randomised controlled trials. <i>BMJ Open</i> . 7(3), 1–9 (2017).
34 35 36 37	835 836 837	18.	Wang YC, Morrison G, Gillihan R, <i>et al.</i> Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers role of estrogen receptor and HER2 reactivation. <i>Breast Cancer Res.</i> 13(6), R121 (2011).
38 39 40 41	838 839 840	19.	Overview Neratinib for extended adjuvant treatment of hormone receptor-positive, HER2-positive early stage breast cancer after adjuvant trastuzumab Guidance NICE. NICE.
42 43 44 45 46	841 842 843	20.	Lewis Phillips GD, Li G, Dugger DL, <i>et al.</i> Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. <i>Cancer Res.</i> 68(22), 9280–9290 (2008).
47 48 49	844 845	21.	Overview Trastuzumab emtansine for treating HER2-positive advanced breast cancer after trastuzumab and a taxane Guidance NICE. NICE.
50 51 52 53 54	846 847 848 849	22.	Doi T, Shitara K, Naito Y, <i>et al.</i> Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. <i>Lancet Oncol.</i> 18(11), 1512–1522 (2017).
55 56 57 58 59 60	850 851 852	23.	Shah M, Nunes MR, Stearns V. CDK4/6 inhibitors: Game changers in the management of hormone receptor– positive advanced breast cancer? <i>Oncol. (United States)</i> . 32(5), 216–222 (2018).

1 2			
3 4 5	853 854	24.	O'Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. <i>Nat. Rev. Clin. Oncol.</i> 13(7), 417–430 (2016).
6 7 8 9	855 856 857	25.	Finn RS, Dering J, Conklin D, <i>et al</i> . PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. <i>Breast Cancer Res.</i> 11(5), R77 (2009).
10 11 12	858 859	26.	Ding N hua, Liu C fan, Hu C, Yuan J qi, Liao W hua, Xiao Z. Prognostic Factors for Luminal B-like Breast Cancer. <i>Curr. Med. Sci.</i> 39(3), 396–402 (2019).
13 14 15 16 17	860 861 862	27.	Konecny G, Pauletti G, Pegram M, <i>et al.</i> Quantitative Association Between HER-2/neu and Steroid Hormone Receptors in Hormone Receptor-Positive Primary Breast Cancer. <i>JNCI J. Natl. Cancer Inst.</i> 95(2), 142–153 (2003).
18 19 20	863 864	28.	Howlader N, Altekruse SF, Li CI, <i>et al.</i> US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. <i>J. Natl. Cancer Inst.</i> 106(5) (2014).
21 22 23 24	865 866 867	29.	Vaz-Luis I, Winer EP, Lin NU. Human epidermal growth factor receptor-2-positive breast cancer: Does estrogen receptor status define two distinct subtypes? <i>Ann. Oncol.</i> 24(2), 283–291 (2013).
25 26 27 28 29	868 869 870	30.	Arciero CA, Guo Y, Jiang R, <i>et al.</i> ER+/HER2+ Breast Cancer Has Different Metastatic Patterns and Better Survival Than ER–/HER2+ Breast Cancer. <i>Clin. Breast Cancer</i> . 19(4), 236–245 (2019).
30 31 32 33 34	871 872 873 874	31.	Montemurro F, Di Cosimo S, Arpino G. Human epidermal growth factor receptor 2 (her2)-positive and hormone receptor-positive breast cancer: New insights into molecular interactions and clinical implications. <i>Ann. Oncol.</i> 24(11), 2715–2724 (2013).
35 36 37	875 876	32.	Lønning PE. Poor-prognosis estrogen receptor- positive disease: Present and future clinical solutions. <i>Ther. Adv. Med. Oncol.</i> 4(3), 127–137 (2012).
38 39 40 41 42	877 878 879	33.	Montemurro F, Rossi V, Cossu Rocca M, <i>et al.</i> Hormone-receptor expression and activity of trastuzumab with chemotherapy in HER2-positive advanced breast cancer patients. <i>Cancer</i> . 118(1), 17–26 (2012).
42 43 44 45 46	880 881 882	34.	Ellis MJ, Tao Y, Young O, <i>et al.</i> Estrogen-independent proliferation is present in estrogen-receptor HER2-positive primary breast cancer after neoadjuvant letrozole. <i>J. Clin. Oncol.</i> 24(19), 3019–3025 (2006).
47 48 49 50	883 884 885	35.	Shou J, Massarweh S, Osborne CK, <i>et al.</i> Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. <i>J. Natl. Cancer Inst.</i> 96(12), 926–935 (2004).
51 52 53 54	886 887 888	36.	Wu VS, Kanaya N, Lo C, Mortimer J, Chen S. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer? <i>J. Steroid Biochem. Mol. Biol.</i> 153, 45–53 (2015).
55 56 57 58 59 60	889 890 891	37.	Sengupta S, Schiff R, Katzenellenbogen BS. Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells. <i>Breast Cancer Res. Treat.</i> 117(2), 243–251 (2009).

1 2			
3 4 5 6	892 893 894	38.	Lousberg L, Collignon J, Jerusalem G. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: Progress with latest therapeutic strategies. <i>Ther. Adv. Med. Oncol.</i> 8(6), 429–449 (2016).
7 8 9	895 896	39.	Nahta R, O'Regan RM. Therapeutic implications of estrogen receptor signaling in HER2-positive breast cancers. <i>Breast Cancer Res. Treat.</i> 135(1), 39–48 (2012).
10 11 12 13 14	897 898 899	40.	Giuliano M, Hu H, Wang Y-C, <i>et al</i> . Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. <i>Clin. Cancer Res.</i> 21(17), 3995 LP – 4003 (2015).
15 16 17 18 19	900 901 902 903	41.	Sakai H, Tsurutani J, Iwasa T, <i>et al.</i> HER2 genomic amplification in circulating tumor DNA and estrogen receptor positivity predict primary resistance to trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer. <i>Breast Cancer</i> . 25(5), 605–613 (2018).
20 21 22	904 905	42.	Robinson DR, Wu Y-M, Vats P, <i>et al.</i> Activating ESR1 mutations in hormone-resistant metastatic breast cancer. <i>Nat. Genet.</i> 45(12), 1446–1451 (2013).
23 24 25 26 27	906 907 908	43.	Xu X, De Angelis C, Burke KA, <i>et al.</i> HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer. <i>Clin. Cancer Res.</i> 23(17), 5123 LP – 5134 (2017).
28 29 30 31	909 910 911	44.	Nayar U, Cohen O, Kapstad C, <i>et al.</i> Acquired HER2 mutations in ER + metastatic breast cancer confer resistance to estrogen receptor–directed therapies. <i>Nat. Genet.</i> 51(2), 207–216 (2019).
32 33 34 35	912 913 914	45.	Martínez-Pérez C, Turnbull AK, Dixon JM. The evolving role of receptors as predictive biomarkers for metastatic breast cancer. <i>Expert Rev. Anticancer Ther.</i> 19(2), 121–138 (2019).
36 37 38 39 40	915 916 917	46.	García-Becerra R, Santos N, Díaz L, Camacho J. Mechanisms of resistance to endocrine therapy in breast cancer: Focus on signaling pathways, miRNAs and genetically based resistance. <i>Int. J. Mol. Sci.</i> 14(1), 108–145 (2013).
40 41 42 43 44	918 919 920	47.	Fribbens C, O'Leary B, Kilburn L, <i>et al.</i> Plasma ESR1 Mutations and the treatment of estrogen receptor-Positive advanced breast cancer. <i>J. Clin. Oncol.</i> 34(25), 2961–2968 (2016).
45 46 47	921 922	48.	Zhang K, Hong R, Xu F, <i>et al.</i> Clinical value of circulating ESR1 mutations for patients with metastatic breast cancer: a meta-analysis. <i>Cancer Manag. Res.</i> 10, 2573 (2018).
48 49 50 51	923 924 925	49.	Allouchery V, Beaussire L, Perdrix A, <i>et al</i> . Circulating ESR1 mutations at the end of aromatase inhibitor adjuvant treatment and after relapse in breast cancer patients. <i>Breast Cancer Res.</i> 20(1), 1–5 (2018).
52 53 54 55 56	926 927 928	50.	Yan C, Wei H, Minjuan Z, <i>et al.</i> The mTOR inhibitor rapamycin synergizes with a fatty acid synthase inhibitor to induce cytotoxicity in ER/HER2-positive breast cancer cells. <i>PLoS One</i> . 9(5), 1–12 (2014).
57 58 59 60	929 930 931	51.	McDermott MSJ, Canonici A, Ivers L, <i>et al.</i> Dual inhibition of IGF1R and ER enhances response to trastuzumab in HER2 positive breast cancer cells. <i>Int. J. Oncol.</i> 50(6), 2221–2228 (2017).

1			
2 3 4 5 6 7	932 933 934 935	52.	Thaler S, Schmidt M, Thiede G, Schad A, Sleeman J. Abstract P6-12-14: Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. 8(42), P6-12-14-P6-12-14 (2017).
8 9 10 11 12	936 937 938	53.	McKenna M, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. <i>Biochim. Biophys. Acta - Rev. Cancer</i> . 1870(2), 185–197 (2018).
13 14 15 16 17	939 940 941 942	54.	Lowenfeld L, Zaheer S, Oechsle C, <i>et al.</i> Addition of anti-estrogen therapy to anti- HER2 dendritic cell vaccination improves regional nodal immune response and pathologic complete response rate in patients with ERpos/HER2pos early breast cancer. <i>Oncoimmunology</i> . 6(9), 1–12 (2017).
18 19 20	943 944	55.	Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between Estrogen Signaling and Breast Cancer Metabolism. <i>Trends Endocrinol. Metab.</i> 30(1), 25–38 (2019).
21 22 23 24 25	945 946 947	56.	Turnbull AK, Arthur LM, Renshaw L, <i>et al.</i> Accurate Prediction and Validation of Response to Endocrine Therapy in Breast Cancer. <i>J. Clin. Oncol.</i> 33(20), 2270–8 (2015).
26 27 28	948 949	57.	Harries M, Smith I. The development and clinical use of trastuzumab (Herceptin). Endocr. Relat. Cancer. 9(2), 75–85 (2002).
29 30 31 32	950 951 952	58.	Tripathy D, Kaufman PA, Brufsky AM, <i>et al.</i> First-Line Treatment Patterns and Clinical Outcomes in Patients With HER2-Positive and Hormone Receptor-Positive Metastatic Breast Cancer From registHER. <i>Oncologist</i> . 18(5), 501–510 (2013).
33 34 35 36 37	953 954 955	59.	Gradishar WJ, Anderson BO, Balassanian R, <i>et al.</i> NCCN Guidelines [®] insights breast cancer, version 1.2017: Featured updates to the NCCN Guidelines. <i>JNCCN J. Natl. Compr. Cancer Netw.</i> 15(4), 433–451 (2017).
37 38 39 40 41	956 957 958	60.	Statler AB, Hobbs BP, Wei W, Gupta A, Blake CN, Nahleh ZA. Real-world Treatment Patterns and Outcomes in HR+/HER2+ Metastatic Breast Cancer Patients: A National Cancer Database Analysis. <i>Sci. Rep.</i> 9(1), 1–10 (2019).
42 43 44	959 960	61.	Vici P, Pizzuti L, Natoli C, <i>et al.</i> Triple positive breast cancer: A distinct subtype? <i>Cancer Treat. Rev.</i> 41(2), 69–76 (2015).
45 46 47 48	961 962 963	62.	You SH, Chae BJ, Eom YH, <i>et al.</i> Clinical differences in triple-positive operable breast cancer subtypes in Korean patients: An analysis of Korean breast cancer registry data. <i>J. Breast Cancer</i> . 21(4), 415–424 (2018).
49 50 51 52 53 54 55	964 965 966 967 968	63.	Kaufman B, Mackey JR, Clemens MR, <i>et al.</i> Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: Results from the randomized phase III TAnDEM study. <i>J. Clin. Oncol.</i> 27(33), 5529–5537 (2009).
56 57 58 59 60	969 970 971 972	64.	Huober J, Fasching PA, Barsoum M, <i>et al.</i> Higher efficacy of letrozole in combination with trastuzumab compared to letrozole monotherapy as first-line treatment in patients with HER2-positive, hormone-receptor-positive metastatic breast cancer - Results of the eLEcTRA trial. <i>Breast.</i> 21(1), 27–33 (2012).

2 3 4 5 6	973 974 975	65.	Schettini F, Buono G, Cardalesi C, Desideri I, De Placido S, Del Mastro L. Hormone Receptor/Human Epidermal Growth Factor Receptor 2-positive breast cancer: Where we are now and where we are going. <i>Cancer Treat. Rev.</i> 46, 20–26 (2016).
7 8 9 10 11	976 977 978	66.	Roche PC, Suman VJ, Jenkins RB, <i>et al</i> . Concordance between local and central laboratory HER2 testing in the breast intergroup trial N9831. <i>J. Natl. Cancer Inst.</i> 94(11), 855–857 (2002).
12 13 14 15	979 980 981	67.	Rosa M, Khazai L. Comparison of HER2 testing among laboratories: Our experience with review cases retested at Moffitt Cancer Center in a two-year period. <i>Breast J.</i> 24(2), 139–147 (2018).
16 17 18 19	982 983 984	68.	Prat A, Cheang MCU, Galván P, <i>et al.</i> Prognostic Value of Intrinsic Subtypes in Hormone Receptor-Positive Metastatic Breast Cancer Treated With Letrozole With or Without Lapatinib. <i>JAMA Oncol.</i> 2(10), 1287–1294 (2016).
20 21 22	985 986	69.	Viale G, Munzone E. Treatment selection for patients with equivocal HER2 status and in luminal versus HER2-enriched disease. <i>Breast</i> . 48, S49–S52 (2019).
23 24 25	987 988	70.	Swain SM, Baselga J, Kim S-B, <i>et al</i> . Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. <i>N. Engl. J. Med.</i> 372(8), 724–734 (2015).
26 27 28	989 990	71.	Overview Pertuzumab with trastuzumab and docetaxel for treating HER2-positive breast cancer Guidance NICE. NICE.
29 30 31 32	991 992	72.	Overview Pertuzumab for the neoadjuvant treatment of HER2-positive breast cancer Guidance NICE. NICE.
33	993	73.	Berry DA, Ph D, Cirrincione C, <i>et al</i> . NIH Public Access. 295(14), 1658–1667 (2006).
34 35 36 37 38	994 995 996	74.	Wapnir IL, Price KN, Anderson SJ, <i>et al</i> . Efficacy of chemotherapy for ER-negative and ER-positive isolated locoregional recurrence of breast cancer: Final analysis of the CALOR trial. <i>J. Clin. Oncol.</i> 36(11), 1073–1079 (2018).
39 40 41 42	997 998 999	75.	Saleh RR, Bouganim N, Hilton J, Arnaout A, Clemons M. Neoadjuvant endocrine treatment for breast cancer: from bedside to bench and back again? <i>Curr. Oncol.</i> 21(1), e122–e128 (2014).
43 44 45 46 47	1000 1001 1002	76.	Miller WR, Larionov AA, Renshaw L, <i>et al.</i> Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. <i>Pharmacogenet. Genomics</i> . 17(10), 813–826 (2007).
48 49	1003 1004	77.	Dixon JM. Does presurgical treatment destroy important prognostic information. <i>Breast Cancer Res.</i> 9(S2), 9–11 (2007).
50 51 52 53 54	1005 1006 1007	78.	Di Cosimo S, Arpino G, Generali D. Neoadjuvant treatment of HER2 and hormone- receptor positive breast cancer - Moving beyond pathological complete response. <i>Breast</i> . 23(2), 188–192 (2014).
55 56 57 58 59 60	1008 1009 1010 1011	79.	Gianni L, Bisagni G, Colleoni M, <i>et al.</i> Neoadjuvant treatment with trastuzumab and pertuzumab plus palbociclib and fulvestrant in HER2-positive, ER-positive breast cancer (NA-PHER2): an exploratory, open-label, phase 2 study. <i>Lancet Oncol.</i> 19(2), 249–256 (2018).

1012 1013 1014	80.	Chow LWC, Morita S, Chow CYC, Ng WK, Toi M. Neoadjuvant palbociclib on ER+ breast cancer (N007): Clinical response and EndoPredict's value. <i>Endocr. Relat.</i> <i>Cancer</i> . 25(2), 123–130 (2018).
1015 1016 1017	81.	Risi E, Grilli A, Migliaccio I, <i>et al</i> . A gene expression signature of Retinoblastoma loss- of-function predicts resistance to neoadjuvant chemotherapy in ER-positive/HER2- positive breast cancer patients. <i>Breast Cancer Res. Treat.</i> 170(2), 329–341 (2018).
1018 1019 1020 1021	82.	Brodsky AS, Xiong J, Yang D, <i>et al.</i> Identification of stromal ColXα1 and tumor- infiltrating lymphocytes as putative predictive markers of neoadjuvant therapy in estrogen receptor-positive/HER2-positive breast cancer. <i>BMC Cancer</i> . 16(1), 1–13 (2016).
1022 1023 1024 1025 1026	83.	Rimawi M, Ferrero JM, De La Haba-Rodriguez J, <i>et al.</i> First-line trastuzumab plus an aromatase inhibitor, with or without pertuzumab, in human epidermal growth factor receptor 2-positive and hormone receptor-positive metastatic or locally advanced breast cancer (PERTAIN): A randomized, open-label phase II tr. <i>J. Clin. Oncol.</i> 36(28), 2826–2835 (2018).
1027 1028 1029	84.	Rusz O, Kószó R, Dobi Á, <i>et al.</i> Clinical benefit of fulvestrant monotherapy in the multimodal treatment of hormone receptor and HER2 positive advanced breast cancer: A case series. <i>Onco. Targets. Ther.</i> 11, 5459–5463 (2018).
1030 1031	85.	Neratinib +/- Fulvestrant in HER2+, ER+ Metastatic Breast Cancer - Full Text View - ClinicalTrials.gov
1032 1033 1034	86.	Smyth LM, Saura C, Piha-Paul SA, <i>et al.</i> Update on the phase II SUMMIT trial: Neratinib + fulvestrant for HER2-mutant, HR-positive, metastatic breast cancer. <i>Ann.</i> <i>Oncol.</i> 30(May), iii10–iii11 (2019).
1035 1036	87.	Turner NC, Ro J, André F, <i>et al</i> . Palbociclib in hormone-receptor-positive advanced breast cancer. <i>N. Engl. J. Med.</i> 373(3), 209–219 (2015).
1037 1038 1039	88.	O'leary B, Cutts RJ, Liu Y, <i>et al.</i> The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. <i>Cancer Discov.</i> 8(11), 1390–1403 (2018).
1040 1041 1042	89.	Palbociclib in Estrogen Receptor Positive (ER+) Human Epidermal Growth Factor Receptor 2 Positive (HER2+) Metastatic Breast Cancer - Full Text View - ClinicalTrials.gov
1043 1044 1045 1046 1047	90.	Tolaney SM, Wardley AM, Zambelli S, <i>et al.</i> Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. <i>Lancet Oncol.</i> 21(6), 763–775 (2020).
1048 1049 1050 1051 1052	91.	Johnston SRD, Hegg R, Im S-A, <i>et al.</i> Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor–Positive Metastatic Breast. <i>J. Clin.</i> <i>Oncol.</i> , JCO.20.01894 (2020).
	1013 1014 1015 1016 1017 1018 1019 1020 1021 1023 1024 1025 1026 1027 1028 1027 1028 1029 1030 1031 1032 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047	1013 81. 1015 81. 1016 81. 1017 82. 1019 82. 1010 83. 1020 83. 1021 83. 1022 83. 1023 84. 1025 84. 1026 85. 1027 84. 1028 85. 1029 85. 1030 85. 1031 86. 1033 87. 1035 87. 1036 89. 1037 88. 1039 90. 1040 89. 1041 90. 1042 90. 1043 90. 1044 91. 1045 91. 1046 91. 1047 91. 1048 91. 1050 91.

2 3 4 5 6 7 8 9	1053 1054 1055 1056 1057	92.	Park JH, Kang MJ, Ahn JH, <i>et al.</i> Phase II trial of neoadjuvant letrozole and lapatinib in Asian postmenopausal women with estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2)-positive breast cancer [Neo-ALL-IN]: Highlighting the TILs, ER expressional change after ne. <i>Cancer Chemother. Pharmacol.</i> 78(4), 685–695 (2016).
10 11 12 13 14 15 16	1058 1059 1060 1061 1062	93.	Rimawi M, Cecchini R, Rastogi P, <i>et al.</i> Abstract S3-06: A phase III trial evaluating pCR in patients with HR+, HER2-positive breast cancer treated with neoadjuvant docetaxel, carboplatin, trastuzumab, and pertuzumab (TCHP) +/- estrogen deprivation: NRG Oncology/NSABP B-52. In: <i>General Session Abstracts</i> , American Association for Cancer Research, S3-06-S3-06 (2017).
17 18 19 20 21	1063 1064 1065 1066	94.	Martin M, Holmes FA, Ejlertsen B, <i>et al.</i> Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. <i>Lancet Oncol.</i> 18(12), 1688–1700 (2017).
22 23 24 25 26 27	1067 1068 1069 1070	95.	Schwarz LJ, Croessmann SE, Avogadri-Connors F, Cutler RE, Lalani AS, Arteaga CL. Abstract 4818: Neratinib/fulvestrant but not fulvestrant alone maintain complete responses after treatment with trastuzumab/paclitaxel of mice bearing ER+/HER2+ xenografts. <i>Cancer Res.</i> 77(13 Supplement), 4818 LP – 4818 (2017).
28 29 30 31 32	1071 1072 1073 1074	96.	Sudhan DR, Schwarz LJ, Guerrero-Zotano A, <i>et al.</i> Extended adjuvant therapy with neratinib plus fulvestrant blocks ER/HER2 crosstalk and maintains complete responses of ER b /HER2 b breast cancers: Implications to the EXTENET trial. <i>Clin. Cancer Res.</i> 25(2), 771–783 (2019).
33 34 35 36	1075 1076 1077	97.	Chong QY, You ML, Pandey V, <i>et al.</i> Release of HER2 repression of trefoil factor 3 (TFF3) expression mediates trastuzumab resistance in HER2+/ER+ mammary carcinoma. <i>Oncotarget</i> . 8(43), 74188–74208 (2017).
37 38 39 40 41	1078 1079 1080	98.	Turnbull AK, Webber V, McStay D, <i>et al</i> . Abstract P1-18-07: Can some ER+/HER2+ patients be safely spared from treatment with chemotherapy plus herceptin? <i>Cancer Res.</i> 80(4 Supplement), P1-18-07 LP-P1-18–07 (2020).
42 43 44 45	1081 1082 1083	99.	Kanaya N, Somlo G, Wu J, <i>et al</i> . Characterization of patient-derived tumor xenografts (PDXs) as models for estrogen receptor positive (ER+HER2– and ER+HER2+) breast cancers. <i>J. Steroid Biochem. Mol. Biol.</i> 170, 65–74 (2017).
46 47 48 49	1084 1085 1086	100.	A Study to Compare the Safety and Efficacy of an Aromatase Inhibitor in Combination With Lapatinib, Trastuzumab or Both for the Treatment of Hormone Receptor Positive, HER2+ Metastatic Breast Cancer - ClinicalTrials.gov.
50 51 52 53	1087 1088	101.	Study of Palbociclib and Trastuzumab With Endocrine Therapy in HER2-positive Metastatic Breast Cancer - ClinicalTrials.gov.
55 54 55 56 57	1089 1090 1091	102.	An Open-Label, Phase Ib/II Clinical Trial Of Cdk 4/6 Inhibitor, Ribociclib (Lee011), In Combination With Trastuzumab Or T-Dm1 For Advanced/Metastatic Her2-Positive Breast Cancer - ClinicalTrials.gov.
58 59 60	1092 1093	103.	A Study of Abemaciclib (LY2835219) in Women With HR+, HER2+ Locally Advanced or Metastatic Breast Cancer - ClinicalTrials.gov.

1 2			
3 4 5	1094 1095	104.	Study Evaluating Hemay022 in Combination With Exemestane In Subjects With ER Positive and HER2 Positive Advanced Breast Cancer - ClinicalTrials.gov.
6 7 8	1096 1097	105.	Randomized, Open Label, Clinical Study of the Targeted Therapy, Palbociclib, to Treat Metastatic Breast Cancer - ClinicalTrials.gov.
9 10 11	1098 1099	106.	Palbociclib in Estrogen Receptor Positive (ER+) Human Epidermal Growth Factor Receptor 2 Positive (HER2+) Metastatic Breast Cancer - ClinicalTrials.gov.
12 13 14	1100 1101	107.	To Reduce the Use of Chemotherapy in Elderly Patients With ER-positive and HER2- positive Breast Cancer (TOUCH) - ClinicalTrials.gov.
15 16 17 18 19	1102 1103 1104	108.	Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N. Engl. J. Med. 353(16), 1659–1672 (2005).
20 21 22 23	1105 1106 1107	109.	Smith I, Procter M, Gelber RD, et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet. 369(9555), 29–36 (2007).
24 25 26 27	1108 1109 1110	110.	Loi S, Dafni U, Karlis D, et al. Effects of Estrogen Receptor and Human Epidermal Growth Factor Receptor-2 Levels on the Efficacy of Trastuzumab A Secondary Analysis of the HERA Trial. JAMA Oncol. 2(8), 1040–1047 (2016).
28 29 30 31 32	1111 1112 1113	111.	Cameron D, Piccart-Gebhart MJ, Gelber RD, et al. 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet. 389(10075), 1195–1205 (2017).
33 34 35 36	1114 1115 1116	112.	Johnston S, Pippen J, Pivot X, et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor - Positive metastatic breast cancer. J. Clin. Oncol. 27(33), 5538–5546 (2009).
37 38 39 40 41	1117 1118 1119 1120	113.	Sherrill B, Amonkar MM, Sherif B, Maltzman J, O'Rourke L, Johnston S. Quality of Life in Hormone Receptor–Positive HER-2 + Metastatic Breast Cancer Patients During Treatment with Letrozole Alone or in Combination with Lapatinib . Oncologist. 15(9), 944–953 (2010).
42 43 44 45 46 47	1121 1122 1123 1124	114.	Chan A, Delaloge S, Holmes FA, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17(3), 367–377 (2016).
48 49 50	1125 1126	115.	Neoadjuvant Combined Endocrine and HER2 Target Therapy in Postmenopausal Women With ER and Her2 Positive Breast Cancer - ClinicalTrials.gov.
51 52 53 54 55 56	1127 1128 1129 1130	116.	A Study of Pertuzumab in Combination With Trastuzumab Plus an Aromatase Inhibitor in Participants With Metastatic Human Epidermal Growth Factor Receptor 2 (HER2)-Positive and Hormone Receptor-Positive Advanced Breast Cancer - ClinicalTrials.gov.
50 57 58 59 60	1131 1132 1133	117.	Llombart-Cussac A, Cortés J, Paré L, et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): an open-label,
			20

Future Oncology

Table 1 Current clinical trials treating HR+/HER2+ breast cancer. (Oestrogen receptor, ER; Hormone receptor, HR; Aromatase inhibitor, AI; Human epidermal growth factor receptor, HER; ado-trastuzumab emtansine, T-DM1; Epidermal growth factor receptor, EGFR).

Trial	Phase	Recruitment	Cohort size	Menopausal status	Cancer stage	Breast cancer type	Treatment group (s)
Al in combination with lapatinib, trastuzumab or both (ALTERNATIVE) (Clinical Trial NCT01160211)	111	2011-2020	355	Post	Metastatic	HR+/HER2+ breast cancer	Lapatinib with trastuzumab and an AI v. trastuzumab and an AI v. lapatinib and an AI [100]. Recently published results show PFS benefit in the lapatinib with trastuzumab and an AI group compared to trastuzumab plus AI group [91].
Palbociclib and Trastuzumab With Endocrine Therapy in HER2+ Metastatic Breast Cancer (PATRICIA) (Clinical Trial NCT02448420)	II	2015- ongoing	232 (estimated enrolment)	Both	Locally Advanced or Metastatic	HR+/HER2+ breast cancer	Palbociclib, trastuzumab and endocrine therapy v. T-DM1 or chemotherapy in combination with trastuzumab (physician's choice) who previously received at least 1 anti-HER2 regimen [101].
Ribociclib (Lee011) In Combination With Trastuzumab Or T-DM1 (Clinical Trial NCT02657343)	1b/II	2016- ongoing	26	Both	Metastatic or advanced	HER2+ breast cancer, some of which are also ER+	Ribociclib and T-DM1 v. ribociclib and trastuzumab v. ribociclib, trastuzumab and fulvestrant [102].
Abemaciclib (LY2835219) in HR+/HER2+ Breast Cancer (monarcHER) (Clinical Trial NCT02675231)	II	2016- ongoing	237	Post	Locally Advanced or Metastatic	HR+/HER2+ breast cancer	Abemaciclib with trastuzumab with or without fulvestrant or chemotherapy [90]. Recently published results show abemaciclib, fulvestrant and trastuzumab combination treatment not only proved tolerable and safe but also improved PFS compared to standard-of-care trastuzumab plus chemotherapy [103].

https://mc04.manuscriptcentral.com/fm-fon

Hemay022 in Combination with Exemestane (Clinical Trial NCT03308201)	I	2017- ongoing	48 (estimated enrolment)	Post	Metastatic or advanced	ER+/HER2+ breast cancer	EGFR inhibitor Hemay022 with exemestane [104].
Neratinib with Fulvestrant in HER2+/ER+ Metastatic Breast Cancer (Clinical Trial NCT03289039)	II	2017- ongoing	152 (estimated enrolment)	Both	Locally advanced Metastatic	ER+/HER2+ breast cancer	Neratinib with fulvestrant or neratinib alone [65].
Palbociclib to Treat Metastatic Breast Cancer (PATINA) (Clinical Trial NCT02947685)	111	2017- ongoing	496 (estimated enrolment)	Both	Metastatic	ER+/HER2+ breast cancer	Anti-HER2 therapy (trastuzumab/pertuzumab) with endocrine therapy (letrozole, anastrozole, exemestan or fulvestrant) with or without palbociclib [105].
Palbociclib in ER+/HER2+ metastatic breast cancer (Clinical Trial NCT03709082)	ı/II	2018- ongoing	4 (estimated enrolment)	Post	Metastatic	ER+/HER2+ breast cancer	Palbociclib, letrozole and T-DM1 [106].
TOUCH (Clinical Trial NCT03644186)	II	2019- ongoing	144 (estimated enrolment)	Post	Early breast cancer	Elderly patients with HR+/HER2+ breast cancer	Neoadjuvant palbociclib with both hormon therapy and anti-HER2 therapy v. treatmer with paclitaxel and anti-HER2 therapy (standard of care) [107].

Table 2 Targeted treatments available, alone or in combination, for the treatment of HR+ and/or

HER2+ breast cancer. (Oestrogen receptor, ER; Hormone receptor, HR; Aromatase inhibitor, AI;

Selective oestrogen receptor downregulator/degrader, SERD; Human epidermal growth factor

Target

For which patients

Type of drug

receptor, HER; Epidermal growth factor receptor, EGFR).

Commercial

Brand

Drug

Drug	branu	Type of drug	Target	For which patients
	Name(s)			
Tamoxifen	Nolvadex, Tamosin, Emblon, Tamofen	ER modulator	ER	HR+ (premenopausal)
Letrozole	Femara	AI	Aromatase	HR+ (postmenopausal)
Anastrozole	Arimidex	AI	Aromatase	HR+ (postmenopausal)
Exemestane	Aromasin	AI	Aromatase	HR+ (postmenopausal)
		SERD	ER	Metastatic ER+/HER2- (postmenopausal who have recurred on endocrine therapy)
Trastuzumab	Herceptin	Monoclonal antibody	Extracellular domain of HER2	HER2+
Pertuzumab	rtuzumab Perjeta Monoclonal antibody		Extracellular domain of HER2 (different one than trastuzumab)	
Lapatinib	Tyverb, Tykerb	Tyrosine kinase inhibitor	HER1 (EGFR) & HER2	HER2+
Neratinib Nerlynx Tyrosine kinase inhibitor		HER1, HER2, and HER4	Extended adjuvant treatmen following trastuzumab in HER2+ (including ER+/HER2+ patients	
FrastuzumabAntibody-drugemtansineKadcylaConjugate(T-DM1)ConjugateConjugate		HER2	HER2+ breast cancer that ha recurred	
Trastuzumab deruxtecan Enhertu Conjugate		HER2	Metastatic HER2+ breast cancer patients who have received two or more prior anti-HER2 therapies in the metastatic setting	
Palbociclib	Ibrance	CDK4/6 inhibitor	CDK4/6	HR+/HER2- breast cancer
Ribociclib	Kisqali	CDK4/6 inhibitor	CDK4/6	HR+/HER2- breast cancer
Abemaciclib	Verzenio, Verzenios	CDK4/6 inhibitor	CDK4/6	Locally advanced or metastatic HR+/HER2- breas cancer patients who previously received endocrine therapy

Future Oncology

11 Table 3 Previous clinical trials treating HR+/HER2+ breast cancer. (Oestrogen receptor, ER; Hormone receptor, HR; Progression-free survival, PFS; Human epidermal 12 growth factor receptor, HER; Pathological complete response, pCR; Aromatase inhibitor, AI).

Trial	Phase	Recruitment	Cohort size	Menopausal status	Cancer stage	Breast cancer type	Treatment groups	Results (HR+/HER2+ tumours)
Herceptin Adjuvant Trial (HERA)	111	2001-2005	5099	Post	Early-stage	HER2+ breast cancer	Trastuzumab or no trastuzumab for 1 or 2 years, following adjuvant chemotherapy	Patients with ER+/HER2+ breast cancers but with a low HER2 FISH ratio or higher <i>ESR1</i> levels receive less benefit from adjuvant trastuzumab after chemotherapy[108][109][110][111].
TAnDEM (Clinical Trial NCT00022672)	111	2001-2004	207	Post	Metastatic	HR+/HER2+ breast cancer previously treated with tamoxifen	Anastrozole alone or with trastuzumab but no chemotherapy	There was a significant improvement in PFS for the group that received anastrozole plus trastuzumab in combination [63].
EGF30008 (Clinical Trial NCT00073528)	111	2003-2006	219	Post	Metastatic	HR+ breast cancer	Lapatinib combined with letrozole or letrozole with placebo for first- line therapy	In HR+/HER2+ cancers, the combination of lapatinib and letrozole showed an increase in PFS compared to those who received letrozole with placebo [112][113].
Efficacy and Safety of Letrozole combined with Trastuzumab (eLEcTRA)	111	2003-2007	57	Post	Metastatic	HR+/HER2+ breast cancer	Trastuzumab with letrozole or letrozole alone as first-line treatment	Better outcomes, including time to progression and clinical benefit, were seen in those treated with the combined trastuzumab plus letrozole treatment [64].

Page	5 of	40
------	------	----

ExteNET (Clinical Trial NCT00878709)	111	2009-2011	2840	Post	Stage I-III	HER2+ breast cancer previously received neoadjuvant and adjuvant trastuzumab	Neratinib	12 months treatment with neratinib significantly improved 2-year invasive disease-free survival; the benefit from neratinib was greater in HR+ patients [93][114].
Neo-ALL-IN (Clinical Trial NCT01275859)	II	2010-2012	24	Post	Stage II–III	ER+/HER2+ breast cancer	Neoadjuvant letrozole and lapatinib for 18-21 weeks before surgery	Overall clinical response rates were 62.5% however no pCR was achieved [92][115].
PERTAIN (Clinical Trial NCT01491737)	II	2012-2014	258	Post	Metastatic or locally advanced	HR+/HER2+ breast cancer patients who had not received prior therapy, with the exception of endocrine	Trastuzumab and an Al or trastuzumab, an Al and pertuzumab. Some also received chemotherapy	Greater PFS in the pertuzumab+trastuzumab+Al group but also more serious adverse events in the pertuzumab+trastuzumab+Al group [83][116].
PAMELA (Clinical Trial NCT01973660)	II	2013-2015	151	Both	Stage I–IIIA	HER2+ breast cancer	Lapatinib combined with trastuzumab (and letrozole or tamoxifen if HR+)	41% of patients with the HER2-enriched subtype and 10% of patients with non-HER2 enriched subtypes achieved pCR at the time of surgery. Patients with the HER2-enriched subtype may benefit the most from dual HER2 blockade [117][118].

Page 6	of 40
--------	-------

NSABP B-52 trial		2014-2016	315	Both	Locally advanced (but not metastasis ed)	HR+/HER2+ breast cancer	A luteinizing hormone-releasing hormone agent or AI with docetaxel, carboplatin, trastuzumab, and pertuzumab neoadjuvant therapy	Depriving oestrogen along with docetaxel, carboplatin, trastuzumab, and pertuzumab treatment in the neoadjuvant setting improved pCR however this was not statistically significant [93].
NA-PHER2 trial (Clinical Trial NCT02530424)	11	2015-2016	102	Both	Early (> 1.5 cm) or locally advanced untreated breast cancer	ER+/HER2+ breast cancer	Neoadjuvant treatment with trastuzumab, pertuzumab, palbociclib and fulvestrant	A clinical objective response was achieved for 29/30 patients, as well as a decrease in proliferation (assessed through Ki67 expression) following two weeks of treatment and at the time of surgery [79][119].

https://mc04.manuscriptcentral.com/fm-fon

1 2		
1 2 3 4 5 6 7 8 9 10	14	
5		
6 7		
8		
9 10		
11		
12 13		
14		
15 16		
17		
18 19		
20		
21 22		
23		
24 25		
26		
27 28		
29 30		
31		
32 33		
34		
35 36 37		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		

Figure 1. Molecular subtypes of breast cancer and key receptor/biomarker expression. Oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and proliferation marker Ki67 expression status in Perou's five molecular subtypes.

Figure 2. Crosstalk between the oestrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) signalling. In the presence of oestrogen, ER, which resides in both the cytoplasm and nucleus of a breast epithelial cell, can activate HER dimers and their downstream pathways (MAPK and AKT). In addition to the effects of these pathways, this signalling can also lead to modulation of active nuclear ER, which interacts with other transcription factors (TFs) and co-activators (CoAct) to regulate the expression of genes regulating processes essential to cell survival and cancer progression.

Page 11 of 40

Future Oncology

