
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Autonomous Mobility Using Real Demonstration Data

Citation for published version:
Gu, J & Li, Z 2022, Learning Autonomous Mobility Using Real Demonstration Data. in 2021 20th
International Conference on Advanced Robotics (ICAR). IEEE, pp. 428-434, 20th International Conference
on Advanced Robotics, Ljubljana, Slovenia, 7/12/21. https://doi.org/10.1109/ICAR53236.2021.9659394

Digital Object Identifier (DOI):
10.1109/ICAR53236.2021.9659394

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2021 20th International Conference on Advanced Robotics (ICAR)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://doi.org/10.1109/ICAR53236.2021.9659394
https://doi.org/10.1109/ICAR53236.2021.9659394
https://www.research.ed.ac.uk/en/publications/e975298d-19f3-44eb-b286-6f45b4f81af2


Learning Autonomous Mobility Using Real Demonstration Data

Jiacheng Gu and Zhibin Li

Abstract— This work proposed an efficient learning-based
framework to learn feedback control policies from human tele-
operated demonstrations, which achieved obstacle negotiation,
staircase traversal, slipping control and parcel delivery for a
tracked robot. Due to uncertainties in real-world scenarios,
e.g. obstacle and slippage, closed-loop feedback control plays
an important role in improving robustness and resilience, but
the control laws are difficult to program manually for achiev-
ing autonomous behaviours. We formulated an architecture
based on a long-short-term-memory (LSTM) neural network,
which effectively learn reactive control policies from human
demonstrations. Using data-sets from a few real demonstrations,
our algorithm can directly learn successful policies, including
obstacle-negotiation, stair-climbing and delivery, fall recovery
and corrective control of slippage. We proposed decomposition
of complex robot actions to reduce the difficulty of learning the
long-term dependencies. Furthermore, we proposed a method
to efficiently handle non-optimal demos and to learn new skills,
since collecting enough demonstration can be time-consuming
and sometimes very difficult on a real robotic system.

I. INTRODUCTION

Nowadays mobile robots are able to move on most of the
even roads and handle situations using perception, localisa-
tion and path planning, but still have difficulties on complex,
slippery and uneven terrains with obstacles and stairs, for
example, as shown in the autonomous delivery scenarios
(Fig.1). However, slippage and external disturbance usually
results in mobility failures, which can result in unacceptable
damages for both the robot and the surroundings. Therefore,
robust and resilient controls are needed to properly react to
slippage and disturbance in complex scenarios, in order to
achieve autonomous behaviors.

Deep reinforcement learning (DRL) acquires a wide range
of skills [1], especially while training in simulations. How-
ever, for mobile robots, especially the tracked ones, it is still
very difficult for the state-of-art physics engines to simulate
the material properties of tracks and their interactions with
the environment, when there are significant slippage and
deformation. Meanwhile, the data expensive nature make
DRL approach extremely expensive and unsafe to explore
on a physical robot. Therefore, we are interested in learning
and transferring a policy directly from a complex hardware
system and real data, which are impossible to be simulated
in physics simulations.

Learning from Demonstration (LfD) is a method that en-
able the agent to acquire skills by learning from the expert’s
demonstrations. It has been widely used in robotics area. e.g.

Jiacheng Gu and Zhibin Li are with the Institute for Perception, Action,
and Behaviour, School of Informatics, University of Edinburgh, 10 Crichton
St, Edinburgh EH8 9AB, United Kingdom.
Email: J.Gu@ed.ac.uk

Autonomous driving with 

arm coordination

Delivery

Fig. 1: Adaptive feedback control using learning from
demonstration for autonomous mobility and manipulation.

autonomous driving [2], [3], [4], flight [5], manipulation [6],
[7] and so on. In order to better learn the expert’s policy,
most LfD algorithms require a large amount of high-quality
demonstrations.

There are mainly two classes of LfD, Inverse Rein-
forcement Learning (IRL) and behavioural cloning. IRL [8]
requires a reward function that able to describe the demon-
stration as (or similar to) the optimal behaviour. Behavioural
cloning [9] is a supervised learning algorithm that optimises
a neural network mapping from observations to actions. For
IRL, exploration in real-world is likely to cause physical
damage to the robot. While even a good policy is learnt in
a simulation environment, it does not usually perform well
in reality because of sim2real problem. We therefore use the
behavioural cloning algorithm in our research.

Many successful applications use behavioural cloning al-
gorithm in robotics, especially when the dimension of envi-
ronment and action states is low. For example, [10] extracts
spatial information and object-recognition information from
visual input to learn robotics motor skills. Sometimes it
is challenging to extract useful information from multiple
sensors. Therefore many researchers use raw image or video
as the demonstration to train the neural network [11], [12].
However, we believe that human always receive many re-
dundant information and human brain can extract few useful
information. So simply using raw image data would increase
the complexity of the task. Our controller only requires few
necessary information and can generalise well.

Generalisation on unseen states is challenging for be-
havioural cloning. Dataset Aggregation [9] requires multiple
iterations to train on aggregated data. Some researchers
[13] use demo in simulation to replace real demonstration.
However, our model can not be simulated and they both



has sim2real problems. Some other researchers use cloud-
based data collection techniques. [14] uses the Google object
recognition engine, [15] presents their software tool that
enables crowd-sourcing, so is [16]. We proposed a method
to cut down the non-optimal part of the demonstration and
merge a short, near-optimal demo with the original one. Then
the controller could learn the policy better or learn new skills.
This method could also handle non-optimal demos.

Once have a new near-optimal demo, re-training the net-
work from scratch (on a better demo) is time-consuming and
unnecessary. We use transfer learning (TL) to greatly speed
up this process. TL focuses on storing knowledge gained
while solving one problem (source domain) and applying
it to a different but related problem (target domain). Some
robotics researchers [17], [18] use transfer learning to solve
sim2real problems. In our experiment, the control policy
is learnt from original demonstrations (the source domain),
then we transfer it to the new near-optimal demo (the target
domain) to learn new policy.

In this paper, we proposed an LSTM-based neural net-
work controller capable of learning reactive and responsive
policies for autonomous driving control from a few demon-
strations from human tele-operators. LSTM has been used
for robot control, such as in [19], where LSTM was used
as temporal encoders for information processed by CNN
from side-view cameras, only the current data was fed to
LSTM network as LSTM has ‘memory cells’ to maintain
long-term memory. However, our experiments shows that
an implicit use of the memory mechanism of LSTM has
limited performance. Instead, an explicit use of several past
datapoints and the current one can significantly improve the
autonomous performance.

Main contributions of this paper are summarised below:
• We formulate the use of a set of sequence feedback

states containing history data for a LSTM based robot
controller, which yeilds better performance than only
using the current data;

• We decompose the autonomous delivery task and de-
velop mobility and manipulation controllers of the
robot, reducing the difficulty of long-term dependency
in LSTM.

• We apply transfer learning in LfD problems to effi-
ciently learn new skills and solve problems caused by
non-optimal demonstrations.

The paper is organised as follows. Section II introduces
the proposed robot system in detail, and presents the control
architecture of the neural network controller. In Section III,
we describe our setup and analyse the experimental results.
Conclusion and future work are presented in Section IV.

II. ROBOT SYSTEM

A. Hardware Architecture

For the proof of concept, we validate the learning algo-
rithms using a tracked robot as shown in Fig.1, which has a
6-degree-of-freedom (DoF) robot arm on the top and two DC
geared motors to directly drive each track. This also allows

us to set up mockup testing environment more easily, for
example, we can have a scaled up size of stairs that is quite
large compared to the size of the robot, such that the tracked
robot needs to learn autonomous whole-body coordination of
using the arm to go up stairs and recover from tipping over.
These are the advantages of a miniaturised setup that the
normal real hardware cannot afford to risk, so we can push
the testing of robustness and performance to the extreme.

We use AT Mega328 UNO as the Micro-controller Unit
(MCU), it controls the DC geared motors and the arm on the
robot. MCU collects data from on-board IMU MPU6050 and
sonic sensor HC-SR04, and sends these data to the computer
via Bluetooth module HC-05. The human expert uses a PS4
joystick to tele-operate the robot.

B. Action Control Modules

Our approach requires proper demos executed by an
expert, from which the neural network controller learns the
proper control policy for the robot to go through a complex
area (with different shapes of obstacles and stairs). The learnt
policy needs to be robust enough to handle the potential
slippage and recover from failures. In each demo, the tracked
robot is tele-operated to go over several obstacles and climb
the stair model, the robot stops to delivery the package when
the sonic sensor detects a door (height >25cm) in front. Then
it goes backwards.

1) Arm Control: Once the low-level robot arm controller
receives joints’ position p and moving time t from the MCU,
each joint would start moving to the target position pi in
time t. We design 5 different motion primitives for the robot
arm: move or keep the arm in the middle (idle) position,
sustain the robot in the back (for stair-climbing or going over
obstacles), failure-recovery from left or right and delivery.
One channel is used to represent 5 different arm actions
(states): middle (0), back (1), failure-recovery from left (2),
failure-recovery from right (3) and delivery (4), arm control
actions ua ∈ {0,1,2,3,4}.

Arm motion 2, 3, 4 and transitions between these 5
actions are durative actions. The robot arm would keep the
final position of the last arm action. The new arm action
signal would overwrite the unfinished arm action if they are
different. Otherwise, the arm would continue the unfinished
action and ignore the new one. For arm motion 2, 3 and 4,
the controller keeps sending respective control signal before
they are finished.

2) Moving Control: In this paper, we focused on training a
low-level motion controller that can react to real-time sensor
input and naively going forward until delivering the package,
fixing control errors or failures. In this task, the robot goes
forward while the front area is clean, goes over any possible
obstacles or stairs, delivers the package while facing a wall
and goes back once finished.

As the gear ratio of the motor’s gearbox is large (100:1),
so we use the maximum motor speed for the moving action.
The control action includes: go backwards (-1), stop (0) and
go forward (1). vl and vr are left and right motor speed



Sensor feedback

IMU: roll, pitch and yaw 
Sonar: distance

Activation Control actions

Arm movements, 
Forward/backward and steering

Motion 
Primitives

Robot ActuatorsLSTM Controller

High-level Controller

Robot Sensors

Fig. 2: System control diagram.

TABLE I: Definition of The Used Actions
Action Index (IDa) Robot Arm Steering Movement

1 Middle Left Stop
3 Middle Idle Backward
4 Middle Idle Stop
5 Middle Idle Forward
7 Middle Right Stop
13 Back Idle Stop
14 Back Idle Forward
22 FR left Idle Stop
31 FR right Idle Stop
40 Delivery Idle Stop

respectively, then:

vl = vr = um, (1)

where um ∈ {−1,0,1} is the control signal for moving
forward or backwards. The steering control corrects the
robot’s heading direction after failure-recovery, going over
an obstacle or external disturbance. We use one channel to
present 3 different steering states: turning left, turning right
and idle (not turning). While turning left, the robot’s left
motor would go backwards at full speed and its right motor
would go forward and vice versa. While the expert presses
going forward and turning left at the same time, the left
motor of the robot would stop and the right one would go
forward at full speed. The steering control actions are: turn
left (-1), idle (0), turn right (1). us ∈ {−1,0,1} is the steering
control actions, the velocity of left and right motor gives:{

vl = max{min{um +us,1},−1},
vr = max{min{um−us,1},−1}, (2)

therefore, motor velocity vl ,vr ∈ {−1,0,1}.
We use 3 channels to control arm motion (5 actions),

movement (3 actions) and steering (3 actions). There are
totally 45 possible action combinations and 10 of them
are used in this task (Table I). We encode these 3-channel
control signals to 45 motion primitives for the multi-in-one-
out network to classify:

IDa = ua×9+(us +1)×3+um +1. (3)

C. Control System Architecture

The aforementioned robot system requires a low-level
reactive responsive controller to handle different situations
while moving. Based on high-level control commands and
robot’s sensor feedback, this proposed LSTM controller is
capable of generating proper control actions.

Raw sensor data
(10Hz)

Manipulation controller

Mobility controller
Control activations
(10Hz)

LSTM Controller

State controller

Mobility model:
Data in 2.5s

Manipulation model:
Data in 5.5s

Fig. 3: LSTM controllers for mobility and manipulation.

𝑜𝑡−𝑚+1

𝑜𝑡−𝑚+2

𝑜𝑡−1

𝑜𝑡

X𝑡

t-1

t+1

t

2 LSTM layers
(pre-trained)

FC layers
(re-trained)

𝑢𝑎𝑡

𝑢𝑚𝑡

𝑢𝑠𝑡

𝑌𝑡

X𝑡

𝑌𝑡

Input: A set with m recent 
robot observations at time t.

Output: Control actions at time t:

𝑜𝑡
Robot observations: roll, pitch, 
yaw and sonar data at time t.

𝑢𝑎
𝑢𝑚
𝑢𝑠

Robot arm motion.

Moving forward/backwards.

Steering.

Fig. 4: The proposed architecture based on LSTM.

The control diagram is shown in Fig.2. In our task,
commands from the high-level control is: keep moving
forwards until facing a wall, then deliver the package and
go back. The low-level reactive controller minimises yaw
differences (compare to reference orientation) by steering
control and keeps the robot stable (failure-recovery). The
high-level controller can be replaced by any path planner
or an intermittent, high-delay remote control signal. We
decompose the task into mobility and manipulation. The
mobility controller controls arm-assisted locomotion and the
manipulation one only controls the delivery. A state machine
(3 robot state controller) controls the transition between
two working models. The robot is in mobility model after
it starts. It turns into manipulation model when facing a
wall, meanwhile, a manipulation timer is started. Finally, it
turns back to mobility model after the manipulation action
is finished.

In generalisation, the LSTM controller outputs digital
numbers to activate motion primitives, which control the
actuators on the robot. The on-board sensors on the robot
would send real-time IMU and sonar sensor measurements
(roll, pitch, yaw and distance) to the controller.

D. Neural Network Controllers

To solve the multi-class classification problem in our
task, we propose a control framework based on behavioural



cloning algorithm to learn the human operator’s control
policy while tele-operating the tracked robot from few proper
demonstrations. We collect a dataset Dtask = (ot ,ut)

(i) com-
posed of pairs of observation ot and corresponding control
action ut at time t. Where ot includes roll, pitch, yaw and dis-
tance, i indicates the index of multiple demonstrations. Given
the observation and control, the two neural networks with
inner parameters θ optimises the control policy πθ (ut |ot),
which is a function that maps from input observations (and
several past data-points) to output control actions.

More specifically, the neural networks classify the outputs
into 10 different possible motion primitives (Table I) based
on the current and previous inputs. The observation (input)
ot = [yt , pt ,rt ,dt ] consists of the yaw yt , pitch pt and roll rt
of the robot and distance dt in the front. The control (output)
consists of robot arm control action ua ∈ {0,1,2,3,4}, mov-
ing control action um ∈ {−1,0,1} and steering control action
us ∈ {−1,0,1}. We use one-hot encoding for the neural
network output.

The sampling frequency of IMU is 30 Hz. Then a first-
order Butterworth low-pass filter with 15 Hz cut-off fre-
quency is applied for denoising and removing outliers. The
sampling frequency of the sonic sensor is 20 Hz. According
to [20], human’s average reaction time is around 250 ms (4
Hz). A top computer game player can react to an incident in
100 ms. In order to mimic a human’s reaction, we set our
network’s control frequency at 10 Hz. (Note that human’s
decision-making process is much faster, the aforementioned
reaction speed is limited by human body.)

We use two 2-layer LSTM neural networks as the mobility
controller and manipulation controller (Fig.4). Given the
current observation ot and m−1 previous observations, the
trained network could generate the control action Yt (t ≥m),
which ought to control the tracked robot to climb the stair
properly, similar to human operator’s control in demonstra-
tions. Concretely, we pack up m recent observations:

Xt = {ot−m+1,ot−m, ...,ot}, t ≥ m, (4)

and feed them into the LSTM. The LSTM with optimised
the policy πθ (ut |ot) then outputs the control action:

Yt = LST M(Xt ;θ), t ≥ m, (5)

where m is the timestep of the LSTM. 25 timesteps is chosen
for the mobility controller, which represents a 2.5s time-
window in real world (10 Hz control frequency). It can cover
the longest mobile action (2.1s plus idle time that during
actions) in the task. We choose 5.5 time window for the
manipulation controller. Table II shows the duration of some
actions in the demonstration.

The proposed framework use softmax cross-entropy loss:

σ(z j) = so f tmax(z j) =
ez j

∑
C−1
c=0 ezc

, (6)

For this classification problem, 45 actions are not evenly
distributed, so each term of cross-entropy is scaled with the

TABLE II: Duration for some actions
Action Duration [s] Description

Arm move to back 1.0 —
Arm move to middle 1.0 —
Arm failure-recovery 2.0 —

Go forward, arm back (around) 1.2 Go over obstacles
Go forward, arm back (around) 1.5 Climb stairs

Idle (human) 0.2-0.4 Reaction time
Steering 0.5-2.1 Yaw diff.: 20◦−90◦
Delivery 5.0 —

Human demo:

Vision-based robot states

Control actions IMU and sonar data

Error

Control actions

Training stage:

Control actions
Expert Robot Actuators Robot Sensors

Training dataset
Input: sensor measurements
Output: expert’s control actions

LSTM Controller

Back propagationUpdate 
Hyper-parameters

Fig. 5: Training procedure.

corresponding weight.

loss =−
C−1

∑
c=0

wclc lnσ(zc), (7)

where l is the one-hot labels (∑ l = 1), z is the output of the
fully-connected cell, it has the same shape as l (1× 4536
in this task). C is motion primitives (C = 45 in this task),
and wc is the weight of 45 different motion primitives in
each dataset. We use Adam optimiser to train our LSTM,
the learning rate chosen for this task is 0.001. There are 800
hidden units in each LSTM layer of two controllers.

III. EXPERIMENTS

We collect a set of demonstration data to train the proposed
network, it achieves human-level reactive control in experi-
mental environment. (Fig.5 shows the collecting and training
procedure.) Then we use transfer learning to efficiently learn
new skills for a better demo.

When using one LSTM to control both mobility and
manipulation, the time-window has to be large enough to
cover the longest action: delivery (5s). In this case, the
network would be less sensitive to small variation of sensor
data and might fail to react to it (fail to correct a small
yaw angle). Computing cost would also be much higher. If
a small time window is chosen, the controller is likely to get
stuck after facing a wall (fail to deliver). As the long-term
dependency of LSTM is hard to keep (transition of sonar
data and delivery action takes at least 10s, which gives more
than 100 previous robot states). So we train the mobility
controller and the manipulation controller separately. A finite
state machine is use to control the working models of the
robot (Fig.3).



(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Fig. 6: Expert demonstrations: obstacle-negotiation (1), failure-recovery (2-6), stair-climbing(7-9), delivery (10-12).

0 20 40 60 80 100 120−40
−20

0
20
40

Ya
w 

(d
eg

re
e) steering right

steering left

Yaw

0 20 40 60 80 100 120

0
20
40

Pi
tc

h 
(d

eg
re

e)

arm back Pitch

0 20 40 60 80 100 120
−100

−50
0

50
100

Ro
ll 

(d
eg

re
e) failure-recovery from right

failure-recovery from left

Roll

0 20 40 60 80 100 120
Time in (s)

0.0
0.5
1.0
1.5
2.0

So
na

r

motor stops motor back
Sonar

Fig. 7: Sensor observations and human operator’s control
actions (mobility controller).

A. Demonstrations and Training

The mobility controller enable the robot to go forward
(until it faces a wall or door) and back. It has the capability of
obstacle-negotiation, failure-recovery, self-steering and stair-
climbing. Once the robot is facing a wall (or door), the
state machine would suspend the mobility controller and
activate the manipulation controller, then the robot would
deliver the package. After the delivery action is finished,
the manipulation controller would be deactivated and the
mobility controller would be activated again.

1) The mobility controller: In order to train the reac-
tive responsive mobility controller, we collect the following
demonstration (A): In the beginning, the robot goes over a
large obstacle (with the help of robot arm) and a small one.
Then it recovers from failure in the left and steers right to
correct the heading direction after being pushed over. Finally,
the robot climbs the stairs and goes back after facing the wall
(door).

Demo A covers most required skills in our task, but
apparently it could not generalise well for a new unseen
scenario (e.g. failure-recovery from right, steering from dif-
ferent yaw angles, driving over obstacle of different size
and shapes (with only one side of the track, which leads
to a variation in roll)). Meanwhile, collecting a perfect
demonstration that long enough for the robot to learn all
the necessary skills is difficult when the task is complex.
Especially, when collecting demos for steering control (the

0 1 2 3 4 5 6 7 8
−3.0
−2.5
−2.0
−1.5
−1.0

Ya
w 

(d
eg

re
e)

steering left

Yaw

0 1 2 3 4 5 6 7 8
−3.25
−3.00
−2.75
−2.50
−2.25
−2.00
−1.75

Pi
tc

h 
(d

eg
re

e)

arm back

Pitch

0 1 2 3 4 5 6 7 8−0.1
0.0
0.1
0.2
0.3
0.4

Ro
ll 

(d
eg

re
e)

failure-recovery from left

Roll

0 1 2 3 4 5 6 7 8
Time in (s)

0.0
0.5
1.0
1.5
2.0

So
na

r

motor stops motor backDelivery
Sonar

Fig. 8: Sensor observations and human operator’s control
actions (manipulation controller).

robot was perturbed to change the heading angle, then the
expert steers to correct the yaw), the expert is likely to steer
too much that the network would fail to learn precise turning
time (the turned angle is depend on this turning time).

We solve this problem by trimming the non-optimal parts
and merging the existing demo with several short and near-
optimal demonstrations. New skills could also be easily
learnt by merging a short demo containing these skills with
the original one. Note that while cutting down the non-
optimal part of demonstrations, some robot states would
be ‘deleted’. As the proposed robot system is stable in the
‘idle state’ (robot arm in the idle position, no steering or
movement), so the starting state and the ending state of the
cut-down demonstration need to be the ‘idle state’. In this
case the missing states do not effect the robot dynamics.

To introduce new skills, we collect three short demos. The
original heading direction is set as a reference.

B The robot is pushed over twice. It recovers from fail-
ure in left/right respectively, and steers to correct the
heading direction.

C The robot is perturbed (to different heading direction)
many times when moving forward. It steers to correct
the heading direction after each perturbation.

D The robot goes over several obstacle with different size
and shape using only one side of the track.

Demo B presents failure-recovery from right. Demo C en-
hances the capability of steering control on various yaw



(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Fig. 9: Test scenarios of the learned controller to achieve autonomous driving for obstacle negotiation, steering control, fall
recovery and staircase ascent/descent. More extensive tests on uneven terrains can be found in the paper’s accompanying
video.

0 10 20 30 40 50 60 70
−10

−5
0
5

10

Ya
w 

(d
eg

re
e) steering left Yaw

0 10 20 30 40 50 60 70

0
20
40

Pi
tc

h 
(d

eg
re

e)

arm back Pitch

0 10 20 30 40 50 60 70
0

20
40
60
80

100

Ro
ll 

(d
eg

re
e)

failure-recovery from left
Roll

0 10 20 30 40 50 60 70
Time in (s)

0.0
0.5
1.0
1.5
2.0

So
na

r

motor stops motor backDelivery
Sonar

Fig. 10: Observations and network’s output actions in a real-
world experiment.

angles. Demo D enable the robot to go through more
complex scenarios. By trimming and merging demo B, C,
D with the first demo A, we obtain a long combined and
near-optimal demo (the robot’s yaw is 0° at the beginning):
(1) The robot drives over 3 small obstacle.
(2) The robot was pushed over to left, then the expert

triggers the failure-recovery-from-left action and steers
right to correct the heading direction.

(3) The robot was toppled to the right, then the expert
triggers the failure-recovery-from-right action and steers
left.

(4) The robot was perturbed to change the heading angle,
then the expert steers to correct the yaw.

(5) The robot drives over a large obstacle (with the help of
arm) and a small obstacle.

(6) The robot was toppled to the left, then the expert triggers
the failure-recovery-from-left action and steers right.

(7) The robot climbs a three-step stair with the help of arm.
(8) The robot stops for 2 seconds when facing a wall (<15

cm).
(9) The robot goes backwards.

We use this new demonstration to train the reactive respon-
sive control policy of the mobility controller. Fig.7 shows the
raw sensor data (black curves) of the merged demonstration,
we mark expert’s control actions with different colour shades.

Fig.6 (1-9) show the actions in the demo.
2) Manipulation controller: The human expert teleoper-

ates the robot to deliver the package when the robot is facing
the wall (door), this demo includes:
(1) The robot goes forward to approach the wall. It stops

to deliver the package.
(2) The robot arm moves back to middle position.

Fig. 8 shows the raw sensor data (black curves) of the
manipulation demo, we mark different actions with different
colour shades. Fig.6 (10-12) show the delivery action in the
demo.

B. Results analysis and evaluation

As there is only one demonstration for each controller, we
do not have validation sets and test sets. The manipulation
controller is easy to train, it converges after 800 steps and
reach 95.37% accuracy. The training process of mobility
controller terminates at the 3500th step. The accuracy reaches
93.58%. Our experiments and data indicate there is no over-
fitting if the demo consists of enough amount of different
robot observations and corresponding controls in different
scenarios.

For behavioural cloning and LfD problems, training accu-
racy usually could not present the true performance of the
algorithm. We change the size, position and yaw of the obsta-
cles in the experimental arena setups to test the robustness
of the controller. The policy learnt from demo A fails to
go through the lab mock-up of uneven terrains, especially
when go over different obstacles with one side of the track.
The control policy generated from the merged demonstration
successfully handles all these various setups. We present 4
of the autonomous driving tests in the attached video, Fig.10
shows the robot observations and the network control actions
in test 4. It can be inferred that our reactive responsive
controller does not over-fit to the order of obstacles and the
timing for each action. The control actions are based on a
sequence of sensor inputs and the robot’s global state. This
method is very time-efficient and we think it is not difficult
to be used by other behavioural cloning algorithms as long
as the robot control interface is intuitive to human.



C. Transfer Learning

Our robot system could learn new skills (III-A) from a new
edited demonstration. However, training the network from
scratch is time-consuming. We use TL to greatly improve
the learning efficiency to acquire new skills.

In our research, different control skills are generated from
the same robot system using the same control interface.
The Markov process of these control actions are similar and
related. As a result, we restore the hyper-parameters of the
three LSTM cells from the well-trained model in III-A, and
only initialise the fully-connected layer (red shade in Fig.4)
while re-training. TL saves at least 60% of training time in
our experiments. Mobility controller network converges at
around 1500 steps.

IV. CONCLUSION AND FUTURE WORK

This paper presents an LSTM-based control algorithm
that enables an arm-equipped tracked robot to learn motion
skills (self-steering, obstacle-negotiation, failure-recovery,
stair-climbing and delivering) from tele-operated human
demonstrations. We find that feeding a set of sequential
data containing several previous data and the current one
to the LSTM controller would significantly improve its
performance comparing to simply feeding the current data.
We also propose a method to minimise the effect of non-
optimal demos for supervise-learning-based control algo-
rithm and use transfer learning to speed up the training
procedure. We decompose the delivery task into mobility
part and manipulation part, and use 2 networks to control
them separately.

As for future work, we can introduce a path planner
in the ‘High-level controller’ shown in Fig.2, which will
enable more complex tasks. In the training of aforementioned
process, the control of motors and arm are decoupled. The
human expert stops motor control while controlling the robot
arm and vice-versa. We plan to learn whole-body control
of arm-equipped mobile robot from several independent
demos, or from an edited demonstration which contains those
demonstrations.

V. ACKNOWLEDGEMENT

This work has been supported by EPSRC UK Robotics
and Artificial Intelligence Hub for Offshore Energy Asset
Integrity Management (EP/R026173/1).

REFERENCES

[1] C. Yang, K. Yuan, W. Merkt, T. Komura, S. Vijayakumar, and Z. Li,
“Learning whole-body motor skills for humanoids,” in 2018 IEEE-RAS
18th International Conference on Humanoid Robots (Humanoids).
IEEE, 2018, pp. 270–276.

[3] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-
driving cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[2] D. A. Pomerleau, “Alvinn: an autonomous land vehicle in a neural
network,” in Advances in neural information processing systems 1,
1989, pp. 305–313.

[4] A. Giusti, J. Guzzi, D. C. Cireşan, F. He, J. P. Rodrı́guez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza,
and L. M. Gambardella, “A machine learning approach to visual
perception of forest trails for mobile robots,” IEEE Robotics and
Automation Letters, vol. 1, no. 2, pp. 661–667, July 2016.

[5] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter
aerobatics through apprenticeship learning,” The International Journal
of Robotics Research, vol. 29, no. 13, pp. 1608–1639, 2010. [Online].
Available: https://doi.org/10.1177/0278364910371999

[6] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-
based learning from demonstration,” International Journal of Social
Robotics, vol. 4, no. 4, pp. 343–355, Nov 2012. [Online]. Available:
https://doi.org/10.1007/s12369-012-0160-0

[7] J. Schulman, J. Ho, C. Lee, and P. Abbeel, Learning from Demonstra-
tions Through the Use of Non-rigid Registration. Cham: Springer
International Publishing, 2016, pp. 339–354.

[8] S. J. R. SAndrew Y. Ng, “Algorithms for inverse reinforcement
learning,” in ICML Proceedings of the Seventeenth International
Conference on Machine Learning, San Francisco, CA, USA, 2000,
pp. 663–670.

[9] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-
regret reductions for imitation learning and structured
prediction,” CoRR, vol. abs/1011.0686, 2010. [Online]. Available:
http://arxiv.org/abs/1011.0686

[10] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
2009 IEEE International Conference on Robotics and Automation,
May 2009, pp. 763–768.

[11] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
A. Sendonaris, G. Dulac-Arnold, I. Osband, J. Agapiou, J. Leibo, and
A. Gruslys, “Learning from demonstrations for real world reinforce-
ment learning,” 04 2017.

[12] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive UAV
control in cluttered natural environments,” CoRR, vol. abs/1211.1690,
2012. [Online]. Available: http://arxiv.org/abs/1211.1690

[13] Z. Fang, G. Bartels, and M. Beetz, “Learning models for constraint-
based motion parameterization from interactive physics-based sim-
ulation,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 4005–4012.

[14] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Gold-
berg, “Cloud-based robot grasping with the google object recognition
engine,” in 2013 IEEE International Conference on Robotics and
Automation, May 2013, pp. 4263–4270.

[15] C. Crick, S. Osentoski, G. Jay, and O. Jenkins, “Human and robot
perception in large-scale learning from demonstration,” 01 2011, pp.
339–346.

[16] M. Forbes, M. Chung, M. Cakmak, and R. P. N. Rao, “Robot
programming by demonstration with crowdsourced action fixes,” in
HCOMP, 2014.

[17] S. Barrett, M. E. Taylor, and P. Stone, “Transfer learning for reinforce-
ment learning on a physical robot,” the Ninth International Conference
on Autonomous Agents and Multiagent Systems - Adaptive Learning
Agents Workshop, 2010.

[18] H. Plisnier, D. Steckelmacher, D. Roijers, and A. Nowé, “Transfer
learning across simulated robots with different sensors,” 2019.
[Online]. Available: https://arxiv.org/abs/1907.07958

[19] S. Hecker, D. Dai, and L. V. Gool, “End-to-end learning of driving
models with surround-view cameras and route planners,” 2018.
[Online]. Available: https://arxiv.org/abs/1803.10158

[20] Humanbenchmark, “Reaction time statistics,” 2020. [Online]. Avail-
able: https://www.humanbenchmark.com/tests/reactiontime/statistics


