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Abstract

The lip is a dominant dynamic facial unit when a per-
son is speaking. Detecting lip events is beneficial to speech
analysis and support for the hearing impaired. This paper
proposes a 3D lip event detection pipeline that automati-
cally determines the lip events from a 3D speaking lip se-
quence. We define a motion divergence measure using 3D
lip landmarks to quantify the interframe dynamics of a 3D
speaking lip. Then, we cast the interframe motion detection
in a multi-temporal-resolution framework that allows the
detection to be applicable to different speaking speeds. The
experiments on the S3DFM Dataset investigate the over-
all 3D lip dynamics based on the proposed motion diver-
gence. The proposed 3D pipeline is able to detect opening
and closing lip events across 100 sequences, achieving a
state-of-the-art performance.

1. Introduction

Speaking is a spontaneous behavior involving multiple
biological modalities, including voice, visual speech [10],
dynamic face motions [20], etc. There are many applica-
tions related with speaking, e.g. speech recognition, lip-
reading [8], or identity recognition [10, 20]. The lip is a
dominant dynamic facial unit when speaking, and the vi-
sual lip acts as an important counterpart to the audio infor-
mation. For visual lip related applications, detecting the lip
events of opening and closing is a significant prerequisite
for analyzing lip behavior.

Lip event detection aims at localizing and tracking the
lip region across a video sequence and then determining the
starting and ending times of the speaking behavior along the
temporal domain. The core of lip event analysis focuses on
the spatio-temporal representation of interframe motion, in-

stead of the whole lip dynamics. The challenge always lies
at fine-grained temporal detection (i.e. frame-level motion
decision).

Existing lip event analysis algorithms are mainly based
on 2D image sequences. A group of lip event detection
methods are based on dense motion field analysis. For ex-
ample, Karlsson and Bigun [13] improved 2D optical flow
estimation and constructed a low-level lip dynamics feature
for lip event detection. Liu et al. [15] constructed oriented
histograms of regional optical flow (OH-ROF) over 2D lip
sequences to represent frame-level lip motion, and then pro-
posed a low-rank affinity pursuit approach to determine the
starting and ending of a lip event. This method is efficient
as it is free of prior learning.

There are two drawbacks to using 2D motion fields: 1)
the inner mouth is cluttered and its motion field affects the
lip event detection; 2) the motion field of sequential 2D in-
tensity images is sensitive to facial pose variations. An-
other family of methods focuses on lip shape deformation
[18, 5] and motion features [19, 16]. Taeyup et al. [19]
proposed a chaos-like lip motion measure - fractal trajec-
tories observed in phase space, which is especially robust
against illumination changes. Patrona et al. [16] utilized
multiple intensity image features and dense trajectories of
keypoints to represent both the local shape and motion of a
speaking face. The representations are then integrated into
a bag of words model for later classification. Recently, an
end-to-end network - HiCA [17] was designed to extract
the local and global temporal features and achieves visual
voice activity detection. There are also some dual-modality
approaches [9, 4, 3] that combine audio and intensity video
information for speaking event detection. The two modali-
ties complement each other. Overall, lip event detection via
2D sequences always suffers from the common drawbacks
of intensity images. It is sensitive to facial pose variations,
nonuniform illumination, scale changes, etc.



Lip event detection via 3D sequence data is a promis-
ing alternative approach for the task. To the best of our
knowledge, 3D lip event analysis is a less investigated ap-
proach. 3D lip event detection is challenging when deal-
ing with 3D noisy data, cluttered backgrounds, and frame-
level non-rigid deformation. Since the 3D mouth cavity is
usually reconstructed with lower quality due to the dark-
ness and occlusion of oral components, the 3D motion field
based approach is not a preferred solution. Besides, speak-
ers with low speaking speeds generate weak deformations
between consecutive frames, which are tough to be detected
and compared.

To tackle the above problems, we focus on 3D lip event
detection based on the interframe motion of 3D lip land-
marks. The landmark-based motion representation is more
immune to the cluttered and dark background of the mouth
cavity. The main contributions of this paper are:

• We define a new interframe motion representation for
the 3D speaking lip - 3D motion divergence. The mo-
tion signature quantifies the overall deformation of 3D
lip landmarks via a reference sphere over the 3D lip.
(Sec. 3.2)

• We propose a new 3D lip event detection pipeline that
determines the lip opening and closing frames from the
3D video in multiple temporal resolutions. The coarse-
to-fine temporal strategy is beneficial when dealing
with various motion speeds. (Sec. 3.3)

The proposed algorithms were verified on a 3D speaking
face dataset (S3DFM [20, 22])1 and has good detection per-
formance over 100 sequences with 200 events.

2. Overview of the proposed pipeline

We define two lip events as 1) the moment lips first start
to open and 2) the moment lips have finished closing.

The proposed pipeline for 3D lip event detection is
shown in Fig.1. Given a 3D lip video sequence, we first
perform noise reduction to improve the overall quality of
the 3D data. Then, the 3D landmarks of the dynamic lips are
extracted using a non-rigid 3D registration algorithm with a
3D deformable model [2, 11]. The registration also facil-
itates the rigid pose correction of the lip. The motions of
lip landmarks are fed into the proposed interframe motion
representation, following a framework of dynamic temporal
resolutions. The event region proposal is gradually refined
to an event frame. More details are given in the next section.

1http://groups.inf.ed.ac.uk/trimbot2020/DYNAMICFACES/

3. Interframe 3D lip motion representation

3.1. Preprocessing 3D lip sequence

The preprocessing incorporates two main steps: denois-
ing and rigid pose correction. The raw 3D point cloud se-
quences usually suffer from some spatial noise and tempo-
ral fluctuations, due to the sensor technology and data cap-
ture procedure. To improve the overall quality of the 3D
data, we firstly denoise the 3D point cloud sequence us-
ing a multi-frame fusion algorithm [21], but do not reduce
the frame rate. On the other hand, facial pose is likely to
slightly change while a person is speaking. The rigid lip
pose variation mixed with non-rigid lip deformation will af-
fect the interframe lip motion analysis. The lip landmarks
extraction involves rigid registration that is used for correct-
ing the lip pose.

3.2. Interframe 3D lip motion signature

It is interesting to note that the lip events of opening and
closing are not the same for every person and every phrase
that the speaker is about to pronounce. According to the re-
search on lip motion-based behaviometrics [7, 14, 20], the
lip event is a person-specific trait. Besides, the motion vec-
tor of an individual lip landmark cannot represent the open-
ing or closing state of a lip. E.g. an opening lip can con-
tain both diverging and converging lip landmarks. Based on
the above observations, the interframe motion signature of a
3D speaking lip should capture common and global proper-
ties of the frame-level 3D lip dynamics, and cope with both
person-specific and syllable-specific differences. Another
common property of the 3D lip dynamics while speaking is
the symmetry, which means that speaking is a regular and
text-constrained motion.

For raw 3D lip motion data, we only focus on the land-
marks of the 3D lip, instead of a dense point-wise motion
field. This is to avoid the impact of unstable motion from
the inner mouth. Thus, we represent a 3D lip as a set of 3D
landmarks {Lt

i ∈ R3}(i = 1...n) at time t. Each lip land-
mark generates a motion vector mt

i ∈ R3 during speaking
events. Motivated by divergence in flow analysis, we de-
fine an interframe motion signature over all the 3D lip land-
marks. The signature measures the energy and overall type
of a lip motion between two frames. It is a global metric
summarizing the interframe lip dynamics.

Lip motion signature energy. For a lip event, we as-
sume that the motion of every lip landmark brings a unit
of “energy” into or out of the mouth region. To measure
the motion energy of all the lip landmarks, we establish a
reference sphere S within the lip region in a 3D coordinate
system o − xyz, as shown in Fig.2. The center OS of the
sphere S is the 3D center of mass of all the lip landmarks at
the reference frame. Since every frame has been registered
with the reference frame before interframe motion analysis,



Figure 1. The proposed pipeline of 3D lip event detection. Given a 3D lip sequence, the lip event detection begins with a coarse temporal
resolution ts0 and an event reference frame f1, and it gradually refines the temporal region proposal by increasing temporal resolution tsi
as well as updating the reference frame. At each temporal resolution, we sequentially compute the interframe divergence and classify the
frames.

Figure 2. Reference sphere (blue ball) for calculating the inter-
frame motion divergence of a 3D lip at one time. Li is a 3D lip
landmark. mi and vi is the 3D motion vector and reference vector
of the ith lip landmark, respectively. The motion divergence can
be calculated according to Eqn.2.

the center is static across the sequence. The surface area
of the sphere is a constant VS . We focus on the “energy”
change at the center OS , which is defined precisely below.

For each point on the surface of the sphere, we define
the radial direction as a unit normal motion direction vi.
The motion vector at time t and lip landmark i is mt

i =

Lt
i − L

[t−1]
i . A set of motion vectors Mt{mt

i ∈ R3} (as
defined by the motion of lip landmark Lt

i) can only generate
the motion energy in the normal motion direction. Thus, the
overall lip motion energy is defined as Eqn.1.

Divtlip = lim
S→OS

1

VS

∫∫
©
Ω

mt
i · vidS (1)

where Ω is the closed surface of the sphere, with dS is a
unit of area. VS is the sphere’s surface area. When all the
energy of the motion converges at the center, i.e. S → OS ,
the divergence at the center measures the energy and type

of the motion.
As the number n of the lip landmarks is finite, we dis-

cretize the divergence of interframe lip motion at time t as

Divtlip =
1

VS

n∑
i=1

mt
i · q(Lt

i −Ot
S)∆S (2)

with

VS = Area(Ω) =

n∑
i=1

∆S (3)

where ∆S is a discrete fraction of the sphere’s surface area,
which is a constant. q(·) is the vector normalization.

Lip motion signature category. Every interframe mo-
tion can be represented by the signature Divtlip. The event
state of one lip landmark is defined by the angle between
the 3D landmark motion vector mt

i and its reference vector
vi = q(Lt

i −OS). When the angle is over 90 degrees, the
landmark is closing, and vice versa. That is,

sgn(Divtlm) = sgn〈mt
i, (L

t
i −OS)〉 (4)

where sgn(·) is a signum. Divtlm is the motion divergence
of a lip landmark. When the mouth is opening, the over-
all interframe motion divergence of all lip landmarks is a
positive value and vice versa. We define the lip as static if
the motion signature satisfies a threshold εsilence, as Eqn.5.
When the units of 3D lip points are in millimeters, we set
εsilence = 1 in practice.∣∣Divtlip∣∣ < εsilence (5)

Otherwise

LipStatet =

{
opening sgn(Divtlip) = 1

closing sgn(Divtlip) = −1

s.t.
∣∣∣Divtleft −Divtright∣∣∣ < εsymmetry

(6)

where sgn(·) is a signum. Divtleft and Divtright are the
divergences of the left side and right side of a lip at time



t, respectively, and both satisfy Eqn.2. We incorporate the
symmetry as another constraint in the lip event detection.
That is, if the motion divergences of left lip Divtleft and
right lip Divtright are almost the same within a tolerance
εsymmetry, the interframe motion satisfies symmetry. Oth-
erwise, the interframe motion will be rejected as a state of
interest. In our implementation, the tolerance εsymmetry is
set as 0.4 empirically.

The lip event is sequential and is defined as the first
frame whose state is opening or the last frame whose state
is closing.

3.3. Event detection at multi-temporal-resolutions

We cast the interframe motion detection into a frame-
work with multiple temporal resolutions, as shown in Fig.
3. As a temporal region with a coarse temporal resolu-
tion covers more motion energy, the pipeline begins with
the detection at a coarse time scale (bottom axis in Fig. 3)
and gradually increases the temporal detection resolution
for fine detection (top axis in Fig. 3).

Figure 3. Lip event detection at multiple temporal resolutions: the
detection begins at a coarse temporal resolution (averagely down-
sampling the original frames in the time domain), determine an
interframe interval as a region proposal, increase the temporal res-
olution of the region by downsampling the original frames with
smaller sampling interval, repeat the detection at each level of tem-
poral resolution.

Given a 3D point cloud sequence, we define a coarse
temporal resolution by averagely downsampling the origi-
nal frames in the time domain. Assume that the initial tem-
poral detection resolution is ts0× frames. That is, the ini-
tial frame rate is 1/ts0 of the original frame rate. We set
the first frame of the sequence as a reference frame. The in-
terframe motion detection is sequentially performed along
the time axis. The detection algorithm generates a temporal
region proposal which includes the potential opening frame
(or closing frame) of a lip event. Then, we update the refer-
ence frame as the first frame of the region and increase the

temporal resolution by downsampling the original frames
in the region proposal again (but with the downsampling in-
terval smaller than that of the last round). The detection
is conducted in each round. The region proposal is finally
refined to one frame as the temporal detection resolution
increases.

The merits of this hierarchical strategy are two-fold:
1) the coarse-to-fine detection hierarchically reduces the
searching space for the target frame, which is beneficial to
reduce the false detection rate; 2) coarse temporal resolution
allows motion event detection for people with lower speak-
ing speeds. When the speaking speed is slow, the interframe
with the finest temporal resolution may not generate enough
motion divergence for detection. The event response can be
given at a coarser temporal resolution.

Finally, the proposed pipeline outputs the opening and
closing frames of a 3D lip event. The overall algorithm is
shown in Table 1.

Algorithm 1 Proposed pipeline of 3D lip event detection
Input: 3D speaking face sequence {ft}(t = 1...m);
Output: Lip event frames {fopen, fclose} (Note: we only

present the procedure of lip opening detection as an ex-
ample below, as the closing event detection is similar);

1: Initialize reference frame as f1;
2: Construct a reference sphere at the 3D lip center;
3: procedure INTERFRAME MOTION REPRESENTATION
4: for each temporal resolution ts =
{30×, 15×, 7×, 3×, 1×} original interframe interval
do

5: for each 3D frame fts×j(j = 1 · · ·m/ts) do
6: Denoise current 3D frame;
7: Register fts×j with reference frame;
8: Extract 3D lip landmarks {Lts×j

n };
9: Compute motion vectors of lip landmarks;

10: Compute 3D interframe motion divergence;
11: Determine event state of current lip;
12: if lip opening event happens then
13: Update reference frame with fts×(j−1);
14: Update event frame with fopen = fts×j ;
15: Break;
16: end if
17: end for
18: end for
19: end procedure
20: return {fopen, fclose};

4. Experiments and discussion

This section reports the experiments on a 3D speaking
face dataset. We analyze the full lip dynamics of speak-
ing and investigate the comparative performance of the pro-



Figure 4. 3D lip dynamics analysis: (a) an example 3D point cloud
frame; (b) interframe motion divergence across a 3D speaking face
sequence. The first 250 interframe motions are measured for open-
ing detection, with the first frame as the reference frame. The last
250 interframe motions are used for closing detection, with the last
frame as the reference frame.

posed pipeline and some representative counterparts.

4.1. Dataset

The proposed pipeline was verified on a publicly avail-
able dynamic face dataset - Speech-driven 3D Facial Mo-
tion Dataset (S3DFM) [1, 22]. The dataset has multi-
modality data from 77 subjects covering more than 20 na-
tionalities. The facial dynamics is generated from the sub-
ject speaking a one-second short phrase “ni’hao”. Each
sample set contains a 2D intensity sequence + a 3D point
cloud sequence + a synchronized audio sequence. The au-
dio and video modalities of a lip event were collected with
a light flash as a synchronization trigger. We only use the
3D speaking face modality in the algorithm presented here,
while the audio and intensity modalities help determine the
ground truth labeling. We set the frame rate of each se-
quence as 250 frames per second (fps) for better labeling.
Each frame is a 3D point cloud with the resolution of 600
points × 600 points. An example 3D point cloud frame is
shown in Fig.4a.

We manually labelled the lip opening and closing frames
using both the pixel-wise registered intensity sequences and
the synchronized audio sequences. The audio clip firstly
gave a coarse time localization and then we compared the
consecutive frames around the coarse time to finally decide
a fine ground-truth event frame.

4.2. Qualitative analysis

3D lip landmarks dynamics. The 3D motion diver-
gence of a whole sequence is shown in Fig.4b, where we
separate a whole sequence with 250 frames into the open-
ing event region proposal of the first half frames and the
closing event region proposal of the last half frames. We
can see that the 3D motion divergence is increasing during
the start of speaking (blue bars), and vice versa (red bars).
Ax example of the dynamics of 3D lip landmarks across the

whole sequence is shown in Fig.5. The 3D motion vectors
are diverging when the opening event happens, and they are
converging in the closing event.

3D lip landmarks divergence. We set the first frame f1

and the last frame f250 as initial reference frames for detect-
ing the opening event and closing event, respectively. Since
the video clip is synchronized with the audio clip, the first
frame is earlier than the starting of the speech and the last
frame covers the end of the speech. It is noted that the lip
motion is sequential, so the motion state along the time axis
is invariant to the reference time. The temporal detection
resolutions are set as {30×, 15×, 7×, 3 × 1×} original in-
terframe interval (More analysis on temporal resolutions are
presented in Sec. 4.5 below). At each temporal resolution,
the proposed pipeline calculated the 3D interframe motion
divergence along the time axis. Fig.6 shows an example
from a single frame of motion divergence of 3D lip land-
marks at the temporal detection resolution of 30×. We can
see that the closing motion allows an angle of over 90 de-
grees with its reference motion vector (the blue vector), thus
generating a negative motion divergence measure (Fig.6a),
and vice versa (Fig.6b).

4.3. Quantitative performance

4.3.1 Metrics

We define three hierarchical metrics to evaluate both frame-
level and event-level performance of the algorithm as below.
• Framewise Accuracy (F-Acc): our lip event detection

issue is a sequence-to-sequence classification task. Each
frame refers to one of the three activity states: static, open-
ing, and closing. The F-Acc measures the classification rate
of all the frame states.
• Event Frame Deviation (F-Dev): F-Dev evaluates the

mean deviation between the detected events Ti and cor-
responding ground truth events gti, as an event deviation
δ = |Ti − gti|. The deviation is caused by the event frames
being detected earlier or later than the ground-truth frame.
• Event Recall Rate (E-RR): For a detected event, if

its event frame deviation is within a F-Dev tolerance, the
event is regarded as a true response. E-RR is the ratio
of the correctly detected events to all of the events. The
false events contain missing ones and incorrectly classified
events, where the former is related to the magnitude of the
motion energy, and the latter is caused by the wrong sign
of 3D motion divergence. Thus, the E-RR increases with a
larger F-Dev tolerance.

4.3.2 Ablation study on temporal resolutions

The temporal detection resolution is set to be 2 configu-
rations: multi-temporal-resolutions and single frame reso-
lution. We calculate multiple performance metrics for our



Figure 5. 3D speaking lip motion in a 3D sequence of 500 frames: (a)-(c) opening frames at 3 moments; (d)-(f) closing frames at 3
moments.

Table 1. Multi-indictor comparison of different methods or configurations on the dataset
Methods F-Acc (%) F-Dev (opening/closing) E-RR (%) T-Dev (ms)
Lip feature [22] 85.14 12.28/24.87 80.5 74.3
TCN (2-fold CV) [6] 85.36 11.82/24.77 80.5 73.2
LSTM (2-fold CV) [12] 82.79 14.84/28.18 84.0 86.0
Single-scale (noisy features) 82.20 14.01/30.5 81.0 89.0
Single-scale (smoothed features) 88.16 9.81/19.78 88.0 59.2
Ours (noisy features) 87.58 14.08/16.98 90.0 62.1
Ours (smoothed features) 89.46 12.63/13.72 91.5 52.7
Note: F-Acc is Framewise Accuracy; F-Dev is Event Frame Deviation; E-RR is Event Recall Rate
with the F-Dev tolerance of 40 frames; T-Dev is average Time Deviation of the events in frames
converted to msec (frame per second is 250). All the indictors are mean values across the samples.
CV is cross-validation.

Figure 6. Motion divergence of 3D lip landmarks: (a) Lip opening
event with red 3D motion vectors of lip landmarks, whose motion
divergences are positive. The blue vectors are 3D reference vectors
to the lip landmarks from the center of the reference sphere. (b)
lip closing event with green 3D motion vectors of lip landmarks,
whose motion divergences are negative. (Note: for a better view,
we show the 3D vectors in the XY view and scale the length of the
vectors.)

algorithm across all the 100 test sequences (200 events in-
cluding opening and closing). We test both configurations
on noisy features and smoothed features (Sec.3.1) to inves-
tigate the robustness. Fig.7 presents 10 example results of
true event detection by our algorithm on smoothed features.

It shows that the opening and closing event frames detected
are closely consistent with the ground truth. More compara-
tive results are listed in the last four rows of Table 1 (the rest
results are mentioned in the next section). We set the frame
deviation tolerance as 40 frames (16 msec) and calculate an
event recall rate (E-RR) for each method or configuration.

From the comparative results, we can see that our
pipeline with multi-temporal-resolution on smoothed data
achieves higher E-RR of 91.5% and lower T-Dev of 52.7
msec. More detailed F-Dev results are shown in Fig.8. For
the pipeline with multi-temporal-resolutions, the mean F-
Dev. of opening and closing events are 12.6 frames and 13.7
frames, respectively. The multi-temporal resolution detec-
tion is more robust to noisy data, as the event proposal gen-
erated when using larger scale motion energy focuses the
detection range.

Failure cases analysis. For the missed event samples,
the motion energy was too small to be detected. The false
detection samples are mainly caused by irregular lip mo-
tions and incorrect interframe motion. For the irregular
lip motion, the lips of a few speakers went through some
frames of deforming before opening and were somewhat
widening while closing, which allows the lip landmarks



Figure 7. 10 example results of lip event detection: (a) 3D lip
opening; (b) 3D lip closing. The deviation between the detected
moment and ground truth moment is measured by Event Frame
Deviation (F-Dev).

Figure 8. Event Frame deviation (F-Dev) of different methods or
configurations: A is lip distance-based features [20]; B is LSTM
[12]; C is TCN [6]; D is single-resolution on noisy features; E is
single-resolution on smoothed features; F is multi-resolution on
noisy features; G is multi-resolution on smoothed features. Each
compared group consists of performance on opening events and
closing events.

to generate irregular motion divergence and thus influence
the event decision. Besides, 3D lip landmark deviations or
registration error will also influence the divergence feature,
which could be improved by using more advanced lip land-
mark tracking or detection algorithms.

4.4. Comparison on different methods

We compare the performance of the proposed 3D lip de-
tection algorithm with existing dynamic lip features and
temporal detection methods on the same 3D point cloud
streams. The comparison pipelines are 3D dynamic lip fea-

Figure 9. Event Recall Rate (E-RR) vs. varying framewise event
deviation tolerance (F-Dev tolerance)

tures [20] plus change time decision, divergence features
plus temporal modeling method LSTM [12], and divergence
features plus temporal modeling TCN [6]. Both temporal
models are trained under a 2-fold cross validation mode.
The overall multi-indicator results are presented in Table 1,
and Fig.8 shows the frame deviation distribution of all the
samples. We also plot the E-RR vs. F-Dev tolerance curves
in Fig.9 to indicate the correlation of the two metrics and
the comprehensive performance of the compared methods.

We can see from the multi-aspect indicators that our
pipeline with multi-temporal resolution outperforms others
in terms of mean indicators. However, there are some out-
liers with large frame deviations (shown in Fig.8), which
thus degrades the event recall rate when the F-Dev toler-
ance is larger than 60 frames (in Fig.9).

4.5. Discussion on multi-temporal-resolutions

In our framework, tst is an updated temporal resolution
at which an event frame proposal is generated. We set the
dynamic temporal resolution updated according to Eqn.7.

tst+1 = d tst
k
e (tst+1 ≥ 1) (7)

where k is an integral number that was set as k = 2 in the
experiments. The number n of the temporal resolutions is
related to the parameter k, satisfying mod( ts0

k(n−1)
) = 0.

At each temporal resolution tst, gtt is a relative ground
truth frame updated with the reference frame according to
Eqn.8.

gtt+1 = w(gtt − b
gtt
tst
ctst) + (1− w)tst (8)

where w ∈ [0, 1] is a binary parameter that satisfies

w = sgn[mod(gtt, tst)] (9)



Figure 10. Number of interframe event detections for varying start-
ing times of a lip event at different initial temporal resolutions ts0
(ts0 is measured by temporal interval of original resolution).

Detection mode. The event detection at each tempo-
ral resolution can be in a sequential or a parallel mode. In
the sequential mode, the numbers of interframe event de-
tections is related to the relative ground truth gtt and the
resolution tst, as Eqn.10. The first item of Eqn.10 indicates
the number of interframe detections when the ground truth
frame gtt is not integral multiples of the current temporal
resolution tst, and the second item counts the number when
gtt is integral multiples of tst.

DetNum =

n∑
t=0

w(bgtt
tst
c+ 1) + (1− w)

gtt
tst

(10)

Based on the sequential mode analysis, we generated a
set of synthetic ground truth event times gt0 and initial tem-
poral resolutions ts0 to investigate how the number of inter-
frame detections changes with both parameters. The results
are shown in Fig.10. The lip event are a progressive mo-
tion, so the number of interframe detections changes with
the event happening moment. A large initial temporal de-
tection resolution saves the computational cost in the se-
quential interframe detection mode.

4.6. Discussion on applicability

Various speaking speeds. The test sequences ex-
hibit different speaking speeds due to individual behaviors.
Speaking slowly typically generates lower interframe mo-
tion energy. The interframe motion signature of lower mo-
tion energy is more likely to be influenced by data noise and
inexact landmark localization. The multi-resolution strat-
egy enlarges the interframe motion energy via an initially
low detection resolution and reduces the search space grad-
ually. For a slow speaker, a frame rate higher than that of

the event is unnecessary. Thus, if an event is detected at a
coarse resolution but not responded at the next finer resolu-
tion, our algorithm outputs the result at the coarse resolution
as the event.

Algorithm efficiency. The time complexity of the
pipeline is O(ntsf), which is related to the number of tem-
poral resolutions nts and the number of frames f at one
temporal resolution. If the interframe detection of a se-
quence at one temporal resolution is performed in a par-
allel mode, the computational complexity becomes O(nts).
Besides, since the 3D data quality would influence the land-
mark extraction and pose correction, if higher-quality data
acquisition allows the pipeline to be free from data denois-
ing, the efficiency would be improved greatly. The pipeline
is promising to be applied in real time.

5. Conclusion
This paper proposes a 3D lip event detection method

at multiple temporal resolutions, with an interframe mo-
tion representation called 3D motion divergence. The
method avoids the drawbacks of 2D intensity data and is
a promising alternative for lip event detection. The ex-
perimental results demonstrate that the proposed pipeline
achieves a state-of-the-art performance. The strategy of the
multi-temporal resolution improves the robustness to vari-
ous speaking speeds. The motion representation based on
3D lip landmarks avoids the complexity of the inner mouth.
The 3D lip event pipeline helps automatically segment the
3D dynamic clips of interest and is beneficial for later global
lip dynamics analysis.

In the future, we would like to focus on temporal model-
ing of 3D dynamic lips that represents both the interframe
motion and the global dynamics, and seek to achieve 3D
lip event detection and behavior analysis in an end-to-end
fashion.
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