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A Theory of Relation Learning and Cross-domain Generalization
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People readily generalize knowledge to novel domains and stimuli. We present a theory, instan-
tiated in a computational model, based on the idea that cross-domain generalization in humans
is a case of analogical inference over structured (i.e., symbolic) relational representations. The
model is an extension of the LISA (Hummel & Holyoak, 1997) and DORA (Doumas et al.,
2008) models of relational inference and learning. The resulting model learns both the content
and format (i.e., structure) of relational representations from non-relational inputs without
supervision, when augmented with the capacity for reinforcement learning, leverages these
representations to learn individual domains, and then generalizes to new domains on the first
exposure (i.e., zero-shot learning) via analogical inference. We demonstrate the capacity of
the model to learn structured relational representations from a variety of simple visual stimuli,
and to perform cross-domain generalization between video games (Breakout and Pong) and
between several psychological tasks. We demonstrate that the model’s trajectory closely mirrors
the trajectory of children as they learn about relations, accounting for phenomena from the
literature on the development of children’s reasoning and analogy making. The model’s ability
to generalize between domains demonstrates the flexibility afforded by representing domains
in terms of their underlying relational structure, rather than simply in terms of the statistical
relations between their inputs and outputs.

Keywords: relation learning, generalization, learning relational content, learning structured
representations, neural oscillations

Introduction

Many children learn the apocryphal story of Newton dis-
covering his laws of mechanics when an apple fell from a tree
and hit him on the head. We were told that this incident gave
him the insight that ultimately led to a theory of physics that,
hundreds of years later, would make it possible for person to
set foot on the moon. The point of this story is not about the
role of fruit in humankind’s quest to understand the universe;
the point is that a single incident—a child’s proxy for a small
number of observations—led Newton to discover laws that
generalize to an unbounded number of new cases involving
not only apples, but also cannonballs and celestial bodies.
Without being told, we all understand that generalization
—the realization that a single set of principles governs falling
apples, cannonballs, and planets alike—is the real point of the
story.

Although the story of Newton and the apple is held up as
a particularly striking example of insight leading to broad
generalization, it resonates with us because it illustrates a fun-
damental property of human thinking: People are remarkably
good—irresponsibly good, from a purely statistical perspec-
tive—at applying principles discovered in one domain to new
domains that share little or no superficial similarity with the

original. A person who learns how to count using stones can
readily apply that knowledge to apples. A graduate student
who learns to analyze data in the context psychological ex-
periments can readily generalize that knowledge to data on
consumer preferences or online search behavior. And a person
who learns to play a simple videogame like Breakout (where
the player moves a paddle at the bottom of the screen horizon-
tally to hit a ball towards bricks at the top of the screen) can
readily apply that knowledge to similar games, such as Pong
(where the player moves a paddle on the side of the screen
vertically and tries to hit a ball past the opponent paddle on
the other side of the screen).

This kind of "cross-domain" generalization is so common-
place that it is tempting to take it for granted, to assume it is a
trivial consequence of the same kind of statistical associative
learning taught in introductory psychology. But the truth is
more complicated. First, there is no clear evidence that any
species other than humans is capable of the kind of flexible
cross-domain generalization we find so natural (see Penn
et al., 2008). And second, while "cross-domain" generaliza-
tion has also been the subject of substantial research in the
field of machine learning (see, e.g., Gamrian & Goldberg,
2019; Kansky et al., 2017; Zhang et al., 2018), robust, human-
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like cross-domain generalization continues to frustrate even
the most powerful deep neural networks (DNNs; see, e.g.,
Bowers, 2017; Geirhos et al., 2020).

In the following we present a theory of human cross-
domain generalization. Our primary claim is that human
cross-domain generalization is a product of analogical infer-
ence performed over structured relational representations of
multiple domains. We instantiate our theory in a unification
and extension of two existing computational models of rela-
tional reasoning, LISA (Hummel & Holyoak, 1997, 2003) and
DORA (Doumas et al., 2008). The resulting model accounts
for how we acquire structured relational representations from
simple visual inputs, integrates with current methods for rein-
forcement learning to learn how to apply these representations,
and accounts for how we leverage these representations to
generalize knowledge across different domains.

In what follows, we first review evidence for the role of
structured relational representations in generalization, broadly
defined, but especially in cross-domain generalization. Along
the way, we discuss what it means for a representation to
be structured and relational, contrasting the strengths and
limitations of implicit and explicit representations of relations.
Next, we outline our theory of human cross-domain general-
ization and describe the computational model that instantiates
it. We then present a series of simulations demonstrating that
the model learns structured representations of relations and
uses these representations to perform zero-shot (i.e., first trial)
cross-domain generalization between different video games
and between completely different tasks (video games and
analogy-making). We also show that the model’s learning tra-
jectory closely mirrors the developmental trajectory of human
children. Finally, we discuss the implications for our account,
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contrasting it with purely statistical learning accounts such as
DNNs, and we consider future extensions of the theory.

In addition to providing an account of cross-domain trans-
fer, the model also represents theoretical advance in at least
two other domains, (1) the discovery of the kind of invariant
semantic properties that constitute the meaning of a relation,
and (2) the integration of explicitly relational representations
with reinforcement learning to produce representations with
the expressive power of explicitly relational representations
and the productive capacity of implicit representations of
relations (e.g., as weight matrices).

Relational Representations and Generalization

Psychologists have long observed that people’s concepts,
even of "ordinary" domains like cooking and visual occlu-
sion, are like theories or models of the domains in question
(e.g., Carey, 2000, 2009; Murphy & Medin, 1985), in that
they specify the relations among the critical variables in the
domain. For example, our understanding of visual occlusion
specifies that a larger surface can occlude a smaller surface
more than vice-versa (one can hide behind a hundred-year-old
oak better than a sapling; e.g., Hespos & Baillargeon, 2001);
that an object continues to exist, even when it’s hidden behind
an occluder (e.g., Piaget, 1954); and that the ability of an
occluder to hide an object depends on the relative distances
between the occluder, the observer, and the hidden object.
Our model of biology tells us that the offspring are the same
species as the parents (e.g., Gelman et al., 2003). Our under-
standing of cooking specifies that the amount of salt one adds
to a dish should be proportional to the size of the dish. And
our model of a game like tennis, baseball, or Pong tells us that
the ability of the racket, bat, or paddle to hit the ball depends
on the locations and trajectories of these objects relative to
one another.

The critical property of all these models is that they spec-
ify—and thus depend on the capacity to learn and repre-
sent—an open-ended vocabulary of relations among variables:
Whether x can occlude y from viewer v depends on the relative
sizes of x and y, and the relative distances and angles between
x, y, and v. Accordingly, learning a model of a domain entails
learning a representation of the relations characterizing that
domain. We take this claim—that an "understanding" of a
domain consists of a representation of the relations charac-
terizing that domain—to be uncontroversial. However, our
claim is stronger than that. We claim that an understanding of
a domain consists of structured relational representations of
the domain. As elaborated shortly, by structured relational
representation, we mean a representational format that explic-
itly captures both the semantic content (i.e., meaning) and
the compositional structure (i.e., bindings of arguments to
relational roles) of a relationship.

One of the most important manifestations of a capacity
to reason about relations is analogical inference: inferences

https://github.com/AlexDoumas/BrPong_1
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based on the relations in which objects are engaged, rather
than just the literal features of the objects themselves. Analog-
ical inference is evident in almost every circumstance in which
a person demonstrates knowledge on which she was never
explicitly trained. The physics student learning Newton’s law,
f = ma, does not need to learn multiplication de novo in the
context of this new equation, she knows it already. So instead
of teaching her an enormous lookup table with all possible m
and a as input and the corresponding f as output, the physics
teacher simply gives her the equation, knowing her knowledge
of multiplication will generalize to the domain of physics. The
student who knows she needs at least a grade of 70% to pass
a course also knows, without additional training, that 69%,
68%, 67%, etc. are all failing grades, an inference based on
the relation between 70 and all the numbers smaller than it.
And if you have a meeting at 2:00 pm, and the current time is
1:00 pm, then you know you are not yet late. Importantly, we
know these things without explicit training on each domain
individually. An understanding of a relation such as less-
than or multiplied-by simultaneously confers understanding
to all domains in which it applies (e.g., grades, appointments,
recipes, automobile manufacture, etc.). In brief, cross-domain
generalization based on structured relational representations
is not the exception in human thinking, it is the default.

Learning Relational Representations

These facts have not escaped the notice of cognitive mod-
elers (e.g., Doumas et al., 2008; Falkenhainer et al., 1989;
Halford, Wilson, & Phillips, 1998; Hummel & Holyoak, 1997,
2003; Paccanaro & Hinton, 2001), and recent years have seen
increased interest in getting neural networks trained by back
propagation to learn useful representations of relations in do-
mains such as relation extraction from pictures (Haldekar et
al., 2017), visual question answering (e.g., Cadene et al., 2019;
Ma et al., 2018; Santoro et al., 2017; Xu & Saenko, 2016),
same-different discrimination (Funke et al., 2021; Messina
et al., 2021), and even visual (Hill et al., 2019; Hoshen &
Werman, 2017) and verbal (Mikolov et al., 2013) analogy-
making. The core assumptions underlying these efforts are
that (1) the relevant relational properties can be discovered
as a natural consequence of the statistical properties of the
input-output mappings, and that (2) the relevant relations will
be represented in the learned weight matrices and will permit
relational generalization.

This statistical approach to relation learning has met with
some substantial successes. One strength of this approach is
that because the learned relations are represented implicitly
in the networks’ weight matrices, they are functional in the
sense that they directly impact the model’s behavior: Given
one term of a relation, for instance, along with a weight matrix
representing a relation, a network of this kind can produce the
other term of the relation as an output (see e.g., Leech et al.,
2008; Lu et al., 2012, but cf. Lu et al., 2021). By contrast,

models based on more explicit representations of relations
(e.g., Anderson, 2007; Doumas et al., 2008; Falkenhainer
et al., 1989; Hummel & Holyoak, 1997, 2003), including the
model presented here, must explicitly decide how to apply
the relations it knows to the task at hand (e.g., by adding
an inferred proposition to a database of known facts; see
Anderson, 2007). As elaborated in the Simulations section,
one advance presented in this paper is a technique for using
reinforcement learning to choose which relations to use in
what circumstances in the context of video game play.

Although statistical learning of implicit relations achieves
impressive results when tested on examples that lie within the
training distribution, their performance deteriorates sharply
on out-of-distribution samples. For example, the relational
network of Santoro et al. (2017) was trained to answer same-
different questions about pairs of objects in an image. When
the model was tested on shape-color combinations withheld
from the training data (e.g., a test image with two identical
cyan squares where the model had seen squares and the color
cyan individually but not on combination), its performance
dropped to chance (Kim et al., 2018). The limited applica-
bility of the relations learned by these models holds across
application domains (for recent reviews see, Peterson et al.,
2020; Ricci et al., 2021; Sengupta & Friston, 2018; Stabinger
et al., 2020).

Why are useful relational representations so hard to learn
using traditional statistical learning? The short answer is
that although these approaches might capture the content of
(some of) the relevant relations in their respective domains,
they do not represent those relations in a form that supports
broad relational generalization. We argue that flexible, cross-
domain generalization relies, not on implicit representations
(like weight matrices), but instead on explicitly relational rep-
resentations, that simultaneously (a) represent the semantic
content of a relation (e.g., the meaning of the relation left-
of ()) and (b) represent that content in a format that makes it
possible to dynamically bind the relation to arguments without
altering the representation of either. The following expands
on the distinction between form and content with the goal of
clarifying our claims about the nature and utility of structured
relational representations for the purposes of generalization.
We return to this issue in much more detail in the Discussion,
where we relate our simulation results to the differences be-
tween structured relational representations, as endorsed in the
current theory, and implicit representations of relations, as
represented in the weight matrices of some neural networks.

Relational Content

What does it mean to represent a relation such as left-of
()? To a first approximation, it means having a unit (or pattern
of activation over multiple units) that become active if and
only if some part of the network’s input is to the left-of some
other part. For example, imagine a neural network that learns
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to activate a node in its output layer or in some hidden layer
if and only if the network’s input contains at least two objects,
i and j, whose locations in the horizontal dimension of the
display are unequal. Note that in order to represent left-of (),
per se, as opposed to instances of left-of () at a specific loca-
tion in the visual field, the unit or pattern must become active
whenever any object i is left of any other object j, regardless
of the specific objects in question, and regardless of their
specific locations in the visual field. That is, a representation
of a relation, such as left-of (i, j), is useful precisely to the
extent that it is invariant with the specific conditions (e.g., the
particular retinal coordinates, xi and xj) giving rise to it and
with the objects (arguments, i and j) bound to it (Hummel &
Biederman, 1992): Such a unit or pattern would, by virtue
of its 1:1 correspondence with the presence of things that are
left-of other things in the input, represent the semantic content
of the relation left-of ().

The invariance of a relational representation is partly re-
sponsible for the flexible generalization afforded by such
representations. A system that can represent left-of (paddle,
ball) in a form that is invariant with the specific locations of
the paddle and ball is well-prepared to learn a rule such as
"if the paddle is left of the ball, then move the paddle to the
right" and then apply that rule regardless of the location of
the paddle and ball in the game display. Such a representation
would even permit generalization to a screen wider than the
one used during training (i.e., with previously unseen values
of x). Conversely, representing left-of (paddle, ball) with
different units depending on where the paddle and ball are
in the display will not permit generalization across locations:
Having learned what to do when the paddle is at x = 10 and
the ball is at x = 11 (represented by a unit we’ll call left-
of[10,11]), such a network would not know what to do when
the paddle is at x = 12 and the ball at x = 15 (represented by
a different unit, left-of[12,15]).

The Form of Structured Relational Representations

Being able to represent relational invariants such as left-of
() and above () is extremely useful, if not necessary, for broad,
cross-domain generalization, but it is not sufficient. Simply
activating a unit or pattern representing left-of () does not
specify what is to the left of what: Is the paddle left of the
ball, or the ball left of the paddle? Or is one of them, or some
other object, to the left of some third or fourth object? Know-
ing only that something is left of something else provides no
basis for deciding whether, for example, to move the paddle
to the left or right.

Representing a relation such as left-of (i, j) in a way that
can effectively guide reasoning or behavior entails represent-
ing both the relational content of the relation (e.g., that some-
thing is left-of something else, as opposed to, say, larger-than
something else), and specifying that content in a format that
makes the bindings of arguments to relational roles explicit.

Following the literature on analogy and relational reasoning,
we will use the term predicate to refer to a representation in
this format. For our current purposes, a predicate is a rep-
resentation (a symbol) that can be bound dynamically to its
argument(s) in a way that preserves the invariance of both (see,
e.g. Halford, Wilson, & Phillips, 1998; Hummel & Bieder-
man, 1992; Hummel & Holyoak, 1997, 2003). By "dynamic
binding" we mean a binding that can be created and destroyed
as needed: To represent left-of (paddle, ball), the units rep-
resenting the paddle must be bound to the units representing
the first role of left-of () while the units representing the ball
are bound to the units representing the second role; and to
represent left-of (ball, paddle), the very same units must be
rebound so that ball is bound to the first role and paddle to the
second role. In propositional notation, these bindings are rep-
resented by the order of the arguments inside the parentheses.
Neural networks need a different way to signal these bindings,
and the work reported here follows Doumas et al. (2008, see
also Hummel and Biederman, 1992; Hummel and Holyoak,
1997, 2003) and others in using systematic synchrony and
asynchrony of firing for this purpose.

What matters about dynamic binding is not that it is based
on synchrony or asynchrony of firing; one might imagine
other ways to signal bindings dynamically in a neural net-
work. What matters is only that the dynamic binding tag,
whatever it is, is independent of the units it binds together.
That is, the binding tag must be a second degree of freedom,
independent of the units’ activations, with which to represent
how those units (representing roles and objects) are bound
together. Synchrony of firing happens to be convenient for
this purpose, as well as neurally plausible (e.g., Hummel &
Biederman, 1992; Hummel & Holyoak, 1997; Rao & Cecchi,
2010, 2011; Reichert & Serre, 2013; Shastri & Ajjanagadde,
1993). For example, to represent left-of (paddle, ball), neu-
rons representing left-of would fire in synchrony with neurons
representing the paddle, while neurons representing right-of
fire in synchrony with neurons representing the ball (and out
of synchrony with the paddle and left-of neurons). The very
same neurons would also represent left-of (ball, paddle), but
the synchrony relations would be reversed. In this way, the
representation captures the form of the representation (dis-
tinguishing left-of (ball, paddle) from left-of (paddle, ball)),
without sacrificing the content of left-of (), ball, or paddle.
This ability to bind ball and paddle dynamically to the roles of
left-of () without changing the representation of either derives
from the fact that when a unit fires, is independent of how
strongly it fires: The representation is explicitly structured
and relational because timing (which carries binding) and
activation (which carries content) are independent.

We posit that representing a relation as a structure that is
invariant with its arguments and can be dynamically bound to
arguments permits immediate (i.e., zero-shot) generalization
to completely novel arguments—including arguments never
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seen during training. For example, a Breakout player who
represents left-of () in a way that remains unaffected by the
arguments of the relation could adapt rapidly if the paddle and
ball were suddenly replaced by, say, a triangle and a square,
or a net and a bunny. Armed with the capacity to map a
given relation such as left-of () in one domain onto a different
relation such as above () in another—that is, armed with a
capacity for analogical mapping—a player could also rapidly
adapt "keep the paddle aligned with the ball in the horizontal
direction", as in Breakout, to "keep the paddle aligned with
the ball in the vertical direction", as in Pong. Such a player
would exhibit very rapid cross domain generalization from
Breakout to Pong.

In summary, representing relations explicitly, with a pattern
or unit that remains invariant over different instantiations of
the relation (e.g., left-of () in one location vs. another) and
different role bindings (e.g., left-of (paddle, ball) vs. left-
of (triangle, square)) and that can be dynamically bound to
arguments, affords enormous flexibility in generalization. We
argue that it is precisely this kind of relational generalization
that gives rise to cross-domain transfer.

Learning Relations

An account of how people learn explicitly relational repre-
sentations must explain how we learn both their content and
their form (Doumas et al., 2008).To account for the discovery
of relational content, it must specify how we come to detect
the basic relational invariants that remain constant across in-
stances of the relation. For example, how can we discover an
invariant that holds true across all instances of left-of (), given
that we only ever observe specific instances of left-of () at
specific locations? To account for the learning of the form of
a structured relational representation—that is, the capacity to
bind relational roles to their arguments dynamically without
destroying the invariant representations of either—the system
must be able to solve two additional problems. First, it must
be able to isolate the relevant invariants from the other proper-
ties of the objects engaged in the relation to be learned. Part of
what makes relation learning difficult is that although a goal is
to discover an invariant representation of the relation, during
acquisition relations never occur in isolation, but always in the
context of specific objects engaged in the relation (e.g., it is
impossible to observe a disembodied example of left-of () as
an abstract invariant). Second, having discovered and isolated
the relevant invariants, the system must learn a structured
predicate representation of the relation that can be stored in
long-term memory, and can be dynamically bound to arbitrary
arguments while remaining independent of those arguments.

A Theory of Cross-domain Generalization

We propose that human cross-domain generalization is a
special case of analogical inference over explicitly relational
representations. Accordingly, we propose that cross-domain

generalization is subject to the constraints on relation learn-
ing summarized previously, plus the familiar constraints on
analogical reasoning (see Holyoak et al., 1995; Hummel &
Holyoak, 1997, 2003). Specifically, we propose that cross-
domain generalization is a consequence of four fundamental
operations: (1) detecting (or learning to detect) relational
invariants; (2) learning structured (i.e., predicate) representa-
tions of those invariants; (3) using these structured relational
representations to construct relational models of various do-
mains (including arithmetic and physics, or video games)
procedurally via processes like reinforcement learning; and
(4) using those representations to understand new domains by
analogy to familiar ones.

We do not propose that all four of these operations take
place de novo every time a person generalizes from one do-
main to another. In particular, if a given domain is famil-
iar to a person, then they will already have performed steps
(1). . .(3) with respect to that domain. Moreover, even most
novel domains are almost never completely novel. By the
time a person learns Newton’s laws of mechanics, for in-
stance, they have already mastered arithmetic, so although the
equations themselves are new to the student, the arithmetic
operations they represent are not. Although children likely
engage actively in all four steps, by adulthood, the majority of
cross-domain transfer—whether from arithmetic to physics,
or from one game to another—likely relies to an extent on
step (3), learning what known relations might be relevant in a
given situation, and most heavily on step (4), using existing
relational concepts and domain models to make inferences
about novel domains that are themselves represented in terms
of relations and objects already familiar to the learner.

The following presents our model of cross-domain trans-
fer, which performs all four of the steps outlined above: in-
variant discovery, relation isolation and predication, model
construction, and relational inference based on those mod-
els. The model is an integration and augmentation of the
LISA model of analogical reasoning (Hummel & Holyoak,
1997, 2003; Knowlton et al., 2012) and the DORA model
of relational learning and cognitive development (Doumas
et al., 2008; Doumas & Martin, 2018). LISA and DORA
account for over 100 major findings in human perception
and cognition, spanning at least seven domains: (a) shape
perception and object recognition (Doumas & Hummel, 2010;
Hummel, 2001; Hummel & Biederman, 1992); (b) relational
thinking (Choplin & Hummel, 2002; Hummel & Holyoak,
1997, 2003; Krawczyk et al., 2004, 2005; Kroger et al., 2004;
Kubose et al., 2002; Taylor & Hummel, 2009), (c) relation
learning (Doumas & Hummel, 2012; Doumas et al., 2008;
Jung & Hummel, 2015a, 2015b; Livins & Doumas, 2015;
Livins et al., 2016), (d) cognitive development (Doumas et al.,
2008; Licato et al., 2012; Lim et al., 2013; Sandhofer &
Doumas, 2008), (e) language processing (Doumas & Martin,
2018; Martin & Doumas, 2017, 2019; Rabagliati et al., 2017),
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(f) cognitive aging (Viskontas et al., 2004), and (g) decline due
to dementia, stress, and brain damage (Morrison et al., 2011;
Morrison et al., 2004). Accordingly, we view these systems
as a promising starting point for an account of human-level
cross-domain generalization. Importantly, LISA provides a
solution to problem (4) above (the problem of inference),
and DORA provides a solution to problem (2) (learning struc-
tured representations from non-structured inputs). The current
model integrates LISA and DORA into a single framework,
and then extends the resulting model to address problem (1)
(the discovery of abstract relational invariants) and problem
(3) (model construction via reinforcement learning).

Our core theoretical claims and their instantiation in the
proposed model are summarized in Table 1. These claims
along with the core claims of LISA/DORA (Doumas et al.,
2008; Hummel & Holyoak, 1997, 2003) compose the primary
assumptions of the approach. We claim that structured rela-
tional representations underlie cross-domain generalization as
a natural consequence of (a) their general applicability across
domains, and (b) their ability to underlie analogies between
domains. Cross-domain analogical inference occurs because
we build models of domains consisting of an open-ended
vocabulary of relations among of the elements the domains
(see also, Carey, 2000; Murphy & Medin, 1985). These repre-
sentations are structured and relational in that they express the
invariant content of the relations they specify in a structured
(i.e., symbolic) format that dynamically binds arguments to
relational roles. We learn both the content and the format
of structured relational representations from experience by
explicitly comparing examples. We learn which relations are
important for characterizing and acting in a domain through a
process of reinforcement learning.

The remainder of the paper proceeds as follows. First, we
summarize our integration of the LISA/DORA frameworks
and describe the current extensions for invariant discovery
and genralization. Next, we report simulations demonstrating
that (a) the model learns structured relational representations
from simple visual inputs without assuming a vocabulary
of structured representations a priori. (b) These represen-
tations support the development of more complex domain
models via reinforcement learning. (c) The model uses these
representations to generalize to a new domain in a single
exposure, exhibiting zero-shot transfer. (d) Generalization
in the model fails without the structured format of the repre-
sentations it learns. (e) The representations that the model
learns from simple domains transfer readily to more complex
tasks like adult analogy problems, and the representations
that the model learns meet the hallmarks of human relational
cognition. (f) The trajectory of the model as it learns closely
mirrors the developmental trajectory of human children and
that the representations learned in one domain transfer readily
to different laboratory tasks, allowing the model to capture
several phenomena from the developmental literature. Finally,

we discuss some implications and possible future extensions
of the model and contrast our approach with purely statistical
accounts of human learning.

The model

As noted previously, our model of cross-domain general-
ization is based on an integration and augmentation of the
LISA and DORA models of relational reasoning (henceforth,
simply DORA). We begin by reviewing how DORA repre-
sents relational knowledge, how it uses those representations
for reasoning, and how it learns structured representations of
relations from unstructured vector-based inputs.

We next present a novel algorithm for discovering invariant
relational properties—that is, the semantic content of rela-
tional representations—from simple, nonrelational visual in-
puts. The resulting model provides the first complete account
of how structured representations of visual relations can be
learned de novo from simple nonrelational inputs without
feedback and without assuming a vocabulary of relations a
priori. The resulting model also provides an account of human
cross-domain generalization as a natural consequence.

The following description of the model presents published
details of DORA’s operation only in broad strokes, going into
detail only when those details are relevant to understanding
the novel extensions of the work (e.g., relation discovery).
Complete details of the model’s operation can be found in
Appendix A (which includes a functional description of the
model, pseudocode, and full computational details). The
model’s source code is available online.1.

Representing relational knowledge: LISAese

We begin by describing the final (i.e., post-learning) state
of DORA’s knowledge representations. These representations
do not serve as the input to the model but are the result of
its learning (as described below). DORA is a neural net-
work consisting of four layers of bidirectionally connected
units. DORA represents propositions using a format, LISAese,
which is a hierarchy of distributed and progressively more
localist units whose activations oscillate over progressively
slower time scales (moving from the bottom to the top layer of
the network; Figure 1). At the bottom of the hierarchy, feature
units represent the basic features of objects and relational roles
in a distributed manner. Token units (T1-T3) learn without
supervision (see below) to conjunctively code collections of
units from the layer below. Tokens at the lowest level of the
hierarchy (T1) take inputs directly from feature units and learn
to respond to objects or relational roles in a localist fashion.
Tokens in the next layer (T2) take their inputs from PO tokens
and learn to respond to pairs of PO units—that is, to roles and
the objects (arguments) to which they are bound. Tokens in

1Source code is available from https://github.com/AlexDoumas/
BrPong_1.

https://github.com/AlexDoumas/BrPong_1
https://github.com/AlexDoumas/BrPong_1
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Table 1

Core theoretical claims and their instantiation in DORA

Core theoretical claim Instantiation in DORA

1. Cross-domain generalization is a natural consequence
of structured relational representations, which express
the invariant content of relations and compose dynamic
role-argument bindings into propositions.

(a) Structured relational representations support
cross-domain generalization because they are gen-
erally applicable across domains.

(b) Cross-domain generalization is a case of analogi-
cal inference over domain models.

DORA represents relations between elements in a format that
makes explicit the relational invariants, the bindings of re-
lational roles to arguments, and the integration of multiple
bindings into propositions, and the capacity for cross-domain
generalization follows from operations over these representa-
tions.

DORA’s representations can be applied promiscuously to char-
acterize genuinely new situations. DORA uses the representa-
tions that it has learned in the past to represent novel situations
by dynamically binding previously learned predicate represen-
tations to objects in those situations.

DORA performs analogical mapping, discovering correspon-
dences between situations based on shared relational structure.

2. Structured relational representations are acquired by a
comparison process that reveals and isolates relational
invariants and composes them into predicates that can
bind dynamically to their arguments.

DORA discovers invariant relational properties by exploiting
properties inherent to rate-coded representations of magnitude.
DORA then learns structured relational representations of these
properties through a process of comparison-based intersection
discovery and Hebbian learning.

3. Relations relevant for characterizing and acting in a do-
main are learned procedurally through reinforcement
learning.

DORA and its representations integrate smoothly with existing
methods for reinforcement learning.

the highest layer (T3) learn to respond to collections T2 units,
instantiating multi-place relational propositions.

When they become active, units representing relational
roles and their arguments independently (i.e., features and
T1 units) must be bound together dynamically. DORA rep-
resents dynamic bindings using time: T1 units representing
relational roles and their arguments fire out of synchrony but
in close temporal proximity. These temporal relations arise
from inhibitory interactions among token units. Within a
single proposition, token units are laterally inhibitory (e.g.,
T1 units inhibit other T1 units, T2 units inhibit other T2 units;
as elaborated below, lateral inhibition between token units ex-
tends beyond propositions but for the present illustration this
simplification is appropriate). Each token unit is also yoked
to an inhibitory unit, which causes the token’s activation to

oscillate, even in response to a fixed excitatory input.
Together, the yoked inhibitors and lateral inhibitory in-

teractions between tokens cause the constituents of a single
proposition to fire in a systematic, hierarchical temporal pat-
tern (Figure 1b, c): When a T3 unit representing a proposition
such as above (ball, paddle) becomes active, it will excite the
T2 units below itself (here, above+ball and below+paddle).
These T2 units inhibit one another, and one of them (e.g.,
above+ball) will randomly win the initial inhibitory com-
petition, becoming active and driving the other to inactivity.
After a fixed number of iterations/milliseconds, k, the inhibitor
yoked to that T2 unit (above+ball) will become active, driving
it to inactivity, and allowing the other T2 unit (below+paddle)
to become active for k iterations/milliseconds (until its own
inhibitor drives it to inactivity).
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This same pattern of lateral inhibition and yoked in-
hibitor activity causes the T1 units below above+ball and
below+paddle—namely, the T1 units above and ball, and
below and paddle, respectively—to oscillate out of phase
with one another at twice the frequency (that is, half the du-
ration; specifically, k/2) at which the T2 units are oscillating.
T1 units activate feature units, causing the semantic units’
activity to oscillate at the same frequency as the T1 units. The
result on the T1 and semantic units is a repeating temporal
pattern of the form [(above, ball), (below, paddle)], [(above,
ball), (below, paddle)], etc., where units inside parentheses
are oscillating out of phase with one another with duration k/2,
and units inside brackets are out of phase with duration k (see
Figure 1b, c). In this way, the network represents relational
roles and fillers independently (in the features and T1 units)
and simultaneously represents the binding of roles to fillers.

Interpreting LISAese

One advantage of the representations DORA learns is that
they are easily interpretable. Units in T1 will learn to represent
objects and relational roles, and by inspecting the features
to which any given T1 unit is connected, it is possible to
determine which object or role it represents. Units in T2 will
learn to represent specific predicate-argument bindings, which
are interpretable by inspecting the T1 units to which they are
connected. And units in T3 will learn to represent complete
propositions, which are interpretable by inspecting the con-
nected T2 units. Accordingly, in the following, we will refer
to the units DORA learns in terms of these interpretations.
We do so solely for clarity of exposition. The labels we use
have no meaning to DORA and no impact on its operation.

Computational macrostructure

Figure 1 depicts the representation of an individual propo-
sition in DORA’s working memory (as synchronized and
desynchronized patterns of activation). Figure 2 provides an
overview of DORA’s macrostructure.

A complete analog—situation, story, schema,
etc.—consists of the collection of token units that col-
lectively encode its propositional content. Within an analog
a single token represents a given object, role, role-binding,
or proposition, no matter how many propositions refer to
that entity. For example, in a single analog the same T1 unit
for left-of represents that role in all propositions containing
left-of as a role. However, separate analogs do not share
tokens. For example, one unit would represent left-of in
DORA’s representation of the game it is currently playing
(represented in one analog) and a completely separate token
would represent left-of in DORA’s representation of a game
it had played in the past (represented in a separate analog).
Collections of token units (i.e., T1. . .T3) representing the
situations and schemas (i.e., "analogs") DORA knows
collectively form its LTM (Figure 2a).

For the purposes of learning and reasoning—for exam-
ple when making an analogy between one situation and an-
other—the propositions representing those analogs enter ac-
tive memory (dashed box in Figure 2a), a state in which they
are readily accessible for processing, but not fully active (see,
e.g., Cowan, 2001; Hummel & Holyoak, 1997). As depicted
in Figure 2b, the analogs in active memory are divided into
independent sets: The driver corresponds to the current focus
of attention (e.g., the state of the current game, as delivered
by perceptual processing), and maps onto one or more recipi-
ents (e.g., an analog describing the model’s emerging under-
standing of the game).2 Token units are laterally inhibitory
within but not between sets. The driver/recipient distinction
in DORA is different from the more familiar source/target
distinction discussed in the analogical reasoning literature.
The target of analogical reasoning is the novel problem to be
solved (or situation to be reasoned about), and the source is
the analog from which inferences are drawn about the target.
As summarized shortly, in DORA, the target analog tends to
serve as the driver (i.e., the focus of attention) during mem-
ory retrieval and in the initial stages of analogical mapping,
whereas the source serves as the driver during analogical
inference.

Operation

In DORA activation generally starts in the driver, passing
through the feature units (and any mapping connections, as
detailed shortly) into other analogs in LTM (for memory re-
trieval), including any analogs in the recipient (for mapping,
learning, and inference). Token units in the driver compete
via lateral inhibition to become active (i.e., token units in the
driver laterally inhibit other tokens in the driver in the same
layer), generating patterns of activation on the feature units
(as described previously; Figure 1). Units in the recipient (or
LTM) compete via lateral inhibition to respond to the resulting
patterns on the feature units. This inhibitory competition is
hierarchical in time, reflecting the temporal dynamics of the
driver and features: T1 units (relational roles and objects)
in LTM/recipient compete to respond to patterns generated
by individual roles and objects in the driver; T2 units (role
bindings) in LTM/recipient compete to respond to specific
role/filler bindings; and T3 units compete to respond to com-
plete propositions. The result is a winner-take-all inhibitory
competition operating at multiple temporal scales and serves
as the foundation of all the functions DORA performs, in-
cluding memory retrieval, analogical mapping (Hummel &

2The idea that mutually exclusive sets are fundamental for ana-
logical reasoning goes back to (Gentner, 1983), and has been im-
plemented in a variety of models (SME, LISA, etc.). As detailed in
Knowlton et al. (2012), we assume these sets are implemented by
neurons in posterior frontal cortex with rapidly modifiable synapses
that act as "proxies" for larger structures represented elsewhere in
cortex.
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Figure 1

Knowledge representation and temporal binding in DORA. (a) Representation of a single proposition (above (ball,
paddle)) in DORA. Feature units represent properties of objects and relational roles in a distributed manner. Token units in T1
represent objects and roles in a localist fashion; token units in T2 conjunctively bind roles to their arguments (e.g., objects);
token units in T3 conjunctively link role-argument pairs into multi-place relations. (b) A time-series illustration of the activation
of the units illustrated in (a). Each graph corresponds to one unit in (a) (i.e., the unit with the same name as the graph). The
abscissa of the graph represents time, and the ordinate represents the corresponding unit’s activation. (c) Time-based binding
illustrated as a sequence of discrete frames (i. . .iv). (i) Units encoding higher-than-something fire. (ii) Units encoding ball fire.
(iii) Units encoding lower-than-something fire. (iv) Units encoding paddle fire. Labels in units indicate what the unit encodes
(see key); the labels on the units are provided for clarity and are meaningless to DORA.

Figure 2

DORA’s Macrostructure. (a) DORA’s long-term-memory (LTM), consisting of layers of token units (T1-T3; black
rectangles), and the feature units connected to the bottom layer of LTM. During processing, some units in LTM enter active
memory (AM). (b) Expanded view of AM. AM is composed of two sets, the driver (the current focus of attention) and the
recipient (the content of working memory available for immediate processing). Black lines indicate bidirectional excitatory
connections.

Holyoak, 1997), analogical inference (Hummel & Holyoak,
2003), and relation discovery (Doumas et al., 2008).

Memory Retrieval: Patterns of activation imposed on
the feature units by active tokens in the driver will tend to
activate token units in LTM that have learned to respond to
similar patterns (Appendix A3 for details). For example, the

features activated by a paddle in the driver will tend to acti-
vate T1 units responsive to paddle features, and the features
activated by leftmost in the driver will tend to activate T1
units connected to leftmost features. Together, these T1 units
will tend to excite T2 units for leftmost+paddle. Features
consistent with ball and rightmost would likewise activate T1
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units for ball and rightmost, which would excite a T2 unit for
rightmost+ball. Together, the T2 units for leftmost+paddle
and rightmost+ball will tend to activate any T3 unit(s) en-
coding the proposition left-of (paddle, ball): The model will
have recognized the desynchronized patterns of features as
representing the fact that the paddle is left-of the ball, which
can be retrieved into the recipient.

Mapping: One of the most important operations DORA
performs is analogical mapping. During mapping, DORA
discovers structural correspondences between tokens in the
driver and recipient. When tokens in the driver become active,
similar tokens are activated in the recipient via the shared
feature units. Using a kind of Hebbian learning, the model
learns mapping connections between coactive units in the
same layer across driver and recipient (Hummel & Holyoak,
1997, 2003, see Appendix A2.2 and Appendix A4 for de-
tails). The resulting connections serve both to represent the
mappings DORA has already discovered, and to constrain its
discovery of additional mappings. The algorithm provides an
excellent account of human analogical mapping performance
(Doumas et al., 2008; Hummel & Holyoak, 1997, 2003).

Analogical Inference: Augmented with a simple al-
gorithm for self-supervised learning (Hummel & Holyoak,
2003), DORA’s mapping algorithm also provides a psycholog-
ically and neurally-realistic account of analogical inference
(making relational inferences about one situation based on
knowledge of an analogous one; Appendix A2.3.3 for de-
tails). The algorithm implements a version of Holyoak et al.
(1994) copy-with-substitution-and-generalization (CWSG)
framework. In CWSG, when two situations are analogically
mapped, information about one situation can be inferred about
the other. For example, if one knows about situation-1, where
chase (Fido, Rosie), and scared (Rosie) are true, and maps
that onto situation-2, where chase (Spot, Bowser) is true,
one can copy the representation of the scared predicate from
situation-1 to situation-2, and then use the mapping of Bowser
to Rosie, to copy Bowser as the argument of scared to infer
scared (Bowser). As elaborated below, this process serves as
the basis for our proposed solution to the problem of cross-
domain generalization.

Learning relational format: LISAese from non-structured
inputs

DORA generalizes the operations described above to ad-
dress the problem of learning structured representations of
relations from unstructured "flat" vector/feature-based repre-
sentations (Doumas et al., 2008). DORA represents relations
as collections of linked roles, rather than as monolithic struc-
tures: For example, the relation above composes the roles
higher and lower rather than consisting strictly of the single
atom above, as it would in propositional notation or a labeled
graph. This role-based approach to representing relations
offers several advantages over alternative approaches (see

Doumas & Hummel, 2005, for a review), one of which is
that it makes it possible to learn relations by (a) first learning
their roles and then (b) linking those roles together into multi-
argument relational structures (as described in Doumas et al.,
2008).

DORA’s unsupervised relation learning algorithm
(Doumas et al., 2008) begins with representations of objects
encoded as vectors of features. DORA learns single-place
predicates—that is, individual relational roles—as follows
(see Appendix A2.3.1 for details): (1) By the process of
analogical mapping (summarized above) the model maps
objects in one situation (the driver; e.g., a previous state of the
game of Breakout) onto objects in a similar known situation
(the recipient; e.g., the current state of a game). For example,
DORA might map a T1 unit representing the paddle in its
previous location onto a T1 unit representing the paddle in its
current location (Figure 3ai). Early in learning, these tokens
will be holistic feature-based representations specifying the
paddle’s attributes (e.g., its location, color, etc.) in a single
vector. (2) As a result of this mapping connection, the T1 unit
representing the paddle in the driver will become coactive
with the T1 unit representing the paddle in the recipient. T1
units in both the driver and recipient pass activation to the
feature units to which they are connected, so any features
connected to the T1 units in both the driver and recipient will
receive about twice as much input—and therefore become
about twice as active—as any features unique to one or the
other (Figure 3aii). As a result, the intersection of the two
instances becomes highlighted as the collection of most
active features. (3) DORA recruits (activates) a T1 unit and
a T2 unit in the recipient, and updates connections between
units in adjacent layers via Hebbian learning (Figure 3aiii).
Consequently, the recruited T1 unit will learn connections
to active features in proportion to their activation, thereby
encoding the shared features (the intersection) of the mapped
objects. If the compared objects are both, say, higher than
something—and so have the features of higher in their
vectors—then DORA will learn an explicit representation of
the features corresponding to being higher (the next section
describes how such relational features can be learned from
absolute location information delivered by the perceptual
system). (4) The resulting representation (Figure 3aiv) can
now function as single-place predicate (i.e., relational role),
which can be bound to new arguments (i.e., other units in T1)
by asynchrony of firing (see Figure 1). Applied iteratively,
this kind of learning produces progressively more refined
single-place predicates (Doumas et al., 2008).

The same Hebbian learning algorithm links token units into
complete propositions by allowing tokens units in successive
layers to integrate their inputs over progressively longer tem-
poral intervals (Doumas et al., 2008, see Appendix A2.3.1 for
details). The algorithm exploits the fact that objects playing
complementary roles of a single relation will tend to co-occur
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Figure 3

Representation learning in DORA. (a) Learning a single-place predicate representation by comparing two objects.
(i) A representation of a ball in the driver is mapped (grey double-headed arrow) to a different representation of a paddle (e.g.,
from a different game screen) in the recipient. (ii) The representation of the ball in the driver activates the mapped unit in
the recipient (through shared features and mapping connection); as units pass activation to their features, shared features
become more active (dark grey units) than unshared features (light grey units). (iii) Units in T1 and T2 are recruited (activation
clamped to 1; dark grey units with white squiggle) in the recipient, and weighted connections are learned via Hebbian learning
(i.e., stronger connections between more active units). (iv) The result is an explicit representation of the featural overlap
of the ball and paddle—in this case the property of being higher-than-something (see main text)—that can be bound to an
argument (as in Figure 1). (b) Learning a multi-place relational representation by linking a co-occurring set of role-argument
pairs. (i) a representation of a ball that is higher-than-something and a paddle that is lower-than-something is mapped to a
different representation of a paddle that is higher-than-something, and a ball that is lower-than-something (e.g., from a different
game screen). (ii) (Mapping connections, grey doubled-headed arrows, have been lightened to make the rest of the figure
clearer.) When the representation of higher-than-something (ball) becomes active in the driver it activates mapped units in the
recipient; a T3 unit is recruited (activation clamped to 1; dark grey unit with white squiggle) in the recipient and learns weighted
connections to units in T2 via Hebbian learning (iii) When the representation of lower-than-something (paddle) becomes active
in the driver, it activates corresponding mapped units in the recipient; the active T3 unit learns weighted connections to T2 units.
(iv) The result of learning is a LISAese representation of the relational proposition above (ball, paddle) (see Figure 1). Labels in
units indicate what the unit encodes (see key). The labels on the units are provided for clarity and are meaningless to DORA.
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in the environment. For example, the representation of a ball
that is higher than something (i.e., higher-than-something
(ball)) will systematically co-occur with another object (e.g.,
the paddle), which is lower than something (e.g., lower-
than-something (paddle); Figure 3bi). When two sets of co-
occurring role-argument pairs are mapped (e.g., an instance
where ball is higher-than-something and a paddle is lower-
than-something is mapped to an instance where a paddle is
higher-than-something and a ball is lower-than-something;
Figure 3bi), a diagnostic pattern of firing emerges: (1) the T2
units coding each predicate-argument binding will oscillate
systematically across both driver and recipient (Figure 3bii-
iii). (2) In response, DORA recruits a unit in T3 that learns
(via Hebbian learning) connections to the T2 units as they
become active (Figure 3bii-iii). (3) The resulting representa-
tion encodes a multi-place relational structure (equivalent to
above (paddle, ball); Figure 3biv). 3 Applied iteratively over
many examples, this algorithm learns abstracted structured
representations describing a domain in terms of the properties
and relations that characterize that domain (Doumas et al.,
2008).

Doumas et al. (2008) demonstrated that this algorithm for
relation discovery provides a powerful account of numerous
phenomena in cognitive development. However, although the
Doumas et al. algorithm can learn relational representations
with a structured form from repeated exposures to nonstruc-
tured inputs, it provides little basis for discovering the invari-
ant content of those relations—that is, the relational features
themselves. Instead, their simulations were based primar-
ily on representations of objects with hand-coded invariant
features. The next section describes a novel algorithm for
discovering invariant relational features from non-relational
inputs.

Learning relational content: Discovering Relational In-
variance

To learn an abstract representation of a relation that re-
mains invariant with the relation’s arguments, there must be
at least one invariant that characterizes that relation. For
example, to learn a representation of right-of that captures
every instance of right-of-ness, there must be a detectable
property(ies) that remains constant over all instances of right-
of-ness (see, e.g., Biederman, 2013; Harnad, 1990; Hummel &
Biederman, 1992; Kellman et al., 2020). Most previous work
on relational perception and thinking has tacitly assumed the
existence of such invariants (e.g., Anderson, 2007; Doumas et
al., 2008; Falkenhainer et al., 1989; Hummel, 2001; Hummel
& Biederman, 1992; Hummel & Holyoak, 1997, 2003). But
unless all these invariants are assumed to be innate, there must
be some basis for discovering them from representations of
values on the underlying dimensions over which the relations
are defined (e.g., somehow discovering the notion of right-of
by observing examples of objects arrayed in the horizontal

dimension of space).
Part of what makes invariant discovery difficult is that

it poses a kind of chicken and egg problem: An invariant
only seems to be discoverable in a non-invariant input if one
knows to look for that invariant in the first place. Consider an
invariant like "square". Of all the possible arrangements of
pixels on a computer screen, some of them form squares and
others do not. Whether a set of pixels forms a square does not
depend on the color of the pixels, the color of the background,
the locations of the pixels on the screen, or their distances
from one another: Provided they are arranged relative to
one another in a way that forms a square, then they satisfy
the invariant "square". "Square" is a higher-order relational
property that is independent of—that is, invariant with—the
properties of any of the pixels composing it. Making matters
more complicated, "square" is only one of an infinity of such
higher-order relational invariants one could find in visual im-
ages. Others include rhombi, various triangles, and countless
random-looking clouds of points. All these configurations are
defined by the spatial relations among sets of points, so any
one of them could, in principle, become a perceptual invariant
like "square". But not all of them do. Why do we recognize
"square" as an invariant, but not any of the nearly infinite
random looking (but nonetheless invariant) clouds of points?

It is not our intent to fully answer to this question here,
but one constraint that suggests itself is to start simple: Per-
haps "square" is not itself a basic ("primitive") invariant in
the human cognitive architecture but is instead (at least ini-
tially) a composition of several simpler invariants (for ex-
ample straight lines, equal lengths, right angles, and such)
arranged in particular relations to one another (as proposed
by Biederman, 1987, and many others). According to this
account, the cognitive architecture might be biased to find a
small number of very basic invariants (things such as equal-
to, greater-than, and less-than, among others; Doumas et al.,
2008; Kellman et al., 2020), and compose more complex
relational invariants, such as above (x, y), right-of (x, y),
and square (x), by applying the basic relations to specific
perceptual and cognitive dimensions, and to other relations.

Following this intuition, we developed a simple relational
invariant discovery circuit (henceforth, simply relational in-
variance circuit) to discover the invariants greater-than, equal-
to, and less-than on any metric dimension, m. This circuit
exploits computational properties that naturally emerge when-
ever magnitudes are rate coded, either in terms of the number
of units that fire in response to a given magnitude, or in terms
of the rates at which individual neurons fire. The basic idea
is that for any magnitude represented as a rate code, com-

3In the above example we describe learning a 2-place relation
composed of 2 role-filler pairs for the purposes of brevity. DORA
learns relations of arity n by linking n role-filler pairs (e.g., a 3-
place relation is composed of three role-filler pairs; see Doumas &
Hummel, 2012).
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puting relations such as greater-than, less-than and equal-to
is a straightforward matter of responding to the difference
between two rates. The sign of this difference (+, 0, or -)
becomes an invariant signature of the categorical relations
greater-than, equal-to, and less-than, respectively; and by
summing over greater-than and less-than, this same operation
yields the invariants same and different with respect to the
dimension in question.

Let m be an n-dimensional vector space, for example a
collection of neurons that codes a simple magnitude, m, such
as size. The vector a (in m) then represents an object with
size a, and b represents size b. Armed with these rate codes,
the difference between sizes a and b, Ea,b is the directional
difference (e.g., Gallistel & Gelman, 2000; Zorzi et al., 2005):

Ea,b =
∑

i

(ai − bi) (1)

when a is larger than b, Ea,b will be positive; when a is smaller
than b, Ea,b will be negative; and when they are equal, Ea,b

will be zero.
Using unsupervised learning, it is straightforward to exploit

this regularity to train units to respond explicitly to whether
any metric values a and b are equal, unequal with a > b, or
unequal with a < b. The resulting neurons will be invariant
representations of the relations equal, greater-than, and less-
than for any rate-coded metric dimension m. In the language
of LISAese, the resulting units could serve as feature units in
dimension-specific relations such as right-of, above, larger,
etc.4

Circuit Architecture

The circuit begins with a rate-coded representation of a
metric dimension, m (e.g., size, or location in the horizontal
dimension of the visual field; "Feature units m" in Figure 4a).
These units share bidirectional excitatory connections with a
collection of T1 units (e.g., role units in DORA), which mu-
tually inhibit one another, and each of which excites a single
"proxy" unit. The proxy units in turn excite a collection of four
E units (for their relation to Eq. 1), which excite feature units
outside the set of features representing m ("Feature units non-
m" in Figure 4a). All other connections depicted in Figure 4
start with weights of 1.0, with the exception of connections
between Feature units non-m (henceforth non-m features) and
E units, and the connections between feature units non-m and
T1 units. The connections to and from feature units change
during learning. Initially, the connection weights, wi j, from
each E unit, j, to a collection of 10 non-m features, i, are
initialized randomly with values between 0 and 1. As detailed
below, after learning each E unit is most strongly connected to
a different subset of the non-m feature units, and these subsets
become representations greater-than, less-than, and equal-to
(as in Figure 4a). Connections between non-m feature units
and T1 units are initially 0.

Circuit Operation

Processing in the relational invariance circuit is assumed
to begin after perceptual processing has segmented the image
into objects and encoded each object in terms of its various
attributes (e.g., size, location in the horizontal and vertical
dimensions, etc.). As elaborated under Simulations, DORA
is equipped with a simple perceptual preprocessor that ac-
complishes this segmentation and encoding. The T1 units
depicted in Figure 4 correspond to a subset of this encoding
(i.e., representing each object’s size). For the purposes of
illustration, we shall assume that each T1 unit in Figure 4
represents the size of one object (in a display containing two
objects, a and b). (The T1 units in this circuit are otherwise
identical to other T1 units in DORA.) For simplicity, we
also assume that the pattern of activation on the feature units
representing dimension m is the superposition (i.e., sum) of
the vectors, mi, representing the sizes of the two objects in the
display. The learning algorithm does not require the feature
inputs, mi, to be segmented into separate objects, i; instead,
it is sufficient to encode this information in the connections
from mi to T1i.

Once the objects and their attributes are encoded by the pre-
processor, the superimposed vector mt =ma +mb is clamped
on the subset of feature units, m, representing m (Figure 4bi).
This vector serves as input to the T1 units, which compete via
lateral inhibition to become active. The input to T1 unit i is
given by:

ni =
∑

j

a jwi j −
∑
k,i

ak − LI (2)

where j are feature units connected to T1 unit i, k are other
active T1 units k , i, and LI is the activation of the local
inhibitor (a refresh signal given when no active T1 units are
active in the driver (as in, Doumas et al., 2008; Horn et al.,
1991; Horn & Usher, 1990; Hummel & Holyoak, 1997, 2003;
Usher & Niebur, 1996; von der Malsburg & Buhmann, 1992,
see Appendix A1.4 for details). Activation of T1 units is
calculated as:

∆ai = γni (1.1 − ai) − δai (3)

where ∆ai is the change in activation of unit i, γ = 0.3 is a
growth parameter, ni is the net input to unit i and δ = 0.1 is
a decay parameter. At this juncture, a note about parameter
values is warranted: All the standard DORA parameters have
the same values as reported in previous papers, and previous

4We have left the arguments a and b out of the relational expres-
sions here because these units represent invariant relational /emph-
content, but by themselves do not specify how the roles of those
relations bind to arguments; that is, they do not specify the relational
/emphformat. However, as noted above, the problem of learning
representations with relational format from representations without
this format is already solved in DORA.
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Figure 4

(a) The relational invariance circuit. (b) (i) Activation flows from clamped feature units encoding a dimension or
property to T1 units (dark grey units indicate more active units).(ii) T1 units compete via lateral inhibition to respond to the
active feature units (light grey units indicate less active units). (iii) T1 units activate proxy units, which feed activation to E
units. E units pass activation to a subset of feature units non-m and connections between active feature units non-m and T1
units are updated via Hebbian learning. (iv) The active T1 unit is inhibited to inactivity by its inhibitor (black square). (v-vi)
The process repeats for the second active T1 unit.

work has shown that DORA’s behavior is robust to the values
of these parameters (see Doumas et al., 2008). Where we
have had to introduce new parameters for the purposes of the
relational invariant circuit, their values were set solely for the
purposes of having the circuit’s behavior match the main idea
expressed in Eq. 1. No attempt was made to optimize their
values.

Since the vectors ma and mb are superimposed on the
feature units, the T1 unit with more connections to the feature
units (in this case, the unit coding for the larger size), say
T1a, will initially win the inhibitory competition, inhibiting
T1b to inactivity. For this reason, the T1 unit with the larger
input vector will always win the initial inhibitory competition
(Figure 4bii).

Each proxy unit, i, has a connection weight of 1 from T1i,
and a weight of 0 from all other T1 j,i. A proxy unit is simple
binary threshold unit whose activation is given by:

pi =

{
1, ni ≥ 0.4
0, otherwise

}
(4)

where pi is the activation of proxy unit i.
Input, ni, to proxy unit i is calculated as:

ni =
∑

j

a jwi j − ρi (5)

where j is an active T1 unit and ρi is the refraction of unit i.
The refraction, ρi is given:

ρi =
1

.1 + ιex (6)

where x is the number of iterations since unit i last fired, and
ι = 1 × 10−7 is a scaler. Proxy unit i will be active if and only

if T1i is active (i.e., ai > 0.4) and proxy unit i has not recently
been active.

E units take their inputs from the proxy units. The connec-
tions from proxy units to E units have temporal delays built
into them, so that each E unit has a Gaussian receptive field
in the three-dimensional space formed by the two T1 cells’
activations, plus time. Input to E units is given by Eq. 5 such
that j are proxy units, and change in activation is calculated
using:

∆ai = γe
−

(ni−θE )2

k2 − .1ai − .5
∑

j

a j − LI (7)

where γ is a growth parameter, θE is the threshold on unit
E, k = .2, j are all other units in E j , i. The circuit con-
tains four E units each with a γ of .1 or .3, and a θE of 1
or 2, such that all four combinations of γ and θE values are
present in a single E unit. As a result, some E units respond
preferentially to proxy units firing early in processing, others
respond preferentially to proxy units firing later, and still
others respond preferentially to the two proxy units firing at
the same time. Like the T1 units, E units laterally inhibit
one another to respond in a winner-take-all fashion so that
only one E unit tends to become active in response to any
(temporally-extended) pattern of activation over the proxy
units.

E units are randomly connected to a collection of feature
units that are not part of the vector space m (Figure 4). Active
E units, i, both excite the non-m feature units, j, and during
learning, update their connections to them. Feature units
connected to E units update their input by:
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ni =
∑

j

a jwi j (8)

where i and j are feature units and E units, respectively. Fea-
ture unit activation is updated as:

ai =
ni

max
(
n j

) (9)

where ai is the activation of feature unit i, ni is the net input to
feature unit i, and max(n j) is the maximum input to any fea-
ture unit. There is physiological evidence for divisive normal-
ization in the feline visual system (e.g., Bonds, 1989; Foley,
1994; Heeger, 1992) and psychophysical evidence for divisive
normalization in human vision (e.g., Thomas & Olzak, 1997).
While the circuit is being learned, connections between units
in E and feature units are updated by the equation:

∆wi j = ai

(
a j − wi j

)
γ (10)

where i and j refer to units in E and feature units, respectively,
and and γ = .3 is the growth parameter.

When the circuit is running, connections between the non-
m feature units and active T1 units are updated by Eq. 10
(Figure 4biii). As a result, T1a (the T1 unit we assumed
won the initial inhibitory competition) will learn positive
connections to whatever feature unit(s) the active E unit has
learned to activate (recall that the connections from E units to
non-m features are initially random). Importantly, the active
non-m feature units, j, to which T1a has learned connections
effectively represent greater-than: These features will become
active whenever the E unit that responds to early firing proxy
units. In short, T1a has gone from representing a particular
value on m to representing the conjunction of that value (it is
still connected to the features in m) along with the relational
invariant greater-than.

Recall that the T1 units are oscillators (see also Appendix
A). As a result, after some iterations have transpired with
T1a active, that unit’s inhibitor will become active, inhibiting
T1a and allowing T1b to become active (Figure 4biv). The
same operations described with respect to T1a will take place
with respect to T1b, which will learn connection(s) to feature
unit(s) representing less-than (those non-m features that are
strongly connected to the E unit that responds later in firing;
Figure 4bv-vi).

After these operations have taken place on a single pair of
objects, DORA will have constructed a representation of that
pair of objects, each with a specific value on metric dimension
m (represented by T1a and T1b in Figure 4) explicitly tagged
with an invariant specifying that its value is either greater-
than (in the case of T1a or less-than (T1b) some other value on
m. Importantly, these representations do not yet constitute an
explicit representation of the relation greater-than (a, b), be-
cause they are not linked into a propositional structure (e.g., by

T2 and T3 units) specifying that the individual roles, greater-
than and less-than, are linked into a single relation. Moreover,
the emerging representation of these roles, as instantiated in
the feature units connected to T1a and T1b, still retain a full
representation of the specific metric values of T1a and T1b on
m. In other word, T1a and T1b do not represent greater-than
and less-than in the abstract, but instead represent something
closer to greater-than-and-value-a and less-than-and-value-
b. However, this kind of almost-relational representation, in
which relational invariants are present, but (a) are still associ-
ated with other, nonrelational features (e.g., specific values on
m), and (b) are not yet composed into an explicitly relational
structure, are precisely the kind of representations DORA
uses as the starting point for learning explicitly structured
relations (see above).

To illustrate, consider what will happen when a different
pair of objects, c and d, are engaged in the process described
above. For the purposes of illustration, assume that c has a
larger value on m than d does, but both have different values
than a and b. The processes described previously will attach
T1c to the same invariant greater-than feaure(s) as T1a and
T1d to the same less-than feature(s) as T1b. It is in this sense
that those feature units represent greater-than and less-than,
respectively: The relational invariance circuit will, by virtue
of the E unit-to-feature connections learned in the context
of objects a and b, be biased to activate the feature unit(s)
recruited for greater-than in the context of T1a in response
to the "greater-than-ness" of T1c, and the feature unit(s) re-
cruited for less-than in response to the "less-than-ness" of T1d.
If, subsequently, DORA compares the pair [a, b] to the pair
[c, d], it will learn predicates (T1 units) strongly connected
to greater-than and less-than, and only weakly connected
to the specific values of a and c, and b and d, respectively
(see above). After exposure to as few as two pairs of objects,
DORA has started to explicitly predicate the invariant relation
greater-than (x, y) with respect to dimension m.

In fact, DORA has learned something much more general
than that, because the invariant features greater-than and
less-than, learned in the context of metric dimension m, will
generalize to any other rate-coded metric dimension, n , m.
The reason is that the rate code that serves as the input to the
relational invariance circuit operates on the magnitudes of the
T1 units’ inputs, regardless of their origin: So long as the
T1 units in question are (a) coupled oscillators that compete
with one another to become active, and (b) receive rate-coded
inputs from whatever metric dimension they represent, so that
(c) the T1 unit with the larger value fires earlier than the T1
unit connected to the smaller value, the T1 unit connected to
the larger value of the dimension will become connected to
greater-than and the T1 unit connected to the smaller value
on the dimension will become connected to less-than (or, if
the two T1 units encode the same value on n, and become
simultaneously co-active therefore activating the E unit that
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responds when multiple T1 units are active, they will become
connected to the non-m features strongly connected to the
active E unit, or equal-to).

This same property of the relational invariance circuit ren-
ders it vulnerable to incorrectly assigning the invariants more-
than and less-than to any pair of object properties (repre-
sented as T1 units) that get passed into the circuit, even if
those properties do not lie on a metric dimension. For this
reason, there need to be constraints on when the relational
invariance circuit is invoked. One obvious constraint is that it
should only be invoked when the property coded by a T1 unit
is a value on a metric dimension. As discussed previously,
additional constraints, for example, regarding which metric
dimensions are most likely to invoke the circuit under what
circumstances, are likely also important, but consideration of
what those constraints are is beyond the scope of the current
work (but see Spelke & Kinzler, 2007).

Learning the content and the format of relational repre-
sentations

By integrating the relational invariance circuit with the
DORA algorithm for learning structured representations of
relations (Doumas et al., 2008), we have developed a single
system that explains learning structured relational representa-
tions of similarity and relative magnitude from very simple
(non-relational) beginnings without assuming any structured
representations, or even relational invariants, a priori. The
model starts with flat feature vector representations of object
properties. These vectors contain no relational features, just
absolute information about properties and magnitudes along
dimensions. As described above, when objects with these
feature encodings are compared, invariant patterns emerge,
which mark similarities and differences in featural encoding
and absolute magnitudes. The relational invariance circuit
exploits these patterns to identify relational instances and
return invariant features identifying those relations.

The DORA learning algorithm identifies invariant features
of compared objects and learns structured representations of
those features in a format akin to a single-place predicate.
The model then links systematically co-occurring predicate-
argument bindings to form functional multi-place predicate
representations. That is, over a series of progressive com-
parisons, the model isolates collections of object features,
represents these as functional single-place predicates, links
systematically co-occurring single-place predicates to form
multi-place predicates, and produces increasingly more re-
fined versions of these representations. When the representa-
tional content of these objects is relational, DORA will learn
structured representations of this relational content.

Mechanism for generalization

We propose that operations on relational representations
underlie human generalization and that generalization based

on relations occurs in (at least) two ways. First, relational
representations learned in one context are readily applica-
ble to characterize new contexts. Relational representations
are useful for characterizing multiple domains because the
same relations apply across domains regardless of the objects
involved. Second, theories and schemas learned from one
domain allow us to make inferences about other domains
using analogical inference.

Analogical inference—in this case, using a model of one
domain to reason about another domain—follows directly
from DORA’s mapping process. For example, suppose that
DORA has learned about spatial relations (e.g., above, right-
of, larger) and then learned that when playing the game Break-
out—where the goal of the game is to hit a ball with a paddle
moving horizontally—relations between the ball and paddle
predict actions to take. Specifically, DORA has learned that
the state right-of (ball, paddle1) supports moving right (i.e.,
right-of (paddle2, paddle1); where paddle1 is the state of
the paddle before the move, and paddle2 after the move),
the state left-of (paddle1, ball) supports moving left, and the
state same-x (ball, paddle1) supports making no move. When
DORA encounters a game like Pong—where the goal of the
game is to hit a ball with a paddle moving vertically—the
moves available in Pong (up and down) might remind DORA
of the moves available in Breakout (left and right). With
the representation of the available Pong actions in the driver
(e.g., above (paddle2, paddle1), and representations of the
Breakout strategy retrieved into the recipient (e.g., right-of
(ball, paddle) right-of (paddle2, paddle)), DORA performs
analogical mapping. Because of the shared relational sim-
ilarity, corresponding moves between Pong and Breakout
map—e.g., above (paddle2, paddle1) in the driver will map to
right-of (paddle2, paddle1) in the recipient (Figure 5a, map-
pings depicted as double-headed arrowed lines; Appendix
A2.2 and Appendix A4 for details of how such mappings are
discovered). Generalization is performed on the basis of these
mappings.

During analogical generalization, propositions with un-
mapped elements enter the driver, and any propositions to
which they map enter the recipient (information is general-
ized from the driver to recipient; see Hummel & Holyoak,
2003). So, if DORA has mapped above (paddle2, paddle1)
to right-of (paddle2, paddle1), the representation of the rule
from Breakout enters the driver, and the mapped represen-
tation of the move from Pong enters the recipient. Figure
5b depicts a case where the rule right-of (ball, paddle) right-
of (paddle2, paddle) is in the driver, and the mapped above
(paddle, paddle2) is in the recipient. When a unit i, in the
driver learns an excitatory mapping condition to a given unit
j, in the recipient, it also learns a global inhibitory mapping
connection to all other units, k , j, in the recipient. Similarly,
j learns a global inhibitory connection to all units i , l in the
driver. These global inhibitory connections play a vital role
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in the inference process. Continuing the example, all units
encoding the representation of Pong in the recipient have a
positive mapping connection to a corresponding unit in the
driver (i.e., right-of maps to above, paddle1 maps to paddle1
and paddle2 maps to paddle2; Figure 5). By consequence, all
units in the recipient also have a global inhibitory mapping
connection to all other units in the driver. Therefore, when
more-x (ball) becomes active in the driver (along with the T2
unit encoding more-x+ball and the T3 unit encoding right-
of (ball, paddle1)), the T1 unit encoding ball inhibits all T1
units in the recipient (except for more-y, which is excited by
more-x), the T2 unit encoding more-x+ball inhibits all T2
units in the recipient, and the T3 unit representing right-of
(ball, paddle2) inhibits all T3 units in the recipient.

This form of generalized inhibition occurs when all units in
the recipient map to some unit in the driver, and no units in the
recipient map to the currently active driver units. That is, the
signal indicates that there are elements in the driver that map
to nothing in the recipient. This occurrence signals DORA
to initiate analogical inference. During analogical inference,
DORA recruits and activates units in the recipient that cor-
responds to the unmapped (i.e., inhibitory) unit in the driver
(e.g., DORA recruits a T1 unit in the recipient corresponding
to an unmapped T1 unit in the driver). Newly recruited units
are assigned positive mapping connections with the driver
units that initiated their recruitment (black double-headed
arrows in Figure 5b), and they learn connections to other
recipient units by simple Hebbian learning (e.g., active T1
units learn connections to active T2 units and active feature
units; thick black lines in Figure 5b). When more-x (ball) is
active in the driver, the driver T1 unit representing more-x
activates the recipient T1 unit more-y, as they map, however,
the active ball T1 unit, more-x+ball T2 unit, and above (ball,
paddle1) T3 unit will activate nothing and inhibit all recipient
units (as they map to nothing in the recipient). In response
to this generalized inhibition in the recipient, DORA recruits
a T1 unit corresponding to the unmapped active driver T1
unit (representing ball), a T2 unit corresponding to the active
unmapped driver T2 unit (representing more-x+ball), and a T3
unit is recruited corresponding to the active unmapped driver
T3 unit (representing right-of (ball, paddle1); black units in
Figure 5b). The recruited T1 unit learns connections to the
active features of ball and to the recruited T2 unit (as they
are all co-active; thick black connections in Figure 5b). The
recruited T2 unit learns connections to the recruited T3 unit
(as they are co-active), and then to the T1 unit representing
more-y when it is active. As such, the recruited T1 unit be-
comes a representation of ball, and the recruited T2 links the
representation of ball and more-y (more-y+ball). Similarly,
when less-x (paddle1) becomes active in the driver (activating
the less-y and paddle1 T1 units in the recipient), a T2 unit
will be recruited to match the unmapped active driver T2 unit.
That T2 unit will learn connections to the less-y and paddle1

T1 units, and to the active recruited T3 unit (which remains
active as its corresponding driver T3 unit remains active).
The result is a representation of above (ball, paddle1) in the
recipient (Figure 5b).

The same process also accounts for how we might predicate
(or explicitly represent) known relations about new situations.
As a simple example, suppose DORA encounters two objects
involved in a relation such as when object-1 is above object-2.
Those objects will have properties of that relation (e.g., object-
1 might have features such as "more" and "y"; delivered by
the relation invariance circuit). If DORA has learned explicit
structured representations of the relation above (e.g., two
linked predicates strongly connected to the features "more"
and "y" and "less" and "y" respectively), then it might retrieve
a representation of that relation from LTM, say above (P, Q).
The retrieved relational representation can then be projected
on to object-1 and object-2 (Figure 6). Specifically, P, the
higher item, will correspond to object-1, and Q, the lower
item, will correspond to object-2. Based on these correspon-
dences, DORA will infer the predicates bound to P and Q
about object-1 and object-2 via the analogical inference algo-
rithm. Shifting focus to the above (P, Q) proposition (above (P,
Q) is in the driver; Figure 6), when the higher unit becomes
active it inhibits all units in the recipient, signalling DORA
to recruit a T1 unit in the recipient to match the active higher
unit and a T2 in the recipient to match the active higher+P
unit. The recruited T1 unit learns connections to the active
feature units, becoming an explicit representation of higher,
and the recruited T2 unit learns connections to the recruited
T1 unit (representing higher) and the object-1 unit when it
becomes active (Figure 6). Similarly, a representation of
lower is represented about object-2. The result is the known
relation above predicated about object-1 and object-2 (Figure
6).

In the following simulations we demonstrate the efficacy
of the computational account of relation learning and relation-
based generalization that we have proposed. We show how
DORA learns structured relational representations from sim-
ple visual non-structured non-relational inputs, and how it
then uses these representations to support human-level cross-
domain generalization—by characterizing novel domains in
terms of known relations, and then driving inferences about
the new domain based on the systems of relations learned in
previous domains. Additionally, we demonstrate that DORA
captures several key properties of human representation learn-
ing and the development of generalization.

Simulations

As described previously, explaining cross-domain gener-
alization as analogical inference entails explaining how a
system: (1) detects (or learns to detect) relational content; (2)
learns structured representations of that relational content; (3)
uses these representations to characterize and behave in the
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Figure 5

Analogical inference in DORA. (a) The representation of the right-of (ball, paddle1), and right-of (paddle2, paddle1) in the
driver maps to the representation of above (paddle2, paddle1) in the recipient (grey double-arrowed lines indicate mappings).
(b) As the representation of right-of (ball, paddle1) becomes active in the driver, some active units have nothing to map to in
recipient (the units representing ball, more-x+ball, less-x+paddle1, and right-of (ball, paddle1)). DORA recruits and activates
units to match the unmapped driver units (black units indicate recruited units; black double-arrowed lines indicate inference
relationships). DORA learns connections between co-active token units in the recipient (heavy black lines). The result is a
representation of the situation: above (ball, paddle1) & above (paddle2, paddle1) in the recipient.

domains it experiences (e.g., to build models of the domain
to guide behavior); (4) uses the representations learned from
previously experienced domains to make analogies and subse-
quently inferences about new domains. In addition, there is a
distinction between representing a domain and acting on those
representations. Extrapolation from one domain to another
relies on both using representations learned in one domain
to characterize another (i.e., representational transfer), and
adopting strategies from one domain for use in another (i.e.,
policy transfer).

Below we report a series of simulations evaluating these
various capacities of the model. In simulation 1, we
show that the model learns structured relational representa-
tions—both their form and content—from non-structured and
non-relational visual inputs without assuming a vocabulary
of structured representations or relational features a priori. In
simulations 2-4, we show that the model can be integrated
with methods for reinforcement learning to use the representa-
tions that it learns to build more complex models (or policies)
for behaving in the domain, and then use its representations to
perform zero-shot (i.e., first trial) cross-domain generalization.
Specifically, we show that after the model learns to play one
video game (Breakout), it can generalize its knowledge to
play a structurally similar but featurally very different game
(Pong). Moreover, we show that generalization in the model
relies exquisitely on the structured format of the representa-
tions that it learns. In simulation 5, we evaluate whether the
representations that the model learned in previous simulations

generalize to more complex tasks like adult analogy problems,
support generalization to completely novel stimuli (i.e., ap-
proximating universal generalization), and meet the hallmarks
of human relational cognition. Finally, we are proposing
an account of human generalization that includes relational
representation learning. As such, it should be the case that
our model mirrors the capacities of children as they learn
relational representations. In simulations 6 and 7 we use the
learning trajectory the model underwent during simulations
2-4 to simulate studies from the developmental literature on
children’s magnitude reasoning (simulation 6) and relational
problem solving (simulation 7). Additionally, simulations 6
and 7 provide further tests of the model’s capacity for cross-
domain generalization: After learning representations in a
domain like Breakout, the model extends these representa-
tions to reason in the domain of a psychology experiment. We
show that the model not only generalizes the representations
that it learns from one domain to reason about a new task
(as children do when they enter the laboratory) but also goes
through the same behavioral trajectory as children. Details of
all simulations appear in Appendix B.

Visual front end

Generalizing DORA to work with perceptual inputs, such
as pixel images necessitated supplying the model with a basic
perceptual front end capable of segmenting simple objects
(e.g., paddles and balls) from visual displays. We endeavored
to keep this extension as simple as possible, importing existing
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Figure 6

Generalizing known relations to new situations using
the analogical inference algorithm in DORA. The represen-
tations of object-P and object-Q in the driver map to the
representations of object-1, object-2 in the recipient (grey
double-arrowed lines). As the representations of higher
(object-P) and lower (object-Q) become active in the driver,
some active units have nothing to map to in recipient (e.g.,
the driver units representing higher and higher+object-P, and
the units representing lower and lower+object-Q). DORA
recruits and activates units to match the unmapped driver units
(black units indicate recruited units; black double-headed
arrows indicate inference relationships). DORA learns
connections between co-active token units in the recipient
(heavy black lines). The result is a representation of above
(object-1, object-2) in the recipient.

solutions.
We used a visual pre-processor that delivers object outlines

using edge detection (via local contrast) with a built-in bias
such that enclosed edges are treated as a single object. In brief,
the pre-processor identifies "objects" (enclosed edges) and
represents them in terms of their location on the "retina", size,
and color. This information roughly corresponds to the total
retinal area of the object and the enervation of the superior,
inferior, lateral, and medial rectus muscles in reaching the
(rough) center of the object from a reference point (see De-
mer, 2002). The information is encoded as the raw pixels and
direction (specific muscle) between the rough object center
and the reference point, and the RGB encoding of the pixels
composing the object. One consequence of this encoding
is that the model shows the same bias to classify along the
cardinal directions observed in humans (Girshick et al., 2011).

This pre-processor is clearly a vast oversimplification of hu-
man perception. However, we chose it because it is adequate
for our current purposes, it is computationally inexpensive,
and the representations it generates are at least broadly con-
sistent with what is known about human vision. For example,
the visual system detects edges by local contrast (e.g., Marr

& Hildreth, 1980), represents objects and their spatial dimen-
sions (e.g., Wandell et al., 2007), and these representations
and the visual image are quasi-homomorphic (e.g., Demer,
2002; Engel et al., 1994; Furmanski & Engel, 2000; Moore &
Engel, 2001). We certainly do not claim the pre-processor is
an accurate model of human vision; only that it is not grossly
inconsistent with what is known about biological vision, and
that it is adequate to our current goal, which is to model
learning and generalization in the domain of simple visual
images, with generalization to novel domains. The output of
the visual pre-processor adds two assumptions to the model:
(a) that the visual system can individuate objects, and (b) that
dimensional information is rate-coded. Finally, it is possible
to use the pre-processor as a front-end to both DORA and to
the comparison DNNs, allowing us to equate the inputs used
by DORA with those used by the DNNs.

Simulation 1: Unsupervised discovery of relations

The goal of simulation 1 was to evaluate the capacity of
the model to learn, without supervision, structured represen-
tations of relational concepts from non-structured represen-
tations of objects that include only absolute (non-relational)
information. We ran two simulations, 1a and 1b, testing
the model’s capacity to learn from both simpler and more
featurally complex stimuli.

Simulation 1a

Simulation 1a served as a basic proof of concept. In this
simulation, we tested whether DORA would learn structured
relational concepts when presented with simple visual dis-
plays.

Visual displays. We started with 150 two-dimensional
images, each differing in shape, contrast, size, width, and
height (see Figure 7 for examples of the images). Each of the
150 shapes was then randomly grouped with between 1 and
4 other shapes to create a total of 150 multi-object displays.
The displays were processed by the visual preprocessor. As
described above, the visual preprocessor identified an object
as any item with a continuous and connected edge and rep-
resented that object as a T1 unit connected to a collection of
features corresponding to the pixels composing its absolute
width and height (x- and y-extent), size, and vertical and
horizontal deviation from the edge of the screen (x- and y-
deviation). As the images were greyscale, we left out the RGB
information in this simulation. To add extraneous noise to the
objects, each T1 unit encoding an object was also randomly
connected to 10 "noise" features from a set of 1000. The
result was 150 "scenes" containing between 2 and 5 objects,
with each object represented as a set of absolute rate-coded
spatial dimensions and noise features.

Learning structured relational representations. We
designed this simulation to mimic a child noticing a visual
display (e.g., a scene) and attempting to use their memory of
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Figure 7

Examples of the shape stimuli used for Simulation
1.

previous experiences to understand and learn about that dis-
play. DORA started with no representations (i.e., all weights
set to 0). The representations of the 150 multi-object scenes
were placed in DORA’s LTM. DORA attempted to learn from
these stimuli, but it did not otherwise have any "task" to per-
form, and it received no feedback on its performance during
the simulation. Rather, DORA performed 3000 "learning
trials". On each learning trial, DORA randomly selected one
collection of objects from LTM and placed that collection in
the driver, thus simulating the perception of a visual display.
DORA ran the driver representations through the relational
invariance circuit, and then performed memory retrieval, ana-
logical mapping, and representation learning (as described
previously and in Appendix A). For the current simulations,
we constrained DORA’s retrieval algorithm to favor more
recently experienced displays (such recency effects are com-
mon in the memory literature; e.g., Logie et al., 2020). With
probability .2, DORA attempted to retrieve from the last 100
analogs that it had learned, otherwise it attempted to retrieve
from LTM generally.

In evaluating DORA’s learning, what we wanted to know
was whether the model learned structured representations of
relation content. That is, we wanted to know first, if the model
had learned T1 units connected strongly to features defining a
specific relational role concept (and only weakly to other fea-
tures), and second, whether the model linked representations
of complementary relational roles into multi-place relational
structures. For example, if DORA learned a representation of
a T1 unit connected strongly to the features encoding "more"
and "x-extent" and weakly to all other features, then it had
learned a relative (relational) representation of more-x-extent.
Similarly, if the model learned a representation of a T1 unit
connected strongly to the features encoding for "less" and
"x-extent" and weakly to all other features, then it had learned
a relative (relational) representation of less-x-extent. Finally,
if the model learned a full LISAese structure wherein these
T1 units (one representing more-x-extent and another repre-
senting less-x-extent) were bound to objects via T2 units that
were linked via a T3 unit (as in Figure 1), then it had learned
a structured multi-place relational representation.

To this end, we first defined a set of meaningful relational

roles that the model could learn given the input images. This
list comprised the set of relative encodings of the absolute
dimensional information returned by the visual preprocessor:
That is, the features encoding "more", "less", and "same"
paired with the encoding of x-extent (["more", "x-extent"],
["less", "x-extent"], ["same", "x-extent"]), y-extent (["more",
"y-extent"], ["less", "y-extent"], and ["same", "y-extent"]),
size (["more", "size"], ["less", "size"], and ["same", "size"]),
x-deviation (henceforth x; (["more", "x"], ["less", "x"], and
["same", "x"]), and y-deviation (henseforth y; (["more", "y"],
["less", "y"], and ["same", "y"]).

In order to evaluate DORA’s learning of the relations in the
displays, we defined the relational selectivity metric, Qi, for a
T1 unit I as:

r′ = argmaxr
1
n

n∑
j∈r

I

Qi =

1
n
∑n

j∈r′ Ii, j

1 + 1
m
∑m

k I

(11)

where r′ is the relational role that maximizes the mean weight
of unit i to the features, j = 1 . . . n that make up the role’s
content, and k = 1 . . .m are all other features. Qi scales with
the degree to which unit i codes selectively for a relational role,
where Qi = 1.0 indicates that the unit responds exclusively
to the features of a single relational role, r′. We measured
the relational specificity of the T1 units in DORA’s LTM
over the course of 3000 learning trials (Figure 8). As Figure 8
illustrates, DORA learned representations (T1 units) encoding
meaningful relational roles. That is, DORA learned T1 units
encoding roles like more-x-extent (strongly connected only to
features for "more" and "x-extent), less-y (strongly connected
only to "less" and "y"), or same-size (strongly connected only
to "same" and "size"). The results indicate that DORA’s learn-
ing algorithm produces representations that encode invariant
relational content.

Next, we checked whether the representations DORA
learned were composed into meaningful relational structures
(i.e., whether representations of complementary roles were
linked into multi-place structures). For example, if DORA
links more-y (obj1) and less-y (obj2) to form the relation
above (obj1, obj2), or links more-x-extent (obj2) and less-
x-extent (obj1) to form the relation wider (obj2, obj1), then
it has learned representations of meaningful relations. To
this end, we checked the number of representations in LTM
representing single-place predicates (a learned T1 unit linked
to another T1 unit via a T2 unit but not connected to a T3
unit), meaningful multi-place relations (T1 units representing
complementary relational roles, each linked to an object T1
unit via T2 units that are also linked via a single T3 unit), and
meaningless multi-place relations (T1 units not representing
complementary relational roles, each linked to an object T1
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Figure 8

Mean relational selectivity of T1 units (as defined in
text) as a function of number of training examples, simulation
1a.

unit via T2 units that are linked via a single T3 unit). As
presented in Figure 9, DORA learns representations of mean-
ingful relations with experience. By the 1000th learning trial,
DORA had learned representations of all possible meaningful
relations (i.e., above, below, same-vertical, right-of, left-of,
same-horizontal, wider, thinner, same-width, taller, shorter,
same-height, larger, smaller, same-size), and it learned pro-
gressively more refined representations of these relations with
additional learning trials.

Figure 9

The number of representations of single-place predicates,
meaningful relations, and non-sense relational structures in
DORA’s LTM after each 100 learning trails, simulation 1a.

As described above, DORA learns multi-place relations by
comparing sets of single-place predicates. During learning,

this process runs in parallel with the discovery of the single-
place predicates that will form the roles of these relations.
However, because the linking operation depends on having
a vocabulary of single-place predicates to combine, DORA
necessarily follows a developmental trajectory in which it
acquires single-place predicates before it acquires multi-place
relations. As shown in Figure 9 roughly the first 300 learning
trials are dominated by the discovery of single-place predi-
cates like more-x, less-x-extent, and their complements. After
that initial period, learning is dominated by the discovery of
multi-place relations like above.

In contrast to error-correction learning (such as back prop-
agation), DORA’s learning algorithm does not replace old
knowledge (e.g., predicates discovered early in learning) with
new knowledge (predicates learned later), but rather adds new
knowledge to its existing knowledge. For example, the multi-
place relations it learns do not replace the single-place predi-
cates from which they were composed, and refined predicates
and relations do not replace their less refined predecessors.
However, as a consequence of DORA’s retrieval algorithm,
less refined predicates become less likely to be retrieved (and
thus used as the basis of new comparisons) than their (increas-
ingly common) more-refined counterparts (the retrieval algo-
rithm is biased in favor of retrieving the simplest pattern that
fits the retrieval cue; Hummel & Holyoak, 1997). Effectively,
the less refined predicates tend to fall out of service as they
become obsolete. As a result, there is a difference between
the predicates DORA knows (i.e., has stored in memory) and
those it frequently uses.

Moreover, DORA not only learns specific relations such as
above and below, but it also discovers more abstract relations
such as greater-than and same-as as a natural consequence.
For example, when DORA compares two different instances
of wider (x, y), then it will learn a more refined representation
of wider (x, y) (as described previously). But if it compares
an instance of wider (x, y) to an instance of taller (z, w),
then it will learn a representation that retains what wider has
in common with taller, or a generic greater (a, b) relation.
This result mirrors the development of abstract magnitude
representations in children (e.g., Sophian, 2008).

In total, these results indicate that DORA learns structured
representations of relative magnitude and similarity relations
from unstructured (i.e., flat feature vector) representations of
objects that include only absolute values on dimensions and
extraneous noise features. However, a potential criticism of
this simulation is that the starting representations are quite
simple. Perhaps DORA only learns useful relational represen-
tations because each object only has five dimensions, whereas
real objects have many more. Simulation 1b addresses this
limitation.
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Simulation 1b: Scaling up

In this simulation we tested DORA’s capacity to learn from
messier examples containing more competing and extraneous
information. We created 150 scenes each containing between
2 and 5 objects (using the same procedure as in simulation
1a). We then altered the objects in two important ways. First,
we added 1000 distractor features from a pool of 100,000.
Second, we added absolute encodings from 45 additional
dimensions. That is, while in simulation 1a, each object was
connected to rate-coded features encoding an absolute value
on 5 dimensions (as delivered by the visual pre-processor),
in this simulation each object was connected to rate-coded
features encoding an absolute value on 50 dimensions (the
five from simulation 1a, and 45 additional "dimensions"). As
a consequence, each object was now much messier, contain-
ing not only more noise features, but also encoding more
dimensions (that DORA could potentially learn explicit repre-
sentations of). If DORA’s learning algorithm is indeed robust,
then we would expect it to (a) learn relational representations
of all dimensions (there should be nothing special about the
5 used in simulation 1a), and (b) learn these representations
in a number of learning trials that scales proportionally with
the number of items to be learned (i.e., the model should
take roughly 10 times as long to learn comparably refined
structured relational representations of 50 dimensions as it
took to learn five).

Simulation 1b proceeded like simulation 1a. A no-
representations version of DORA was created. The represen-
tations of the 150 multi-object scenes were placed in DORA’s
LTM. As in simulation 1a, DORA attempted to learn from
these stimuli, but it did not otherwise have any "task" to per-
form, and it received no feedback on its performance during
the simulation. In this simulation DORA performed 10,000
learning trials.

Figure 10 shows the progression of the relational selec-
tivity of DORA’s T1 units over the course of training. Just
as in simulation 1a, DORA learned progressively more re-
fined representations of relational content. Vitally, DORA
learned structured relational (relative; more/less/same) repre-
sentations of all 50 dimensions, as well as of general greater,
lesser, and same. In addition, as seen in Figure 10, the num-
ber of learning trials required to learn refined representations
of structured representations scales linearly. While DORA
learned representations of all meaningful relations from five
dimensions in roughly 1000 learning trials (simulation 1a),
DORA learned meaningful relational representations of 50
dimensions in 10,000 trials. In addition, with more learning
trials, the representations that DORA learned became pro-
gressively more refined. Just as in simulation 1a, after 3000
learning trials the relational selectivity in the model was just
below 0.7, though with additional learning trials in simula-
tion 1b, relational selectivity continued to increase. Finally,
Figure 11 shows that just as in simulation 1a, DORA learned

progressively more meaningful structured representations of
relational representations with more learning trials and fol-
lows the same trajectory of learning single-place predicates
first, followed by multi-place relational representations.

Figure 10

Mean relational selectivity of T1 units (as defined in
text) as a function of number of training examples, simulation
1b.

Figure 11

The number of representations of single-place predicates,
meaningful relations, and non-sense relational structures in
DORA’s LTM after each 100 learning trails, simulation 1b.

The results of Simulation 1b show that DORA’s learning
algorithm scales well with the complexity of the learning
environment. Finally, it is worth noting that although DORA’s
learning in simulations 1a and 1b was unsurprisingly slightly
slow (recall that DORA received no feedback or guidance),
Sandhofer and Doumas (2008) showed that DORA’s learn-
ing accelerates (to the same rate as human learners) when
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the model receives the kind of general guidance children
routinely receive from adults during the normal course of
cognitive development (e.g., being guided to make specific
comparisons in specific sequences; Sandhofer & Smith, 1999;
Sandhofer et al., 2000).

Simulation 2: Cross-domain transfer in simple video
games

Our second simulation was designed as a test of cross-
domain generalization. We wanted to evaluate whether the
model could learn representations from a domain, use those
representations to perform intelligently in that domain, and
then transfer that knowledge to a new domain in a single
shot (i.e., without any additional training). We used transfer
between different video games as a case study. In this sim-
ulation, after DORA learned to play Breakout, we tested its
capacity to generalize, without additional training, to Pong5

(which is a structurally analogous to Breakout but featurally
quite different—among other differences, the player moves
the paddle up and down in Pong but left and right in Breakout),
and then tested its capacity to return to playing Breakout.

For the purposes of comparison, we also trained four sta-
tistical learning systems, including (1) a Deep Q-learning
Network (DQN; Mnih et al., 2015) with the standard convo-
lutional neural network front end; (2) a DQN with the same
visual front end as DORA; (3) a supervised DNN with the
same visual front end as DORA; and (4) a graph network
(e.g., Battaglia et al., 2018) with the same front end as DORA.
These controls allowed us to compare DORA to systems that
do not have structured relational representations, and to con-
trol for the visual front-end and its assumptions: Networks
2-4 also had objects individuated and contained rate-coded
dimensional information as inputs.

In addition, we ran a small transfer study with humans.
Unlike the current networks, humans come into the game
situation with a wide range of knowledge beyond simple
video games (let alone only Breakout), but an account of
human generalization should be able to match the qualitative
property that humans do transfer between things like games.
To test whether humans do indeed generalize between games,
human players either played 50 minutes of Breakout followed
by 10 minutes of Pong, or the reverse. The results indicate
cross-game transfer between Breakout and Pong and Pong
and Breakout. Details appear in Supplemental Results.

Learning to play a game in DORA

In this simulation, as in simulation 1, DORA started with
no knowledge. To begin, DORA learned representations from
Breakout game screens. Learning in this simulation proceeded
as described in simulation 1, with the difference that we used
game screens from Breakout rather than images of collections
of 2D shapes. We allowed the system to play 250 games of

Breakout making completely random responses, which pro-
duced game screens. These game screens ran through the vi-
sual pre-processor described above generating representations
of scenes composed of simple objects (e.g., the paddle, the
ball, the rows of bricks), which were stored in LTM. DORA
attempted to learn from these stimuli performing 2500 learn-
ing trials. It did not have any "task" to perform, and it received
no feedback during this part of the simulation. DORA suc-
cessfully learned structured representations of above, below,
same-vertical, right-of, left-of, same-horizontal, wider, thin-
ner, same-width, taller, shorter, same-height, larger, smaller,
same-size, same-color, and different-color (screen images
were colored).

The next step was for DORA to use the representations that
it learned from the game environment to engage intelligently
with it. Several accounts of how relational representations,
once available, may be used to characterize particular domains
have been proposed (e.g., Lake et al., 2015; Nye et al., 2020).
However, these probabilistic program induction approaches
do not directly address the problem of building a relational
model of the environment from a reward signal (these models
are supervised). As learning to play video games entails
learning to associate actions with states of the game based on
reward signals (e.g., points), reinforcement learning methods
(Sutton & Barto, 2018) are a natural starting point to solve
this problem. Reinforcement learning (RL) has been widely
applied to account for several aspects of human learning and
exploratory behaviour (e.g., Gershman, 2018; Otto et al.,
2010; Rich & Gureckis, 2018). In tabular RL, which is the
version of RL that we use in this simulation, the state-action
space is represented as a table where the rows are defined
by the individual states and the columns are defined by the
actions. A known problem with tabular RL is that as the size
of the table increases, learning becomes intractable. As rela-
tional representations can be combined, the size of the table
grows exponentially on the number of relations considered
when describing the state. Therefore, in our simulations we
make the simplifying assumption that the agent knows what
the relevant relations to build a model of the domain are (from
the relations that the model had learned from game screens
previously). By definition, a full account of how to build a
relational model of the domain from the reward signal would
need to solve the problem of selecting the relevant relations
from a potentially very large set of relations. We return to this
point in the general discussion.

As mentioned above in our simulations, states were rep-
resented as the relevant relations to learn to play a game. In
Breakout the relations considered were right-of, left-of, and
same-horizontal applied over the paddle and the ball and

5In this simulation we discuss DORA’s performance transferring
from Breakout to Pong for expositional clarity. As shown in supple-
mental simulation 1, the generalization results were the same when
DORA learned to play Pong and attempted to transfer to Breakout.
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the same relations applied over the ball at times t-1 and t.
For example, one state in Breakout could be [right-of (ball1,
paddle1)]. On the other hand, actions were represented as
a relation between the object that the action was performed
over at time t, and the same object at time t+1. For example,
in Breakout the action move-right was represented as right-of
(paddle2, paddle1), where paddle1 is the paddle before acting,
and paddle2 is the paddle after. To associate actions with
states of the game we augmented DORA with the capacity
for reinforcement learning. Specifically, we used tabular Q-
learning (Watkins, 1989). RL algorithms seek to maximize
the expected discounted cumulative reward, or return, by
interacting with the environment. In each iteration of this
process the environment produces a state S t and a reward Rt

and the agent takes an action At in response. The goal of
reinforcement learning is to find the optimal policy π∗ that
maximizes the return. To do this Q-learning utilizes action-
values as the basis for this search. The action-value of a
state-action pair Q(s, a) is the return when the agent is in state
s at time t, S t = s and takes action a, At = a. Q-learning
follows an epsilon-greedy policy, where most of the time the
action is selected greedily regarding the current action values
and with a small probability the action is selected randomly,
while updating the action-values according to the equation:

Q(S t, At)← Q(S t, At)+α
[
Rt+1+γmax

a
Q(S t+1, a)−Q(S t, At)

]
(12)

where gamma is a discount factor (in all simulation we set
this value to .99).

Applied iteratively, this algorithm approximates the true
action-values and, therefore, the output policy (greedy regard-
ing these values) will approximate the optimal policy. We
trained DORA for 1000 games using tabular Q-learning. The
model learning to associate relational states with relational
representations of the available actions. Importantly for our
purposes, because the states are relational the resulting policy
corresponds to a set of relational rules that can be used as a
basis for analogical inference (see below).

Generalizing to a new game in DORA

As described above, analogical inference occurs when a
system uses analogical correspondences between two situa-
tions to flesh out one situation based on knowledge of the
other. This method is precisely how DORA infers how to
play a game like Pong based on its experience with a game
like Breakout. While learning to play Breakout, DORA had
learned that relations between the ball and paddle predicted
actions. Specifically, DORA learned that the state right-of
(ball, paddle1) supported moving right (i.e., right-of (paddle2,
paddle1)), that the state left-of (paddle1, ball) supported mov-
ing left, and that the state same-x (ball, paddle1) supported
making no move. With the representation of the available

Pong actions in the driver, these Breakout representations
could be retrieved into the recipient. DORA then performed
analogical mapping. Because of the shared relational sim-
ilarity, corresponding moves between Pong and Breakout
mapped—e.g., above (paddle2, paddle1) in the driver mapped
to right-of (paddle2, paddle1) in the recipient. DORA then
performed analogical generalization on the basis of these
mappings.

As described previously and illustrated in Figure 5, after
mapping the moves in Breakout and Pong, DORA infers the
relational configurations that might reward specific moves
in Pong based on the relational configurations that reward
specific moves in Breakout. For example, given that right-
of (ball, paddle) tends to reward a right response (right-of
(paddle2, paddle1) in Breakout, and the mapping between the
right response and the up response (above (paddle2, paddle1)
in Pong, DORA inferred that above (ball, paddle) tends to
reward a up response in Pong. The same process allowed
DORA to generalize other learned rules (e.g., below (paddle2,
paddle1) then move down).

Importantly, like DORA’s representation learning algo-
rithm, mapping and analogical inference are completely unsu-
pervised processes: The model discovers the correspondences
between the games on its own, and based on those corre-
spondences, makes inferences about what kinds of moves are
likely to succeed in the new situation.

Simulation results

The DQN, the DQN with the same visual front end as
DORA, and the graph network were all trained for 31,003,
20,739, and 10,000 games respectively. The DNN was trained
via back-propagation for 4002 games. Models that use struc-
tured representations often require far fewer training examples
than networks trained with traditional feature-based statisti-
cal learning algorithms (see e.g., Bowers, 2017; Hummel,
2011). It is therefore unsurprising that DORA learned to play
Breakout much faster than the other networks.

Figure 12a shows the mean score over the last 100 games of
Breakout for all five networks. As expected, all the networks
performed well.

We then had the networks play a new game, Pong, for 100
games. Figure 12b show the models’ zero-shot (i.e., imme-
diate) transfer from Breakout to Pong. DORA performed
well on the very first game of Pong (left columns) and over
its first 100 games (beyond making an analogical inference,
DORA did not engage in any additional learning during these
test games). That is, DORA demonstrated zero-shot trans-
fer between the games: Having learned to play Breakout,
generalized to how to play Pong. In contrast, the statistical
learning algorithms did not transfer from Breakout to Pong:
Having learned to play Breakout, the statistical algorithms
knew nothing at all about Pong. (The bars for these other
networks are not missing from Figure 12c, they are simply at
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Figure 12

Results of game play simulations with DORA, the DQNs and the DNNs. Error bars represent 2 stderrors. (a)
Performance humans and networks on Breakout as an average of 100 test games. (b) Results of networks playing Pong after
training on Breakout as score on the first game played and mean score over the first 100 games played. (c) Results of networks
when returning to play Breakout after playing or learning to play Pong as an average of the first 100 games played.

zero.) This result is largely unsurprising: One does not expect
a lookup table for addition to do subtraction, and one does
not expect a lookup table for Breakout to play Pong.

The reason for DORA’s zero-shot transfer from Breakout
to Pong is straightforward. As described above, during its first
game of Pong, DORA represented the game state using the
relations it had learned playing Breakout. Armed with these
relations, the model used analogical mapping to discover the
correspondences between the two games, and based on those
correspondences, made inferences about what kinds of moves
were likely to succeed in the new situation. The model’s prior
experience with Breakout thus allowed it to play its first game
of Pong like a good rookie rather than a rank novice.

As a final test, we trained the DNNs (but not DORA) to
play Pong until they could play with competence, and then
retested the DNNs and DORA for their ability to play Break-
out. Of interest in this simulation was whether the various
systems, upon learning to play Pong, would still know how to
play Breakout. Figure 12c shows the performance of the net-
works on the first 100 games of Breakout after learning Pong.
DORA returned to Breakout with little difficulty (t(198) =
1.26, p>.05; again DORA engaged in no learning during these
test games). By contrast, the deep DNNs showed extremely
poor performance, indicating that learning to play Pong had
completely overwritten their ability to play Breakout (i.e., the
networks suffered interference from Pong to Breakout; see
French, 1999). 6.

It is important to stress that the supervised DNN, one of the
DQNs, and the graph net used the same visual pre-processor
as DORA, so the differences in generalization performance
cannot be attributed to differences in inputs (e.g., individu-
ated objects and rate-coded dimensions). Rather, the DNNs’
generalization failure reflects the purely statistical nature of

their representations. For a DNN screens from Breakout and
screens from Pong are simply from different distributions,
and therefore, it has no reason to generalize between them.
By contrast, relation-based learning—like a variablized al-
gorithm—naturally generalizes to novel values (arguments)
bound to the variables (relational roles) composing in the
algorithm (model of the task).

Simulation 3: Cross-domain transfer from shape images
to video games

A serious limitation of Simulation 2 is that all the models
embarked on learning Breakout as blank slates, with no prior
knowledge of any kind. We adopted this practice to remain
consistent with the tradition in the prior literature on neural
networks for game play (e.g., Mnih et al., 2015), which is to
start with completely untrained networks. This convention
no doubt reflects the fact that DNNs do not profit from cross-
domain transfer, so there is no point in training them on any
other kind of task (e.g., to teach them basic spatial relations)
before training them to play video games.

People, by contrast, learn very differently than DNNs.
Rather than approaching each new task as a tabula rasa, peo-
ple bring their prior knowledge to the learning of new tasks.
By the time a person plays their first video game, they have
no doubt had extensive experience with such basic spatial
relations as above and left-of, not to mention years of expe-
rience in numerous other domains. This difference between
how people and DNNs learn is important as it speaks directly

6Catastrophic forgetting can be avoided by interleaved training
(i.e., training on to-be-learned tasks simultaneously, with “batch”
updating of connection weights; e.g., Kirkpatrick et al., 2017). Se-
quential training of the type people routinely encounter continues to
produce catastrophic forgetting in DNNs
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to the importance of cross-domain transfer: Whereas purely
associative systems such as DNNs suffer from retraining on a
new task, people rely on it.

Accordingly, Simulation 3 explored a slightly more real-
istic course of learning in DORA. Instead of learning the
relations relevant to playing the game from the game itself,
DORA first learned representations from a different domain,
namely the first 300 images from the CLEVR data set (pic-
tures consisting of multiple objects on a screen; Johnson et al.,
2017). We started with a version of DORA with no knowl-
edge. CLEVR images were run through the pre-processor
and the results were encoded into DORA’s LTM. We then
ran DORA for 2500 unsupervised learning trials (as in sim-
ulation 1). As in previous simulations, DORA successfully
learned structured representations of the relations present
in the stimuli—here above, below, same-vertical, right-of,
left-of, same-horizontal, wider, thinner, same-width, taller,
shorter, same-height, larger, smaller, same-size, same-color,
and different-color. We do not claim that this pre-training
with the CLEVR images provides DORA with a realistic
approximation of a person’s pre-video game experience. On
the contrary, DORA’s pretraining is a pale imitation of the rich
experiences people bring to their first video game experience.
But the crucial question in Simulation 3 is not whether we
can endow DORA with all the advantages a person’s prior
experiences bring to their ability to learn video games, but
merely whether DORA, like people, is capable of profiting
from prior exposure to relevant spatial relations even if that
exposure comes from a completely different domain.

Following representation learning from the CLEVR im-
ages, DORA learned to play Breakout via Q-learning for 800
games. Again, the key difference from previous simulation
was that DORA used the representations that it had learned
from the CLEVR images to encode game screens. No addi-
tional representation learning occurred from experience with
Breakout. Only associations between the previously learned
representations and successful moves were updated via Q-
learning. As in Simulation 2, after training with Breakout, we
tested the model’s ability to generalize to playing Pong, and
then return to playing Breakout.

Using representations learned from CLEVR, DORA
learned to play Breakout and transferred learning form Break-
out to Pong and back to Breakout in a manner very similar to
the results of Simulation 2 (Figure 13a-c, black and dark grey
bars). However, DORA learned to play Breakout in fewer
games when it started with the representations learned from
the CLEVR images than it did starting with a blank slate in
Simulation 1 (800 vs. 1250 games, respectively; as it did
not need to learn representations, only a policy for associ-
ating representational states with actions). This simulation
demonstrates that DORA—like a human learner—exploits
cross-domain transfer rather than suffering from it. DORA’s
capacity to do so is a direct reflection of its ability to represent

the domain-relevant relations explicitly, bind them to argu-
ments, and map them onto corresponding elements between
the familiar and novel games.

Simulation 4: The centrality of binding and structured
representations in cross-domain transfer in DORA

DORA relies on neural oscillations to dynamically bind
distributed representations of objects and relational roles into
relational structures. According to our account, these os-
cillations play a central role in learning and generalization
because without them, DORA’s representations would be
non-structured feature lists—akin to the representations used
by DNNs and other associative learning algorithms—and its
generalization ability would be correspondingly limited. To
explore the role of neural oscillations—that is, structured
relational representations—in DORA’s performance, we reran
Simulation 2 (allowing the model to learn to play Breakout,
and then attempting to generalize to Pong), but with two
different ablated versions of the model. In both ablated ver-
sions we disrupted the lateral inhibition between token units
(specifically, we reduced the weight of the inhibitory lateral
connections between tokens from -1 to -0.1), disrupting the
model’s ability to maintain systematic oscillatory behavior.
In the first ablated model (A1), we ablated the inhibitory con-
nections from the onset of the simulation. As a result, neural
oscillations were disrupted both during predicate learning and
thereafter. In the second ablated model (A2), we ablated the
inhibitory connections after the model had learned to play
Breakout: Although the model was intact when it learned to
play Breakout, the neural oscillations, and thus role-argument
bindings, were disrupted during generalization to Pong.

The current simulations were otherwise identical to simu-
lations 2. As expected, model A1 failed to learn any useful
predicate representations. Disrupting the model’s neural os-
cillations eliminated its capacity to learn predicates, and thus
greatly reduced its capacity to learn Breakout. The model re-
sorted to learning based on the absolute features of the stimuli,
and thus learned much like a less sophisticated DQN. Based
on these representations, the model struggled with Breakout
even after 20,000 training games and failed to generalize
to Pong (Figure 13, light grey bars). Model A2, which was
intact during predicate learning and Breakout training, learned
predicate representations and achieving good performance on
Breakout within 1000 games (Figure 13a, white bar). How-
ever, when the oscillations were disabled after training, the
model failed to generalize to Pong (Figure 13b, white bar).
This result demonstrates the centrality of systematic oscilla-
tions in the model’s capacity to learn relational representations
(model A1) and of structured relational representations to its
ability to perform generalization (models A1 and A2).
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Figure 13

Results of game play performance for DORA from simulation 1 and after CLVR learning (simulation 2; blue and
light blue bars), and DORA after ablation (simulation 4; green and light green bars). Error bars represent 2 stderrors. (a)
Performance of DORA on Breakout as an average of 100 test games. (b) Results of DORA playing Pong after training on
Breakout as the score of the first game played and an average score of the first 100 games played. (c) Results of DORA when
returning to play Breakout after playing or learning to play Pong, as an average score for the first 100 games played.

Simulation 5: Transfer from games to more complex tasks

This simulation was designed to further challenge the ca-
pacity of the representations that DORA learns. In this sim-
ulation we investigated whether the representations DORA
learned playing video games and from CLEVR (i.e., simu-
lations 2 and 3) would allow the model to generalize to the
very different domain of analogical reasoning. To this end,
we used the same model and representations from simulations
2 and 3 and set to it tasks representing characteristics of
human-level analogical reasoning (Bassok & Olseth, 1995;
Gick & Holyoak, 1983; Holyoak, 2012; Holyoak et al., 1995).
Specifically, after learning representations from Breakout and
CLEVR, we tested whether it could immediately (i.e., with
no additional experience) use those representations to: (i)
solve analogical cross mappings; (ii) analogically map sim-
ilar, but non-identical predicates; (iii) analogically map ob-
jects with no featural overlap—including completely novel
objects—that play similar roles; and (iv) map the arguments
of an n-place relation onto those of an m-place relation even
when n and m are unequal (i.e., called violation the n-ary re-
striction; Hummel & Holyoak, 1997). As such, the simulation
had two purposes: (a) to evaluate the capacity of the repre-
sentations the model learns to support human level analogical
reasoning; (b) to provide a further test of the model’s capacity
for cross-domain generalization: Just like humans do, the
model had to learn representations in one domain, and use
these representations to reason in a novel (laboratory) task.

During a cross-mapping, an object (object1) is mapped to a
featurally less similar object (object2) rather than a featurally
more similar object (object3) because it (object1) plays the
same role as the less similar object. For example, if cat1
chases mouse1 and mouse2 chases cat2, then the structural

cross-mapping places cat1 into correspondence with mouse2
because both are bound to the chaser role. The ability to find
such mappings is a key property of human relational (i.e., as
opposed to feature-based) reasoning (e.g., Bassok & Olseth,
1995; Gick & Holyoak, 1983; Holyoak, 2012; Richland et al.,
2006). Cross-mappings serve as a stringent test of a computa-
tional system’s structure sensitivity as they require the system
to discover mappings based on relational similarity in the face
of competing featural or statistical similarity.

We tested the representations DORA learned in Simu-
lations 2 and 3 for their ability to support cross-mapping.
DORA randomly selected two of the predicates (T1 units) it
had learned during Simulations 2 and 3, such that both predi-
cates coded for the same relation (e.g., both coded for above
or both coded for same-width). DORA bound the relations to
new objects, to form two new propositions, P1 (e.g., above
(object1, object2)) and P2 (e.g., above (object3, object4). We
manipulated the objects such that the agent of P1 (object1)
was featurally identical to the patient of P2 (object 4) and the
patient of P1 (object 2) was featurally identical to the agent
of P2 (object 3). Based on the objects’ featural similarity,
DORA would therefore map object1 to object4 and object2
to object3, but based on their roles in the relational structures,
it should map object1 to object3 and object2 to object4. We
repeated this procedure 100 times (each time with different
randomly chosen T1 units) using representations from Simu-
lations 2 and 3. In every case, DORA successfully mapped
object1 to object3 and object2 to object4 (the structurally
consistent mappings) rather than object1 to object4 and ob-
ject2 to object3 (the feature-based mappings). This result
demonstrates that the relations DORA learned in Simulations
2 and 3 immediately transfer to analogy tasks and support
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relational cross-mapping.

We then tested whether DORA’s relational representations
support mapping similar but non-identical relations (such as
mapping above to greater-than) and mapping objects with
no featural overlap based only on their bindings to similar
roles. DORA randomly selected two of the relations, R1
and R2 (e.g, above (x,y) or wider (x,y)), that it had learned
during Simulations 2 and 3 such that each role of R1 shared
roughly half of its features with the corresponding role of
R2 (e.g., the role more-y has half of its features in common
with the role more-length). The objects serving as arguments
of the relations had no featural overlap at all. We repeated
this process 100 times and each time, DORA mapped the
agent role of R1 to the agent role of R2 and the patient role
of R1 to the patient role of R2. Even though the objects
had no features in common, and even though the relations to
which they were bound were not identical, DORA found the
structurally correct object and role mappings.

Next, we tested whether the representations DORA learned
can violate the n-ary restriction, mapping the arguments of
an n-place predicate onto those of an m-place predicate when
n , m. In each of these simulations, DORA randomly se-
lected a relation, R1, that it had learned in Simulations 2 and
3, and we created a single-place predicate (r2) that shared 50%
of its features with the agent role of R1 and none of its features
with the patient role. DORA then bound two objects to the
roles of R1 to form the proposition R1 (object1, object2),
and bound a third object to r2, to form the proposition r2
(object3). Object3 shared half its features with object1 and
the other half with object2 (i.e., it was equally similar to both
object1 and object2). DORA attempted to map r2 (object3)
onto R1 (object1, object2). If the model can violate the n-ary
restriction, then it should consistently map object3 to object1
based on the similarity of r2 to the first (agent) role of R1
(recall that R1 is represented as a linked set of roles). This
process was repeated 100 times using a different randomly
chosen R1 each time. Each time DORA successfully mapped
object3 to object1, along with corresponding relational roles
(i.e., DORA maps the predicate representing one of the roles
of R1 and the predicate representing the single-place predicate
r2). We then ran 100 simulations in which r2 shared half its
features with the second (patient) role of R1 rather than the
first (agent) role. In these 100 additional simulations, DORA
successfully mapped the patient role of R1 to r2 (along with
their arguments).

Finally, we tested whether the representations that DORA
learns support generalization to completely novel (i.e., never
before experienced) stimuli. The ability to make generaliza-
tions about completely novel items is the hallmark of the
capacity for universal generalization (see, e.g., Marcus, 2001).
In this simulation, we created six objects with completely
novel features (features units grafted onto DORA). DORA
randomly selected two instances of the same relation that it

had learned in Simulations 2 and 3 (e.g., two instances of
bigger). We bound one instance of the relation to three of
the objects—object1, object2, and object3—to create three
propositions R1-R3 that instantiated a transitive relation such
that object2 served as both the patient of one proposition and
the agent of the other. For example, if the relation DORA had
selected was bigger, then it bound that relation to object1 and
object2 to make the proposition R1, bigger (object1, object2),
bound the same relation to object2 and object3 to make the
proposition R2, bigger (object2, object3), and finally bound
the same relation to object1 and object3 to make the proposi-
tion R3, bigger (object1, object3) (recall that within a single
analog, or story, token units are shared between proposition,
so the same T1 unit instantiating, say, more-size was bound to
both object1 and object2). From the remaining three objects—
object4, object5, object6—we used the second instance of the
relation to make the propositions R4 and R5 such that object5
served as both the patient in one proposition and the agent in
the other. For example, we bound object4 and object5 to big-
ger to make R4, bigger (object4, object5), and bound object5
and object6 to bigger to make R5, bigger (object5, object6).
Importantly, none of the objects had any features (including
metric features) that DORA has previously experienced. As
such the simulation was akin to telling DORA that a transitive
relation held between three novel objects, and that some of the
same relations held between a second three objects. We placed
R1 and R2 and R3 in the driver, and R4 and R5 in the recipient.
We wanted to see whether (a) DORA could integrate relations
such that it would map R1 to R4 and R2 to R5 (i.e., it would
map the instances where the same object was a patient and
an agent); and (b) whether it would use these mappings (if
discovered) to generalize the transitive relation in R3 to the
objects in the recipient (i.e., would it complete the transitive
set of relations about objects4-6). If DORA found a mapping,
it then attempted to perform analogical inference. We ran the
simulation 100 times. In each simulation, DORA mapped
the representation of R1 to R4, and R2 to R5. Moreover,
DORA generalized R3 to the recipient to create a transitive
proposition R6—e.g., to continue the above example, DORA
inferred that bigger (object4, object6). That is, armed with the
knowledge that some objects it had never before experienced
played particular relational roles, DORA generalized that a
proximal object (that it had also never experienced before)
might play a complementary role. The inability to reason
about completely novel features (i.e., features not part of the
training space) is a well-known limitation of traditional neural
networks (e.g., Bowers, 2017). However, this limitation does
not apply to DORA. Not only can DORA represent that novel
objects can play certain roles (because it can dynamically
bind roles to fillers), but it can also use its representations to
make inferences about other completely novel objects.

In total, simulation 5 demonstrates that the relational repre-
sentations DORA learned during Simulations 2 and 3 imme-
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diately support performance of an unrelated task (analogical
reasoning) even with completely novel objects. After learning
representations in one domain (game play and images of
shapes), DORA, with no additional experience (zero-shot),
used these representations to solve a set of analogical reason-
ing tasks representing several hallmarks of human analogical
thinking, and then used these representations to generalize to
completely novel objects. The results provide further evidence
that DORA’s representations support cross-domain transfer
and highlight the generality of the DORA framework.

Simulation 6: Development of representations of relative
magnitude

We have previously shown that DORA’s format learning
algorithm provides a good account of several developmental
phenomena in representational development (e.g., Doumas
et al., 2008). The purpose of simulations 6 and 7 was to
examine whether the representations that DORA learned, and
the trajectory of the representation learning mirror human
development when DORA is learning both relational con-
tent and relational format. Additionally, these simulations
provided another opportunity to evaluate generalization of
representations across domains: Learning representations in
one domain and deploying those representations to reason
about a new domain (as human often do when they engage in
laboratory experiments).

Children develop the ability to reason about similarity and
relative magnitude on a variety of dimensions (e.g., Smith,
1984). The development of children’s capacity to reason about
basic magnitudes is well demonstrated in a classic study by
Nelson and Benedict (1974). In their experiment, children
aged three to six years-old were given a simple identification
task. An experimenter presented the child with two pictures
of similar objects that differed on some dimensions. The
experimenter then asked the child to identify the object with a
greater or lesser value on some dimension. For example, the
child might be shown pictures of two fences that differed in
their height, their size, and their color, and then asked which
of the two fences was taller or shorter. The developmental
trajectory was clear: Children between 3-years-10-months
and 4-years-4 months (mean age ∼48 months) made errors
on 34% of trials, children between 4-years-7-months and 5-
years-5-months (mean age ∼60 months) made errors on 18%
of trials, and children aged 5-years-6-months and 6-years-6-
months (mean age ∼73 months) made errors on only 5% of
trials. In short, as children got older, they developed a mastery
of simple magnitude comparisons on a range of dimensions.

If DORA is a good model of human representational de-
velopment, then it should be the case that DORA’s representa-
tions follow a similar developmental trajectory. To test this
claim, we used the representations that DORA had learned
during Simulation 2. If DORA develops like a human child,
then early in the learning process, DORA’s performance on

the Nelson and Benedict task should mirror 3-4 year-old chil-
dren, later in the learning process DORA’s perform should
mirror 4-5 year-old children, and later in the learning process
DORA’s performance should mirror 5-6 year old children.

To simulate children of different ages we stopped DORA at
different points during learning and used the representations
that it had learned to that point (i.e., the state of DORA’s
LTM) to perform the magnitude reasoning task. To simulate
each trial, we created two objects instantiated as T1 units
attached to features. These features included 100 random
features selected from the pool of 10,000, along with features
encoding height, width, and size (dimensions used in Nelson
& Benedict) in pixel format (as in the simulations above; e.g.,
for an object 109 pixels wide, one feature unit describing
"width0" and 109 features encoded "109 pixels wide"). A
dimension was selected at random as the question dimension
for that trial. DORA sampled at random a representation from
its LTM that was strongly connected to that dimension (with
a weight of .95 or higher). If the sampled item was a relation
or a single-place predicate, DORA applied it to the objects,
and placed that representation in the driver. For example, if
the key dimension was size, the two objects (obj1 and obj2)
were then run through the relational invariance circuit on the
dimension of size, marking one (assume obj1) as relatively
larger and the other (assume obj2) as relatively smaller. If
DORA had sampled a representation of the relation larger
(x,y), then the more-size T1 unit was bound to the obj1 T1 unit
and the less-size T1 unit was bound to the obj2 T1 unit. To
simulate a dimensional question, DORA randomly sampled
a representation of the question dimension from LTM and
placed that in the recipient. For example, if the question was,
"which is bigger", DORA sampled a representation of a T1
unit encoding more-size from LTM. DORA then attempted
to map the driver and recipient representation. If DORA
mapped a representation in the driver to a representation in
the recipient, the mapped driver item was taken as DORA’s
response on the task. If DORA failed to find a mapping, then
an item was chosen from the driver at random and taken as
DORA’s response for that trial (implying that DORA was
guessing on that trial). The probability of guessing the correct
item by chance was 0.5.

To simulate 4 year-olds, we used the representations in
DORA’s LTM after 1000 total training trials, to simulate 5
year-olds we used the representations in DORA’s LTM learned
after 1000 additional training trials (2000 total trials), and to
simulate 6 year-olds we used the representations in DORA’s
LTM learned after 1000 additional training trials (3000 total
trials). We ran 50 simulations each with 20 trials at each age
level (each simulation corresponding to a single child). The
results of the simulation and the original results of Nelson
and Benedict are presented in Figure 14.

The qualitative fit between DORA’s performance and the
performance of the children in Nelson and Benedict’s study
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Figure 14

Results of simulation of Nelson and Benedict (1974).

is close. Just like the children in the original study, DORA
is better than chance, but still quite error prone early during
learning, but gradually comes to learn representations that
support very successful classification of dimensional mag-
nitudes. These simulation results provide evidence that the
trajectory of the development of DORA’s representations of
relative dimensional magnitude mirrors that of humans.

Simulation 7: The relational shift

One of the key findings from work on the development of
analogical reasoning in children, is that children go through
a relational shift (e.g., Gentner et al., 1995). The relational
shift describes a qualitative change in children’s reasoning
wherein they progress from making analogies based on the
literal features of things, to making analogies based on the
relations that objects are involved in (e.g., Richland et al.,
2006). With development, children learn progressively more
powerful representations of similarity and relative magnitude
relations that support more proficient relational generalization
(Smith, 1984). In addition, children develop the capacity to
integrate multiple relations in the service of reasoning (e.g.,
Halford & Wilson, 1980), and their relational representations
grow more robust with learning, and allow them to overcome
ever more excessive featural distraction (Halford & Wilson,
1980; Rattermann & Gentner, 1998).

One of the classic examples of the relational shift and the
associated phenomena is given in Rattermann and Gentner
(1998). In their experiment, Rattermann and Gentner had 3-,
4-, and 5-year-old children participate in a relational matching
task. Children were presented with two arrays, one for the
child and one for the experimenter. Each array consisted
of three items that varied on some relative dimension. For
example, the three items in each array might increase in size
from left to right or decrease in width from left to right. The

dimensional relation in both presented arrays was the same
(e.g., if the items in one array increased in size from left
to right, the items in the other array also increased in size
from left to right). The items in each array were either sparse
(simple shapes of the same color) or rich (different shapes of
different colors). The child watched the experimenter hide
a sticker under one of the items in the experimenter’s array.
The child was then tasked to look for a sticker under the
item from the child’s array that matched the item selected
by the experimenter. The correct item was always the rela-
tional match—e.g., if the experimenter hid a sticker under
the largest item, the sticker was under the largest item in the
child’s array. Critically, at least one item from the child’s
array matched one of the items in the experimenter’s array
exactly except for its relation to the other items in its array.
To illustrate, the experimenter might have an array with three
squares increasing in size from left to right (Figure 15a). The
child might have an array of three squares also increasing in
size from left to right, but with the smallest item in the child’s
array identical in all featural properties to the middle item in
the experimenter’s array (Figure 15b). Thus, each trial created
a cross-mapping situation, where the relational choice (same
relative size in the triad) was at odds with the featural choice
(exact object match). The child was rewarded with the sticker
if she chose correctly.

(a)

(b)

Figure 15

A recreated example of the stimuli used in Rattermann and
Gentner (1998).

Rattermann and Gentner found a relational shift. Chil-
dren between 3 and 4-years-old were very drawn by featural
matches and had trouble systematically making relational
matches (making relational matches 32% of the time in the
rich condition and 54% of the time in the sparse condition).
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Children between 4 and 5-years-old were quite good at mak-
ing relational matches with sparse objects—making relational
matches 62% of the time—but still had trouble with rich
objects when featural matches were more salient—making
relational matches 38% of the time. Children between 5 and
6-years-old were quite good at making relational matches in
both the rich and the sparse conditions, with the rich condition
providing more trouble than the sparse condition—making
relational matches 68% for rich and 95% of the time for sparse
stimuli.

We simulated the results of Rattermann and Gentner (1998)
in as in the simulation above, using the representations learned
during simulation 2. Again, to simulate children of different
ages we stopped DORA at different points during learning and
used the representations that it had learned to that point. To
simulate 3-year-olds we used the representations in DORA’s
LTM after 850 training trials, to simulate 4.5-year-olds we
used the representations in DORA’s LTM after 1500 training
trials, and to simulate 5.5-year-olds we used the representa-
tions in DORA’s LTM after 2500 training trials. To simulate
each trial, we created two arrays of three objects, each ob-
ject instantiated as a T1 unit connected to features. For the
sparse trials, each object was connected to feature units such
that some features encoded absolute size, height, width, x-
position, y-position, color, 10 features described shape, and
four features were chosen at random from a pool of 1000.
The identical objects from both arrays matched on all features.
For the rich trials, each object was attached to additional fea-
tures: some features encoding absolute size, height, width, x-
position, y-position, color, 10 features describing shape, four
features describing object kind (e.g, "shoe", "train", "bucket"),
and 40 features chosen at random from a pool of 1000. The
identical objects from both arrays matched on all features.

We ordered the objects in both arrays according to some
relation (e.g., increasing size, decreasing width). DORA sam-
pled four representations from its LTM that were strongly
connected to that dimension (with a weight of .95 or higher)
and applied two of the sampled representations to each of
the two arrays. If the sampled representation was a relation
or a single-place predicate, it applied to the objects. For
example, if the key dimension was size, and DORA sampled
a representation of the relation larger (x,y), it applied that
representation to the objects, binding the larger object to the
more-size role and the smaller object to the smaller role (as
described in simulation 6). If the sampled representation was
a single-place predicate like more-size (x), then it was bound
to the larger object. As each array consisted of two instances
of the key relation (e.g., larger (object1, object2), and larger
(object2, object3)), DORA applied one of the two sampled
items to one of the relations in the array, chosen at random,
and the other sampled item to the other relation in the array.
For simplicity, the model only considered relations between
adjacent objects.

The representation of the child’s array entered the driver,
and the experimenter’s array the recipient. An item from the
recipient was chosen at random as the "sticker" item (i.e., the
item under which the sticker was hidden). The capacity to
ignore features is a function of the salience of those features,
and so richer objects with more features are harder to ignore
(see, e.g., Goldstone & Son, 2012). To simulate the effect of
the rich vs. the sparse stimuli, on each rich trial, DORA made
a simple similarity comparison before relational processing
started. It randomly selected one of the items in the driver and
computed the similarity between that item and the "sticker"
item in the recipient using the equation:

simi j =
1

1 +
∑

i (1 − si)
(13)

where, simi j is the 0 to 1 normalized similarity of PO unit
i and PO unit j, and si is the activation of feature unit i. If
the computed similarity was above .8, then DORA learned a
mapping connection between the two items. Finally, DORA
attempted to map the items in the driver to the items in the
recipient. If any driver representation was mapped to the
"sticker" item in the recipient, the mapped item was taken
as DORA’s response on the task. If DORA failed to find a
mapping, then it selected an item from the recipient at random
as a response for that trial (implying that DORA was guessing
on that trial). The probability of guessing the correct item by
chance was 0.33.

We ran 50 simulations each consisting of 20 trials at each
age level. The results of the simulation as well as those from
the original Rattermann and Gentner experiment with both
sparse and rich trials are presented in Figure 16a and 16b
respectively.

As Figure 16 shows, there is a close qualitative fit between
DORA’s performance and the performance of the children in
Rattermann and Gentner (1998). Initially, DORA, just as the
3-year-old children in the original study, had some trouble
correctly mapping the items in the driver and the recipient,
and struggled to solve the cross-mapping. As DORA learned
more refined representations (after more training), like the 4-
year-old children in the original study, DORA began to solve
the sparse problems more successfully, while still struggling
with the rich problems. Finally, like the 5-year-old children in
the original study, after even more learning, DORA was quite
successful at both rich and sparse trials, reaching ceiling level
performance on the sparse problems. These simulation results
indicate that, like humans, the trajectory of the development
of DORA’s representations of relative dimensional magnitude
undergoes a relational shift with learning. Additionally, the
representations that DORA learns during its development
support the same kind of performance on relational match-
ing tasks that is evidenced by human children during their
development.
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Figure 16

Results of simulation of Rattermann and Gentner (1998). (a) Performance of children and DORA on sparce trials.
(b) Performance of children and DORA on rich trials.

General Discussion

Summary and overview

We have presented a theory of human cross-domain gener-
alization instantiated in the DORA computational framework.
Our proposal is that people represent knowledge domains
as models consisting of structured representations of the re-
lations among the elements of those domains. These repre-
sentations specify the invariant content of the relations and
their arguments, and representations of relational roles are
dynamically bound to their fillers while maintaining role-filler
independence. DORA learns both the content and structure
of these relations from non-relational inputs, such as visual
displays, without supervision. DORA uses comparison to
bootstrap learning both the content and structure of relational
representations. By integrating these representations with
a capacity for reinforcement learning, DORA learns which
relations to use in what contexts in the service of problem
solving (e.g., game play). The resulting representations can
be applied to new domains, including completely novel ones,
by a process of analogical inference. That is, the model gen-
eralizes across domains as a natural consequence of its ability
to represent relations in a manner that is invariant with both
the arguments of the relations and the specific circumstances
in which those relations arise.

A series of simulations demonstrated that this approach
to learning and knowledge representation greatly facilitates
cross-domain generalization. Simulation 1 showed that the
model is capable of learning structured representations of
relations from unstructured, non-relational visual inputs. Sim-
ulation 2 showed that, as a result of learning to play one video
game, DORA learns representations that support immediate
(zero-shot) transfer to a different game (Pong), and the capac-
ity to move between games successfully. By contrast, four

different associative networks (two DQNs, a DNN, and a
GNN) both (a) failed to transfer knowledge from one game
to another and (b) lost their ability to play the first game after
training on the second. Simulation 3 demonstrated that the
representations DORA learns in one domain (images of 3D
shapes) support learning to play one video game play and
immediately generalize to a new game. Simulation 4 demon-
strated the essential role of structured representations in the
model’s learning and generalization. Simulation 5 showed
that the representations DORA learns from domains like video
games and pictures also support successful zero-shot transfer
to unrelated reasoning tasks (cross-mapping, mapping non-
identical predicates, mapping novel objects, and violating the
n-ary restriction), and, importantly, support generalization to
completely novel (i.e., never previously experienced) stimuli.
Finally, simulations 6 and 7 showed that DORA follows the
same developmental trajectory as children as it learns rep-
resentations. That is, DORA accounts for results from the
literature on children’s reasoning as it learns to play video
games.

LISAese, relational databases, and generalization

We have argued that the reason that people can learn re-
lations and apply them to new domains is because we learn
representations of those relations that specify relational invari-
ants in a form that permits the binding of relational roles to
arguments without changing the representation of either (see
also Doumas et al., 2008; Halford, Bain, et al., 1998; Halford,
Wilson, & Phillips, 1998; Hummel & Biederman, 1992; Hum-
mel & Holyoak, 1997, 2003; Phillips, 2018, 2021; Phillips
et al., 1995). It turns out that our proposal has an analog in
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computer science in the form of relational databases.7

In mathematical logic, a relation is defined as subset of
the Cartesian product of two or more potentially infinite sets.
For example, the relation larger-than(), defined over the in-
tegers, is a matrix (a Cartesian product), with integers in the
rows and columns, and 1s and 0s in the cells, such that a
1 appears in every cell whose row is larger than its column.
More generally, a binary relation between sets A and B is
a subset of the Cartesian product A × B for each pair (a, b)
over which the relation holds. A relation is thus represented
by a characteristic function, χR(a, b), which maps to 1 if the
relation is true for (a, b) and 0 otherwise.

The characteristic function captures the same information
as the relational invariants we described in the Introduction.
In other words, the characteristic function specifies the con-
tent of the relation, so learning the invariant that defines a
relation is a matter of executing the characteristic function.
The circuit DORA uses to discover relational invariants is
nothing more than an implementation of the characteristic
function of, for example, larger-than () over a rate-coded
neural representation of magnitude.

However, we have argued that simply expressing an invari-
ant (the output of the characteristic function) is not sufficient
to support cross-domain generalization. It is also necessary
to somehow represent the dynamic binding of arguments to
roles of the relation in a way that preserves the identity of
both the relational roles and their arguments. The representa-
tional format we have employed for this purpose, LISAese,
is isomorphic to a relational schema (or relational database)
developed in computer science.

A relational schema (see, e.g., Phillips, 2018) corresponds
to the headings of a table that describe the roles of the so-
related elements. The table consists of a set of rows, repre-
senting instances of the relation, and columns, corresponding
to the roles of the relation. For example, the relational schema
for the relation larger-than (x, y) includes two columns, one
specifying the larger item and the other specifying the smaller,
with each row of the table an instance of the larger-than
relation. This representational format has the property that
relations (tables) are represented explicitly, as are their roles
(columns), and arguments (cells), while simultaneously ex-
pressing the bindings of arguments to roles without altering
the meaning of either.

Halford, Phillips, and colleagues (Halford, Bain, et al.,
1998; Halford, Wilson, & Phillips, 1998; Phillips, 2018, 2021;
Phillips et al., 1995) have argued that relational schemas are
a good model of human mental representations. Specifically,
(a) they identify a relation symbolically, (b) the roles (or
argument slots) of the relation are represented independently
of the fillers of those roles, (c) binding of roles to fillers is
explicit, (d) the format supports representing higher-order re-
lations (i.e., relations between relations), and (e) the resulting
representations have the property of systematicity, meaning

that they permit simultaneous expression of the meaning of
(i) the relation, (ii) its roles, and (iii) their composition into
a larger expression (see Halford, Bain, et al., 1998; Halford,
Wilson, & Phillips, 1998; Phillips et al., 1995). Phillips (2018,
2021) has observed that LISAese is a representational format
akin to a relational schema. And indeed, the representations
that DORA learns (i.e., LISAese) satisfy all the properties of
a relational database. In DORA relational representations are
specified as sets of linked single-place predicates (columns)
composing a header, and values bound to those predicates
instantiating (rows) of the specific relation.

In a set of experiments, Halford and Wilson (1980) demon-
strated that people’s inferences in a complex learning task
are better captured by representations based on relational
schemas than simple associations. In their Experiment 2,
participants learned to associate a shape and trigram pair
with another trigram. The stimuli were composed from three
shapes (say, square, circle, triangle) and three trigrams (say,
BEJ, FAH, PUV). The shape acted like an operator, and the
mapping from shape-trigram pair to the output (i.e., the other
trigram) was given by a simple rotation rule. For example,
one shape when linked with a trigram mapped to the identical
trigram. The second shape when linked to a trigram, mapped
to the next trigram from the list (trigram-1 mapped to trigram-
2, trigram-2 mapped to trigram-3, and trigram-3 mapped to
trigram-1). The third shape when linked to a trigram mapped
to the trigram two jumps away (trigram-1 mapped to trigram-
3, trigram-2 mapped to trigram-1, and trigram-3 mapped to
trigram-2). As expected, participants learned to perform the
task after several exposures. The experimenters reasoned
that if participants had learned the mappings by association,
then when given new trigrams and new shapes that followed
the same rotation rule, the participants would need roughly
the same number of exposures to learn them. However, if
participants had learned the relation (i.e., rotation) between
shape-trigram pair and trigram output, then they should be
able to apply the relation two new shape and trigram sets
within a few exposures. Participants did apply the rule to new
shapes and trigram within a few trials, indicating that they
had learned the relational table.

More recently, Phillips (2018, 2021), using tools from
Category Theory, showed that performance on tasks like the
relational schema inference task (above) requires structured re-
lational representations (like a relational database) and cannot
be accounted for by association alone. Our simulation results
resonate with this claim, and suggest the capacity extends to
cross-domain transfer. As demonstrated in simulations 2-4,
after learning structured relational representations, DORA can
learn to play a video game and then immediately generalize to
a relational similar (but featurally different) game. However,

7We are indebted to Reviewer 3 for their help in making the dis-
cussion of correspondence between LISAese and relational schemas
much stronger.
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if these representations are removed, the model fails utterly at
any kind of generalization.

DORA provides an account of human generalization be-
cause it can learn explicit representations of relational con-
cepts—both their content and their format—and then leverage
those representations to solve problems. In addition, the
model provides an account of how such knowledge structures
can be implemented in a distributed neural system, and how
they can be learned from non-relational inputs.

Other classes of relations

In the work reported here, we have focused on transitive
relations, those that can be defined by differences on a sin-
gle dimension, such as larger-than () and left-of (). It is
natural to ask whether these same principles apply to other,
nontransitive relations such as chases (), mother-of (), and
loves (). The short answer is yes. Starting with whatever
regularities it is given or can calculate from the environment,
DORA’s learning algorithm will isolate those invariants, learn
structured representations (i.e., functional predicates) that
take arguments, and, where appropriate, compose them into
relational structures. In short, given a set of invariants (or a
means to calculate them), DORA’s learning mechanisms will
produce explicit predicate and relational representations of
those invariants. DORA will learn structured representations
of concepts based on their invariant properties, whether the
invariants the system detects are instances of stimulus magni-
tude or romantic love (e.g., Doumas et al., 2008). The hard
part is finding the invariants. And for this problem, the human
visual system may give us a leg up.

Nontransitive relations like chase, support, or love fall on a
gradient in terms of how spatial they are. A relation like chase
is comparatively easy to reduce to spatial properties: There
are two objects, a and b, such that the vector characterizing the
movement of a is in the direction of the vector characterizing
the location of b, and this configuration is maintained through
time. The representations necessary to induce this relation
are delivered by the visual system. Michotte (1963) showed
that participants would overwhelming interpret chasing oc-
curring in a situation where two dots moved across a screen
(or, in Michotte’s original version, two lights moved on a
grid of lights) such that one stayed in front of the other as
they moved. Similarly, relations such as support (one object
above and in contact with another object) or lift (one object
supports and raises another object), are definable in spatial
terms. Even a relation like loves might reduce, at least in part,
to spatial relations, though. In a study by Richardson et al.
(2003), participants asked to use configurations of objects to
represent a relation produced overwhelmingly similar spatial
arrangements for relations like love, admire, and hate.

We do not claim that all relations are spatial in origin, or
that there are no invariants (e.g., characterizing social rela-
tions such as love, hate, friend, adversary, etc.) that have non-

spatial origins. On the contrary, we are completely agnostic
about the number and nature of the psychological dimensions
over which relational invariants might be computed. What
we do claim is that any psychologically privileged dimen-
sion, whether it be spatial, auditory, social, or what have
you, is subject to the kind of invariant isolation and structure-
inducing processes embodied in DORA: If there is an invari-
ant, wherever it originates, intersection-discovery can find
it and DORA can predicate it and use it for inference and
cross-domain generalization.

Doumas (2005) proposed a compression mechanism, com-
plementary to DORA’s refinement algorithm, which is a form
of chunking. During compression, multiple roles attached
to the same object fire together, and a unit learns to respond
to that new conjunction as a unitary predicate. Compression
allows DORA to combine multiple representations of the
same object. For example, if DORA encounters situations in
which one element is both larger and occludes some second
object, DORA can compress the roles larger and occluder
and the roles smaller and occluded to form a representation
like cover (a, b). Such a procedure might serve as a basis for
combining primitive transitive relations into more complex
relations.

A second question is whether the role-filler representa-
tional system DORA uses is sufficient to represent all the
relations people learn. Again, the short answer is, at least
in principle, yes (as pointed out originally by Leibniz). For-
mally, any multi-place predicate is representable as a linked
set of single-place predicates (Mints, 2001). Therefore, a role-
filler system can, at least in principle, be used to represent
higher-arity predicates (or relations; recall the distinction,
noted above, between a relation qua a relational schema and
a function). Models based on role-filler representations ac-
counte for a large number of phenomena in analogy making,
relational learning, cognitive development, perceotion, and
learning (e.g., Doumas et al., 2008; Doumas & Hummel,
2010; Hummel, 2001; Hummel & Biederman, 1992; Hum-
mel & Holyoak, 1997; Lim et al., 2013; Livins et al., 2015;
Martin & Doumas, 2017; Morrison et al., 2011; Morrison
et al., 2004; Sandhofer & Doumas, 2008; Son et al., 2010).
Moreover, access to and use of role-based semantic informa-
tion is quite automatic in human cognition, including during
memory retrieval (e.g., Gentner et al., 1995; Ross, 1989), and
analogical mapping and inference (Bassok & Olseth, 1995;
Holyoak & Hummel, 2008; Krawczyk et al., 2004; Kubose
et al., 2002; Ross, 1989). Indeed, the meanings of relational
roles influence relational thinking even when they are irrele-
vant or misleading (e.g., Bassok & Olseth, 1995; Ross, 1989).
Role information appears to be an integral part of the mental
representation of relations, and role-filler representations pro-
vide a direct account for why. Moreover, role-filler systems
appear uniquely capable of accounting for peoples’ abilities
to violate the n-ary restriction, i.e., mapping n-place predi-
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cates to m-place predicates, where n , m (e.g., mapping “x
murdered y” onto “a caused b to die”; Hummel & Holyoak,
2003)8

Livins et al. (2016) showed that we can affect the direction
of a relation by manipulating which item one looks at first, for
both obvious similarity and magnitude relations, and the other
kinds of relations. Livins et al. showed participants images
depicting a relation that could be interpreted in different forms
(e.g., chase/pursued-by, lift/hang). Before the image appeared
on screen, a dot appeared on the screen drawing the partici-
pants attention to a location that one of the objects involved
in the relation would appear. For example, the image might
show a monkey hanging from a man’s arm, and the participant
might be cued to the location where the monkey would appear.
The relation that the participant used to describe the image
was strongly influenced by the object that they attended to
first. That is, if the participant saw the image of the monkey
hanging from the man’s arm, and she was cued to the mon-
key, they would describe the scene using a hanging relation.
However, if the participant was cued to the man, she would
describe the scene using a lifting relation. This result follows
directly from a system based on role-filler representations
wherein complementary relations are represented by a similar
set of roles, but the predicate, or role, that fires first, defines
the subject of the relation.

Limitations and future directions

People routinely learn structured representations from ex-
perience, an ability we argue is fundamental to our under-
standing of the world and our ability to use the knowledge
we have gained in one context to inform our understanding of
another. We offer an account of this process that is based on
minimal assumptions, assumptions that, with the exception
of the capacity for dynamic role-filler binding, are standard
in neural networks such as DNNs. Our account is, of course,
limited in several ways. In the following, we outline some
of the limitations of our model and suggest ways to address
these limitations.

First, the constraints on learning in DORA are underdeter-
mined. DORA learns when it can and stores all the results of
its learning. We have implemented a crude form of recency
bias in our simulations (biasing retrieval of the most recently
learned representations during learning; see simulation 1),
but future work should focus on development of more princi-
pled mechanisms for constraining learning and storage. Such
mechanisms might focus on either constraining when learn-
ing takes place, or when the results of learning are stored for
future processing. Most likely, though, it will be necessary to
account for both.

Constraining when DORA learns amounts to constraining
when it performs comparison. We have previously proposed
several possible constraints on comparison such as language
(e.g., shared labels) and object salience, and have shown

how direction to compare (i.e., instruction) serves as a very
powerful constraint on learning (see Doumas & Hummel,
2013; Doumas et al., 2008). These constraints may also serve
to limit when the results of learning are stored in memory.
DORA might be extended or integrated with existing accounts
of language or perceptual (feature) processing to implement
such constraints (see Martin & Doumas, 2017).

Both these limitations might be addressed by refining
DORA’s control structure. The quality of comparisons DORA
makes and the representations it learns may serve as impor-
tant constraints on the control process it uses. Reinforcement
learning provides a useful tool for implementing these con-
straints.

Second, as pointed out in Simulation 2, we don’t have
yet a complete solution for the problem of how to select the
right representations to build a relational model of a domain
from the reward signal when the domain of potential relations
is large. In artificial intelligence the problem of learning
relational (a.k.a., first-order) policies has been studied under
the name of relational reinforcement learning (Driessens &
Džeroski, 2004; Driessens & Ramon, 2003; Džeroski et al.,
2001), but these early models do not scale well to large prob-
lems involving multiple relations. However, recent models
based on differentiable versions of inductive logic program-
ming (Evans & Grefenstette, 2018; Jiang & Luo, 2019) seem
a promising approach to this problem. These systems have
shown that it is possible to use gradient descent methods to
prune a prebuilt large set of rules to obtain a program (i.e.,
a refined sets of rules) that allows the agent to interact ef-
fectively with the environment. We are currently working to
toward integrating this kind of error-correction learning with
DORA.

The discovery of invariance has relevance beyond the few
problems presented here. For example, detecting invariants

8One might wonder how the role-based learning approach works
for symmetrical relations like equals or antonym. In short, these
kinds of relations are not a problem for DORA (for example, as
demonstrated above the model has no problem learning relations
like same-as). If the relation is interpreted as referential then the
relation is not symmetrical, and the roles are distinct. For exam-
ple, in antonym(x, y), y is the referent term, playing the referent-
of-something role, and x is the antonym of that term, playing the
opposite-of-something role. Alternately, if the relation is symmet-
rical and both arguments play the same role, then in a LISAese
representation of that relation, there will only be a single token for
the role (recall T1 tokens are not repeated within a propostion). For
example, if antonym(x, y) is symmetrical, and both arguments play
the same role—like opposite-of —then a single T1 token unit will
represent that role in the proposition and both x and y will be bound to
that role by distinct T2 role-binding units in LTM and by asynchrony
of firing in WM. That is, the relation does not need two distinct roles,
but rather is representable (and learnable) as a single role involved
in two (or more) role-bindings, with those role-bindings linked to
form a higher-arity proposition.
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in speech and language is a defining and unsolved problem
in language acquisition and adult speech processing, includ-
ing in automatic speech recognition by machines. Similarly,
whether the generalization of grammatical rules can be fully
accounted for in systems that rely on statistical learning alone
remains contentious. The account of learning invariance from
experience offered here, combined with principles like the
compression of role information (Doumas, 2005), may present
new computational vistas on these classic problems in the lan-
guage sciences (see Martin, 2016; Martin & Doumas, 2017).
Systems with the properties of DORA may offer an inroad
to representational sufficiency across multiple domains, built
from the same mechanisms and computational primitives.

Conclusion

A cognitive architecture that is prepared to learn structured
representations of relations is prepared to generalize broadly
based on those relations. This kind of generalization includes
cross-domain transfer as a special case. In fact, it is a mundane
consequence of the way people conceptualize the world.

Purely statistical learning systems will most likely continue
to outperform people at any single task on which we choose
to train them. But people, and cognitive architectures capable
learning relations in an open-ended fashion, will continue
to outperform any finite set of purely statistical systems as
generalists. And general intelligence, we argue, is not the
capacity to be optimal at one task, but is instead the capacity
to excel, albeit imperfectly, at many.
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Appendix A
DORA Computational Details

For completeness, we provide full implementational details
of DORA’s operation below. Code for the model is available
online at (github.com/alexdoumas/BrPong_1).

Parts of DORA

As described in the main text, DORA consists of a long-
term-memory (LTM) composed of three bidirectionally con-
nected layers of units. Units in LTM are referred to as token
units (or tokens). Units in the lowest layer of LTM are con-
nected to a common pool of feature units. Token units are
yoked to integrative inhibitors that integrate input from their
yoked unit and token units in higher layers.

DORA learns representations of a form we call LISAese
via unsupervised learning. Propositions in LISAese are coded
by hierarchy of units in layers of a neural network (see main
text). At the bottom of the hierarchy, feature (or semantic)
nodes code for the featural properties of represented instances
in a distributed manner. At the next layer, localist predicate
and object units (T1) conjunctively code collections of fea-
ture units into representations of objects and roles. At the
next layer localist role-binding units (T2) conjunctively bind
object and role T1 units into linked role-filler pairs. Finally,
proposition units (T3) link T2 units to form whole relational
structures.

Sets, groups of potentiated units, correspond to attention
or working memory (WM) within a cognitive framework.
The driver corresponds to DORA’s current focus of attention.
The recipient corresponds to active memory. Token units are
laterally inhibitive (units in the same layer inhibit one another)
within, but not across, sets.

Each layer of token units is negatively connected to a local
inhibitor, and all token unit are connected to a global inhibitor
(I). Active token units in a layer inhibit the local inhibitor to
inactivity. When no token units in a given layer are active, the
local inhibitor becomes active, and sends a refresh signal to all
tokens in that layer and below across LTM (see below). When
no token units in the driver are active, the global inhibitor
becomes active, and sends a refresh signal to all tokens across
LTM (see below). Each layer of token units is connected to
a clamping unit (C), that is excited by unclamped units in
the layer below and inhibited by unclamped units in the same
layer and the layer above (see below). C units play a role in
recruiting and activating token units during learning.

We use the term analog to refer to a complete story, event,
or situation (e.g., from a single object in isolation, to a full
propostion in LISAese). Analogs are represented by a collec-
tion of token units (T1-T3). Token units are not duplicated
within an analog (e.g., within an analog, each proposition that
refers to Don connects to the same "Don" unit). Separate
analogs do have non-identical token units (e.g., Don will be
represented by one T1 unit in one analog and by a different T1
in another analog). The feature units thus represent general
type information and token units represent instantiations (or
tokens) of those types in specific analogs.

Functional overview of processing in DORA

In this section we describe DORA’s operation in strictly
functional terms. For a detailed description of how these oper-
ations are instantiated in the neural network using traditional
connectionist computing principles see Doumas et al. (2008).

Retrieval

When there are items in the driver (i.e., DORA is attending
to something), but nothing in the rest of AM, then DORA
performs retrieval. In short, some representation b is retrieved
into the recipient to the extent that it is similar to a in the
driver and prevalent in memory, and other representations c in
memory are not similar to a and are not prevalent in memory.
Functionally, retrieval works as follows:

Ret(B)← fRet(sim(B, AD), sim(C , B, AD), p(B), p(C))
(A.1)

where, Ret(B) is a retrieved representation B, AD is a driver
representation (i.e., a collection of connected token units in-
stantiating a LISAese representation), p(B) is the prevalence
of representation B in LTM, and fRet is the retrieval function.

Mapping

When there are items in the driver (i.e., DORA is attend-
ing to something), and in the recipient, then DORA performs
mapping. In short, representation a in the driver will map to
representation b in the recipient to the extent that there are
correspondences between a and b, and there are not corre-
spondences between a and any other items c in the recipient.
Functionally, mapping works as follows:

M(AD, BR)← fM(sim(AD, BR), sim(AD,C , BR)) (A.2)

where, M(A, B) is a mapping between A and B (instantiated as
a learned bidirectional weighted connection), BR is a recipient
representation, C are other representations in the recipient
that are not BR, sim(A, B) is a similarity function, and fM is
the mapping function.

github.com/alexdoumas/BrPong_1
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Relation learning

If DORA has learned mapping connections between repre-
sentations in driver and recipient, then DORA can learn from
the mapping. During learning there are two possibilities. In
the first case, if two objects (e.g., a and b) that are not already
bound to predicates (i.e., no T2 units are active) are mapped,
then DORA learns a single-place predicate composed of the
featural intersection of a and b. In the second case, when
sets of role-filler pairs are mapped—e.g., Px(a) and Py(b)
are mapped to Px(c) and Py(d)—and are not already linked
into multi-place relational structures (i.e., no T3 units are
active), then DORA links one of the mapped pairs (via a T3)
unit, forming a functional multi-place relation. Functionally,
learning can be defined as follows:

Ei =

{
PR

a∩b(bR)← fL(M(aD, bR)), ∄T2
RR

i,n ← fL(M(PD
1 (a), PR

1 (b)) . . .M(PD
n (c), PR

n (d))), ∄T3
(A.3)

where Ei is a learned representation, PJ
i (a) is a single-place

predicate i, in set J(J ∈ [D = driver,R = recipient,M =

LTM]) that takes the argument a. Lowercase letters a, b, c,
and d indicate objects, a ∩ b indicates the intersection of the
features of a and b, RJ

i,n is a relational structure i (consisting of
linked predicate argument pairs; see Eq. A.4, directly below)
of arity n in set J, Tk is an active token unit, and fL is the
learning function.

The relational structure RR
i,n is instantiated in DORA func-

tionally as:

RR
i,n = [PR

1 (a)⇔ . . . PR
n (c)] (A.4)

where ⇔ is a linking operator. For any Ri a single T3 unit
instantiates all n − 1 instances of the ⇔ in Ri, linking (i.e.,
conjuncting) predicate-argument pairs PR

1 (a) . . . PR
n (c).

Refinement

If DORA has learned mapping connections between repre-
sentations in driver and recipient, then DORA can also learn a
refined (or schematized) representation consisting of the feat-
ural intersection of the mapped representations. Refinement
is defined as follows:

R′Mi,n ← fR(M(RD
n ,R

R
n )) (A.5)

where R′Ji,n (defined directly below) is a refined relational struc-
ture i of arity n in set J, and fR is the refinement function. The
refined structure R′Mi,n is then:

R′Mi,n = [PM
PD

1 ∩PR
1
(a)⇔ . . . PM

PD
n ∩PR

n
(b)] (A.6)

where PPD
i ∩PR

j
is a single-place predicate composed of the

featural intersection of mapped predicates PD
i and PR

j .

Relational Generalization

If DORA has learned mapping connections between rep-
resentations in driver and recipient, then DORA can also
perform relational generalization, inferring structure from
the driver about items in the recipient. Generalization
in DORA follows the standard copy-with-substitution-and-
generalization format common in models of relational reason-
ing can be defined as follows:

GR
i ← fG(M(RD

j ,R
R
j )∧ ∼ M(RD

k )) (A.7)

where Gi is a generalized structure (see Eq. A.8, directly
below), ∼ M(A) is an unmapped structure A, and fG is the
generalization function. The generalized structure GR

i is then:

GR
i = [RR

j ∧ RR
k ] (A.8)

where RR
j is the mapped relational structure from Eq. A.7,

and RR
k is generalized relational information in the recipient

that matches the unmapped RD
k from Eq. A.7.

Processing in DORA

DORA’s operation is outlined in pseudocode in Figure A1.
The details of each step, along with the relevant equations and
parameter values, are provided in the subsections that follow.
DORA is very robust to the values of the parameters (see
Doumas et al., 2008). For equations in this section, we use
the variable a to denote a unit’s activation, n its (net) input,
and wi j to denote the connection from unit i to unit j.

An analog, F (selected at random, or based on the current
game screen), enters the driver. Network activations are ini-
tialized to 0. Either (a) the firing order of propositions in F
is random (however, see (however, see Hummel & Holyoak,
2003), for a detailed description of how a system like DORA
can set its own firing order according to the constraints of
pragmatic centrality and text coherence), or (b) a roughly
random firing order is instantiated by passing a top down
input signal to all units i in the highest layer of D sampled
from a uniform distribution with values between 0 and 0.4.
DORA performs similarity and relative magnitude calculation
through the relational invariance circuit, then runs retrieval
from LTM, analogical mapping, and comparison-based unsu-
pervised learning (predicate learning, refinement, and (rela-
tional) generalization). Currently, the order of operations of
these routines is set to the order: retrieval, mapping, learning
(predicate learning, refinement, and generalization).

Relational invariance circuit

The operation of the relational invariance circuit is de-
scribed in the main text. The relational invariance circuit runs
when two or more items (T1 units) are present in the driver
and those items are connected to similar magnitude represen-
tations (e.g., pixels, etc.). It is inhibited to inactivity when two
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Processing step Description 
Items F in D < Potentiated units, F, in driver, D.  
𝑤"𝜏! , 𝜏" , 𝜎#& ← 𝐿𝐸"𝜏! , 𝜏"& < (1) Run relational invariance circuit.  
For operation in {retrieving, mapping, predicate learning, 

refining, generalizing}: 
< (2) Perform DORA operations in 

sequence.  
For 𝑖 ∈ 𝐹 : < F is the set of units at the highest token 

layer for any set of connected units. 
Until 𝑌! > 𝜃! :  < While unit i’s yoked inhibitor has not fired.  
0𝑎" , 𝑛" , 𝑌" , 𝐼4 ← 𝑓"𝑎" , 𝑎$ , 𝑤"$ , 𝑌" , 𝐼& < (2.1) Update inputs and activation of 

units in the network.  
When mapping :  < During mapping.  
∆ℎ"$ ← 𝑎"𝑎$ < (2.2) Update mapping hypotheses, h, 

between units j and k.  
If ∃"𝑚%,'& : < If there are mapping connections, m, 

between units in D and R. 
When predicate learning : < During predicate learning.  
:𝑎(!,#,$ = 1= ← >:Σ𝑎(%,#,$&' − Σ𝑎(()!,#,$= > 𝜃)A < (2.3.1) Activation of recruited token tj in 

R layer L is clamped to 1 as a function of 
the activation of unclamped ty and tz¹j at 
L-1 and L respectively.  

When refining : < During refinement.   
"𝑎(*,$+,,$ = 1& ← ∃:𝑎(%,-,$ > 𝜃) ∩𝑚(%,'= < (2.3.2) Activation of recruited token unit, 

tx, in long term memory, LTM, layer L, 
clamped to 1 to match active ty in D 
layer L with mapping connections.  

When generalizing :  < During generalization.  
"𝑎(*,#,$ = 1& ← 𝑎(%,-,$ ∩ ∄𝑚(%,' < (2.3.3) Activation of recruited tx in R 

layer L clamped to 1 to match active ty in 
D layer L with no mapping connections.  

∆𝑤!" ← 𝑎!"𝑎" −𝑤!"&𝛾   < Update weights via Hebbian learning.   
End If  

End Until   
End For   

When retrieving : < During retrieval. 

𝑔' ← 𝑝G
𝐴(𝑔)
∑𝐴(ℎ)L , ℎ ≠ 𝑔 

< (3) Activated, A, units g, retrieved into 
recipient, R. 

When mapping : < During mapping 
∆𝑚"$ ← 𝜂"1.1 − ℎ"$&ℎ"$]*+ < (4) Activated, A, units g, retrieved into 

recipient, R, via the Luce choice rule. 
End For   

 Figure A1

Pseudocode of processing in DORA.

or more circuit output features are active above threshold(=.9)
when both T1 units are active. As noted in the main text,
we presently make no strong commitment to an account of
dimensional salience (as discussed in, e.g., Spelke & Kinzler,
2007). As such, two T1 units in the driver, both encoding an
object or both encoding a predicate, are selected at random,
and when those items are connected to multiple dimensions,

a dimensional encoding becomes active at random (activation
of features encoding that magnitude for the two T1 units are
clamped to 1). The choice of two T1 units follows work on
the WM capacity of children (e.g., Halford et al., 1998). As
described in the main text, proxy units connected to the active
driver T1 units update their activation and input by Eqs. 4 and
5 respectively. E unit activation is updated by Eq. 7. Feature
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units connected to E units update their input by Eq. 8, and
their activation by Eq. 9. Weights between feature units and
active T1 units are updated by Eq. 10.

Main DORA operations

Repeat the following until each token unit i in the highest
layer of F has fired three times if mapping, or once, otherwise)
(each token unit at the highest layer firing is referred to as the
phase set). If a firing order has been set, select the current
unit i in the firing order and set ai to 1.0. Otherwise, pass a
top-down input (n = unif (0,.4)) to token units in the highest
layer of F.

A.2.1 Update inputs and activations of network units.
A.2.1.1 Update mode of all T3 units in driver and re-

cipient. T3 units in all propositions operate in one of three
modes: Parent, child, and neutral (Hummel & Holyoak, 1997,
2003). T3 mode is important for representing higher-order
relations (e.g., R1(x, R2(y, z)); Hummel & Holyoak, 1997).
As detailed below, higher-order relations are represented in
DORA such that if one proposition takes another as an argu-
ment, the T3 unit of the lower-order proposition serves as the
object of an T2 unit for the higher-order proposition (i.e., the
lower-order T3 unit is downwardly connected to the T2 unit,
as a T1 unit would be), and the T3 unit represented the lower-
order proposition operates in child mode. By contrast, when a
T3 unit is not acting as the argument of another proposition, it
operates in parent mode. The mode mi of T3 unit i is updated
by the equation:

mi =


Parent(1), T2above < T2below

Child(−1), T2above > T2below

Neutral(0), otherwise

 (A.9)

where, T2above is the summed input from all T2 units to which
i is upwardly connected (i.e., relative to which i serves as
an argument), and T2below is the summed input from all T2
units to which i is downwardly connected. In the current
simulations, T3 mode did not have to change their mode. We
include this step here solely for the purposes of completeness
(Hummel & Holyoak, 1997, 2003).

A.2.1.2 Update input to all units in the network.
A.2.1.2.1 Update input to all token units in driver: Token
units in the driver update their input by the equation:

ni =
∑

j

a jwi jG −
∑

k

ak − s
∑

m

3am − 10Ii (A.10)

where j are all units above unit i (i.e., T3 units for T2 units,
T2 units for T1 units), G is a gain parameter attached to the
weight between the T2 and its T1 units (T1 units learned via
DORA’s comparison-based predication algorithm (see below)
have G = 2 and all other T1 units have G = 1), k is all units in

the driver in the same layer as i (for T1 units, k is only those
T1 units and T3 units currently in child mode not connected
to the same T2 as unit i; see step 2.1.1), m are T1 units that
are connected to the same T2 (or T2 units) as i, and Ii is the
activation of the T1 inhibitor yoked to i. When DORA is
operating in binding-by-asynchrony mode, s = 1; when it
is operating in binding-by-synchrony mode (i.e., like LISA),
s = 0.

A.2.1.2.2. Update input to feature units: Feature units
update their input as:

ni =
∑

j∈S∈(D,R)

a jwi j (A.11)

where j is all T1units in S , which is the set of propositions
in driver, D, and recipient R, and wi j is the weight between
T1unit j and feature unit i. In LISA (see Hummel & Holyoak,
1997), when multiple propositions are in the driver simultane-
ously it ignores the features of the arguments. This convention
follows from the assumption that people default to thinking of
single propositions at a time, and the only reason to consider
multiple propositions simultaneously is to consider structural
constraints (e.g., Hummel & Holyoak, 2003; Medin et al.,
1993), and has been adopted in DORA. When there are mul-
tiple positions in the driver, input to semantics is taken only
from T1 units j acting as roles (i.e., with mode = 1; see
below).

A.2.1.2.3. Update input to token units in recipient and
LTM: Input to all token units in recipient and LTM are not
updated for the first 5 iterations after the global or local in-
hibitor fires. Token units in recipient and token units in LTM
during retrieval update their input by the equation:

ni =
∑

j

a jwi j+S EMi+Mi−
∑

k

ak−s
∑

m

3am−
∑

n

an−ΓG−ΓL

(A.12)

where j is are any units above token unit i (i.e., T3 units for
T2 units, T2 units for T1 units; input from j is only included
on phase sets beyond the first), S EMi is the feature input to
unit i if unit i is a PO, and 0 otherwise, Mi is the mapping
input to unit i, k is all units in either recipient (if unit i is in
recipient) or LTM (if unit i is in LTM) in the same layer as i
(for T1 units, k is only those T1 units and T3 units currently
in child mode not connected to the same T2 as unit i; see
section 2.1.1), m is T1 units connected to the same T2 as i (or
0 for non-T1 units), n is units above unit i to which unit i is
not connected, ΓG is the activation of the global inhibitor (see
below), and ΓL is the activation of the local inhibitor in the
same layer as or any layer above i. When DORA is operating
in binding-by-asynchrony mode, s = 1; when it is operating
in binding-by-synchrony mode (i.e., like LISA), s = 0. S EMi,
the feature input to i, is calculated as:
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S EMi =

∑
j a jwi j

1 + num ( j)
(A.13)

where j are feature units, wi j is the weight between feature
unit j and T1unit i, and num( j) is the total number of feature
units i is connected to with a weight above θ(= 0.1). Mi is the
mapping input to i:

Mi =
∑

j

a j

(
3wi j − Max (Map (i)) − Max (Map ( j))

)
(A.14)

where j are token units of the same type as i in driver (e.g., if
i is a T2 unit, j is all T2 units in driver), Max(Map(i)) is the
highest of all unit i’s mapping connections, and Max(Map( j))
is the highest of all unit j’s mapping connections. As a result
of Eq. A.14, active token units in driver will excite any recipi-
ent units of the same type to which they map and inhibit all
recipient units of the same type to which they do not map.

A.2.1.3 Update input to the yoked inhibitors. Every to-
ken unit is yoked to an inhibitor unit i. T2 and T3 inhibitors
are yoked only to their corresponding T2. T1 inhibitors are
yoked both to their corresponding T1 and all T2 units in the
same analog. Inhibitors integrate input over time as:

n(t+1)
i = n(t)

i + a j +
∑

k

ak (A.15)

where t refers to the current iteration, j is the token unit yoked
to inhibitor unit i, and k is any T2 units if j is a T1, and 0
otherwise. Inhibitor units become active (ai = 1) when ni is
greater than the activation threshold (= 220 for T2 and T1
units; 220 ∗ n for T3 units—where n is the number of T2
units the T3 units is connected to). All T1 and T2 inhibitors
become refreshed ai = 0 and ni = 0) when the global inhibitor
(ΓG; described below) fires.

A.2.1.4 Update the local and global inhibitors. The
local inhibitors, ΓL, are inhibitory units connected to all units
in a single layer of LTM (i.e., there is a local inhibitor for
T1 units, another for T2 units). The local inhibitor is poten-
tiated (P(ΓL) = 1) when a driver unit in ΓL’s layer is active,
is inhibited to inactivity (ΓL = 0) by any driver unit in its
layer with activation above ΘL = 0.5), and becomes active
(ΓL = 10) when no token unit in its layer has an activity above
ΘL. A firing local inhibitor sets the activation and potentiation
of all other local inhibitors below and including itself to 0.
The global inhibitor, ΓG, is potentiated (P(ΓG) = 1) when any
driver units are active, and is inhibited to inactivity (ΓG = 0)
by any driver unit in its layer with activation above ΘG (=0.5),
and becomes active (ΓG = 10) when no T1 in its layer has an
activity above ΘG. The global inhibitor sets activation and
potentiation of all other local inhibitors to 0.

A.2.1.5 Update activations of all units in the network.
All token units in DORA update their activation by the leaky
integrator function:

∆ai = γni (1.1 − ai) − δai]0
1 (A.16)

where ∆ai is the change in activation of unit i, γ (=0.3) is a
growth parameter, ni is the net input to unit i, and δ (=0.1)
is a decay parameter. Activation of all token units i, is hard
limited to between 0 and 1 inclusive.

Feature units update their activation by the equation:

ai =
ni

max
(
n j

) (A.17)

where ai is the activation of feature unit i, ni is the net input
to feature unit i, and max(n j) is the maximum input to any
feature unit. There is physiological evidence for divisive
normalization in the feline visual system (e.g., Bonds, 1989;
Heeger, 1992) and psychophysical evidence for divisive nor-
malization in human vision (e.g. Foley, 1994; Thomas &
Olzak, 1997).

Token unit inhibitors, i, update their activations according
to a threshold function:

ai =

{
1, ni > ΘIN

0, otherwise

}
(A.18)

where ΘIN = 220 for T1 and T2 units and 220 ∗ n for T3 units
(where n is the number of T2 units to which that T3 unit is
connected).

A.2.2 Update mapping hypotheses. If mapping is li-
censed, DORA learns mapping hypotheses between all token
units in driver and token units of the same type in recipient
(i.e., between T3 units, between T2 units and between T1 units
in the same mode [described below]). Mapping hypotheses
initialize to zero at the beginning of a phase set. The mapping
hypothesis between a driver unit and a recipient unit of the
same type is updated by the equation:

∆ht
i j = at

ia
t
j (A.19)

where at
i is the activation of driver unit i at time t.

A.2.3 Comparison-based unsupervised learning. If
licensed, DORA will perform comparison-based-learning
(CBL). CBL is unsupervised. In the current version of the
model, learning is licensed whenever 70% of driver token
units map to recipient items (this 70% criterion is arbitrary,
and in practice either 0% or 100% of the units nearly always
map).

A.2.3.1 Predicate and relation learning. During pred-
icate and relation learning, DORA recruits (and clamps the
activation of) token units in the recipient to respond to patterns
in firing in adjacent layers. The recruitment procedure is a
simplified version of ART (Carpenter & Grossberg, 1990).
Each layer of token units i is connected to a clamping unit
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Ci, which 10 iterations after any inhibitor unit has fired, is
activated by the equation:

Ci =

{
1, (

∑
j max(a j) −

∑
i max(ai)) ≥ θc

0, otherwise

}
(A.20)

where a j is the activation of unclamped token units in the layer
below i for T2 and T3 units, ai is the activation of unclamped
token units in layer i, max(a j) is the maximum activation of
a unit in layer j, and θc is a threshold (=0.6). Ci for the T1
layer is equal to Ci for the T2 layer.

An active Ci in the recipient sends an input, (p j = 1.0), to
a randomly selected token unit, j (where j is not connected to
units in other layers), in layer i (p + k = 0 for all units k , j).
Token units are clamped by the equation:

c j =

{
1, pi − 3

∑
k ak > 0

0, otherwise

}
(A.21)

where c j is the clamped activation of unit j in layer i, and ak is
the activation of all clamped token units in the same layer as j,
where k , j, if j is in T1, and all token units in the same layer
as j, where k , j, otherwise. Unit j remains clamped until ΓL

fires and j is inhibited to inactivity. If the recruited token is in
T1 its mode is set to 1 (marking it as a learned representation;
although the idea of units firing in modes sounds nonneural,
Hummel and Holyoak (1997) described how it can be accom-
plished with two or more auxiliary nodes with multiplicative
synapses) and connections between the recruited token unit
and all active features update by the equation:

∆wi j = ai

(
a j − wi j

)
γ (A.22)

where ∆wi j is the change in weight between the new T1 unit
i, and feature unit j, ai and a j are the activations of i and j,
respectively, and γ is a growth rate parameter. Additionally,
connections between corresponding token units (i.e., between
T3 and T2, or T2 and T1 units) are also updated by Eq. A.22,
where i are recipient token units in layers adjacent to recruited
unit j. When the phase set ends, connection weights between
a T2 or T3 unit i and any token unit in the adjacent lower
layer j (i.e., j is a T2 unit when i is a T3 unit, and j is a T1
unit when i is a T2 unit), are updated by the equation:

wi j =

{
wi j,

∑
k wik ≥ 2

0, otherwise

}
(A.23)

where k is all other units, including j, in the same layer as j.
This operation removes weights to redundant tokens that do
not conjunct two or more units at a lower layer.

A.2.3.2 Refinement Learning. During refinement,
DORA infers token units in the LTM that match active tokens
in the driver. Specifically, DORA infers a token unit in the
LTM in response to any mapped token unit in the driver. If
unit j in the driver maps to nothing in the LTM, then when

j fires, it will send a global inhibitory signal to all units in
the LTM (Eq. A.14). This uniform inhibition, unaccompa-
nied by any excitation in recipient, is a signal that DORA
exploits to infer a unit of the same type (i.e., T1, T2, T3) in
LTM. Inferred T1 units in the LTM have the same mode as
the active T1 in driver. The activation of each inferred unit
in the LTM is set to 1. DORA learns connections between
corresponding active tokens in the LTM (i.e., between T3
and T2 units. and between T2 and T1units) by Eq. A.22
(where unit j is the newly inferred token unit, and unit i is
any other active token unit). To keep DORA’s representations
manageable (and decrease the runtime of the simulations), at
the end of the phase set, we discard any connections between
feature units and T1 units whose weights are less than 0.1.
When the phase set ends, connection weights between any
T2 or T3 unit i and token units at a lower adjacent layer j to
which i has connections are updated by Eq. A.23.

A.2.3.3 Relational generalization. The relational gen-
eralization algorithm is adopted from Hummel and Holyoak
(2003). As detailed in Eq. A.14, when a token unit j in
driver is active, it will produce a global inhibitory signal to all
recipient units to which it does not map. A uniform inhibition
in recipient signals DORA to activate a unit of the same type
(i.e., T1, T2, T3) in recipient as the active token unit in driver.
DORA learns connections between corresponding active to-
kens in the LTM (i.e., between T3 and T2 units. and between
T2 and T1 units) by the simple Hebbian learning rule in Eq.
A.22 (where unit j is the newly active token unit, and unit i
is the other active token unit). Connections between T1 units
and feature units are updated by Eq. A.22. When the phase
set ends, connection weights between any T2 or T3 unit i and
any token units in an adjacent lower layer j to which i has
connections are updated by Eq. A.23.

Retrieval

DORA uses a variant of the retrieval routine described
in Hummel and Holyoak (1997). During retrieval units in
the driver fire as described above for one phase set. Units
in the LTM become active as in step 2.1. After one phase
set representations are retrieved from LTM into the recipient
probabilistically using the Luce choice axiom:

Li =
Ri∑
j R j

(A.24)

where Li is the probability that T3 unit i will be retrieved
into working memory, Ri is the maximum activation T3 unit
i reached during the retrieval phase set and j are all other
T3 units in LTM. If a T3 unit is retrieved from LTM, the
entire structure of tokens (i.e., connected T1 . . . T3 units) are
retrieved into recipient.
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Update mapping connections

If DORA is mapping, mapping connections are updated
at the end of each phase set. First, all mapping hypotheses are
normalized by the equation:

hi j =

 hi j

MAX
(
hi, h j

)  − MAX (hkl) (A.25)

where, hi j is the mapping hypothesis between units i and j,
MAX(hi, h j) is the largest hypothesis involving either unit i
or unit j, and MAX(hkl) is the largest mapping hypothesis
where either k = i and l , j, or l = j and k , i. That
is, each mapping hypothesis is normalized divisively: Each
mapping hypothesis, hi j between units i and j, is divided by
the largest hypothesis involving either unit i or j. Next each
mapping hypothesis is normalized subtractively: The value
of the largest hypothesis involving either i or j (not including
hi j itself) is subtracted from hi j. The divisive normalization
keeps the mapping hypotheses bounded between zero and one,
and the subtractive normalization implements the one-to-one
mapping constraint by forcing mapping hypotheses involving
the same i or j to compete with one another. Finally, the
mapping weights between each unit in driver and the token
units in recipient of the same type are updated by the equation:

∆wi j = η
(
1.1 − wi j

)
hi j]0

1 (A.26)

where ∆wi j is the change in the mapping connection weight
between driver unit i and recipient unit j, hi j is the mapping
hypothesis between unit i and unit j, η is a growth parameter,
and ∆wi j is truncated for values below 0 and above 1. Af-
ter each phase set, mapping hypotheses are reset to 0. The
mapping process continues for three phase sets.

Learning the relational invariance circuit

As described in the main text, the relational invariance
circuit consists of three layers of nodes. At the top layer,
proxy units are connected to individual T1 units in the driver.
The next layer, E, consists of four nodes and takes input
from any active proxy units. At the bottom are feature units,
initially randomly connected to nodes in E. Weights between
units in E and feature units are initialized to random numbers
between 0 and 0.9, and lateral connections for E are set to -1.
Connections between units in E and feature units are updated
by Eq. A.10 in the main text.

Higher-order relations

Although they are not necessary for the current simula-
tions, for the purposes of completeness it is important to
note that DORA easily represents higher-order relations (i.e.,
relations between relations; see Doumas et al., 2008; Hummel
& Holyoak, 1997). In short, when a proposition takes another
proposition as an argument, the T3 unit of the lower-order

proposition serves as the object of an T2 unit for the higher-
order proposition. For example, in the higher-order relation
greater (distance (a, b), distance (c, d)), the T3 unit of the
proposition distance (a, b) serves as the argument of the more
role of the higher-order greater relation, and the T3 unit of
the proposition distance (c, d) serves as the argument of the
less role of the higher-order greater relation. When a T3 unit
serves as the object of an T2 unit, it operates in child mode
(see above). The modes of T3 units change as a function
of whether they are receiving top-down input. A T3 unit
receiving top-down input from an T2 unit (i.e., when the T3
unit is serving as the argument of that T2 unit) will operate in
child mode, while a T3 unit not receiving input from any T2
units will operate in parent mode.

Appendix B
Simulation Details

DORA: Learning representations from screens

We used DORA to simulate learning structured represen-
tations from screen shots from the game Breakout. This sim-
ulation aims to mirror what happens when a child (or adult)
learns from experience in an unsupervised manner (without a
teacher or guide). While we describe the results in terms of
DORA learning to play Breakout and generalizing to Pong,
but results were the same when run in the other direction
(i.e., train on Pong and generalize to Breakout; Supplemental
results, Figure S1).

For Simulation 2, screens were generated from Breakout
during 250 games with random move selection. Each screen
from each game was processed with the visual pre-processor
that identified objects and returned the raw pixel values as
features of those objects. When learning in the world, objects
have several extraneous properties. To mirror this point, after
visual pre-processing, each object was also attached to a set
of 100 additional features selected randomly from a set of
10000 features. These additional features were included to act
as noise, and to make learning more realistic. (Without these
noise features, DORA learned exactly as described here, only
more quickly.) DORA learned from object representations
in an unsupervised manner. On each learning trial, DORA
selected one pair of objects from a screen at random. DORA
attempted to characterize any relations that existed between
the objects using any relations it has previously learned (ini-
tially, it had learned nothing, and so nothing was returned)
by selecting a dimension at random and running the two
objects through the relational invariance circuit (described
above) over that dimension. If the features returned matched
anything in LTM (e.g., "more" and "less" "x"), then DORA
used that representation from LTM to characterize the cur-
rent objects. DORA then ran (or attempted to run) retrieval
from LTM, the relational invariance circuit, mapping, and
representation learning (see above). Learned representations
were stored in LTM. We placed the constraint on DORA’s
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retrieval algorithm such that more recently learned items were
favoured for retrieval. Specifically, with probability .6, DORA
attempted to retrieve from the last 100 representations that
it had learned. This constraint followed our assumption that
items learned more recently are more salient and more likely
to be available for retrieval.

The process was identical for Simulation 3, except that
instead of screens from Breakout, we used the first 300 images
from the CLVR dataset for representation learning. In simula-
tion 4, we had two ablated versions of the model: In the first
ablated model (A1), we ablated the inhibitory connections
from the onset of the simulation; in the second ablated model
(A2), we ablated the inhibitory connections after the model
had learned to play Breakout. Representation learning for
both models was as in simulation 1.

DORA: Q-learning for game play

For Simulations 2, 3, and 4, for a given screen, DORA
used the representations it had previously learned to represent
the relations between objects on that screen and the previous
screen. That is, for any pair of objects, if DORA had learned a
representation that characterized the relation between the two
objects (in LTM and as measured by the relational invariance
circuit), DORA used that representation the characterize the
objects.

The relations were then used to form a table of encoun-
tered relational states, and Q-learning (Watkins, 1989) was
used to learn the approximate action-value function for Break-
out. We used a rule length constraint of two relations per state,
reflecting the simplicity of the game and the WM capacity
exhibited by humans (Logie et al., 2020).We trained DORA
decreasing the learning rate linearly from 0.1 to 0.05 and
the exploration rate linearly from 0.1 to 0.01 throughout the
training session. We saved the version of the table that yielded
the maximum score during the session.

Deep Q-Network

A Deep Q-Network (DQN; Mnih et al., 2015) was trained
to play Breakout and Pong. The raw 210 × 160 frames were
pre-processed by first converting their RGB representation to
grey-scale and down-sampling it to a 105 × 80 image. We
stacked the last 4 consecutive frames to form the input each
state.

The input to the neural network was the 105 × 80 × 4 pre-
processed state. The first hidden convolutional layer applied
16 filters of size 8 x 8 with stride 4 with a relu activation
function. The second hidden convolutional layer applied 32
filters of size 4 x 4 with stride 2 with a relu activation function.
The third hidden layer was fully connected of size 256 with a
relu activation function. The output layer was fully connected
with size 6 and a linear activation function.

We implemented all the procedures of the DQN to im-
prove training stability, in particular: (a) We used memory

replay of size 1,000,000. (b) We used a target network which
was updated every 10,000 learning iterations. (c) We fixed
all positive rewards to be 1 and all negative rewards to be −1,
leaving 0 rewards unchanged. (d) We clipped the error term
for the update through the Huber loss.

We also ran the same network using the input from the
visual preprocessor described above.

Supervised deep neural network

We trained a deep neural network (DNN) in a supervised
manner to play Breakout and Pong and tested generalization
between games. One network was trained using random frame
skipping and the other with fixed frame skipping.

The inputs to the network were the output of the visual
preprocessor described above. Specifically, the network took
as input the x and y positions of the ball and player-controlled
paddle, as well as the left paddle for Pong (left as zeros when
playing Breakout). The input to the neural network was a
vector of size 24 corresponding to the pre-processed last seen
4 frames. This was fed to three fully connected layers of size
100 each with a relu activation function. The output layer was
fully connected with size 6 and a softmax activation function.

The criteria for training was the correct action to take in
order to keep the agent-controlled paddle aligned with the
ball. In Breakout if the ball was to the left of the paddle the
correct action las ‘LEFT’, if the ball was to the right of the
paddle the correct action was ‘RIGHT’ and if the ball and the
paddle were at the same level on the x-axis the correct action
was ‘NOOP’. In Pong if the ball was higher than paddle the
correct action was ‘RIGHT’, if the ball was lower than paddle
the correct action was ‘LEFT’ and if the ball and the paddle
were at the same level on the y-axis the correct action was
‘NOOP’. This action was encoded as a one-hot vector (i.e.,
activation of 1 for the correct action and cero for all other
actions).

Graph network

Graph networks (see Battaglia et al., 2018, for a review)
are neural network models designed to approximate functions
on graphs. A graph is a set of nodes, edges, and a global fea-
ture. The representation of the nodes, edges, and the global
attribute encode feature information. A graph network takes
as input a graph and returns a graph of the same size and
shape, but with updated attributes.

Our graph net agent used a encode-process-decode archi-
tecture (Battaglia et al., 2018) where three different graph
networks are arranged in series. The first graph net encodes
the nodes, edges and global attributes independently, the sec-
ond graph net performs three recurrent steps of "message
passing" and the third graph net decodes the nodes, edges and
global attributes independently.

The graph agent takes in a graph-structured representation
of the screen where each object corresponds to a node in
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the graph. In our simulations, the node representation corre-
sponds to the position, area, color and velocity of the objects
in the screen. In order to use the graph network as a rein-
forcement learning agent we set the number of edge attributes
to the number of possible actions. In this way, our agent
produces a vector of Q-values for each edge, corresponding to
the valid actions in each game. To choose actions, the agent
takes an argmax across all edges’ Q-values.

To train our agent we used a replay memory of size 50000.
Before training we feed the replay memory with 1600 memo-
ries (i.e., tuples containing a state graph, action, edge, reward,
next state graph, and a "done" variable). At each time step, we
saved the current memory and sample a batch of 32 memories
from the replay memory to train the agent. We used the Adam
learning algorithm with a learning rate of 0.01 and default
learning parameters.

Appendix C
Supplemental results

Supplemental simulation 1: Pong to breakout generaliza-
tion results

As described in the main text, DORA learned representa-
tions from Pong games. The model learned to play Pong first,
and then generalized to Breakout. Results in Fig. C1.

Supplemental data 1

Two human novices were trained on Breakout for 300
games, then transferred to playing Pong for 100 games, fol-
lowed by moving back to Breakout for 100 games (these
games were played in 2 hours session spread across 6 days;
the last 50 games of Breakout and first 20 games of Pong were
completed in the same session). Human players, of course,
come into playing these games with a life of experience with
the world, spatial relations, and other video games, and bring
this experience to bear on playing both games. As humans
regularly engage in cross-domain generalization, we expect
the participants to generalize between games. A comparison
of these highly trained humans and DORA and the various
DNNs tested in the main text appears in Figure C2.

In addition to the two participants who played several
hundred games of Breakout and Pong, we ran 8 additional par-
ticipants in a simple transfer task. Participants either played
Breakout for 50 minutes followed by playing Pong for 10 min-
utes (4 participants) or played Pong for 50 minutes followed
by playing Breakout for 10 minutes (4 participants). We had
players play to a time limit rather than a number of games, as
a game of Pong takes roughly 4 times as long as a game of
Breakout. The average score on the first game of Pong when
played first was 6.25 vs. 14.0 when played after Breakout.
The average score on the first game of Breakout when played
first was 9.5 vs. when played 19.0 when played after Pong.
We analyzed the effects of order (whether a game was played

first or after another game) on performance use a simple linear
mixed effects model with Score predicted by order with partic-
ipants as a random variable. Because the scores in Breakout
and Pong are on different scales (Pong goes to 21, Breakout
is (theoretically) unbounded) we normalized all scores by
subtracting each score from the grand mean of scores on that
game (e.g., each Pong score had the mean of score of all Pong
games subtracted from it). We then compared the model using
order to predict score (with participants as a random variable)
to the null model. The full model explained significantly more
variance than the null model (chi-squre(1) = 4.07, p < 0.05),
with scores in the transfer condition significantly higher than
scores in the initial game condition.

Participants were run using the online javatari system
(https://javatari.org/).

One noteworthy limitation of DORA’s gameplay is that
it was slower to learn Breakout than the human players we
tested. We suspect the reason for this limitation is that in most
simulations, DORA, like the DNNs we ran for comparison,
began as a tabula rasa with no understanding of anything at
the beginning of learning. As a result, DORA spent much
of its early experience in these simulations simply acquiring
basic relational concepts such as left-of (). By contrast, most
people start playing video games long after they have acquired
such basic concepts. In other words, our ability to play a game
such as Breakout, even for the first time, is already facilitated
by an enormous amount of cross-domain transfer: People
know what to look for (e.g., “where is the paddle relative to
the ball?”) and how to represent the answer (“to the left of
the ball”) even before starting to learn how to play the game.
DORA, by contrast, had to learn these basic concepts while
learning to play the game.

We argue that the reason DORA learned so much faster
than the DNNs is that DORA was biased from the beginning
to look for the right thing. Whereas DNNs search for repre-
sentations that minimize the error in the input-output mapping
of the task at hand, DORA looks for systematic relations that
allow it to build a model of the task it is learning. Once it
has learned this model, DORA is off and running, prepared to
transfer its learning to new tasks, such as Pong. By contrast,
the DNN is trying to be the best it can at exactly this one task;
it is trying to memorize exactly what to do in response to
every possible situation. In the end, the DNN will be a better
Breakout player than DORA. But DORA, unlike the DNN,
will be able to transfer its learning to other tasks, including
but not limited to Pong.

We argue that people are more like DORA than a DNN.
You and I will never beat a well-trained DNN at chess, or
Go, or probably any other task on which a DNN has been
adequately trained. But at the end of the day, we will be able
to drive home, make dinner, put our children to bed, and have
a glass of wine. All the DNN will know how to do is beat the
next competitor. And more importantly, the DNN will likely
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Figure C1

Results of simulations with DORA trained on Pong and generalizing to Breakout, with DORA learning representations from
Pong. Error bars represent 2 stderrors. (A) Performance of DORA on Breakout as an average of 100 test games. (B) Results of
DORA playing Breakout after trainig on Pong as the score of the first game played and an average score of the first 100 games
played. (C) Results of DORA when returning to play Pong, as an average score for the first 100 games played.

be unable to learn how to perform these other tasks without
forgetting how to play chess. A human is a general-purpose
learning machine that exceeds at using what it already knows
to bootstrap its learning of things it doesn’t already know. A
deep net is more a one-trick pony (though possibly the best in
the world at its one over-trained task).

Supplemental simulation 2: Inverse Breakout

We ran a simple simulation of this capacity using a mod-
ified version of Breakout. In this version, the rules were ad-
justed such that missing the ball was rewarded and hitting the
ball was punished (i.e., points were scored when the ball went
past the paddle, and a life was lost when the ball struck the
paddle; essentially the reverse of the regular Breakout rules).
We ran tested a version of the DORA model that had previ-
ously learned to play Breakout successfully (see simulation 2,
main text). Unsurprisingly, initially the model followed the
previously successful strategy of following the ball to contact
it and send it towards the point-scoring bricks. However, upon
contact with the paddle, the model was punished with a lost
life. As noted in the main text, the model had previously
learned that following the ball predicted reward (points), and
that moving away from the ball predicted punishment (lost

life). After three lost lives, DORA attempted to compare the
representation of the current game to the representation it had
previously learned from Breakout.

The current representation was that moving the paddle
toward the ball resulted in punishment, or left-of (ball, pad-
dle1) then left-of (paddle2, paddle1) → punishment signal.
The previous representation of the game was that moving
toward the ball resulted in reward and away from the ball
resulted in punishment, or left-of (ball, paddle1) then left-of
(paddle2, paddle1) → reward signal, and left-of (ball, pad-
dle1) then right-of (paddle2, paddle1)→ punishment signal.
As described in the main text, DORA performed mapping
and relational inference with these two representations. With
P1: left-of (paddle2, paddle1) → punishment signal in the
driver, and P2: left-of (paddle2, paddle1) → reward signal
and P3: right-of (paddle2, paddle1)→ punishment signal in
the recipient, DORA mapped left-of (paddle2, paddle1) in P1
to left-of (paddle2, paddle1) in P2, and punishment signal in
P1 to punishment signal in P3. DORA then flipped the driver
and recipient (P2 and P3 now in the driver and P1 in the re-
cipient) and performed relational inference. During relational
inference, it copied the unmapped reward-signal from P2 and
right-of (paddle2, paddle1) from P3 into the recipient, thus
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Figure C2

Figure S2. Results of game play simulations with Humans, DORA, the DQNs and the DNNs. Error bars represent
2 stderrors. (A) Performance humans and networks on Breakout as an average of 100 test games. (B) Results of humans and
networks playing Pong after training on Breakout as score on the first game played and mean score over the first 100 games
played. (C) Results of humans and networks when returning to play Breakout after playing or learning to play Pong as an
average of the first 100 games played.

inferring that right-of (paddle2, paddle1) predicts a reward
signal. When adopting this strategy, moving away from the

ball, DORA started scoring points (because the new task was
so easy, we had to decide a point total to stop the game).
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