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Abstract

Learning object-centric scene representations is essential for attaining structural under-
standing and abstraction of complex scenes. Yet, as current approaches for unsupervised
object-centric representation learning are built upon either a stationary observer assumption
or a static scene assumption, they often: i) suffer single-view spatial ambiguities, or ii) infer
incorrectly or inaccurately object representations from dynamic scenes. To address this, we
propose Dynamics-aware Multi-Object Network (DyMON), a method that broadens the scope
of multi-view object-centric representation learning to dynamic scenes. We train DyMON
on multi-view-dynamic-scene data and show that DyMON learns—without supervision—to
factorize the entangled effects of observer motions and scene object dynamics from a sequence
of observations, and constructs scene object spatial representations suitable for rendering at
arbitrary times (querying across time) and from arbitrary viewpoints (querying across space).
We also show that the factorized scene representations (w.r.t. objects) support querying
about a single object by space and time independently.

1 Introduction

Object-centric representation learning promises improved interpretability, generalization, and
data-efficient learning on various downstream tasks like reasoning (e.g. [18, [42]) and planning
(e.g. [31, 14, 44]). It aims at discovering compositional structures around objects from the raw
sensory input data, i.e. a binding problem [12], where the segregation (i.e. factorization) is
the major challenge, especially in cases of no supervision. In the context of visual data, most
existing focus has been on single-view settings, i.e. decomposing and representing 3D scenes
based on a single 2D image [3| 10, 27] or a fixed-view video [24]. These methods often suffer
from single-view spatial ambiguities and thus show several failures or inaccuracies in representing
3D scene properties. It was demonstrated by Nanbo et al. [32] that such ambiguities could be
effectively resolved by multi-view information aggregation. However, current multi-view models



are built upon a foundational static-scene assumption. As a result, they: 1) require static-scene
data for training and 2) cannot handle well dynamic scenes where the spatial structures evolve
over time. This greatly harms a model’s potentials in real-world applications.

In this work, we target an unexplored problem—unsupervised object-centric latent representation
learning in multi-view-dynamic-scene scenarios. Despite the importance of the problem to spatial-
temporal understanding of 3D scenes, solving it presents several technical challenges. Consider
one particularly interesting scenario where both an observer (e.g. a camera) and the objects in
the scene are moving at the same time. To aggregate 3D object information from two consecutive
observations, an agent needs not only to handle the cross-view object correspondence problem [32]
but also to reason about the independent effects of the scene dynamics and observer motions.
One can consider the aggregation as a process of answering two questions: “how much has an
object really changed in the 3D space” and “what previous spatial unclarity can be clarified by
the current view”. In this paper, we refer to the relationship between the scene spatial structures
and the viewpoints as the temporal entanglement because the temporal dependence of them
complicates the identification of the independent generative mechanism [36].

We introduce DyMON (Dynamics-aware Multi-Object Network), a unified unsupervised frame-
work for multi-view object-centric representation learning. Instead of making a strong assumption
of static scenes as that in previous multi-view methods, we only make two weak assumptions
about the training scenes: i) observation sequences are taken at a high frame rate, and ii) there
exists a significant difference between the speed of the observer and the objects (see Sec.|3). Under
these two assumptions, in a short period, we can transition a multi-view-dynamic-scene problem
to a multi-view-static-scene problem if an observer moves faster than a scene evolves, or to a
single-view-dynamic-scene problem if a scene evolves faster than an observer moves. These local
approximations allow DyMON to learn independently the generative relationships between scenes
and observations, and viewpoints and observations during training, which further enable DyMON
to address the problem of scene spatial-temporal factorization, i.e. solving the observer-scene
temporal entanglement and scene object decomposition, at test time.

Through the experiments we demonstrate that: (i) DyMON represents the first unsupervised
multi-view object-centric representation learning work in the context of dynamic-scene settings
that can train and perform object-oriented inference on multi-view-dynamic-scene data (see Sec. .
(ii) DyMON recovers the independent generative mechanism of an observer and scene objects
from observations and permits querying predictions of scene appearances and segmentations
across both space and time (see Sec. [5.1)). (iii) As DyMON learns scene representations that are
factorized in terms of objects, DyMON allows single-object manipulation along both the space
(i.e. viewpoint) and time axis—e.g. replays dynamics of a single object without interferring the

others (see Sec. [5.1)).

2 Background

Object-centric Representations Consider object-centric representation inference as the inverse
problem of an observation generation problem (i.e. the vision-as-inverse-graphics [43] idea). In
the forward process, i.e. observation generation, we have a scene well-defined by a set of parameter
vectors z = {z;} = {21, 29, ..., 25 }, where a 2z, € R? specifies one and only one object in the
scene. An observation of the scene x, e.g. an image r € R™ or an RGB image z € RM*3,
can be taken only by a specified observer (often defined as v € R?) which is independent of
the scene in the forward problem, using a specific mapping g : RP x R? s RM*3, Assuming a
deterministic process, an observation z is generated as © = g(z,v), where v is often omitted in
single-view scenarios (e.g. [3, [I0]). With the forward problem defined, we can describe the goal
of learning an object-centric representation as inferring the intrinsic parameters of the objects
{21} that compose a scene z based on the scene observation x. In other words, computing a
factorized posterior p(z|x) = p(z1, 22, ..., 2K |X), even though it is computationally intractable. As
the number of objects is unknown in the inverse problem, it is worth noting that i) K is often set
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Figure 1: Top Left: Multi-view-dynamic-scene setup. v with a time index superscript denotes
the spatial configuration (e.g. position, orientation, etc.) of an observer at a specific time. We
highlight one particular interesting, yet unexplored, scenario where both an observer and scene
objects are moving at the same time—which entangles the independent effects of the observer’s
and scene objects’ motions on an scene observation, an image sequence (see bottom left). A
latent variable z that is indexed by time describes the objects and their spatial configuration at a
specific time (See Sec. [2|for detailed definition). Right: DyMON decouples the generative effects
of observer motions and scene object motions and enables: 1) reconstruction and factorization
of the observed views (see bottom right), and 2) novel-view appearance and decomposition
prediction for arbitrary times—querying across both space and time (see top right).

globally to be a sufficiently large number (greater than the actual number of objects) to capture
all scene objects, and ii) we allow empty “slots”.

Temporal Entanglement The dynamic nature of the world suggests that the spatial config-
uration of a scene (denoted by z') and an observer v! are bound to the specific time ¢ that an
observation is taken (i.e. ! = g(z*,v")). Let X = {(2*,v")}1.7 [[| represent a data sample, e.g.
a sequence or set of multi-view image observations, from dataset D, where T is the number
of the images in the sample. Assuming z’ is given in the data sample for now, i.e. focusing
on the generative process only, we augment a scene data sample as X, = {(x?,v%,z")}1.7. In
general, we assume an independent scene-observer relation: z' L v'|() but they nevertheless
become dependent when the corresponding observation is given: z' f vt|zt. Under a static-scene
assumption, we can treat an augmented data sample as X, = {(x?,v'), z'}1.7 where z' and v*
are separable (i.e. can be sampled independently). In this case, to recover the independent
generative mechanism (i.e. train a g(-)) w.r.t. scenes and observers from data, GQN [9] and
MulMON [32] fix z' to z and mtervene on the viewpoints v From a causal perspective, this can
be seen as estlmatmg p( v \do(v =o!"), 2" = z), where (z',v") ~ {(z!,v")}1.7, implicitly under
a causal model: z! — 2! < v'. However, in dynamlc settlngs the same estimation, i.e. sampling
(0t ~ {(at,v)}ir mdependently of zt, is forbidden by the (-) indicator. Intuitively, an
observer cannot take more than one observations from different viewpoints at the same time ¢. In
this paper, we refer to this issue as temporal entanglement in view of the temporal implication of

the (+) indicator.

I1We define () as a joint sample indicator that forbids independent sampling of the random variables wherein.



3 DyMON

Our goal is to train a multi-view object-centric representation learning model that recovers the
independent generative mechanism of scene objects and their motions and observer motions from
dynamic-scene observations. In this section, we detail how DyMON addresses these two presented
challenges: 1) temporal disentanglement (see Sec. [3.1)), and 2) scene spatial factorization (see
Sec. 13.2). We discuss the training of DyMON in Se

3.1 Temporal Disentanglement

The key to resolving temporal entanglement, i.e. temporal disentanglement, is to enable sampling
(xt,v") independently of z!, or (z?,z') independently of v!. This is seemingly impossible in the
multi-view-dynamic-scene setting as it requires to fix either z' (static scene) or v* (single-view)
respectively. In this paper, we make two assumptions about the training scenes to ensure the
satisfaction of the aforementioned two requirements without violating the global multi-view-
dynamic-scene setting. Let us first describe the dynamics of scenes and observers with two

independent dynamical systems:
2 TR gt = F (2 )AL, oA ot = F(vh 1) At (1)

where t and t + At are the times that two consecutive observations were taken, f,(z’,t) and
fuo(vt,t), or simply f, and f,¢, are the average velocities of scene objects and the observer within
[t,t + At]. Note that we use a z! to capture both the shape and pose information of an object.
However, we do not consider shape changes in this work. With the dynamical systems defined,
we introduce our assumptions (which defines a tractable subset of all possible situations) as:

e (A1) The high-frame-rate assumption At — 0 s.t. r'T5% ~ 2t

e (A2) The large-speed-difference assumption The data comes from one of two cases
(SEFO: Slow Camera, Fast Objects or FCSO: Fast Camera Slow Objects), that satisfy:
‘@ |.f2]

|fol [fol
Crcso are positive constants.

| > Cscro or |12 | < Creso, where |velocity| computes a speed, and Cscro and

allows us to assume a nearly static scene z! or a fixed viewpoint v* for a short period. Consider
an example where we assume a static scene, i.e. z7 2t ~ 27 ~ z7tAt in [T — At, T + At],
essentially allows us to extract z' out of a joint sample as: X, = {(zt,v!),2'},_Ar.riae. An
intuitive way to define is: |fa| > |fo| or |fz| < |fo|, which specify a large speed difference
between scene speeds and observer speeds.

These two assumptions enable us to accumulate instant changes (velocities) on one variable (e.g.
either z* or v') over a finite number of At while ignoring the small changes of the other (assumed
fixed). We then treat a slow-camera-fast-objects (i.e. SCFO) scenario, where |f,| > |f,|, as
an approximate single-view-dynamic-scene scenario, and a fast-camera-slow-objects (i.e. FCSO)
scenario, where |f,| < |f,|, an approximate multi-view-static-scene scenario. Either case allows
us to resolve the temporal entanglement problem. Importantly, to answer the question: “is a given
data sample an SCFO or FCSO sample”, we need to quantitatively specify the two assignment
criteria Cscro and Creso. However, a direct calculation of these two constants is often difficult
and does not generalize as: i) |f,| is not available in unsupervised scene representation learning
data, and ii) the two constants vary across different datasets. In practice, we cluster the data
samples into SCFO and FCSO clusters using only the viewpoint speed |f,|, i.e. assuming |f,| = 1
for training (see Sec. . In testing, DyMON treats them equally.



3.2 Spatial Object Factorization

DyMON tackles scene spatial decomposition in a similar way to MulMON [32] using a generative
model and an inference model. The generative likelihood of a single image observation is modelled
with a spatial Gaussian mixture [41 [11]:

M K
po(a'lz’ = {z},0") = [[ D pe(Cf = kI=) - N(ai; go(2h,0"), 0°T), 2)

i=1k=1

where i indexes a pixel location (M in total) and RGB values (e.g. z}, ;) that pertain to an object
k are sampled from a Gaussian distribution N (x}, ;; go(z}, v"),0*I) whose mean is determined by
the decoder network gg(-) (defined in Sec. [2) ) with trainable parameter 6 and standard deviation
o is globally set to a fixed value 0.1 for all pixels. The mixing coefficients py(C; = k|zj) capture
the categorical probability of assigning a pixel ¢ to an object k (i.e. C; = k). This imposes a
competition over the K objects as every pixel has to be explained by one and only one object in
the scene.

DyMON adapts the cross-view inference module [32] of MulMON to handle: i) the cross-view
object correspondence problem, ii) recursive approximation of a factorized posterior, and iii)
temporal evolution of spatial structures (which indicates the major difference between the inference
modules of DyMON and MulMON). The decomposition and recursive approximation of the
posterior is:

<t

pa' = {2 e~ 0%) ~ qa (2’ = {2 }[a~,0) H% (z'|2", v, 2", 3)

where go (z!|2¢, vt,z<!) denotes the approximate posterior to a subproblem w.r.t. an observation
2! taken from viewpoint v! at time ¢, and assumes a standard Gaussian N(0,1) for the scene
prior ¢(z°). The intuition is to treat a posterior inferred from previous observations as the new
prior to perform Bayesian inference for a new posterior based on a new observation. We use
z! to denote the inferred scene representations after observing !, i.e. a new posterior, and z<!
to denote the new prior before observing ‘. Note that we can advance t either regularly or
irregularly. The single-view (or within-view) inference is handled by DyMON using iterative
amortized inference [28] with amortization function ® (modelled with neural networks). Refer to
Appendix B. for full details about the generative and inference models of DyMON.

3.3 Training

To enable DyMON to learn independently the generative relationships between scenes and
observations, and viewpoints and observations during training, built upon MulMON’s architecture,
we break a long moving-cam-dynamic-scene sequence into short sub-sequences (see Algo. [1|) where
sampling (', v'") ~ (', ") ., independently of z is possible. Similar to MulMON [32], we then
train DyMON by maximizing the following objective function that linearly combines an evidence
lower bound (abbr. ELBO) and the log likelihood (abbr. LL) of the querying views:

£ :ELBO + 5 : LLq’u.eTy

ZE Hllogpa(a']2',0")] = = Diw[ge (2" xS, 05| |ga (2= 2=, v<)]
7l |7'|
teT teT
|Q| Z Z Eq«1>(zt\ 2) logpg(mq|z Uq)] (4)
teT t,€Q

where 7 and Q record the times when DyMON performs inference and v! interventions (i.e.
viewpoint-queried generation) and 5 is the weighting coefficient. We construct 7 by sampling ¢
(either regularly or irregularly) with a random walk through [1,7], where a uniform distribution
U{At — 2, At + 2} of an expected value At (> 2) is used as the step distribution. As shown in



Algo. [1} by varying the updating periods of z' and v' (denoted as At, and At, respectively),
DyMON imitates the behaviours of a multi-view-static-scene model and a single-view-dynamic-
scene model to handle the SCFO and FCSO samples respectively. In addition, using different 3
for the SCFO and FCSO samples allows alternating the training focus between spatial reasoning
(w.r.t. objects and viewpoints) and temporal updating.

Algorithm 1: DyMON Training Algorithm
Input: training data D

Hyperparameters |Q|, (Brcso,Bscro), (At AT) 5 // At > AT > 2,|Q| = sizeof (Q)
Initialize trained parameters ®, 0, and latent prior A° = {(ux = 0,0, =) };

repeat
Sample a sequence X = {(xt,v')} 1.7 ~ D ; // T (RGB images, viewpoints)
if assign(X;D) == FCSO then
| B, Aty, Aty = Breso, AT, At ; // At, < At,, update v' more often
else
L B8, At,, At, = Bscro, At, AT ; // At, < At,, update z' more often
7 = random_walk t(s=1,e=T,step dist = U{At, — 2, At, + 2}) ;
(z,v), t, A', ELBO, LLgyery, = X[1], 1, A%, 0, 0;
while ¢t < T do
(z',0") = X[t] ;
if mod(¢, At,) == 0 then
L’U:’Ut; // update v
if £ € T then
= at; // update z
ELBOW, \t = iterative_inferencey, ,(z,v, AY) ;
zt ~ N(zt; \Y) ; // sample updated z'
Q = {t;} =sample_query_t(dist =U{t — At,/2, t + At,/2},size = |Q|);
for t, € Q do
(29, 09) = X[tg;
LLguery+ = (1/(1Q]T1)) - log po (22", v7) ; // tix z', dow =1
| ELBO+ =(1/|T|)- ELBO");
| +=1
L=ELBO + 8- LLyyery ; /! Brcso > Bscro
0, ® + optimizer, ., (L, 0, D);

until §. ® converge;

Assignment Function and Batching As the samplers of T and Q behave differently for SCFO
and FCSO data (see Algo. [I)), we need to determine if a X ~ D is an SCFO sample or an FCSO
sample. Under we consider any dataset consisting of only a mix of SCFO and FCSO samples
(where a sample is a sequence of images). For a given dataset, we cluster all training samples of a
dataset into two clusters w.r.t. the SCFO and FCSO scenarios. This then gives us an assignment
function, assign(X;D) (as shown in Algo. In practice, to avoid breaking parallel training
processes with loading SCFO and FCSO samples into the same batch, we assign the training
data beforehand instead of assigning every data sample on the fly during training. This allows to
batch FCSO or SCFO samples independently at every training step.

4 Related Work

Single-View-Static-Scene The breakthrough of unsupervised object discovery based on a
primary scenario, i.e. a single-view-image setting, lays a solid foundation for the recent rise of
unsupervised object-centric representation learning research. Built upon a VAE [22], early success
was shown by AIR [8] that searches for one object at a time on image regions. Because AIR and
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Figure 2: Qualitative results of spatial-temporal factorization. The GT rows show the true
scene. The “MM” and “DM” entries are the scene re-rendered from the corresponding models,
i.e. MulMON and DyMON respectively. The vertical row pairs show the results from viewpoint
changes and the horizontal direction shows the results at different times. Note that we train
MulMON and DyMON on different datasets as MulMON cannot train on multi-view-dynamic-
scene datasets. We also visualize MulMON’s tendency of generating degenerated results along
the temporal direction (marked with red arrows).

most of its successors (e.g. [23]) treat objects as flat pixel patches and the image generation process

s “paste flat objects on canvas” using a spatial transformer [I7], they often cannot summarize
well scene spatial properties that are suitable for 3D manipulation: for example, they do not
render smaller objects when the objects are “moved” further away from the camera. To overcome
this, most recent advances [3], 10} 25} [7, 27, [6] model a single 2D image with a spatial Gaussian
mixture model [41] [I1] that allows explicit handling of background and occlusions. Although
these models suffer from single-view ambiguities like occlusions or optical illusions, they have the
potential for attaining factorized representations of 3D scenes. Our work has close relationship
to IODINE [10]: we handle the object-wise inference from an image observation at each time
point using the iterative amortized inference [28] design and capture the compositional generative
process with a spatial Gaussian mixture model.

Multi-View-Static-Scene A natural way of resolving single-view ambiguities is to aggregate
information from multi-view observations. Although multi-view scene explorations do not directly
facilitate object-level 3D scene factorization, Eslami et al. [9] demonstrated that they do reduce
the spatial uncertainty and enable explicit 3D knowledge evaluation—mnovel-view prediction. As



combining GQN [9] and IODINE [I0], Nanbo et al. [32] showed that MulMON effectively leverages
multi-view exploration to extract accurate object representations of 3D scenes. However, like
GQN, MulMON can only train on static-scene samples and thus does not generalize well to
dynamic scenes ROOTS [5] combines GQN and AIR’s merits to perform multi-view-static-scene
object-centric representation learning whereas it requires camera intrinsic parameters to overcome
AIR’s deficiency of 3D scene learning — it is thus camera-dependent hence less general. In our
work, we propose DyMON as an extension of MulMON to dynamic scenes and a unified model
for unsupervised multi-view object-centric representation learning.

Single-View-Dynamic-Scene A line of unsupervised scene object-centric representation learn-
ing research was established on the single-view-dynamic-scene setting [14], 23] [19], where they
explicitly model and represent object dynamics based on video observations. However, as most of
these works employ a similar image composition design to AIR, they deal with only flat 2D objects
that are similar to MNIST digits and thus cannot model 3D spatial properties. A closely-related
work is that of Lin et al. [24], i.e. GSWM, where they modelled relative depth information and
pair-wise interactions of 3D object patches. In our work, the spatial-temporal factorization allows
us to show the dynamics and depths of the objects from different viewpoints at different times.

Other Related Work As a multi-view-dynamic-scene representation learning framework, T-
GQN [37] represents the most closely-related work to ours. It models the spatial representation
learning at each time step as a stochastic process (SP) and transitions between these time-stamped
SPs with a state machine. However, a notable distinction between the problems that T-GQN and
DyMON are targeting based on that: 1) T-GQN does not attain object-level scene factorization
and 2) a typical T-GQN requires multi-view observations at each time step (as so-called “context”)
to perform spatial learning so as to get rid of the temporal entanglement problem (which has
been the core focus of our work). Our work is essentially dealing with disentangled representation
learning problems, which are often formulated under the frameworks of causal inference [34]38] [36]
and independent component analysis (abbr. ICA) [16] I5]. Unlike traditional disentanglement
representation learning works (e.g. [13], 211, 26]) that aims at feature-level disentanglement, in
this work, we handle not only the object-level disentanglement that resides in the object-centric
representation learning research, but also the time-dependent scene-observer disentanglement
problem.Recent trend of neural radiance field (e.g. [30, 29, [35]) are relevant to our work in the
sense of 3D scene representations using multi-view images. However, from an vision-as-inverse-
graphics [43] perspective, we do not consider them scene understanding models as they only aim
to memorize the volumetric structure of a single scene during “training” thus cannot perform
representation inference for unseen scenes.

5 Experiments

We used two simulated multi-view-dynamic-scene synthetic datasets, namely DRoom and MJC-
Arm, and a real-world dataset, namely CubeLand (see Appendix C.3 for details), in this work.
We conducted quantitative analysis on DRoom and show qualitative results on the other two
datasets. The DRoom dataset consists of five subsets (including both training and testing sets):
one subset (denoted as DRO-|f,|) with zero object motion (multi-view-static-scene data), one
subset (denoted as DRO-|f,|) with zero camera motion (single-view-dynamic-scene data), and
three multi-view-dynamic-scene subsets of increasing speed difference levels from 1 to 3 (denoted
as DR-Lvl.1 ~ 3). Each of the five subsets consists of around 200 training sequences (40 frames
of RGB images per sequence) and 20 testing sequences (40 frames from 12 different views, i.e.
57.6k images). Although DyMON’s focus is on a more general problem, we nevertheless compare
it against two recent and specialized unsupervised object-centric representation learning methods,
ie. GSWM [24], and MulMON [32], in two respective settings: single-view-dynamic-scenes, and
multi-view-static-scenes. All models were trained with 3 different random seeds for quantitative
comparisons. Refer to our supplementary material for full details on experimental setups, and
ablation studies and more qualitative results.



5.1 Space-Time Querying

The recovery of the independent generative mechanism permits DyMON to make both viewpoint-
queried and time-queried predictions, i.e. querying across space and times, of scene appearances
and segmentations using the inferred scene representations, which enables the below two demon-
strations:

Novel-view Prediction at Arbitrary Times Recall that a scene observation x is the gener-
ative product of a specific scene (composed by objects) and observer at a specific time ¢ with a
well-defined generative mapping, i.e. = g(z,v) (see sec. . Like previous multi-view object-
centric representation learning models (e.g. MulMON [32]), we query from an arbitrary viewpoint
v w.r.t. a scene of interest z by fixing z and manually setting the viewpoint v to arbitrary
configurations. Similarly, we can query about the spatial state of a dynamic scene at time ¢ from
a specific viewpoint by fixing the viewpoint and manually inputting 2! at arbitrary times ¢ to
the generative function. We trained a DyMON on the DR-Lvl.3 data and show qualitatively the
prediction results that are queried by space-time tuples in Figure [2]

Dynamics Replay of Scenes & Objects From Arbitrary Viewpoints In this experiment,
we give DyMON a sequence of image observations of a dynamic scene as input, and have it
replay the dynamics from a novel viewpoint using the scene representations it infers from the
observations. This is done by fixing the v to the desired values and querying about consecutive
times. As the inferred scene representations are factorized in terms of objects, we show in Figure
(left) that, besides the complete scene dynamics, DyMON also allows to replay the dynamics of a
single object independently of the others. We present the qualitative results on the MJC-Arm
datasets in Figure [3| (right) where one can see that DyMON not only replays object dynamics as
global position changes, it also captures object local motions.

DRoom MIJC-Arm

—Eml!l—%sw

sen. [ I N F— Rec,w
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Figure 3: Left: DyMON performing dynamics replays on the DRoom dataset, where the first
row is the observation sequence input to DyMON, second and third rows show replays of the
scene dynamics (all objects’ original motions) and object dynamics (just the foreground green
ball moves) respectively from an arbitrary viewpoint v9. Right: DyMON replays local motions
of robot arm from an arbitrary viewpoint (top: observation, middle: reconstruction, bottom:
replay from a higher viewpoint).

Dynamics On Real-World Data To demonstrate that our model has the potential for real-
world applications, we conduct experiments and show qualitative results on real images (i.e.
CubeLand data). We refer the readers to Appendix D.4 for the results.



5.2 Versatile Evaluation

DyMON is designed to handle object-centric representation learning in a general setting—multi-
view-dynamic-scenes. In this section, we experiment to evaluate how well DyMON handles the
specialized settings.

‘ MSE] mloU?T
Models ‘ Obs.Rec. Nv.Obs. ‘ Obs.Seg. Nv.Seg.
MulMON ‘ 0.011 £0.001  0.019 £ 0.002 ‘ 0.511 + 0.001 0.461 £ 0.062
DyMON ‘ 0.004 +£0.001  0.021 4+ 0.002 ‘ 0.717 +£0.000 0.508 + 0.065

(a) DyMON vs. Multi- View-Dynamic-Scenes

| MSE| mloUt \ MSE/] mloUt
Models | Obs.Rec. Nv.Obs. |  Obs.Seg. Nv.Seg. Models | Obs.Rec. Obs.Seg.
MulMON | 0.006 +0.001 0.012+0.005 | 0.583+0.080 0.538 +0.105 GSWM | 0.039+0.007  0.402 =+ 0.082

DyMON ‘ 0.014£0.001  0.019£0.007 ‘ 0.529£0.005  0.506 £ 0.105 DyMON ‘ 0.014 £0.011 0.682 +0.107

(b) DyMON vs. Multi- View-Static-Scenes (c) DyMON vs. Single- View-Dynamic-Scenes

Table 1: Quantitative comparisons of DyMON and two baseline models, i.e. GSWM and MulMON,
in handling scenarios that the baseline models are specialized at. The models in table (a) are
trained and tested on the DRO-|f,| data, and those in (b) and (c) are trained and tested on
the DRO-|f,| data. “Obs.” tags reconstructions and segmentations that are computed for the
observations and “Nv.” tags those from novel viewpoints. Mean + stddev for 3 training seeds. 1
indicates higher is better and | indicates the opposite.

DyMON vs. Dynamic Scenes We first evaluate DyMON’s performance in the multi-view-
dynamic-scene setting in comparison to MulMON. MulMON also learns the independent generative
mechanism of scene objects and observer, but with a strict static-scene constraint. Note that both
DyMON and MulMON permit novel-view predictions of scene appearances and segmentations, this
allows explicit quantification of the correctness and accuracy of the inferred scene representations.
We use a mean-squared-error (MSE) measure and a mean-intersection-over-union score (mloU)
measure. We train DyMON on the DR-Lvl.3 subset and MulMON on the DRO-|f,| subset
(because it is UNABLE to train on dynamic-scene data) and conduct comparison across the three
DRoom dynamic-scene subsets (i.e. DR-Lvl.1 ~ 3). Table [la] shows that, although we train
MulMON on a more strict dataset, i.e. the DRO-|f,| dataset, DyMON still outperforms MulMON
on almost all the various indicators. We show the qualitative comparison results in Figure [2| and
observe that MulMON’s performance declines along the temporal axis when large object motions
appear. As neither DyMON nor MulMON impose any orders for object discovery, we used the
Hungarian matching algorithm to find the best match that maximizes the mIoU score to handle
the bipartite matching between the output and the Ground-truth masks.

DyMON vs. Static Scenes We evaluate how well it handles multi-view-static-scene scenarios
in comparison with a specialized model, i.e. MulMON. We train and test both DyMON and
MulMON on the DRO-|f,| subset w.r.t. reconstructions and segmentations of both the observed
and unobserved views. Table [Ib] summarizes the results. They show that DyMON can handle
this strict constraint setting, even though it exhibits a slight performance gap compared with
the specialized model. Also, it is worth noting that DyMON and MulMON produce high
variances in segmentations. One possible reason is that both MulMON and DyMON employ
stochastic parallel inference mechanisms that can sometimes infer duplicate latent representations
and harm segmentations [33]. This experiment along with the DyMON-versus-dynamics-
scenes experiment provides useful guidance for model selection in multi-view applications—use a
specialized model in a well-controlled environment and DyMON to handle complex scenarios.

DyMON vs. Fixed-View Observations of Dynamic Scenes We assessed DyMON’s per-
formance on handling single-view-dynamic-scene observations by comparing it with GSWM [24],
which is a specialized object-centric representation model for this specific setting, although it is
unable to achieve pixel-level segmentation. We train both DyMON and GSWM on the DRO-| f, |
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Figure 4: Left: Qualitative comparisons of DyMON and GSWM on reconstructing the DRO-| f, |
scenes. The GT rows show the actual observations of a dynamic scene, and the “DM” and “GSWM”
rows show observation reconstruction results of DyMON and GSWM, respectively.

subset and measure the reconstruction quality of the observations. Table [1c| shows that DyMON
not only outperforms GSWM in observation reconstruction, but it also permits pixel-wise segmen-
tation which the specialized model cannot. The qualitative results in Figure [4 show that GSWM
learns better object appearances (especially for textures) than DyMON, whereas DyMON learns
more accurate scene dynamics than GSWM. This is understandable as GSWM models object
dynamics explicitly, which introduces risks of overfitting the observed motions. DyMON supports
well temporal interpolations, i.e. dynamics replays (as shown in Figure (3| and , but it does not
model the object dynamics nor interactions explicitly like GSWM. As a result, it does not provide
readily extrapolatable features along the time (or dynamics) axis for predicting into the future.

DyMON vs. T-GQN T-GQN [37] is a closely related work as it targets unsupervised scene
representation learning in the multi-view-dynamic-scene settings, even though it does not attain
object-centric factorization in the latent space. Although T-GQN requires multi-view observations
at each time step (as “context” information) to sidestep the temporal entanglement issue, we
nevertheless train it on our DRoom data and show that it fails to represent the DRoom scenes
(see Appendix D.3 for the results and discussions).

6 Conclusion

We have presented Dynamics-aware Multi-Object Network (DyMON), a method for learning
object-centric representations in a multi-view-dynamic-scene setting. We have made two weak
assumptions that allows DyMON to recover the independent generative mechanism of observers
and scene objects from both training and testing multi-view-dynamic-scene data—achieving
spatial-temporal factorization. This permits querying the predictions of scene appearances and
segmentations across both space and time. As this work focuses on representing the spatial scene
configurations at every specific time point, i.e. DyMON does not model dynamics explicitly so it
cannot predict the future evolution of scenes, which leaves space for future exploration.
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A. Algorithms

A.1 Tterative inference algorithm

Algorithm 2: Iterative Inference Algorithm

Input: observation z, viewpoint v, latent Gaussian parameters A* = {(u!,oL)}
ModelParameters ®, 0, and the number of single-view iterations L(default : 5)
Initialize \'® = X', ELBO! =0

for =1 to L do

2t ~ N (2t XD // sample from a prior--make a guess
po(2tW |2t v) = go(ztD | v) ; // render and verify
ELBO' = ~logpa(a'V 1V, 0) + Dicu ({4 N4 X))

A = &(x, ELBO'W X)) // refine and then repeat (until [ = L)

ELBO'+ = (1/L)- ELBO'
Output BLBO' X'V — {(15".0,")}

A.2 Testing algorithm

Algorithm 3: DyMON Testing Algorithm
Input: Trained parameters ®, 6, and latent Gaussian parameters
)\0 = {(,uk = 0,0'k- = I)}
Initialize A\ = X° ;
while Access (z¢,v') do
ELBO?, \' = iterative_inferencey ;(2*,v", A) ;
L Output A" = {(uj, 0})} ;

B. Implementation Details

B.1 Training configurations

We show the training configurations used in this work in Table

Table 2: Training Configurations

TYPE THE TRAININGS OF DYMON, MuLMON, GSWM
OPTIMIZER ADAM

INITIAL LEARNING RATE 7)o 3e~3

LEARNING RATE AT STEP § max{0.170 + 0.9n0 - (1.0 — s/1e°),0.170}

TOTAL GRADIENT STEPS 300k For DYMON vs. GSWM, 200k For DYMON vs. MULMON
BATCH SIZE 2 (2segqs x 40images = 80images)

NUMBER OF GPU/PER TRAINING 1 (Mem >=11GB)

* THE SAME SCHEDULER AS THE ORIGINAL GQN EXCEPT FOR FASTER ATTENUATION
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B.2 Model implementation

We show the designs of the generative mapping function g¢ and the refinement function in Table [3] and
respectively. After obtaining a set of K RGBM outputs from this function, i.e. {(tar,Mar)} (see Table,
we render (i.e. compose) an image as: z = ), softmax(hak) - T, where zx ~ N (Tk; fak,0.1°I),

Table 3: Generator function gy

Parameters ‘ Type Channels (out) Activations. Descriptions
Input D+d zt ~ N (zt; AY), ot
6 (projection) Linear 256 Relu
Linear D Linear zt = go, (', ")
Input D Z;l; = 90, (Z]t€7 ')
6% (rendering) | Broadcast D+2 * Broadcast to grid
Conv 3 x 3 32 Relu
Conv 3 x 3 32 Relu
Conv 3 x 3 32 Relu
Conv 3 x 3 32 Relu
Conv 3 x 3 4 Linear RGBM: rgb p,r + mask logits i

D: the dimension of a latent representation, set to 16 for all experiments
d: the dimension of a viewpoint vector, set to 3 for all experiments

*: see spatial broadcast decoder [40]

Stride= 1 set for all Convs.

Table 4: Refinement Network ®

Parameters ‘ Type Channels (out) Activations. Descriptions
Input 17 * Auxiliary inputs a(z?)
P Conv 3 x 3 32 Relu
Conv 3 x 3 32 Relu
Conv 3 x 3 64 Relu
Conv 3 x 3 64 Relu
Flatten
Linear 256 Relu
Linear 128 Linear
Concat 128+4*D
LSTMCell/GRUCell 128
Linear 128 Linear output A\

D: the dimension of a latent representation, set to 16 for all experiments
Stride= 1 set for all Convs.

* see IODINE[I0] for details

LSTMCell/GRUCeEl channels: the dimensions of the hidden states

C. Datasets

C.1 DRoom (DynamicRoom)

Simulation Environment We created the DRoom simulation on the top of the CLEVR Blender
environment |20, [1I]. Like other multi-object datasets [2], we initialized every sequence by randomly
selecting and placing 2-5 scene objects in a simulated room (with background and walls specified). These
objects are randomized in terms of shapes (incl. deformations, sizes), colors, and textures. Under the
Blender physics engine settings, we enabled foreground objects’ movements by setting their dynamics
status to “active” and disabled the background objects’ (i.e. walls and ground’s) movements by setting
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their dynamics status to “passive”. We then created a centrifugal force field within a fixed center and
range on the ground across all DRoom datasets. In this work, we sample the magnitude of the force using:
random.choice(vals = 8500 x {0,0.1,0.2,...,1}, probs = Cat(...)), which allows us to simulate scene
object motions of different speeds by inputing different selection categorical probability Cat(...). Moreover,
we enabled object collisions to simulate scenes with rather complex object dynamics. The control of the
observer (an RGB camera) motion is independent of the scene objects. We consider an observer or camera
performing random walks on the surface of a dome (top half of a sphere) whose center aligns with the center
of the ground—we randomly initialize the starting position of a camera and randomly sample its next move.
Note that as the camera can only move on the dome (with a fixed radius r), we can use azi and ele, i.e.
the azimuth and elevation of the camera, to represent a camera location. We sample the increment Aazi
and Aele independently from: random.choice,.;(vals = 5.0degs x {0,0.1,0.2, ..., 1}, probs = Catq.:(...))
and random.choice.;.(vals = 1.0degs x {0,0.1,0.2, ..., 1}, probs = Cateie(...)), which suggests that we
can control the speed of the camera by inputting different Cat,zi(...)) and Cateie(...)).

Force field

Figure 5: Left: DRoom simulation environment setup where yellow rings denote the force fields.
Right: One fast-camera-slow-object (FCSO) sample (top row) and slow-camera-fast-object
(SCFO) sample (bottom row). Both are randomly selected from the DR-Lvl.3 dataset.

Dataset We rendered all scenes using a resolution of 64 x 64 for 40 frames (4-second motions)—record
40 images with their corresponding viewpoints {(z%, v")}1.40, where we represent the viewpoints using
their 3-D Cartesion coordinates. The sampler specifications, i.e. the categorical distributions Cat(...)),
used to generate the five DRoom subsets are listed in Table[5] As discussed in Sec.3.3, we clustered all
the data samples based on their average camera speeds across each sequence to assign them into the
FCSO and SCFO partitions. We visualize the clustering results for DR-Lvl.1 ~ 3 in Figure[f]

Table 5: DRoom Generator Specs

Force Magnitude Camera Random Walk Next Move
Subsets (constant in its range) (for both azi and ele)
DRO-[7,]| | | {1,0,0,...,0} {0,0,0,0,0,0,0.01,0.11,0.28,0.3,0.3}
DRO-|f, | ‘ ‘ {0,0,0,0,0,0.02,0.08,0.15,0.35,0.35, 0.05} {1,0,0,...,0}
DR-LvL1 FCSO | {0.05,0.095,0.095,0.095, 0.095,0.095, 0.095, 0.095, 0.095,0.095,0.095}  {0.05,0.095, 0.095, 0.095,0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095 }
77 | SCFO | {0.05,0.095,0.095,0.095, 0.095,0.095, 0.095,0.095, 0.095,0.095,0.095}  {0.05,0.095,0.095,0.095, 0.095,0.095, 0.095,0.095, 0.095, 0.095, 0.095}
DR.LvL2 | FCSO {0.2,0.2,0.2,0.2,0.2,0,0,0,0,0,0} {0,0,0,0,0,0,0.2,0.2,0.2,0.2,0.2}
| SCFO {0,0,0,0,0,0.2,0.2,0.2,0.2,0.2,0} {0.2,0.2,0.2,0.2,0.2,0,0,0,0,0,0}
DR.LvL3 | ECSO {0.25,0.38,0.33,0.02,0.02,0,0,0,0,0,0} {0,0,0,0,0,0,0.01,0.11,0.28,0.3,0.3}
| SCFO {0,0,0,0,0,0.02,0.08,0.15,0.35,0.35,0.05} {0.3,0.3,0.28,0.11,0.01,0,0,0,0,0,0}

C.2 MJC-Arm (Mujoco-Arm)

Simulation Environment The environment is built with MuJoCo physics simulator [39], and the
Franka Emika robot arm with a Barret hand attached it the main scene object. The arm has 7
degrees of freedom and the joints of robotic hand are fixed during the data generation. 8 different
collision-free robot arm motion trajectories are pre-defined, and each has unique initial and target
joint configuration. Every joint is controlled in the position-derivative manner with a constant velocity,
which is the product of the nominal velocity and the sampled weight. The nominal velocities for all
7 arm joints (from base to end-effector) are [0.65,0.65,0.27,0.27,0.03,0.03,0.005], which are related
to the link lengths of the robot arm. The joint velocity weights for FCSO and SCFO data trials are
sampled from random.choicercso({0,0.1,0.2,...,1}, probs = {0.34,0.34,0.25,0.07,0.0,...,0.0}) and
random.choicescro({0,0.1,0.2,...,1}, probs = {0.0, ...,0.0,0.07,0.25,0.34,0.34}). We also introduced
a moving ball with random fixed direction and constant weighted velocity in the simulation. The control
of the RGB camera is the same as introduced in the former section, with a fixed point of view towards
the base link of the robot arm.
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Figure 6: Visualization of the data assignment results on the DR-Lvl.1 ~ 3 datasets.

Tnes TF
(" v g

Figure 7: Left: Mujoco simulation environment. Right: One fast-camera-slow-object (FCSO)
sample (top row) and slow-camera-fast-object (SCFO) sample. Both are randomly selected from
the MJC-Arm dataset.

Dataset For each data sample, the scenes are rendered with resolution 64 x 64 at 10Hz for 4 seconds
(40 frames per sample). At the beginning of every trail, the textures of the robot arm and the moving
ball are randomly selected from a colour set. The robot arm is initialised with the starting pose of the
randomly selected motion trajectory.

C.3 Real-world aataset (CubeLand)

camera

camera
-

Figure 8: CubelLand data-collection platform.

Data-collection Environment We created CubeLand in a controlled real-world environment. Four
cubes of different colours (i.e., red, blue, green and yellow) were placed on a table. To avoid glare,
reflections and unnecessary background clutter, the surface of the table was made white by designing a
bicolour data collection environment. A camera was mounted on the end effector of Franka (a robotic arm
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with 7 D.O.F.) as shown in Figure [8| The end effector has a fixed motion, i.e., it only rotates back and
forth 120 degrees with no translation motion involved. The cubes were taped with threads at the bottom
to move them freely and randomly. Moreover, the simulations had two configurations, i.e., slow camera,
fast objects (SCFO) and fast camera, slow objects (FCSO) (see Figure[9). In the first configuration, the
speed of the rotation of the end effector was 1.67 rpm (10 degrees per second) while the objects were
manually pulled and thrown back into the scene at an arbitrary faster speed. In the latter configuration,
the speed of the rotation of the end effector was set to be 4.17 rpm (25 degrees per second) whereas the
objects were pulled and pushed by hand back into the scene at a slower rate. The height of the camera is
14.5 cm and the radius this assembly (centre of the end effector to the camera) spans is 19.5 cm.

og glgigig iy by 8
*ﬂrﬁﬂﬂﬂ

Figure 9: CubeLand data samples. Top: a fast camera, slow objects (FCSO) data sample.
Bottom: a slow camera, fast objects (SCFO) data sample.

Dataset All the frames collected were initially 480x480. During the post-processing steps, these frames
were resized to 64x64 after applying a median filter (the centre of the kernel is replaced by the median of
all the neighbouring pixels) of kernel size 9. Overall, 100 sequences of 50 frames each were extracted.
Furthermore, each of the viewpoints was converted into 3D cartesian coordinates. The classification
between SCFO and FCSO is solely based on the rotations per minute of the end effector.

D. Additional Results

D.1 Assumption Validation

As discussed in Sec.3.1. of the main paper, the training of DyMON on multi-view-dynamic-scene is based
upon two assumptions that favor high frame-rate image sequences and large difference between the speeds
of an observer and scene objects. In this experiments, as we know that the average speed differences
of DR-Lvl.1 ~ 3 are in an ascending order, we can thus assess the robustness of DyMON against our
assumptions. We trained DyMON on the DR-Lvl.1 ~ 3 training sets respectively and then evaluated
their performance on space-time-queried prediction of scene appearances on the DR-Lvl.1 ~ 3 test sets.
We visualize the MSE as a function of increased levels of speed differences in Figure As shown, 1)
there is no significant performance drops across different training and test sets, 2) the faster the observer
speeds and the scene speeds, the better the models perform. This holds for both training (see the overall
performance on the left Figure) and testing (see a model’s testing performance against different test
sets on the right Figure). These supports our claims about DyMON’s robustness against complex and
potentially dynamic environments.

D.2 Ablation Study

We highlight two hyperparameters that play significant roles in the training of DyMON: 1) the updating
periods of v and z, i.e. At, and At,, 2) weighting coefficient of viewpoint-queried generative log likelihood
. We varied these two groups of parameters and visualized their influences on DyMON-—similar to
Sec.D.1, we measure DyMON'’s novel-view synthesis performance at every time point and visualize them
as a function of these hyperparameters. We varied At, and At, with values that are selected from
discrete sets {3,5} and {5, 6,8}, this allows us to show the joint effects of these two updating periods in a
2 x 3 grid (see top half of Figure [1I). To analyze the independent effects of At, and At,, we “squeezed”
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Figure 10: The space-time-queried scene appearance prediction performance comparison between
three DyMONSs that are trained on three levels of scene-observer speed differences, i.e. DR-
Lvl.1l ~ 3, respectively. Left: Averaged MSE achieved by the three models on three DRoom
testing sets, i.e. the testing sets of DR-Lvl.1 ~ 3. Right: The performance of the three models
on each of the three testing sets.

the 2 x 3 grid by computing the MSE averaged over the At, axes and At, axes of the grid (see bottom
right two plots of Figure for the results). One can see that a short updating period for At is preferred
as this allows to capture more detailed scene object motions, while the selection of At, is relative subtler.
One might run pre-analysis before training, e.g. visually look several sequences, to select a better At,.
Similarly, we varied 8 by setting its values to 0.5, 1.0, and 2.0 respectively and we show the results in the
bottom left of Figure [[T]

D.3 T-GQN Results

We used the official implementation of T-GQN (https://github.com/singhgautam/snp) and trained a
T-GQN on the DR-Lvl.3 data. Although the training has converged (see Figure [12)), we observe that it
fails to represent the underlying 3D scenes (see Figure and training T-GQN with a posterior dropout,
i.e. T-GQN-PD, does not fix the issue. We speculate that this is because it lacks multiple views at each
time steps to resolve the temporal entanglement issue. However, future investigations are required to
validate our speculation.

D.4 Additional Qualitative Results
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Figure 11: Ablation study results. Top: Space-time queried view synthesis MSE vs. nested
At, and At,. Bottom left: MSE vs. different 8 (in log, space). Bottom middle: MSE
vs. different At, (MSE computed by averaging across different At,). Bottom right: MSE vs.
different At,, (MSE computed by averaging across different At,).
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Figure 12: T-GQN training curves. We train t-GQN on our DRoom data until it converges.
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Figure 13: Qualitative results of T-GQN on DR-Lvl.3 test data.
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Figure 14: Spatial-temporal factorization results of a DRoom scene.
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Figure 15: Dynamics replay of a DRoom scene.
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Figure 16: Qualitative comparisons of DyMON and MulMON on DRoom. Left: reconstruction
performance. Right: spatial—timporal factorization performance. We train DyMON on DR-Lvl1.3
and train MulMON on DRO-| f,|.
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Figure 17: Qualitative comparisons of DyMON and GSWM on DRO-|f,|. Top: reconstruction
performance. Bottom: segmentation performance (we observe that DyMON outperforms GSWM
in segmenting scenes).
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Figure 18: Dynamics replay of a MJC-Arm scene.
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Figure 19: Dynamics replay of a real scene (i.e. CubeLand data). We conduct experiments on
real-world data to show DyMON’s potential for real-world applications.
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