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Astrolabous: A Universally Composable Time
Lock Encryption Scheme

Abstract. In this work, we study the cryptographic primitive called
time-lock encryption (TLE). The concept of TLE involves a party ini-
tiating the encryption of a message that one can only decrypt after a
certain amount of time has elapsed. Following the universal compos-
ability (UC) paradigm introduced by Canetti [IEEE FOCS 2001], we
formally abstract the concept of TLE into an ideal functionality in a
flexible way. In addition, we provide a standalone definition for secure
TLE schemes in a game-based style and we devise a hybrid protocol that
relies on such a secure TLE scheme. We show that if the underlying TLE
scheme satisfies the standalone game-based security definition, then our
hybrid protocol UC realises the TLE functionality in the random oracle
model. Finally, we present Astrolabous, a TLE construction that satisfies
our security definition, leading to the first UC realization of the TLE
functionality. Interestingly, it is hard to prove UC secure any of the TLE
construction proposed in the literature. The reason behind this difficulty
relates to the UC framework itself. Intuitively, to capture semantic se-
curity, no information should be leaked regarding the plaintext in the
ideal world, thus the ciphertext should not contain any information re-
lating to the message. On the other hand, all ciphertexts will eventually
open, resulting in a trivial distinction of the real from the ideal world
in the standard model. We overcome this limitation by extending any
secure TLE construction adopting the techniques of Nielsen [CRYPTO
2002] in the random oracle model. Specifically, the description of the
extended TLE algorithms includes calls to the random oracle, allowing
our simulator to equivocate. This extension can be applied to any TLE
algorithm that satisfies our standalone game-based security definition,
and in particular to Astrolabous.

Keywords: Time-lock encryption, Universal composability, Fairness.

1 Introduction

The concept of encryption involves a party, named encryptor, who encrypts a
message, and a designated party, named decryptor, who can retrieve that mes-
sage. The decryptor can retrieve the message because she holds a piece of secret
information which is called the secret key. There are two well known and studied
types of encryption schemes in the literature. On one end, we have symmetric
encryption [39] where the secret key is shared between the encryptor and the
decryptor and is essential for initiating the encryption/decryption algorithm. On



the other end, we have public key encryption [22] where the public key is avail-
able to all encryptors but the private key is only available to the decryptor. It is
worth mentioning that a party can, potentially, derive the private key from the
public key. Of course, this is computationally infeasible, and the security argu-
ment is grounded on the fact that trapdoor one-way functions [50] exist. At an
application level, encryption meets numerous number of usages, e.g. implemen-
tation of secure channels [15,24], e-voting [34,38,1,51], cryptocurrencies [44,20],
multi-party computation [14,54], to name just a few.

Another special type of encryption is called time-lock encryption (TLE). The
concept of TLE involves a party that initiates the encryption of a message that
can be decrypted only after a certain amount of time has elapsed.

There are two main approaches to how TLE can be defined. In the first
approach [16,43], a party, called the manager, releases the decryption keys on
specific dates. For example, there are public and private keys for each day of the
week. If a party wants to encrypt a message so that it will open on Wednesday
9/12/2020, she will use Wednesday’s public key. The manager will on Wednesday
announce Wednesday’s private key, allowing the decryption of the message.

In the second approach [49,42,41] a computational puzzle, which is a math-
ematical problem, needs be solved so that the message can be revealed. Let us
consider again the example where a message needs to be opened on Wednesday
9/12/2020. The encryptor of the message creates a puzzle that once solved al-
lows the message to be revealed. What the encryptor must be sure of is that the
puzzle will be solved on Wednesday 9/12/2020, neither sooner nor later. The
puzzle can differ from message to message, even if all messages are intended to
open on Wednesday 9/12/2020. These relativistic time constructions [49,42] are
designed so that a puzzle can be solved only after a certain amount of compu-
tations have been performed. Such computations are enough so that the puzzle
can be solved on 9/12/2020. Last, the puzzle can be the same for messages that
are intended to open on 9/12/2020. These absolute time constructions [41] are
designed so that the solution of the puzzle can be delegated to external entities
which try to solve the puzzle independently of the TLE protocol (e.g. Bitcoin
miners in [41]), giving an essence of absolute time. In either case, the message
can be decrypted only after a puzzle has been solved or its solution has been
published. The solution of the puzzle is used as the secret key in the decryption
algorithm so that the message can be revealed.

In this work we focus on the second approach, i.e. the one where a puzzle
has to be solved in order to retrieve the underlying plaintext. In contrast to
“standard” encryption, TLE differs in one but major point. The message can
be retrieved without the encryptor having to reveal any secret information; the
decrypting parties can actually construct the secret information themselves after
some time. This is different from both symmetric and public-key encryption
systems which require the explicit knowledge of a non-retrievable secret key for
accessing the underlying message. Note that a TLE key is defined by the time
the message is encrypted and is intended to conceal the message from any party.
Informally, we can say that both TLE and public key encryption ground their
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security on the hardness of inverting a trapdoor one-way function, but in the
TLE’s case, it is not computationally infeasible to invert the trapdoor one-way
function. It can in fact be inverted after some “reasonable” amount of time.

The number of applications TLE finds its own space are mostly related to a
security requirement called fairness [31]. Informally, the fairness condition states
that the initial decisions of a party are not affected by the way the protocol
execution progresses.

There are many cryptographic protocols where fairness is violated and TLE
can find an application. For example, in e-voting and specifically in self-tallying
election protocols (STE) [37,2], due to access to intermediate results some parties
might change their mind and vote something different from their initial choice to
favour another candidate (e.g., the winning one). Another example where fairness
is important is in coin flipping protocols [18], where the party that initiates the
coin flip decides to abort right after the other party reveals her coin, without
revealing her share to the other party. Moreover, in secret sharing protocols [47],
the party that reveals her share last holds a considerable advantage over the
other parties. Specifically, she can construct the secret information, thus she has
no incentive to reveal her share to the other parties. Similarly, in Distributed
Key Generation protocols (DKG) [27] where the parties interact to construct a
public key randomly, the party that contributes last her share for the production
of the key can affect the way that it is constructed, thus the key may be rigged
rather than be totally random.

By utilizing TLE, we can tackle all of the aforementioned limitations. For
example, in STE protocols the parties are “committing” their ballot via TLE
before intermediate results are starting to leak. After some time, the ballot is
eventually opened and the tally can be produced. Similarly, in coin-flipping pro-
tocols, if the initial party decides to abort her bit can be retrieved from the
other party after some time. Similar are the cases of secret sharing and DKG
protocols.

Unfortunately, all of the mentioned limitations cannot be solved with stan-
dard encryption or a commitment scheme. For example, the self-tallying proto-
cols in [46,37,52,32] do not satisfy the fairness condition as already mentioned
by the authors. The limitation lies fundamentally in the way encryption works.
Specifically, if we use encryption only the holder of the secret key can retrieve
the hidden message. So either that key is a priori known, where fairness is vio-
lated trivially as every party can decrypt the message, or not known, where the
protocol cannot terminate as the message cannot be retrieved. Similarly, if we
use a commitment scheme, the committing party might change her mind and not
open her commitment. In that case the protocol aborts. TLE comes to fill the
gap and keep the best of both of situations mentioned, which means, semantic
security [28,39] until some time, and then the possibility of decryption without
any a priori secret information neither further interaction with the encryptor.

The state-of-the-art of cryptographic security modeling in the literature is
provided by the Universal Composability framework (UC) [12] introduced by
Canetti, where security can be maintained even if many instances of the studied
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protocol are executed concurrently or the protocol is composed as a subroutine
of a bigger protocol. Although there are formal treatments of TLE in the liter-
ature [41], these mainly provide standalone models of security while our work
aims to provide a composable treatment of the TLE primitive. The only other
such attempt to our knowledge is a recently published paper [5] that we discuss
in details in Section 2.1.

In this work, we abstract the notion of TLE into an ideal functionality, named
F leak,delay

TLE , that captures the concept of TLE naturally. Moreover, we introduce
a security definition exploring the one-wayness of TLE algorithms. We show
that the one-way property of a TLE scheme is enough so that we have a UC
realization of F leak,delay

TLE after extending the TLE algorithm in the random oracle
model. Although UC is the state-of-the-art on arguing about security, sometimes
standalone definitions are more usable, thus we provide a new TLE game based
definition in IND-CPA security style. Last, we provide a novel TLE construction,
named Astrolabous, and show that it satisfies both of our security definitions.

Contributions. Our contributions can be summarised as follows:

1. We present a UC definition of secure TLE via an ideal functionality F leak,delay
TLE

that captures naturally the concept of TLE as it provides the necessary secu-
rity guarantees a TLE scheme should provide. Specifically, it captures seman-
tic security as the encryption of a message is not correlated with the message
itself. Instead, it is correlated only with the length of the message similarly
to the standard encryption functionality in [12]. In addition, it captures cor-

rectness [28,39], i.e., if F leak,delay
TLE finds two different messages with the same

ciphertext in its record, then it aborts. Finally, we note that in the literature,
there are TLE constructions [41] where the adversary holds an advantage in
comparison with the other parties and which might allow him to decrypt a
message earlier than the intended time. To cater for such constructions, we
parameterise F leak,delayTLE with a leakage function leak which specifies the ex-
act advantage (in decryption time) of the adversary compared to the honest
parties. Ideally, the leak function offers no advantage to the adversary. It is
worth mentioning that TLE constructions in which the adversary holds an
advantage in comparison with the honest parties in the decryption time, are
still useful to study in the UC framework because the computational burden
for solving the puzzle can be transferred to external entities of the protocol
(e.g., Bitcoin miners), making the decryption more client friendly [41].

2. We define a hybrid TLE protocol and a standalone basic security definition
in a game-based fashion. We show that if the pair of TLE algorithms that
our protocol uses satisfies our basic security definition then we have a UC
realization of F leak,delayTLE .
Our TLE protocol does not use the vanilla version of a TLE algorithm (e.g.
a TLE algorithm as defined in [41]). Instead, it relies on an extended one
based on techniques introduced in [45,11] in the random oracle model. Our
extension was necessary for the proof of UC realization. Specifically, in both
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real and ideal world, all the messages eventually can be decrypted by any
party. To avoid trivial distinctions1, the simulator must be able to equivocate
so that the ciphertext opens to the correct message. As a result, the simu-
lator programs the random oracle so that the ciphertext opens to the target
message, something that it is not feasible with the vanilla version of a TLE
scheme without the equivocation feature which our extension provides.
In our hybrid protocol, we defined both a functionality wrapper Wq and an
evaluation functionality Feval, to model the computation that is necessary for
solving the time-lock puzzle. In our case, this computation is a random oracle
query, thus Feval is the random oracle. Like in [3], the main function of a
functionality wrapper is to restrict the access to Feval and thus to model the
limited computational resources a party has at her disposal in each round. In
our case, the limited amount of computation a party has in order to solve the
time-lock puzzle through queries to Feval.
Our basic security definition of TLE schemes consists of two properties, named
Correctness and qSecurity. The Correctness property states that the de-
cryption of an encrypted message m leads to the message m again with high
probability, similar to the definition of correctness in the standard encryp-
tion’s case. We define the qSecurity property in a game-based style, between
a challenger and an adversary where the latter tries to guess the challenged
message with less than the required oracle queries. A TLE scheme satisfies
the qSecurity property if the above happens with negligible probability, cap-
turing the fact that a message can only be decrypted when “the time comes”.

3. We provide a novel construction, named Astrolabous, and we show that it
satisfies our basic security definition, thus it supports the UC realisation of
F leak,delayTLE (in the random oracle model). Astrolabous combines ideas from
both the constructions in [49] and in [42]. Nevertheless, we did not use either
of them for the following reasons. A critical drawback of [42] is that parts of
the plaintext are revealed through the process of solving the time-lock puzzle,
which is based on a hash evaluation, as the message is hidden in the puzzle
itself. On the other hand, the construction in [49] encrypts a message with
a symmetric encryption scheme [39] and then hides the encryption key into
the time-lock puzzle which is based on repeated squaring. The first problem
with the latter construction was that the procedure for solving the puzzle is
deterministic (repeated squaring) and thus a party can bypass the function-
ality wrapper and solve any time-lock puzzle in a single round, in contrast
with the construction in [42] where the procedure for solving the puzzle is
randomized (hash evaluation which is modeled as random oracle). The sec-
ond problem with the construction in [49] was that even if a party provides
the solution of the puzzle but the puzzle issuer does not provide the trapdoor
information that is used by the time the time-lock puzzle was created (in this
case, the factorization of a composite number N) then, in order to verify the

1 Recall that in the ideal world, to capture semantic security, ciphertexts do not con-
tain any information about the actual message except its length
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validity of the provided solution, all the verifying parties must resolve the
time-lock puzzle. Thus, the optimal complexity scenario is hard to achieve. In
contrast, the time-lock puzzle in [42] is easily verifiable without the need of
any trapdoor information from the puzzle issuer.
These were our motivations for defining Astrolabous that tackles all of the
above-mentioned limitations. Specifically, Astrolabous uses a symmetric key
encryption scheme to hide the message like in [49] and then “hides” the sym-
metric key in a time-lock puzzle similar to the one in [42].

4. We introduce an additional stronger game-based definition, named IND-CPA-
TLE, to capture semantic security of TLE schemes in the spirit of IND-
CPA security. Our stronger definition may serve as a standard for analysing
TLE schemes in the standalone setting. To demonstrate the usefulness of
our stronger definition and constructions, we prove that Astrolabous and an
enhanced version of the construction in [42] achieve IND-CPA-TLE security.

2 Related work

TLE is a cryptographic primitive that allows a ciphertext to be decrypted only
after a specific time period has elapsed. One way of achieving this is by “hiding”
the decryption key in a puzzle [49] that can be solved after a set period of time.
The reward for solving the puzzle is the decryption key. So the main purpose of
the puzzle is to delay the party in opening the message before a specific amount
of computation has been performed. In some proposals, decryption can further
be performed without requiring knowledge of any secret information [41,49].

Previously proposed constructions are based either on witness encryption [26]
or symmetric encryption [39]. The authors of these works provide game-based
definitions to argue about the security of their constructions. Unfortunately,
game-based definitions do not capture the variety of adversarial behavior the
UC framework [12] does. For example, in the ideal world the capabilities of the
adversary are defined explicitly. So, proving that our real protocol and the ideal
one are indistinguishable (UC realization) from the environment’s perspective, is
like proving that whatever the adversary can do against the real protocol it can
also do it in the ideal world. In contrast, in a game-based approach, we try to
capture the capabilities of an adversary via an experiment without being certain
if the experiment captures all the adversarial behaviours possible in the real
protocol. Moreover, the task of transferring these definitions to the UC setting
is quite challenging due to some incompatibilities between the two settings. More
details can be found in Supplementary Material B.1

A particular TLE construction proposed in [49] is based on a block cipher,
e.g., Advanced Encryption System (AES) [19], and repeated squaring. Specifi-
cally, first, a party encrypts a message m by using AES and a secret key sampled
from a key space uniformly at random. Then the party chooses the time that
finding the key should require and creates a “puzzle”. The ciphertext is the en-
crypted message with AES under the solution to the puzzle that serves as the
key. No formal proof of the security of this scheme is however provided in [49].
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One drawback of this construction is that, to solve the puzzle, a party must
be engaged in mathematical computations. In contrast, in the construction pro-
posed in [41], the solution of the puzzle is announced after a specific time by
external entities to the protocol (e.g. Bitcoin miners). The only way that these
computations could be avoided for the puzzles to be solved is the issuer of the
puzzle to announce the solution along with the trapdoor information (optimal
case scenario), which is the factorization of a composite number N . Without the
provision of the trapdoor information, even if a party announces the solution of
the puzzle, the only way for verifying the solution is to solve the puzzle again.

A similar TLE construction is that in [42]. Here, the time-lock puzzle is based
on hash evaluations. Specifically, the solver of the puzzle is engaged in serial
hash evaluations until solving the puzzle. Unlike [49], if some party presents the
solution of the puzzle any other party can verify it efficiently by doing all the
hash evaluations in parallel. A drawback of this construction is that parts of the
plaintext are revealed before the full solution of the puzzle. There are also TLE
proposals [16,43,17] that instead of relying on computational puzzles, assume
a Trusted Third Party (TTP) responsible for announcing the decryption keys.
Most of these constructions are based on Public Key Infrastructure (PKI). An
obvious drawback then is the fact that we ground a big part of the security of
the scheme in the TTP, which in turn leads to weaker threat models.

There are other time-lock puzzle constructions [10,8] but none of them pro-
vide composable security guarantees. A generalization of time-lock puzzles are
Verifiable Delayed Functions (VDF) [9,48,55] with the only addition that they
require the solution of the puzzle to be publicly verifiable without having to
solving the puzzle, something that is desirable but not obligatory with time-lock
puzzles. Again, the constructions in [9,48,55] are not analyzed in the UC frame-
work and thus security cannot be guaranteed either when composed as part of
bigger protocols or in parallel execution (e.g. in on-line network conditions).

2.1 Comparison with [5] and [4]

A concurrent and independent work closely related to ours was very recently pub-
lished at EUROCRYPT 2021 [5], with a subsequent work seemingly in prepara-
tion [4]. In particular, [5] proposes a composable treatment in the UC framework
of time-lock puzzles whose security is captured by the ideal functionality Ftlp. It
further proves how the scheme proposed by Rivest et al. in [49] can be used to
UC realise Ftlp in both the random oracle and generic group models. Their reali-
sation, as ours, relies on techniques for equivocation borrowed from [45] and [11].
They further show that no time-lock puzzle is UC realizable outside the random
oracle model. Finally, they show that time-lock puzzles can be used to ensure
fairness in coin flipping protocols.

The time-lock scheme proposed in [5] is not verifiable. This is addressed in
the subsequent pre-print [4] where they adapt the scheme to include the trapdoor
information along the message to be time-lock encrypted, rendering it verifiable.

There are some key differences between these two works and ours, rendering
the proposed treatments of time-lock primitives orthogonal. The premises and
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assumptions are intrinsically different and capture different concepts and security
notions. We discuss these differences here and argue why our formal treatment
of time-lock encryption, and our proposed TLE scheme, namely Astrolabous,
are preferable in some respects and more suited to many scenarios.

Apprehending time with computational puzzles In [5] and [4], a resolutely
different approach to ours is taken, when it comes to real time. In particular,
they introduce the global Gticker functionality to capture delays without referring
to a global “wall clock”, and thus without referring to real time.

We, on the other hand, insist on the importance of closely relating compu-
tational time and real time, and propose an alternative treatment in the global
clock model (Gclock). Our approach is directly motivated by the seminal pa-
per [49], in which R. L. Rivest, A. Shamir, and D. Wagner introduce the very
concept of time-release cryptography to capture encryption schemes that ensure
encrypted messages cannot be decrypted until a set amount of time has elapsed.
The goal being to, as they put it, “send information into the future [...] by
making CPU time and real time agree as closely as possible”.

This is key to explaining why and how time-release cryptography is used in an
increasing number of distributed applications, and in particular schemes hinged
on computational puzzles, i.e. puzzles that can only be solved if certain compu-
tations are performed continuously for at least a set amount of time. Indeed, the
cryptographic protocols underlying these applications often rely on temporally
disjoint phases. Time-release cryptographic primitives, as primitives apprehend-
ing real time through computations, allow thus these temporally disjoint stages
of the protocol to be enforced yet in an asynchronous manner.

This is reflected in our protocol realising the proposed ideal TLE functional-
ity F leak,delay

TLE . Parties only read the time from the global clock Gclock to compute
the amount of time the ciphertext needs to be protected for, and infer the corre-
sponding puzzle difficulty. Decryption however requires continuous computations
being performed until the set opening time is reached, and no read command
being ever issued to Gclock. This protocol clearly demonstrates how time-lock
puzzles apprehend real time through computations.

In contrast, the protocol πtlp realising the ideal time lock-puzzle functionality
Ftlp proposed in [5] does not instruct parties to continuously work towards solving
received puzzles (the scheduling of each step for solving a puzzle is left to the
environment). So the treatment proposed in [5] and [4] leaves it to the protocol
using πtlp or Ftlp as a subroutine to correctly takes care of appropriately enforcing
relative delays between key events.

Ideal functionality and realisation F leak,delay
TLE is more general than Ftlp. Ftlp

only captures constructions that rely on computational-puzzles for “hiding” a
message. In contrast, our time-lock encryption functionality F leak,delay

TLE does not.
As such it can cater for TLE schemes that do not rely on time-lock puzzles at
all, such as the centralized solutions proposed in [16,43] where a Trusted Third
Party realises the solution in specific time-slots.
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Moreover, some constructions such as [41] allow the adversary an unavoid-
able advantage in solving TLE puzzles (e.g., the adversary synchronizes faster
than the honest parties in the Bitcoin network [25,3]). Ftlp does not capture

such constructions. Our F leak,delay
TLE functionality is parameterized with a leakage

function, which specifies exactly the advantage of the adversary in each case.
Turning now to the realisations of UC secure time-lock primitives, the realisa-

tion of Ftlp proposed in [5] relies on stronger assumptions as it relies both on the
random oracle model and the generic group model. In contrast, our realisation
of F leak,delay

TLE only relies on the random oracle model.

On public verifiability While the time-lock encryption scheme proposed in [4]
is publicly verifiable in the sense that given a puzzle, the verifying party does not
need to solve the puzzle for themselves to verify that an announced solution for
that puzzle is valid. This is not enough in some scenarios. For instance, consider
the scenario with a dedicated server to be the puzzle solver and all other parties
to be “lite” verifiers. This is very realistic given the computational requirements
for solving puzzles. For efficiency, one would let a server solve the puzzles and
only check that the solutions it provided are valid ones. Now in such a scenario
parties i) would not trust the server, ii) would not trust the issuer of the puzzle
either, but iii) are also not willing to solve the puzzle themselves.

Now, in [4] public verifiability is achieved because the issuer of the puzzle con-
catenates the message and the trapdoor information, which is the factorization
of N . Given the trapdoor, one can efficiently verify that the announced solution
to the puzzle is valid. However, the trapdoor announced (dishonest server) or
the trapdoor included (dishonestly generated ciphertext) might not be valid for
the puzzle. The only way to identify the dishonest party is to solve the puzzle
for oneself and check it against the solution to the puzzle announced by the
server. If they match, then the ciphertext was dishonestly generated, otherwise
the server is dishonest.

This is reflected in the public verifiability notion that Ftlp captures that is
one sided: if an announced solution to a puzzle is valid, then the verification is
successful. But if the verification fails, then some party has deviated from the
protocol but it could either be the server or the issuer of the ciphertext.

In contrast, the solution of our puzzle is publicly verifiable as it does not rely
on any trapdoor information from the puzzle issuer being included in the cipher-
text for fast verification. So dishonestly generated ciphertexts are not meaningful
anymore, and only dishonest servers need to be considered. Now if the server
announces an invalid solution to a given puzzle, it gets detected.

Standalone security Along with the composable definition of secure time
lock encryption schemes provided by our ideal functionality F leak,delay

TLE , we further
provide two game-based definitions of security. A weaker one, capturing one-way
hardness of a TLE scheme; and a stronger one that captures semantic security
of a TLE scheme, in the spirit of IND-CPA security. We show that a TLE
scheme that satisfies the weaker definition suffices for UC realising the F leak,delay

TLE
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functionality through our protocol πTLW. The stronger game-based definition
serves as a standard for the security analysis of TLE schemes in the stand-
alone setting. To demonstrate the usefulness of our stronger definition, we show
that Astrolabous and an enhanced version of Mahmoody et al ’s construction [42]
satisfy the said security standard. This result further validates our UC treatment
and in particular our ideal functionality of time-lock encryption schemes.

3 Preliminaries

We use λ as the security parameter. We write negl(λ) to denote that a function
is negligible in λ. When referring to a polynomial function we use the term p or
px where x an integer.

3.1 Protocol security

In this section we present two approaches towards defining security rigorously.

Game-based definitions The first approach is known as the game-based ap-
proach [39]. In this paradigm, a security definition is formalized as an experiment
between a challenger Ch an adversary B and a set of oracles. Both Ch and B are
instantiated with the security parameter λ. Throughout the experiment, B can
issue queries to both Ch and the oracles. At some point, B requests a challenge
from Ch, to which Ch prepares and returns it back to B. B tries to solve the chal-
lenge and submits his respond to Ch. If the answer to the challenge is correct,
the experiment outputs the bit 1, else it outputs 0. We say that the protocol
satisfies the game-based definition if the adversary wins the game with negligible
probability in λ (or probability equal to 1/2+negl(λ) if B has to choose between
only two possible answers for the challenge). In a nutshell, this approach tries to
capture the interaction a malicious entity has with the real protocol in terms of
an experiment/game. Of course, if an experiment really captures the intended
property is a subtle modelling task and an active research area [6] where new
definitions aim at improving the older ones in terms of completeness and security.

Universal composability The second approach is the Universal Composabil-
ity (UC) paradigm introduced by Canetti in [12], which is the state-of-the-art
cryptographic model for arguing about the security of protocols when run un-
der concurrent sessions. In the UC framework, the parties engage in a protocol
session (labeled by a unique session ID, sid) modeled as interactive Turing Ma-
chines (ITMs) that communicate in the presence of an adversary ITM A that
may control some of the parties. The protocol execution is scheduled by an envi-
ronment ITM Z that provides parties with inputs and may interact arbitrarily
with A. The intuition here is that (i) Z captures the external “observer” that
aims to break security by interacting with the protocol interface during session
sid, while (ii) A plays the role of the “insider” that helps Z via any possible
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information it can obtain through engaging in the session in the back-end of the
current execution.

The UC security of a protocol Π follows the real-world/ideal-world indistin-
guishability approach. Namely, security is captured via a special ideal protocol
that has the same interface as Π that Z interacts with, but now the parties are
“dummy”, in the sense that they only forward their inputs provided by Z to an
ideal functionality F . The functionality F is in the center of the back-end (i.e.,
the ideal protocol has a star topology) and does not interact with Z directly.
The ideal functionality F formalizes a trusted party carrying out the task that
Π intends to realize (e.g., secure communication, key agreement, authentica-
tion, etc.). The functionality F interacts with the adversary present in the ideal
protocol, usually called a simulator S, and this interaction results in a “min-
imum leakage of information” that determines the ideal level of security that
any protocol realizing the said task should satisfy (not only Π). For instance, if
F formalizes an ideal secure channel, then the minimum leakage could be the
ciphertext length. In case that Z gives an input to a corrupted party P in the
ideal world, the functionality F passes that message to S and returns back to
P whatever it receives from S. In both executions, if a party has the token and
halts, then by convention the token is passed to the environment. We say that
the real-world protocol is UC-secure if no environment Z can distinguish its ex-
ecution from the one of the ideal protocol managed by F . More details about
the UC framework can be found in Supporting Material A.

Setup functionalities. In the UC literature, hybrid functionalities do not only
play the role of abstracting some UC-secure real-world subroutine (e.g. a se-
cure channel), but also formalize possible setup assumptions that are required
to prove security when this is not done (and in many cases even impossible to
achieve) in the “standard model”. For example, this type of setup functionalities
may capture the concept of a trusted source of randomness, a clock, or a Public
Key Infrastructure (PKI ). Moreover, these setup functionalities can be global,
i.e. they act as shared states across multiple protocol instances and they can be
accessed by other functionalities and even the environment that is external to the
current session (recall that standard ideal functionalities do not directly interact
with the environment). The extension of the UC framework in the presence of
global setups has been introduced by Canetti et al. in [13]. In Supporting Mate-
rial A.1 we present the setup functionalities that we consider across this work.
Namely, the Global clock (GC) Gclock [35,3], the Random Oracle (RO) FRO [45]
and the Broadcast (BC) FBC [36,33] functionalities.

4 Definition of F leak,delay
TLE

We provide our UC treatment of TLE in the Gclock model by defining the func-
tionality FTLE, following the approach of [12]. The functionality is described in
Figure 1, and at a high level operates as follows. The functionality is parame-
terized by a delay variable delay. This variable shows the time that a ciphertext
needs to be created. There are settings where the ciphertetext generation needs
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some time, in some cases this time is very small or zero (delay = 0) or no-
ticeable (delay = 1). The simulator S initially provides FTLE with the set of
corrupted parties. Each time an encryption query issued by an honest party is
handled to FTLE, the functionality forwards the request to S without any infor-
mation about the actual message except the size of the message and the party’s
identity. The simulator returns the token back to FTLE which replies with the
message Encrypting to the dummy party. This illustrates both the fact that
the ciphertext does not contain any information about the message and that
encryption might require some time to be completed. The environment can ac-
cess the ciphertexts that this party has generated so far by issuing the command
Retrieve, where FTLE returns all the ciphertexts that are created by that party
back to it. It is worth mentioning, that the time labelling that is used in the en-
cryption command refers to an absolute time rather than relative. On the other
hand, the construction that we propose for realising FTLE is relative. That is why,
as we see in detail in Section 5, the algorithm accepts the difference between the
current time Cl and the time labelling τ as an input. In this way, the algorithm
computes the difficulty for the puzzle such that the message can be decrypted
when time τ has been reached. In addition, FTLE handles the decryption queries
in the usual way, unless it finds two messages recorded along the same cipher-
text, in which case it outputs ⊥. This enforces that the encryption/decryption
algorithms used by S should satisfy Correctness. In addition, if FTLE finds the
requested ciphertext in its database, the recorded time is smaller than the cur-
rent one (which means that the ciphertext can be decrypted), but the party that
requested the decryption of that ciphertext provided an invalid time labelling
(labelling smaller than the one recorded in FTLE’s database), it returns the mes-
sage Invalid Time to that party. In the case where the encryption/decryption
queries are issued by corrupted parties, FTLE responds according to the instruc-
tions of S. When a party receives a decryption request from Z, except from the
ciphertext c, it receives as input a time labelling τ . Ideally, τ is the time when
c can be decrypted. Of course, the labelling τ can also be different to then the
decryption time of c. Nevertheless, this does not affect the soundness of FTLE.
Without the labelling, the FTLE or the engaging party in the real protocol would
have to find the decryption time of c which is registered either in the functional-
ity’s database (ideal case) or in the party’s list of received ciphertexts (real case)
and then compare it with the current time Cl.

When a party P advances the Gclock, the simulator S is informed. Then, S can
generate ciphertexts for each tag received from FTLE from P and send them to
FTLE issuing the Update. Later, FTLE will return these to P . This illustrates the
fact that after some time ciphertexts are created. The specific delay is specified
by S. In TLE constructions where the encryption and decryption time is equal,
S will force a delay on the ciphertext generation equal to the number of rounds
that the ciphertext needs to be decrypted. Thus, the way we model FTLE allows
us to capture a broader spectrum of TLE constructions (not necessary efficient)
in the context of the Global Clock (GC) model.
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Naturally, after some time, ciphertexts are eventually opened and every party,
including S, can retrieve the underlying plaintext. For that task, we include the
command Leakage. In the vanilla case, S can retrieve all the messages that
can be opened by the current time Cl. However, there are cases where S can
retrieve messages before their time comes. This advantage of S can be described
by the function leak. This function accepts as input an integer (e.g., the current
time Cl) and outputs a progressive integer (e.g., the time that the adversary can
decrypt ciphertexts, which is the same or greater than Cl). For more details see
Supporting Material C.1.
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The time-lock encryption functionality F leak,delay
TLE .

It initializes the list of recorded messages/ciphertexts Lrec as empty and defines the
tag space TAG.

� Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set Pcorr.

� Upon receiving (sid,Enc,m, τ) from P 6∈ Pcorr, it reads the time Cl and does:

1. If τ < 0, it returns (sid,Enc,m, τ,⊥) to P .

2. It picks tag
$← TAG and it inserts the tuple (m,Null, τ, tag,Cl, P )→ Lrec.

3. It sends (sid,Enc, τ, tag,Cl, 0|m|, P ) to S. Upon receiving the token back from
S it returns (sid,Encrypting) to P .

� Upon receiving (sid,Update, {(cj , tagj)}
p(λ)
j=1 ) from S, for all cj 6= Null it updates

each tuple (mj ,Null, τj , tagj ,Clj , P ) to (mj , cj , τj , tagj ,Clj , P )

� Upon receiving (sid,Retrieve) from P , it reads the time Cl from Gclock and it
returns (sid,Encrypted, {(m, c 6= Null, τ)}∀(m,c,τ,·,Cl′,P )∈Lrec:Cl−Cl′≥delay) to P .

� Upon receiving (sid,Dec, c, τ) from P 6∈ Pcorr:

1. If τ < 0, it returns (sid,Dec, c, τ,⊥) to P . Else, it reads the time Cl from Gclock
and:
(a) If Cl < τ , it sends (sid,Dec, c, τ,More Time) to P .
(b) If Cl ≥ τ , then

– If there are two tuples (m1, c, τ1, ·, ·, ·), (m2, c, τ2, ·, ·, ·) in Lrec such
that m1 6= m2 and c 6= Null where τ ≥ max{τ1, τ2}, it returns to P
(sid,Dec, c, τ,⊥).

– If no tuple (·, c, ·, ·, ·, ·) is recorded in Lrec, it sends (sid,Dec, c, τ) to S
and returns to P whatever it receives from S.

– If there is a unique tuple (m, c, τdec, ·, ·, ·) in Lrec, then if τ ≥ τdec, it
returns (sid, Dec, c, τ , m) to P . Else, if Cl < τdec, it returns (sid, Dec,
c, τ , More Time) to P . Else, if Cl ≥ τdec > τ , it returns (sid, Dec, c, τ ,
Invalid Time) to P .

� Upon receiving (sid,Leakage) from S, it reads the time Cl from Gclock and
returns (sid,Leakage, {(m, c, τ)}∀(m,c,τ≤leak(Cl),·,·,·)∈Lrec) to S.

� Whatever message it receives from P ∈ Pcorr, it forwards it to S and vice versa.

Fig. 1. Functionality F leak,delay
TLE parameterized by λ, a leakage function leak, a delay

variable delay ,interacting with simulator S, parties in P, and global clock Gclock.

5 Realization of F leak,delay
TLE via time-lock puzzles

In this section, we present the realization of FTLE via a protocol that uses a pair
of encryption/decryption algorithms that satisfy a specific security notion that
we formally define in Definition 1. We prove that our construction which is based
on [42] and [49] is secure with respect to the required security notion.
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The general idea of a time-lock puzzle scheme is that the parties have re-
stricted access to a specific computation in any given period of time for solving
a puzzle. In [49]’s case that computation is repeated squaring, and in [42] the
computation is sequential hash evaluations. Of course, the underlying assump-
tion here is that there is no “better” way to solve that puzzle except for sequen-
tially applying the specific computation. Some of the most prominent proposed
time-lock constructions are based on such assumption [49,41,3,42].

In the UC framework, to construct a time-lock protocol we need to abstract
such computations through an oracle FOeval

. The reasoning behind this modelling
is simple. In the UC framework, all the parties are allowed to run polynomial
time with respect to the protocol’s parameter. As a result, it is impossible to
impose on a party the restriction that in a specific period of time they can
only execute a constant number of computations. This is why we abstract such
computations as a functionality/oracle and wrap the oracle with a functionality
wrapper that restricts the access to the oracle. The approach is similar to the
one proposed in [3], for modelling proof-of-work in the Bitcoin protocol.

In the following paragraphs, we present the evaluation oracle FOeval
, the func-

tionality wrapper Wq(FOeval
) and the protocol ΠTLE. We provide a security def-

inition that captures both correctness and one-wayness of TLE constructions.
The latter is illustrated via an experiment in a game-based style described in
Figure 5. We prove that ΠTLE UC realises FTLE given that the underlying TLE
construction satisfies our security definition. Having at hand a UC realisation
and given that our ideal functionality FTLE captures accurately the concept of
what we expect from a TLE scheme, this validates the definition of security of
TLE algorithms.

In the following section, we propose a new TLE construction and prove it
satisfies our security definition, completing our construction argument. Finally,
we provide a stand-alone security definition in the same spirit as IND-CPA
security, named IND-CPA-TLE, which is captured via an experiment. We prove
that Astrolabous satisfies this as well.

Our security definition that captures the one-wayness of a TLE construction
was enough for having a UC realization. Although one-wayness as a property
is very weak when arguing about the security of an encryption scheme, in our
case was enough as we do not use the actual construction but we extend it in
the random oracle model. On the other hand, such definition in the stand alone
model is weak. That was the reason of why we introduced IND-CPA-TLE.

The evaluation functionality FOeval
The evaluation functionality captures

the computation that is needed for a time-lock puzzle to be solved by the desig-
nated parties. An explanatory example can be found bellow.

Initially, the functionality FOeval
, as described in Figure 2, creates the list

Leval for keeping a record of the queries received so far. Then, upon receiving a
query from a party in P, FOeval

checks if this query has been issued before. If this
is the case, it returns the recorded pair. If not, then for the query x it samples
the value y from the distribution Dx and returns to that party the pair (x, y).
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The distribution Dx in cases such as in [41,3,42] is a random value over a
specific domain. Thus, FOeval

is the random oracle in these cases. More precisely,
Dx = U{0, 2n − 1} where U is the uniform distribution and [0, 2n − 1] is its
domain, in our example the domain of the random oracle. In that case, the
parametrization of D with x is unnecessary. On the other hand, if we study
other time-lock puzzles such as the one in [49], where the computation to solve
a puzzle is the repeated squaring, the parametrization of D with x becomes
necessary. More intuition for D can be found in Supporting Material C.2.

Example 1. Adapting the relative time-lock puzzle of [42] to our modelling ap-
proach, the evaluation functionality is instantiated by the random oracle. Let us
consider that the solution of the puzzle is the value r. The creator of the puzzle
P chooses the desired difficulty of the puzzle, τ . Then, P splits the puzzle r into
qτ equal pieces r0, . . . , rqτ such that r = r0|| . . . ||rqτ . Here, q is the maximum
number of evaluation queries that the party can make to the oracle in one round.
Remember that the essence of round can be defined with respect to the function-
ality Gclock. Next, P makes one call to the random oracle functionality with the
values (r0, . . . , rqτ−1) and receives back (yr0 , . . . , yrqτ−1

). Note that this call is
counted as one. Finally, P creates the puzzle (r0, y0⊕r1, . . . , yrqτ−1

⊕rqτ ) for the
secret r. Now, if some party P ∗ wants to solve the puzzle, it needs to send the
query r0 to the random oracle functionality. Upon receiving the value y0 back
from the random oracle functionality, P ∗ computes r1 = y0 ⊕ (y0 ⊕ r1). Next,
it repeats the procedure with the value r1. Note that, the maximum number
of evaluation queries to the functionality oracle in one round is q and thus the
puzzle to be solved needs τ rounds. It is worth mentioning that for capturing the
limited access to the functionality in the UC framework, a functionality wrapper
needs to be defined as it is described in a dedicated Paragraph below .

The evaluation functionality FOeval(D,P).

Initializes an empty evaluation query list Leval.

� Upon receiving (sid,Evaluate, x) from a party P ∈ P, it does:

1. It checks if (x, y) ∈ Leval for some y. If no such entry exists, it samples y
from the distribution Dx and inserts the pair (x, y) to Leval. Then, it returns
(sid,Evaluated, x, y) to P . Else, it returns the recorded pair.

Fig. 2. Functionality FOeval parameterized by λ, a family of distributions D = {Dx|x ∈
X} and a set of parties P.
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Functionality wrapper Wq(FOeval ,Gclock,P).

� Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set Pcorr.

� Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ P \Pcorr it reads the time
Cl from Gclock and does:

1. If there is not a list LP it creates one, initially as empty. Then it does:
(a) For every k in {1, . . . , j}, it forwards the message (sid,Evaluate, xk) to
FOeval .

(b) When it receives back all oracle queries, it inserts the tuple-(Cl, 1) ∈ LP .
(c) It returns (sid,Evaluate, ((x1, y1), . . . , (xj , yj))) to P .

2. Else if there is a tuple-(Cl, jc) ∈ LP with jc < q, then it changes the tuple to
(Cl, jc + 1), and repeats the above steps 1a,1c.

3. Else if there is a tuple-(Cl∗, jc) ∈ LP such that Cl∗ < Cl, it updates the tuple
as (Cl, 1), and repeats the above steps 1a,1b,1c.

� Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ Pcorr it reads the time Cl
from Gclock and repeats steps 1,3 except that it keeps the same list, named Lcorr, for
all the corrupted parties.

Fig. 3. The Functionality wrapperWq(FOeval) parameterized by λ, a number of queries
q, functionality FOeval , Gclock and parties in P.

The functionality wrapper Wq(FOeval
) Our wrapper is defined along the lines

of [3]. The functionality wrapper is an ideal functionality parameterized by an-
other ideal functionality, mediating the access to the latter functionality only
possible through the wrapper. Moreover, the wrapper restricts the access to the
parameter functionality allowing parties to access it only a certain number of
times per round. Here, the notion of round is defined with respect to the Gclock
functionality defined in Figure 7. In a nutshell, the wrapper models in the UC
setting the limited resources a party has at their disposal for solving the under-
lying puzzle. Because in UC every party is a PPT ITM, the same holds for the
adversary. So, the adversary can interact with any functionality polynomially
many times in each round. There are several protocols that hinge their security
on the limited computational capabilities of the participants. For example, the
whole security argument for the Bitcoin protocol [44] goes as follows: if the ad-
versary does not maintain more than 50% of the network’s hashing power, then
some desired properties hold. Modelling this in the UC framework would mean
that the parties try to extend the ledger by engaging in a series of hash evalua-
tions [25]. If the parties and the adversary have unlimited access to the random
oracle functionality (the modelling of the hash function in UC) that would mean
that an adversary with less than 50% of hashing power can violate the common
prefix property in [25]. For that reason, we need to restrict the access to the
random oracle functionality, as in [3]. In particular, we need to restrict the ac-
cess each party has to FOeval

, else the time-lock puzzle can be solved in just one
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round, making the whole modelling of TLE in UC defective. Next, follows the
description ofWq(FOeval

). The description ofWq(FOeval
) and insightful comments

behind its design can be found in Supporting Material C.4. In the rest of this
work we use the abbreviation Wq(FOeval

) instead of Wq(FOeval
,Gclock,P) when it

is obvious from the context.

The protocol ΠTLE: We are now ready to present the protocol ΠTLE which is
proved in later Sections that it UC realises the FTLE functionality. The protocol
consists of the functionality wrapper Wq(FOeval

) as described in Figure 3, the
global clock Gclock, the random oracle FRO, the broadcast functionality FBC and
a set of parties P (the descriptions can be found in Supporting Material A.1).

Example 2. Recall Example 1 and assume the time-lock puzzle c = (r0, y0 ⊕
r1, . . . , yrqτdec−1

⊕ rqτdec). If the function wit con is given less than qτdec oracle
responses (e.g. (y0, . . . , yqτdec−3)) for the puzzle c, it returns ⊥ else it returns
wdec = (r0, y0, . . . , yrqτdec−1

, c). Note that here, the ciphertext and the puzzle
coincide as there is no actual encryption of a message. Thus, fpuzzle is simply the
identity function.

Necessity of extending the TLE algorithms: In order to realise FTLE with some
TLE construction we need to extend a given TLE algorithm in the random or-
acle model. Recall that in FTLE all the ciphertexts eventually open. To capture
semantic security, the ciphertext contains no information about the actual mes-
sage, in contrast to the real protocol that contains the encryption of the actual
message. So, for the simulator to simulate this difference when the messages
are opened, S must be able to equivocate the opening of the ciphertext, else
the environment Z can trivially distinguish the real from the ideal execution of
the protocol. When we say that S equivocates the opening of the ciphertext, it
means that S can open a ciphertext to whatever plaintext message needs to be
opened. Equivocation is also used for other cryptographic primitives, such as bit
commitments, where the simulator can equivocate because it knows the trapdoor
information related to the common reference string (CRS) [40]. Our extension,
that can be applied to any TLE construction, offers the feature of equivocation
but at the expense of assuming the random oracle model. More information and
insightful comments can be found in Supporting Material C.5.

Description of protocol ΠTLE: Each party P maintains the list of recorded mes-
sages/ciphertexts LPrec, in which the requested messages for encryption by Z are
stored along with the ciphertext of that message (initially stored as Null), a
random identifier of the message tag, the time τ that the message should open,
the time Cl that it is recorded for the first time and a flag which shows if that
message has been broadcast or not to the other parties. When a party receives
the broadcast ciphertext, she extracts the underline puzzle with the function
fpuzzle from that ciphertext and stores it along with its difficulty τdec, the set of
oracle queries/responses issued to the oracle FOeval

so that puzzle to be solved
with the help of the preparation function state, the time Cl that this tuple was
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Table 1. Functions and list each party holds in ΠTLE.

Functions/Lists Description

P,N,Q,R,C,M,W
The space of time-lock puzzles, integers, oracle queries
and responses to/from FOeval , ciphertexts, plaintexts and witnesses.

eFOeval
: M× N×Q/R→ C

The encryption algorithm takes as input the plaintext, the
puzzle difficulty and the pair of oracle queries/responses so
that the puzzle can be created.

dFOeval
: C×W→M

The decryption algorithm takes as input the ciphertext and the
secret key.

fstate : P× N×Q/R→ Q

It prepares the next oracle query to FOeval . Specifically, it
accepts a puzzle, the number of query that needs to be prepared
and all the previous queries and responses from the oracle.

fpuzzle : C→ P It extracts the time-puzzle from a ciphertext.

puz cr : M× N→ Q

The puzzle creation function takes as input the plaintext and
the desired difficulty and creates the oracle queries so that a
puzzle for that plaintext of that difficulty can be created.

wit con : Q/R× N×P→W
The witness construction function that returns the solution
of the puzzle or the witness if that is possible.

LPrec The list of the generated ciphertexts.

(z, τ, {(statezk, yk)}jtk=0, jc, jt)

The tuple contains a puzzle z, the difficulty of the puzzle τ ,
the pairs of oracle queries/responses to solve puzzle z, the
current number jc of oracle queries in that round and the
total number of oracle queries jt.

last time updated, a counter j that shows how many queries are issued for that
puzzle this turn and a counter jt that shows the total number of queries issued
for that puzzle.

If party accepts encryption requests by Z, she returns the message Encrypting,
delaying the encryption for one round. When a party either receives a clock
advancement command or decryption, she performs the procedure PuzzleEn-
cryption, in which the party issues all her q oracle queries both for solving and
encrypting the pending messages for that round. More details on the description
of ΠTLE can be found in Supporting Material C.6.
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ΠTLE(Wq(FOeval), eFOeval
, dFOeval

, fstate,wit con, fpuzzle, puz cr,Gclock,FRO,FBC,P).

Each party maintains the list of recorded messages/ciphertexts LPrec, initially as
empty, a tag space TAG and the algorithms (eFOeval

, dFOeval
) . Moreover, she follows

the procedure described below:

Puzzle:

1. Preparing queries for puzzle creation: She collects all tuples

{(mj ,Null, τj , tagj ,Clj , 0) ∈ LPrec}
p1(λ)
j=1 for Clj = Cl. She picks {rj1

$←
{0, 1}p

∗(λ)}p1(λ)j=1 . For each j she computes puz cr(rj1, τj− (Cl+1))→ {xk}p2(λ)k=1 .

2. Puzzle solving: For (jl = 0, jl < q, jl++) she collects all {stateznjt }
p3(λ)
n=1 , such

that (zn, τdec, {(stateznk , yk)}jtk=0,Cl, 0, jt) is recorded.
(a) Parallelize puzzle creation queries and puzzle solve: If jl = 0, she

sends (sid,Evaluate, {stateznjt }
p3(λ)
n=1 ∪{xk}

p2(λ)
k=1 ) toWq(FOeval) and receives

back (sid,Evaluate, {(stateznjt , y
∗
jt)}

p3(λ)
n=1 ∪{(xk, yk)}p2(λ)k=1 ). Else she sends

(sid,Evaluate, {stateznjt }
p3(λ)
n=1 ) to Wq(FOeval).

(b) Update the record: In each case, she updates each tuple as
(zn, τdec, {(stateznk , yk)}jt+1

k=0 ,Cl, jl + +, jt + +) where stateznjt+1 =

fstate(zn, jt, {(stateznk , yk)}jtk=0), yjt+1 = Null and yjt ← y∗jt . In case that
jl = q, she changes the Cl in the tuple to Cl + 1 and jl = 0.

Encryption:

1. Time-lock encryption: She computes {cj1 ← eFOeval
(rj1, {(xk, yk)}p2(λ)k=1 , τj−(Cl+

1))}p1(λ)j=1 .

2. Extended encryption: For each rj1, she sends (sid,Query, rj1) to FRO. Upon re-
ceiving (sid,Random Oracle, rj1, h

j) from FRO, P sends (sid,Query, rj1||mj)
to FRO. Upon receiving (sid,Random Oracle, rj1||mj , c

j
3) from FRO, she com-

putes cj ← (cj1, h⊕m, c
j
3) and updates the tuple (mj , cj , τj , tagj ,Clj , 0)→ LPrec.

� Upon receiving (sid,Enc,m, τ) from Z, P reads the time Cl from Gclock and if
τ < 0 she returns (sid,Enc,m, τ,⊥) to Z. Else, it does:

1. She picks tag
$← TAG and she inserts the tuple (m,Null, τ, tag,Cl, 0)→ LPrec.

2. She returns (sid,Encrypting) to Z.

� Upon receiving (sid,Advance Clock) from Z, P reads the time
Cl from Gclock. She executes both Puzzle and Encryption procedure.
Then, she sends (sid,Broadcast, {(cj , τj)}p1(λ)j=1 ) to FBC. Upon receiv-

ing (sid,Broadcasted, {(cj , τj)}p1(λ)j=1 ) from FBC, for each j she updates
each tuple (mj ,Null, τj , tagj ,Clj , 1) to (mj , cj , τj , tagj ,Clj , 1) and sends
(sid,Advance Clock) to Gclock.
� Upon receiving (sid,Retrieve) from Z, P reads the time Cl from Gclock and
returns (sid,Encrypted, {(mj , cj , τj) : (mj , cj , τj , ·,Clj , 1) ∈ LPrec : Cl − Clj ≥ 1})
to Z.
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� Upon receiving (sid,Broadcast, {(cj , τj)}p1(λ)j=1 ) from FBC where cj = (cj1, c
j
2, c

j
3),

P reads the time Cl from Gclock and does for every j:

1. She computes state
fpuzzle(c

j
1)

0 ← fstate(fpuzzle(c
j
1), 0,Null).

2. She records the tuple-(fpuzzle(c
j
1), τdec, {(state

fpuzzle(c
j
1)

0 ,Null)},Cl, 0, 0).

� Upon receiving (sid,Dec, c := (c1, c2, c3), τdec) from Z, P reads the time Cl from
Gclock. Then she does:

1. If τdec < 0, she returns (sid,Dec, c, τdec,⊥) to Z.
2. If Cl < τdec, she returns (sid,Dec, c, τdec,More Time).

3. She searches for a tuple (fpuzzle(c1), τ, {(statefpuzzle(c1)k , yk)}jtk=0,Cl, q, jt). If τdec <
τ ≤ Cl then she returns (sid,Dec, c, τdec, Invalid time) to Z.

4. She computes wτdec ← wit con({(statefpuzzle(c1)k , yk)}jtk=0, τdec, fpuzzle(c1)).
5. She runs x ← dFOeval

(c1, wτdec) and she sends (sid,Query, x) to
FRO. Upon receiving (sid,Random Oracle, x, h) from FRO, she computes
m ← h ⊕ c2. She sends (sid,Query, x||m) to FRO. Upon receiving
(sid,Random Oracle, x||m, c∗3) from FRO: If c3 6= c∗3, she returns to Z
(sid,Dec, c, τdec,⊥). Else, she returns to Z (sid,Dec, c, τdec,m).

6. If such tuple does not exist then she returns (sid,Dec, c, τdec,⊥) to Z.

Fig. 4. The Protocol ΠTLE in the presence of a functionality wrapperWq, an evaluation
functionality FOeval , a random oracle FRO, a broadcast functionality FBC, a global clock
Gclock, where eFOeval

, dFOeval
, fstate, wit con and fpuzzle are hard-coded in each party in P.

5.1 Security definitions of time-lock puzzles

In this Subsection, we provide security definitions that a TLE scheme (e.g a pair
((eO, dO)) must satisfy to provide a UC realization of our FTLE functionality. Our
security definition captures two properties, namely Correctness and qSecurity. A
TLE scheme that satisfies both properties is considered one-way secure based
on Definition 1.

Intuitively, the Correctness property states that the decryption of the ci-
phertext with underlying plaintext m results in the message m itself with high
probability provided that the underlying time-lock puzzle has been solved. The
qSecurity property is described in a game-based style via the experiment in Fig-
ure 5 and states that an adversary can win the experiment only with a very small
probability. Specifically, the experiment captures the one-way security of a TLE
scheme as in the concept of one-way functions security [29,28]. Although indis-
tinguishability, like in IND-CPA security [28,39], is stronger than the hardness
to reverse a function, for our purpose of achieving UC realization (Theorem 1)
it is enough. This is possible because we extend our TLE construction into a
bigger one in the random oracle model and we rely on the hardness of inverting
the underlying TLE construction. Because of that, in Subsection 6.3, we provide
an indistinguishability game-based definition, similar to IND-CPA but in the
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context of TLE so that we can argue about the security of a TLE construction
even in the standalone model.

In Figure 5, we present the experiment EXPTLE in the presence of a chal-
lenger Ch and an adversary B. More details on the description of EXPTLE can
be found in Supporting Material C.7.

The experiment EXPTLE(B,Oeval, eOeval , dOeval , fstate, fpuzzle, q)

Initialization Phase.

� Ch is initialized with eOeval , dOeval and sends them to B. In addition it creates a
local time counter Clexp.

Learning Phase.

� When B issues the query (Evaluate, x) to Oeval through the Ch, he gets back
(Evaluate, x, y).

� B can request the encryption of a message m ∈Mλ with time label τdec by send-
ing (Enc,m, τdec) to Ch.

� When Ch receives a (Enc,m, τdec) request from B, it runs the algorithm
eOeval(m, τdec)→ c and returns c to B.

� Ch increases Clexp by 1 for every q queries B issues to Oeval.

� B can request the decryption of a ciphertext c by sending (Dec, c, wτ ) to Ch.
Then, Ch just runs the algorithm dOeval(c, wτ ) → y ∈ {m,⊥} and returns to B
(Dec, c, wτ , y).

Challenge Phase.

� B can request for a single time a challenge from Ch by sending (Challenge, τ).

Then, Ch picks a value r
$←Mλ and sends (Challenge, τ, cr ← eOeval(r, τ −Clexp))

to B. Then, B is free to repeat the Learning Phase.

� B sends as the answer of the challenge the message (Challenge, τ, cr, r
∗) to Ch.

� If (r∗ = r)∧ (τ > Clexp) (i.e. B manages to decrypt cr before the decryption time
comes) then EXPTLE outputs 1. Else, EXPTLE outputs 0.

Fig. 5. Experiment EXPTLE for a number of queries q, function fstate, message do-
main Mλ, algorithms eOeval , dOeval in the presence of an adversary B, oracle Oeval and a
challenger Ch all parameterized by 1λ.

Definition 1. A one-way secure time-lock encryption scheme with respect to an
evaluation oracle Oeval, a relation ROeval

, a state function fstate, puzzle function
fpuzzle and a witness construction function wit con for message space M and a
security parameter λ is a pair of PPT algorithms (eOeval

, dOeval
) such that:

– eOeval
(m, τdec): The encryption algorithm takes as input message a m ∈ M,

an integer τdec ∈ N and outputs a ciphertext c.
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– dOeval
(c, wτdec): The decryption algorithm takes as input wτdec ∈ {0, 1}∗ and a

ciphertext c, and outputs a message m ∈M or ⊥.

The pair (eOeval
, dOeval

) satisfies the following properties:

1. Correctness: For every λ, τdec ∈ N,m ∈M and wτdec , it holds that

Pr
[
m′ ← dOeval

(eOeval
(m, τdec), wτdec)∧ROeval

(wτdec , (fpuzzle(c), τdec)) : m′ = m
]
> 1−negl(λ)

where wτdec can be constructed from the received responses of Oeval and func-
tion wit con as it is described in both Table 1 and Figure 4.

2. qSecurity: For every PPT adversary B with access to oracle Oeval, the prob-
ability to win the experiment EXPTLE and thus output 1 in Figure 5 is
negl(λ).

5.2 Proof of UC realizing F leak,delay
TLE

In this Subsection we show that if the TLE scheme used in protocol ΠTLE in
Figure 4 is a secure time-lock encryption scheme according to Definition 1 then
the protocol ΠTLE UC realizes FTLE. We provide the proof of the theorem below
in Supporting Material C.8.

Theorem 1. Let (eOeval
, dOeval

) be a pair of encryption/decryption algorithms
that satisfies Definition 1. Then, the protocol ΠTLE in Figure 4 UC-realizes func-
tionality F leak,delay

TLE in the (Wq(F∗RO),Gclock,FRO,FBC)-hybrid model with leakage
function leak(x) = x+1, delay = 1, where FRO and F∗RO are two distinct random
oracles.

On the importance of instantiating FOeval
with F∗RO: In our proof, we instantiate

the functionality FOeval
with F∗RO, so that Z cannot bypass the interaction with

the functionality wrapper and thus breaches the security argument of our proof.
For more information and insightful comments see Supporting Material C.9.

6 Astrolabous: A UC-secure TLE construction

We present and prove that our relative TLE construction is a secure time-lock
encryption scheme according to Definition 1. Our scheme combines the construc-
tion of [42] and [49].

First, we present our TLE construction, namely Astrolabous, and the proof of
security, i.e. Astrolabous satisfies Definition 1. Finally, for the sake of complete-
ness, we present the equivocable Astrolabous algorithm, which is the algorithm
that is used in the hybrid protocol in Figure 4.

We did not adopt any of the TLE constructions provided in [49] and [42]
because they can not provide us with the necessary security properties we are
seeking in our theoretical framework so that we can UC realise FTLE. More details
and insightful comments can be found in Supporting Material C.9.
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Description of the Astrolabous scheme Initially, we provide the necessary
glossary in Table 2. We name our construction Astrolabous from the ancient
Greek clock device Astrolabe, which was used by the astronomers of that era to
perform different types of calculations including the measurement of the altitude
above the horizon of a celestial body, identification of stars and the determination
of the local time.

We refer to the encryption/decryption algorithms of the Astrolabous scheme
in Subsection 6.1 as AST.enc,AST.dec where AST is the abbreviation of Astrolabous.
In Subsection 6.2, we refer to the equivocable encryption/decryption algorithms
as EAST.enc,EAST.dec where the letter E indicates the extended algorithms of
the Astrolabous scheme.

Table 2. The glossary of Astrolabous scheme.

Notation Description

E = (enc, dec) a symmetric key encryption scheme

H,G two hash functions (modelled as random oracles)

b
$← D b is sampled uniformly at random from D

X.enc,X.dec
encryption and decryption algorithm respectively
of scheme X

⊕ the XOR bit operation, e.g. 0⊕ 1 = 1, 1⊕ 1 = 0

x||y the concatenation of two bit strings x and y

6.1 AST scheme description (AST.encE,H,AST.decE,H)

AST.encE,H(m, τdec): The algorithm accepts as input the message m and the
time-lock’s puzzle difficulty τdec

2 and does:

– Picks kE
$← KE, where KE is the key space of the symmetric encryption

scheme E and the size of the key is equal to the domain of the hash function
H equal to p1(λ). Then compute cm,kE ← enc(m, kE).

– It picks r0||r1|| . . . ||rqτdec−1
$← {0, 1}p2(λ) and computes ckE,τdec ← (r0, r1 ⊕

H(r0), r2 ⊕H(r1), . . . , kE ⊕H(rqτdec−1)3.
– It outputs c = (τdec, cm,kE , ckE,τdec) as the ciphertext.

AST.decE,H(c, wτdec): The algorithm accepts as input the ciphertext c of the form
(τdec, cm,kE , ckE,τdec) and the witness wτdec = (r0,H(r0),H(r1), . . . ,H(rqτdec−1), c)

2 Note that this time difficulty is relative, that means that it specifies the duration
for solving the puzzle rather than the specific date at which the puzzle should be
solved.

3 To do this efficiently all the hash queries can be performed simultaneously
as kE and r0||r1|| . . . ||rqτdec−1 are known. In the UC setting, the party sends
(sid,Evaluate, τdec) to Wq and receives back (sid,Evaluate, τdec, {(rj , yj)}qτdec−1

j=0 ).
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that can be computed by issuing qτdec random oracle queries. Specifically, to
solve the puzzle the first oracle query is r0 and the response H(r0). Then, the de-
cryptor computes the value r1 from ckE by using the XOR operation such as r1 ←
ckE,τdec [1]⊕H(r0). Similarly, it computes the pair of values (r2,H(r2)), . . . , (rqτdec−1,H(rqτdec−1)).
Then it does:

– It computes kE = H(rqτdec−1) ⊕ ckE,τdec [qτdec], where ckE,τdec [j] indicates the
jth element in vector ckE,τdec .

– It computes and outputs m← dec(cm,kE , kE).

In Table 3, we summarize the oracle, algorithms, functions and relation that
define a TLE scheme as in Definition 1. We instantiate these to specify our TLE
construction.

Table 3. Oracle, algorithms, functions and relation that define a TLE construction.

TLE items Description

Oeval

the oracle to which the parties issue queries for
solving/creating time-lock puzzles

(eOeval , dOeval)
the pair of encryption/decryption algorithms with
respect to the oracle Oeval

fstate

the state function that prepares the next oracle query
to Oeval

fpuzzle

the puzzle function that extracts the time-lock puzzle
from a given ciphertext

wit con
the witness construction function that returns the
solution of the puzzle or the witness if that is possible

ROeval

the relation that specifies when a witness w is a solution
to a puzzle c with difficulty τ

We instantiate the items from Table 3 based on our construction as shown
below.

1. The oracle Oeval is the random oracle RO.
2. The encryption and decryption algorithms (eOeval

, dOeval
) are described as

AST.encE,H,AST.decE,H. Our algorithm is relative, meaning that we define
the difficulty of the time-lock puzzle rather than the specific time that the
message will eventually open. For our algorithms to be compatible with the
UC setting, for a given time τdec we must define the difficulty of the puzzle.
In that case, given the current time is Cl, the puzzle complexity is τdec − Cl.
The time τdec gives us the essence of absolute time that a ciphertext should
be opened. On the other hand, both constructions in [42,49] function in rel-
ative time. To compute relative time, both values Cl and τdec are provided
to eFOeval

.
3. The state function fstate for a ciphertext c = (τdec, cm,kE , ckE,τdec) as described

previously, is defined as:

fstate(c, 0,Null) = ckE,τdec [0] (1)
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and ∀j ∈ {1, . . . , q(τdec − Cl)− 1} it holds that:

fstate(c, j, y = H(rj−1)) = y ⊕ ckE,τdec [j] (2)

4. The puzzle function fpuzzle for a ciphertext c = (τdec, cm,kE , ckE,τdec) is defined
as:

fpuzzle(c) = ckE,τdec (3)

5. The witness construction function wit con accepts the input described in
Figure 4 and outputs the witness described in the same figure. More details
can be found in Supporting Material C.6.

6. A pair (wτdec = (r0,H(r0),H(r1), . . . ,H(rq(τdec−Cl)−1)), (fpuzzle(c), τ)) is in
RFOeval

, where wτdec and c have the same form as in the description of AST.decE,H,
if |wτdec | = |fpuzzle(c)| and w[j] = ckE,τdec [j]⊕H(w[j−1]) for all j ∈ [0, q(τdec−
Cl)− 2], where w[−1] = 1.

The following theorem states that our TLE construction satisfies Definition 1.
The proof is provided in Supporting Material D.1.

Theorem 2. Let AST.encE,H,AST.decE,H be the pair of encryption/decryption
algorithms just described. If the underlying symmetric encryption scheme E satis-
fies IND− CPA security and correctness, then the pair (AST.encE,H,AST.decE,H)
is a secure TLE scheme according to Definition 1 in the random oracle model.

6.2 Equivocable Astrolabous scheme description
(EAST.encE,H,G,EAST.decE,H,G)

For our purposes, it is not enough to adopt directly a TLE construction and
make security claims in the UC framework because we cannot equivocate, which
is essential. For that reason, we have shown in our hybrid protocol in Figure 4
how to extend any TLE construction in order for our security claims to be
compatible with the UC framework. We provide the description of our extended
algorithm in Supporting Material D.2.

6.3 IND-CPA-TLE security

Game-based definitions are often natural and easy to use. Unfortunately, the
experiment EXPTLE presented in Figure: 5 is not enough to argue about the
security of a TLE scheme on its own, and is only useful in the context of the
Theorem: 1. The reason is that EXPTLE argues about only the onewayness of
a TLE scheme, leaving aside any semantic security. On the other hand, it is
enough for the proof of Theorem: 1 as we use an extension of the TLE scheme
in the random oracle model and not the scheme as it is.

Below, we present the analogous experiment of the IND-CPA security notion
in the time-lock setting. In a nutshell, this experiment is the same as the one in
Figure: 5 except that the adversary in the Challenge command specifies two
messages (m0,m1) as in the classical IND-CPA game. Again, in order to win
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the game, the adversary B must guess correctly which of the two messages is
encrypted by the challenger Ch without engaging with the oracle more than the
desired amount of times. In case he wins, that would mean that he managed to
“break” the TLE scheme in the sense that he decrypted the message before its
decryption time.

The experiment EXPIND−CPA−TLE(B,Oeval, eOeval , dOeval , fstate, fpuzzle, q)

Initialization Phase.

� Ch is initialized with eOeval , dOeval and sends them to B. In addition, it creates a
local time counter Clexp.

Learning Phase.

� When B issues the query (Evaluate, x) to Oeval through the Ch, he gets back
(Evaluate, x, y).

� B can request the encryption of a message m ∈Mλ with time label τdec by send-
ing (Enc,m, τdec) to Ch.

� When Ch receives a (Enc,m, τdec) request from B, it runs the algorithm
eOeval(m, τdec)→ c and returns c to B.

� Ch increases Clexp by 1 every time B queries Oeval q times.

� B can request the decryption of a ciphertext c by sending (Dec, c, w) to Ch.
Then, Ch just runs the algorithm dOeval(c, w) → y ∈ {m,⊥} and returns to B
(Dec, c, w, y).

Challenge Phase.

� B can request for a single time a challenge from Ch by sending

(Challenge, (m0,m1), τ). Then, Ch picks a value b
$← {0, 1} and sends

(Challenge, τ, c← eOeval(mb, τ −Clexp)) to B. Then, B is free to repeat the Learn-
ing Phase.

� B sends as the answer of the challenge the message (Challenge, τ, c,mb∗) to Ch.

� If (mb∗ = mb) ∧ (τ > Clexp) (i.e. B manages to decrypt cr before the decryption
time comes) then EXPTLE outputs 1. Else, EXPTLE outputs 0.

Fig. 6. Experiment EXPIND−CPA−TLE for a number of queries q, function fstate, message
domain Mλ, algorithms eOeval , dOeval in the presence of an adversary B, oracle Oeval and
a challenger Ch all parameterized by 1λ.

Definition 2. A pair of TLE algorithms (eOeval
, dOeval

) as described in Defini-
tion 1 is IND-CPA-TLE, if for every PPT adversary B the probability to win
the experiment described in Figure 5 is 1/2 + negl(λ).

Mahmoody et al. construction is not IND-CPA-TLE: Recall the construction
in [42] for encrypting a message m or a secret in general. It can be easily seen
that it does not satisfy Definition 2, as the secret is spread across the puzzle, and
thus part of it is leaked as the puzzle is solved (see Supporting Material D.3).

27



In contrast, next we show both Astrolabous and an enhanced version of the
construction in [42], we called it MMV 2.0 from the first letter of each author,
are IND-CPA-TLE.

MMV 2.0: As we explained above, the construction in [42] does not satisfy
IND-CPA-TLE security because it spreads the message all over the puzzle. A
natural question is if it satisfies our game based definition when the message is
not spread across all over the puzzle, but instead, it is XORed in the last hash
evaluation. Specifically, eMM0.1(m, τ)→ (r0, r1⊕H(r0), . . . ,m⊕H(rτq−1), where
r = r0|| . . . ||rτq−1 is a random string. In that case, as we see next, the MMV 2.0
satisfies IND-CPA-TLE. The proof can be found in Supporting Material D.4.

Theorem 3. The construction MMV 2.0 as described above is IND-CPA-TLE
secure.

Next we show that Astrolabous is also IND-CPA-TLE secure. The reasoning
again is exactly the same as the one in theorem 2 except that the IND-CPA
adversary sends the messagesm0,m1 received from the IND-CPA-TLE adversary
to the challenger instead of choosing his own. The rest are exactly the same and
thus we omit the proof.

Theorem 4. Astrolabous is IND-CPA-TLE secure.

Even if both Astrolabous and MMV 2.0 are IND-CPA-TLE secure, Astrolabous
has a potential advantage in terms of efficiency. Namely, Astrolabous hides the
key of the symmetric cryptosystem that it uses into the puzzle, instead of the
message itself as in MMV 2.0. As a result, many messages can be encrypted under
the same key and be opened at the same time solving just one puzzle. In contrast,
with MMV 2.0, for every message, a new puzzle must be generated, making the
encryption more time-consuming. For example, for a puzzle with difficulty that
should last 24-hours, an 8-core CPU can generate it in 3 hours (24/8). The
total time for encrypting two messages with MMV 2.0 with the above difficulty
is 3 hours for the first message and 2.625 hours (24-1.5/8) for the second, in
total 5.625 hours. With Astrolabous one puzzle can be used for both messages,
making the total encryption time just 3 hours. The gap becomes even bigger if
we consider several encryptions instead of just two. In both examples with did
not consider the time to perform AES, as in practice is very efficient.

Asymmetry of puzzle generation and puzzle solving time with As-
trolabous: A natural question is if the puzzle generation time is significantly
smaller than the time that is required for solving the puzzle. The answer is
positive. Specifically, there are hash functions that are not meant to have an
efficient evaluation, such as Argon2 [7]. Equipped with such function we can
create puzzles that are small (in terms of space) and fast, but at the same time
difficult enough. For example, Argon2 can be parameterized in such a way that a
single hash evaluation can take roughly 60 seconds [53], meaning that an 8-core
processor can generate a puzzle that meant to be solved in 4 hours (equably
14.400 seconds or 14.400/60 = 240 hash evaluations) in just 30 minutes (puzzle
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generation is parallelizable so an 8-core processor can do 8 hash evaluation si-
multaneously which each one of them takes 60 seconds. So 240 hash evaluations
can be done in 30 minutes.). As the number of CPU cores increases the puzzle
generation can become even smaller but at the same time, the time for solving
the puzzle remains unchanged (no parallelization for puzzle solving).
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A Supporting Material for Preliminary section

Universal Composable (UC) framework More formally, let EXECΠZ,A de-
note an execution of a real-world protocol Π in the presence of the adversary A
scheduled by an environment Z, and EXECFZ,S denote an execution of the ideal
protocol managed by F in the presence of a simulator S, again scheduled by Z.
The UC security of Π is defined as follows.

Definition 3 (UC realization [12]). The protocol Π is said to UC-realize the
ideal functionality F if for any PPT adversary A, there exists a PPT simulator
S such that for any PPT environment Z, the random variables EXECΠZ,A and

EXECFZ,S are computationally indistinguishable.

Composition and modularity. Perhaps the most prominent feature of the
UC paradigm is the preservation of security of a protocol that runs concurrently
with other protocol instances, or as a subroutine of another (often more complex)
execution. In particular, assume a protocol Π that UC-realizes an ideal func-
tionality F according to Definition 3, and is used as a subroutine of a “larger”
protocol Π̃. Then, UC guarantees that if we replace any instance of Π with F ,
we obtain a “hybrid” protocol, denoted by Π̃Π→F , that enjoys the same security
as Π̃. Namely, if Π̃ UC-realizes some ideal functionality F̃ , then so does Π̃Π→F .

The power of composition facilitates the design and analysis of complex cryp-
tographic schemes with a high-degree of modularity. Namely, the scheme’s formal
description can be over the composition of ideal modules that are concurrently
executed as subroutines. When a protocol Π using the functionalities F1, . . . ,Fk
UC-realizes a functionality F , we say that it does so in the {F1, . . . ,Fk}-hybrid
model and we write ΠF1,...,Fk to clearly denote the hybrid functionalities. For in-
stance, an e-voting system Πvote can be described using the ideal functionalities
Fsc, Fauth and FBB that formalize the notions of a secure channel, an authenti-
cated channel, and a Bulletin Board, respectively. In this case, we say that Πvote

is UC-secure in the {Fsc,Fauth,FBB}-hybrid model and we write ΠFsc,Fauth,FBB
vote to

clearly denote the hybrid functionalities. Furthermore, composition allows us to
extend secure modular design into multiple (poly(λ) many) layers, since a proto-
col that uses a hybrid functionality as a subroutine may itself be the subroutine
of another protocol of an “upper layer” until we reach the level of the root ideal
protocol (in our example, an ideal e-voting functionality Fvote).

A.1 Setup functionalities

The global clock functionality Gclock: In Figure 7, we provide the definition
of a global clock functionality Gclock similar to [3]. Time advances only when the
environment has allowed all involved parties to advance [35,3].
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The Global Clock functionality Gclock(P,F).

For each session sid, the functionality initializes the global clock variable Cl ← 0
and the set of advanced parties per round as Ladv ← ∅.
� Upon receiving (sid,Advance Clock) from P ∈ P, if P /∈ Ladv, then it adds P to
Ladv, sends the message (sid,Advance Clock) to P and notifies A by forwarding
(sid,Advance Clock, P ). If Ladv = P ∪ F, then it updates as Cl ← Cl + 1 and
resets Ladv ← ∅.
� Upon receiving (sid,Advance Clock) from F ∈ F, if F /∈ Ladv, then it adds F
to Ladv and sends the message (sid,Advance Clock) to F . If Ladv = P ∪ F, then
it updates as Cl← Cl + 1 and resets Ladv ← ∅.
� Upon receiving (sid,Read Clock) from X ∈ P ∪ F ∪ {Z,A}, then it sends
(sid,Read Clock,Cl) to X.

Fig. 7. The global clock functionality Gclock(P,F) interacting with the parties in P, the
functionalities in F, the environment Z and the adversary A.

That is the standard way of capturing synchronicity in the UC model. Namely,
Gclock is publicly accessible by all entities, and time advances only when the envi-
ronment has allowed all involved parties to advance. Intuitively, UC synchronic-
ity suggests that the environment must respect the synchronization reference
points, yet between consecutive points the protocol flow may be adversarially
scheduled.
The random oracle functionality FRO: In Figure 8, we define a UC random
oracle (RO) as in [45], a setup assumption widely used in the security analysis
of efficient protocols. Like an RO, FRO behaves as a truly random function, by
providing random yet consistent responses to evaluation queries (i.e., multiple
queries for the same preimage x from domain set A result in the same response
h from range set B).

The Random Oracle functionality FRO(P, A,B).

The functionality initializes a list LH ← ∅.
� Upon receiving (sid,Query, x) from P ∈ P, if x ∈ A, then

1. If there exists a pair (x, h) ∈ LH, it returns (sid,Random Oracle, x, h) to P .

2. Else it picks h
$← B, and it inserts the pair to the list LH ← (x, h). Then it

returns (sid,Random Oracle, x, h) to P .

Fig. 8. The random oracle functionality FRO w.r.t. domain A and range B interacting
with the parties in P.
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The broadcast functionality FBC: We make use of a broadcast channel in
order to broadcast to the other parties the resulting ciphertext that includes the
time-lock puzzle. The reason behind this design decision was that the parties
need to start solving immediately the puzzle by the time of its creation, for
more see Supporting Material C.6. The communication interface is formalized
via the functionality FBC described in Figure 9. We stress that our formalization
captures adversaries that can block communication at will via public delayed
output, i.e., the simulator S learns the identities of the parties who send the
messages. Providing a provably UC-secure realization of FBC is out of the scope
of this work. However, there are works that present constructions [36,33] and
provide simulation security [33] in the secure channel model.

The broadcast functionality is parameterized by a set of parties P and it is
along the lines of [30].

The Broadcast functionality FBC(P).

� Upon receiving (sid,Broadcast,M) from P ∈ P, it sends
(sid,Broadcast, P,M) to S.
� Upon receiving (sid,Allow Broadcast, P,M) from S, it sends
(sid,Broadcast,M) to all P ∗ ∈ P \ P and S and (sid,Broadcasted,M)
to P .

Fig. 9. The broadcast functionality FBC interacting with the parties in P =
{P1, . . . , Pn}.

B Supporting Material for Literature review section

B.1 Comparison with [41]

In [41] the authors define a Computational Reference Clock (CRC) which af-
ter specific time period produces the secret key so that a message with the
corresponding time labelling can be decrypted. In this construction, the au-
thors instantiate the CRC with the Bitcoin ledger [3,25,44]. Specifically, they
use a witness encryption scheme [41] with the witness being a part of Bitcoin’s
blockchain. So, every message that was encrypted with label τ can be decrypted
with that part of the chain, which is proportional to τ . So the CRC, in that case,
is the Bitcoin ecosystem that is maintained by Bitcoin miners [44]. Moreover,
they provide security arguments of their construction in a game-based style in
the sense that an adversary that executes t-steps cannot win the game except
with small probability. If we want to argue in UC about the security of this
scheme we have to consider adversaries that execute not a concrete number of
steps (in this case t-steps) but instead asymptotically polynomially many steps
for arbitrary polynomials, which leads us to a new definition.

34



C Supporting Material for Time-Lock Encryption section

C.1 The leakage function leak

For example, if leak(x) = x+1, this means that at current time Cl the adversary
S can retrieve messages that are supposed to be opened at time Cl+ 1, meaning
that the honest parties will gain access to these messages at the next clock
advancement. Specifically, on demand, F leak,delay

TLE gives the record of all messages
with encryption up to leak(Cl) to S, where Cl is the current time provided by
Gclock, and leak a leakage function that takes the current time as input and
returns a later time. This function leak captures the fact that in some cases the
adversary can decrypt messages before their opening time has come. The ideal
leak function with respect to security is the identity one, the one that gives no real
advantage to the adversary in comparison to all other parties. There are however
some time-lock encryption schemes which allow the adversary to decrypt a little
bit earlier than the honest parties. For example, the Bitcoin based time-lock
encryption scheme proposed in [41]. In this scheme, the adversary can locally
compute some witness (e.g selfish mining [23]) without announcing them to the
rest of the parties, providing him with an advantage with respect to decryption.

C.2 The distribution D

Example 3. In our modelling approach, for a random value b ∈ Zn, where n is

a composite number, the k-repeated squaring of b is the value b2
k

. In that case,

the oracle queries are of the form x = b2
k

and the oracle response is y = b2
k+1

.

Thus, the distribution D
b2k

is equal to the constant distribution C{b2k+1} where

the probability to sample the value b2
k+1

is equal to 1.

If FOeval
is instantiated by the random oracle, then the distribution Dx is the

uniform distribution for every x over the domain (0, 2n−1). Similarly in [49], the
distribution is constant as argued above (accepts as input x and returns b2

x

).

C.3 The function wit con

Example 4 (The function wit con). Recall Example 1 and assume time-lock
puzzle c = (r0, y0 ⊕ r1, . . . , yrqτdec−1 ⊕ rqτdec). If the function wit con is given less
than qτdec oracle responses (e.g. (y0, . . . , yqτdec−3)) for the puzzle c, it returns ⊥
else it returns wdec = (r0, y0, . . . , yrqτdec−1

, c). Note that here, the ciphertext and
the puzzle coincide as there is no actual encryption of a message. So fpuzzle is
simply the identity function here.

C.4 Description of Wq(FOeval)

Our wrapper is defined along the lines of [3]. The functionality wrapper is an
ideal functionality parameterized by another ideal functionality, mediating the
access to the latter functionality only possible through the wrapper. Moreover,
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the wrapper restricts the access to the parameter functionality allowing parties
to access it only a certain number of times per round. Here, the notion of round is
defined with respect to the Gclock functionality defined in Figure 7. In a nutshell,
the wrapper models in the UC setting the limited resources a party has at their
disposal for solving the underlying puzzle. Because in UC every party is a PPT
ITM, the same holds for the adversary. So, the adversary can interact with
any functionality polynomially many times in each round. There are several
protocols that hinge their security on the limited computational capabilities
of the participants. For example, the whole security argument for the Bitcoin
protocol [44] goes as follows: if the adversary does not maintain more than 50%
of the network’s hashing power, then some desired properties hold. Modelling
this in the UC framework would mean that the parties try to extend the ledger
by engaging in a series of hash evaluations [25]. If the parties and the adversary
have unlimited access to the random oracle functionality (the modelling of the
hash function in UC) that would mean that an adversary with less than 50% of
hashing power can violate the common prefix property in [25]. For that reason,
we need to restrict the access to the random oracle functionality, as in [3]. The
same holds for our case. We need to restrict the access each party has to FOeval

,
else the time-lock puzzle can be solved in just one round, making the whole
modelling of TLE in UC defective. Next, follows the description of Wq(FOeval

).
The functionality wrapper as described in Figure 3 is parameterized by the

evaluation oracle FOeval
as described in Figure 2, the global clock Gclock, a set of

parties P, and the function fstate.
When Wq(FOeval

) receives an evaluation query from a party P , it reads the
time Cl from Gclock. If this is the first time that this party issued a query, then
it creates the list LP to keep track of how many queries that party does in
one round. Else, Wq(FOeval

) checks if the number of queries the party issued
that round does not exceed q, modelling in this way the limited computational
resources a party has in every round. Last, if the party was activated in previous
rounds, then the counter of issued oracle queries resets to 1, modelling that
unused queries in previous rounds are lost if not made.

When Wq(FOeval
) receives the answer from the functionality oracle FOeval

, it
returns the oracle’s answer to party P .

Adversary can issue q queries in total: The wrapper handles independently
queries issued by corrupted parties. Specifically, it allows q queries in total for
all corrupted parties instead of q for every corrupted party. With that, we model
that the adversary does not possess any advantage for sequential computation
despite the fact how many parties are corrupt, in comparison with each party
individually. Specifically, in reality, a computation can be either parallelized or
not. Each computational task is carried away from a single CPU core at a time.
For example, a 10-core CPU can parallelize a 10-step computation at once. On
the other hand, in the UC framework, all parties can parallelize any arbitrary
polynomial-step computation, assuming that the number of CPU cores they
possess is arbitrary polynomial many. When the computation cannot be paral-
lelized, despite how many cores a party has at their disposal, they can process
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one computation at a time, leaving aside any advantage of the number of CPU
cores they possess. For example, if the adversary corrupts two parties or ten
with 10-CPU each (twenty and one hundred in each case respectively) it is the
same for sequential computation. This is exactly what we illustrate in our func-
tionality wrapper, and thus giving to the adversary q queries in total despite the
number of the corrupted parties.

In some settings, the interaction with the oracle is necessary even for the
creation of the time-lock puzzle and not just for solving it. In reality, the creator
of the puzzle can parallelize this computation, and this is what happens here. In
a single oracle query, the party can both ask the oracle queries for puzzle creation
and puzzle solving. Recall the example: 1. In order to create a puzzle for time
labelling τdec, the party needs to engage with the oracle just a single time with
qτdec values in total to create the puzzle c = (r0, y0 ⊕ r1, . . . , yrqτdec−1

⊕ rqτdec),
where the secret is the value r0|| . . . ||rqτdec . Note that the solver of the puzzle
cannot parallelize the computation for solving the puzzle, because she does not
know the secret.

The functionality wrapper is parameterized by q the number of oracle queries
per round that are allowed from each party, the oracle FOeval

, which evaluates
these queries, the global clock Gclock and a set of parties P that are allowed to
engage with the oracle. The total number of queries q per round captures the
fact that the parties have limited resources per round. In addition, we allow
multiple value evaluation in a single query. With that we illustrate the fact that
the computation can be parallelized (e.g. hash evaluation is parallelizable if the
queries are stateless). The number of evaluations in a single oracle query is upper
bounded by an arbitrary polynomial (like a UC execution). This in turn means
that we assume that the parties have access to an arbitrary polynomial number
of CPU cores that can handle independent computations.

C.5 Necessity of extending the TLE algorithms

Our extension, that can be applied in any TLE construction, offers the feature
of equivocation but at the expense of assuming the random oracle model. For
example, consider a TLE scheme (eFOeval

, dFOeval
) with respect to oracle FOeval

. In
the ideal world, when a party wants to encrypt a message m with time labelling
τ , the functionality F leak,delay

TLE informs S about this request without revealing the
identity of the party and the message m. The simulator creates a ciphertext c
without knowing the message m and returns it back to F leak,delay

TLE . After the cur-
rent time Cl exceeds τ , Z can compute the underlying message to the ciphertext
c, which in the ideal world does not contain any information about the message
m. This allows Z to distinguish the real from the ideal execution of the protocol.
For that reason, we extend the (eFOeval

, dFOeval
) to (e∗FOeval

, d∗FOeval
) by borrowing

techniques from [45,11] as follows: the ciphertext for a message m and time τ
is the tuple e∗FOeval

(m, τ) = (c1, c2, c3), where c1 results from the encryption of a

random string r, i.e., c1 = eFOeval
(r, τ); c2 is the XOR between the message m

and the random oracle call H(r) on r, i.e., c2 = m ⊕H(r); and c3 is a random
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oracle call on the concatenation r||m, i.e., c3 = H(r||m). The c3 makes the en-
cryption scheme non-malleable [45]. This extension allows S to equivocate when
needed. We informally explain why this holds and formalize this in the proof of
Theorem 1.

When S receives an encryption request from F leak,delay
TLE for time labelling τ ,

he returns the ciphertext c = (eFOeval
(r1, τ), r2, r3) where r1, r2, r3 are random

values. Observe that, in the ideal world, neither the evaluation functionality
FOeval

nor the random oracle FORO
exist. Instead, both of them are emulated

by S. As a result, when the time Cl exceeds τ , Z can retrieve r1 but in order
to retrieve the message m he must issue a random oracle query on r1 through
a corrupted party. In that case, S can retrieve the message m from F leak,delay

TLE ,
because the time Cl exceeded τ , programme the FRO so that H(r1) = m ⊕ r2
(equivocate) and return the answer back to Z.

C.6 Description of protocol ΠTLE

Each party P ∈ P is parameterized/maintains the following:

– She maintains the list of recorded messages/ciphertexts LPrec, in which the
requested messages for encryption by Z are stored along with the ciphertext
of that message (initially stored as Null), a random identifier of the message
tag, the time τ that the message should open, the time Cl that is recorded
for the first time and a flag which shows if that message has been broadcast
or not to the other parties. Broadcast is necessary, as the construction that
UC realises our FTLE is relativistic. More precisely, it is based on a time-lock
puzzle. So, for that message to be opened by any honest party when the time
comes, that party should start to solve the puzzle as soon as it can. So the
transmission of the ciphertext (and thus the puzzle) is necessary.

– She parameterized by The tag space TAG and a pair of TLE algorithms
(eFOeval

, dFOeval
) are hard-coded in each party.

– A function fstate which prepares the next oracle query to FOeval
for a puzzle

to be solved.
– A function fpuzzle which extracts from a TLE ciphertext c∗ the underlying

time-lock puzzle.
– A function puz cr which generates the oracle queries to FOeval

so that a puzzle
of the desired difficulty can be created.

– A function wit con which computes witnesses by performing the necessary se-
quential computations. More precisely, given oracle queries/responses to/from
the functionality FOeval

, time labelling τ and the time-lock puzzle, it returns
a witness wτ or ⊥ if the computation fails.

When a party receives Encryption from Z for a message m with difficulty
τ , it picks a random tag for future reference of that message, reads the current
time Cl from Gclock, and stores the tuple (m,Null, τ, tagm,Cl, 0) to LPrec. Then,
it returns the message Encrypting to Z. That means that the encryption is go-
ing to take some time, in our case one turn. When the party receives from Z

38



Advance Clock, she reads time Cl from Gclock and checks if a decryption com-
mand has been issued in this turn. If this is the case, that means that the party,
before attempting to decrypt, she depletes all her oracle queries for both solving
puzzles and creating puzzles for encrypting a message in this turn by executing
the procedure Puzzle. This is necessary, as the party attempts to decrypt after
her witness is updated for that turn and this is possible only by querying the
oracle FOeval

. If no decryption command has been issued in this turn, the party
executes both the procedures Puzzle, for puzzle solving and puzzle creation, and
Encrypt, for encrypting the messages issiued by Z in the current round. Then
she broadcasts the ciphertexts that correspond to messages received by Z in this
round (after the end of the turn encryption ends). Finally, the party changes the
flags from 0 to 1 in the tuples that the broadcast ciphertexts are stored in LPrec
and informs the global clock that she was activated in that round by sending a
clock advancement command.

Broadcast: The broadcast is necessary because the TLE constructions we
study are relativistic [49,42], and thus the message can be opened only when
a certain amount of computations has been spent by the parties to solve the
puzzle. In contrast, with absolute time-lock constructions such as in [41], the
broadcast of the ciphertext is unnecessary because the message will be opened
once the current time reaches the decryption time of the time puzzle. That
is why we require that the ciphertext must be sent to the designated parties
upon its creation. In this work, we realise F leak,delay

TLE only with relativistic based
constructions. When the party receives the broadcast ciphertexts, she creates
a tuple that contains the time-lock puzzle of the ciphertext, the difficulty, the
queries for solving the puzzle and the responses and two counters that show how
many oracle queries she has issued both this round and in total. The time-lock
puzzle can be extracted from a ciphertext with the help of the function fpuzzle.

Flag that distinguishes broadcast from non-broadcast messages:
When a message is created but is not allowed to be broadcast by A, it means
that the other parties will not receive it. Thus, they cannot solve the underlying
puzzle so it can be opened when the time comes. In a nutshell, it is like that
message did not exist. So, when the environment issues a Retrieve command
to retrieve the ciphertexts created in this turn, the non-broadcast ciphertexts
are not returned. The only ciphertexts returned to Z are the ones that will
eventually be opened by all parties, which is the ones that are broadcast. If
we allow the non-broadcast ciphertexts to be returned to Z then we will have a
trivial distinction between the ideal and the real setting for the reasons explained
above.

When a party receives a decryption command from Z for a ciphertext c it
uses the function wit con to construct the decryption key. The input of wit con
is the collection of states that the party received so far from the FOeval

through
the functionality wrapper Wq(FOeval

). Next, the party returns to Z either the
message m, if the decryption was successful, or ⊥, otherwise. Note that, as in the
construction of [45,11], the third argument in the ciphertext renders the scheme
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non-malleable [21]. In trivial cases where the difference τdec − Cl is negative or
zero, decryption can occur instantly.

As mentioned, there are two procedures, named Puzzle and Encrypt that
each party executes one or both either when she receives a clock advancement
or decryption command from Z. Specifically, in Puzzle the party issues q oracle
queries in total both for puzzle creation and for puzzle solving. This is achievable
since the computation can be parallelized. Specifically, the first oracle query to
Wq(FOeval

) contains both the queries that are needed for the creations of the
ciphertexts and the queries for solving the puzzles. The next procedure called
Encrypt, and uses the puzzles created from Puzzle to create the new ciphertexts.
Specifically, it uses the puzzles to encrypt a random string by using the TLE
scheme (Time-lock encryption). Then, encrypts the actual message by XORed
the message with the random oracle response of the random string (Extended
encryption). Thus, the first argument of the ciphertext is the TLE encryption of
the random string, the second argument is the XORed message with the random
oracle responce on the random string, and the third and final argument is the
random oracle response on the concatenation of the message and the random
string.

C.7 Description of EXPTLE

We present the experiment EXPTLE in the presence of a challenger Ch and an
adversary B. This experiment illustrates the security of a TLE scheme in the
sense that no adversary can open a message before a certain number of com-
putations has been performed. Specifically, we allow access to the adversary to
the evaluation oracle Oeval. It is worth mentioning that the time τ in encryption
requests refers to a relativistic notion of time (the time that the puzzle needs to
be solved) rather than an absolute one (the time that the puzzle will eventually
be decrypted). If the adversary queries the oracle q times for a ciphertext c, the
challenger, which maintains a counter for that ciphertext, increases that counter
by one, allowing him to keep track of the number of queries the adversary made
for that particular ciphertext. With this, we model the essence of the round and
the limited resources the adversary has at his disposal but in a game-based style
(without Gclock and Wq(FOeval

)). The oracle queries are formed with the help of
the state function fstate and puzzle function fpuzzle, as described in Table 1 and in
a dedicated paragraph on page 18, with the initial query for ciphertext c being
fstate(fpuzzle(c), 0,Null). Again, the state function fstate takes as an input the time
puzzle of the ciphertext c, the number oracle query issued so far in the current
round and the previous response of the oracle (e.g., for the initial query it is Null).
The state function fstate illustrates the sequential oracle queries a party does in
order to solve the time-lock puzzle. Moreover, fstate gives a precise description
(and enforcement) of how each oracle query must be formed before being is-
sued to the oracle. In that way, we “enforce” the property that the time-lock
puzzle cannot be parallelized. Although the adversary can issue encryption and
decryption queries on his own because he knows the description of the encryp-
tion and decryption algorithms, the challenger only records the encryption and
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decryption requests that are issued through him. The reason behind this mod-
elling choice is that we only care only to keep track of legitimate encryption and
decryption queries, similar to 1. In other words, we cannot guarantee that the
adversary uses the correct algorithm to encrypt a message and thus we cannot
argue about the security of these ciphertexts. Moreover, a valid witness wt for
time label τ with τ ≤ t, can be constructed from the responses of the oracle Oeval

with the help of the function wit con as described in Table 1 and in a dedicated
paragraph on page 18. Again, the function wit con takes as input oracle queries,
a time labelling and a time puzzle and outputs either a witness, if it can be
constructed from the provided oracle queries, or ⊥ otherwise. Upon request, the
adversary receives a challenge ciphertext from the challenger. If the adversary
can guess correctly the underlying plaintext with less than the expected com-
putations, then he wins the game. For example, if the challenge queried by the
adversary is formed with time label τ (e.g. following experiment’s glossary, he
sends (Challenge, τ) to the challenger) but the adversary manages to retrieve
the message with less then qτ oracle queries, then he wins the game. In this
game the description of the oracle Oeval in Figure 5, is exactly that of the ideal
functionality in Figure 2 without the UC interface.

C.8 Proof of Theorem 1

Theorem 1: Let (eOeval
, dOeval

) be a pair of encryption/decryption algo-
rithms that satisfies Definition 1. Then, the protocol ΠTLE in Figure 4 UC-
realizes functionality F leak,delay

TLE in the (Wq(F∗RO),Gclock,FRO,FBC)-hybrid model
with leakage function leak(x) = x + 1, where FRO and F∗RO are two distinct
random oracles.

Proof. Let us suppose that protocol ΠTLE does not UC-realize F leak,delay
TLE . Then,

by Definition 3, there is an adversary A s.t. for every simulator S there is an
environment Z s.t.:

|Pr[EXECΠTLE

Z,A = 0]− Pr[EXEC
F leak,delay

TLE

Z,S = 0]| > α(λ) (4)

where α() is a non negligible function.
Now consider the specific simulator S below: At the beginning, S receives the

corruption vector from Z and informs A as if it was Z. When S gets the token
back from A, he sends the corruption vector to F leak,delay

TLE . Moreover, S registers
the encryption/decryption algorithms (eS , dS), which are the same as in protocol
ΠTLE, namely (eFOeval

, dFOeval
). However, the Extended encryption is not the same,

specifically the created cipher texts c2, c3 are equal to a random value. Observe
that still the distribution of both (c2, c3) in both executions are still the same as
both c2, c3 in the real protocol are random. If S receives an encryption request
(sid,Enc, τ, tag,Cl, 0|m|, P ) from F leak,delay

TLE on behalf of an honest party P , he
stores the tuple (τdec, tagm,Cl, 0

|m∗|, c, nobroadcast, P ), where c is the encryption
of 0|m

∗| by using the algorithm eS , he updates his list, named LSRO∗ (initially
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empty), for the generation of that ciphertext. Moreover, he updates his list for
the second and the third argument of the encryption as if it was FRO (e.g c2 and

c3). Then, he returns the token back to F leak,delay
TLE .

Upon receiving (sid,Advance Clock, P ) from Gclock from an honest party
P , S reads the time Cl from Gclock. Then, for every stored tuple (τj , tagj ,Clj , 0

|mj |, cj , broadcast, ·),
he updates his list, named LSRO∗ , with q evaluation queries for solving the cipher-
texts issued by honest parties on previous rounds, as if it was F∗RO in the real pro-
tocol. Then, he seeks the permission for broadcasting the ciphertetext created for
P in this round from A as if it was FBC. If A allows the broadcast, he updates the
tuples (τdec, tagm,Cl, 0

|m∗|, c, nobroadcast, P ) to (τdec, tagm,Cl, 0
|m∗|, c, broadcast, P )

and returns back to F leak,delay
TLE the resulting ciphertexts along with their difficulty

issued by P in this round. When S receives an encryption request from F leak,delay
TLE

on behalf of a corrupted party he reads the time Cl from Gclock, he forwards the
message to A as if it was from that party and keeps record both corrupted
party’s identity, message and the current time Cl (e.g. (P,m,Cl)). Then, S re-

turns whatever he receives from A to F leak,delay
TLE after updating his record with

that response. In any of these cases, S keeps the randomness that he used for
that task. In case S receives a decryption request from F leak,delay

TLE with ciphertext
c and time label τ on behalf of an honest party, he does: If c was recorded as
a ciphertext of a corrupted party as above, then S generates the witness wτdec
similar to protocol ΠTLE as if it was an honest party and updates his list LSRO∗
exactly as F∗RO in protocol ΠTLE for consistency between the witness and the or-
acle queries. Specifically, S reads the time Cl from Gclock and records to LSRO∗ as
many queries as the honest party in ΠTLE should do between the time that c was
recorded from S and the current time Cl. Next, S generates the witness based
on these queries exactly as in the real protocol. Then, S returns to F leak,delay

TLE

the message {m,⊥} ← dS(c, wτdec). The only way for S to be asked the open-
ing of such a ciphertext is that the ciphertext is not legitimate (e.g. not issued

through F leak,delay
TLE ). This can be easily observed by the F leak,delay

TLE ’s command in-
terface. The ⊥ occurs in the case that the algorithm detects no knowledge over
the plaintext (recall the check c3 = H(r1||m) in Figure 4). If S receives a de-

cryption request for a ciphertext c with time label τ from F leak,delay
TLE on behalf

of a corrupted party, he forwards the message to A as if it was from that party.
S returns whatever he receives from A as if it was the corrupted party back to
F leak,delay

TLE . In case S receives a random oracle query request (FRO) from F leak,delay
TLE

on behalf of a corrupted party, he forwards the message to A as if it was from
that party. When S receives this request from A playing the role of FRO, he
sends the command Leakage to F leak,delay

TLE . Then S checks if the received record

from F leak,delay
TLE contains any relation between a message m and the random oracle

query that S received initially from the corrupted party. If S finds such relation,
he programs the oracle so that ciphertext can be opened to message m. Then,
he responds to A as if it was the FRO. For example, let us suppose that the
oracle query is the value r1. Remember that S issues all the ciphertexts, so he
knows the randomness that it was used in each one of them. As a result, he can
check if r1 used for the production of a ciphertext. In case that he founds that
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r1 was used for the production ciphertext c, he sends the command Leakage
to F leak,delay

TLE . In the fortunate scenario where he finds in the received list a tuple
that contains a message m and the ciphertext c = (c1, c2, c3), he registers and
returns as if it was FRO the response H(r1) = c2 ⊕m to A (equivocation).

In the case S founds the oracle query but the list does not contain the
message, he outputs “⊥” (meaning that the adversary was lucky enough to guess
a plaintext before the time comes, or the adversary “broke” the security of the
encryption scheme). Specifically, when S receives (sid,Query, x) from F leak,delay

TLE

on behalf of a corrupted party he forwards the message to A as if it was from
that party. When S receives the same message from A as if it was FRO, he
sends (sid,Leakage) to F leak,delay

TLE . Upon receiving (sid,Leakage, {(m, c, τdec) ∈
Lrec}τdec:τdec≤leak(Cl)) from F leak,delay

TLE , S searches into his database (S generates
all the ciphertexts so he knows the randomness of each) for a ciphertext c1
on message x. If such ciphertext does not exist, he behaves exactly like the
FRO. If it does, he searches the set {(m, c, τdec) ∈ Lrec}τdec:τdec≤leak(Cl) to find a c
such that c[1] = c1. If S does not find such ciphertext, he outputs ⊥, else he
retrieves the corresponding message m and returns as the answer to the random
oracle query the message (sid,Query, x, y = c[2] ⊕ m) to A as if it was from
FRO. In any other case he behaves just like a random oracle. Finally, when
S receives the command Evaluate from F leak,delay

TLE on behalf of a corrupted
party, he forwards the message to A as if it was that party. When S receives
the Evaluate command from A on behalf of the corrupted party as if it was
Wq(F∗RO), he behaves exactly as Wq(F∗RO) in protocol ΠTLE.

By the assumption of A for S defined above there is an ZS such that Equa-
tion 4 holds. There are two possible ways for Z to distinguish the real from the
ideal execution of the protocol based on the syntax of F leak,delay

TLE .

Distinction when F leak,delay
TLE outputs ⊥: The first way for Z to distinguish the

two executions is when F leak,delay
TLE outputs the special ⊥ symbol. This happens

when F leak,delay
TLE detects the same ciphertext for two different messages, meaning

that the Correctness property has been violated. In all other cases when F leak,delay
TLE

returns ⊥ the same occurs in the real execution, thus the Z can not distinct the
two execution in such cases.

Distinction when leak is not “enough”: Last, Z can distinct the two executions
when S cannot retrieve the message m via the command Leakage and Z man-
aged to solve the puzzle that correspond to that message. Note that the puzzle
is created by S. As a result, S cannot equivocate the message correctly and Z
can distinguish the real from the ideal execution. For example, if we have a pro-
tocol that uses a TLE scheme such that it is not necessary for a party to ask all
the oracle queries so that she can solve the puzzle at the desired time, instead
she can solve it much faster (broken by design). In such cases, F leak,delay

TLE is not
realizable.
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Lets us suppose that the pair (eOeval
, dOeval

) satisfies the Correctness property.
We construct an adversary B that can break the qSecurity with probability at
least α̃(λ), where α̃() a non negligible function.

The only way for ZS to distinguish the real from the ideal execution with non-
negligible probability based on the argumentation of Paragraphs C.8 and C.8 is
to decrypt/solve the first argument of a ciphertext/puzzle, namely c1, generated
by an honest party before the time comes and issues a random oracle query on
it so that Z retrieves the message. This is possible if ZS is able to construct
a witness wτdec for an honest generated ciphertext c1 via the queries issued by
a corrupted party to WF∗RO in the real execution of the protocol or in S in the
ideal execution given that the global time Cl provided by Gclock is strictly smaller
than τdec. Next, ZS will request a random oracle query from a corrupted party
with the query value to be the plaintext of the ciphertext c1. Next, S in order to
equivocate correctly, he needs the corresponding message. But if the time of that
message has not come yet (e.g. Cl < τdec), the recorded table that S will request

from F leak,delay
TLE via the Leakage command, it will not contain that message.

As a result, S will fail to equivocate correctly and ZS can distinguish the two
executions. Now B takes advantage of that environment, and uses it in order
to win the experiment EXPTLE with non negligible probability in the following
way: B simulates the interface to the environment as in the ideal execution of the
protocol in the presence of the global clock. Specifically, B runs every procedure
locally simulating every role in the ideal execution, without engaging Ch at all.

Every time B receives q queries (sid,Evaluate, {xj}pl(λ)j=0 ) where pl a polynomial
function, from Z as if it was a corrupted party, he increases by 1 the local counter

Cl, (similar to the one Ch has) and forwards (sid,Evaluate, {xj}pl(λ)j=0 ) to the oracle
Oeval through the challenger in EXPTLE. Then returns to Z whatever it receives.
After that point if Z does not send a clock advancement command, B does not
allow Z to issue more queries. Now, B knows that the environment will make
at most pH(λ), penc(λ) random oracle and encryption queries respectively, where
pH(), penc() are polynomial functions. At least one of these random oracle queries
made by ZS , from the observation at the beginning of the Paragraph, will contain
the plaintext (namely the value r1 as described in Figure 4) of one of the penc(λ)
ciphertexts that has been decrypted by ZS before its decryption time with non

negligible probability α(λ). Therefore, B picks j1
$← {1, . . . , penc(λ)}. When ZS

issues the j1-th encryption query (sid,Enc,m, τdec) to an honest party simulated
by B, B proceeds as follows: If τdec > Cl (B simulates Gclock), then he sends
(Challenge, τdec−Cl) to Ch. When B receives (Challenge, τdec−Cl, c1) from

Ch, B picks c2, c3 exactly as F leak,delay
TLE and returns (sid,Enc,m, τ, c← (c1, c2, c3))

to ZS . Then, B picks j2
$← {1, . . . , pH(λ)}. When ZS issues the j2-th random

oracle query (sid,Query, x) to a corrupted party, B sends x to Ch as the answer
to the challenge. It can be seen that the probability x to be the answer of
the challenge is at least 1/(penc(λ)pH(λ)) · α̃(λ). Note that, although that the
ciphertexts of the honest parties simulated by B are created based on the FOeval

simulated by B as well in contrast with the challenged one that is created from
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Ch trough Oeval the distribution are exactly the same and the probability for
collision on inputs in negligible.

C.9 On the importance of instantiating FOeval with F∗RO
Let us suppose for instance that FOeval

was not instantiated with F∗RO, instead
it was instantiated by any other functionality parameterized by a constant dis-
tribution Dx. In that case, Z could simply sample values from that distribution
locally, solve the puzzle, and encrypt/decrypt any messages in a single round.
Specifically, in [49], the procedure for solving a time-lock puzzle consists in re-
peatedly squaring a base a specific polynomial number of times. However, this
computation is deterministic. So any PPT Turing machine, including Z, can
produce identical results if they engaged in the same computation without nec-
essarily interacting with the functionality wrapper at all, breaching the security
argument of our proof.

A promising way to tackle such deterministic FOeval
could be to allow the en-

cryption/decryption algorithms to interact with the oracle through the function-
ality wrapper, verifying that the provided solution for the puzzle was constructed
through the evaluation oracle. Of course, this would require more modelling as-
sumptions such as the definition of the encryption/decryption algorithms as
ITMs so that they could interact with the oracle. On the other hand, if we in-
stantiate FOeval

with F∗RO then the modelling is more natural. We address the
limitations of [49] by defining a new construction, namely Astolabous, defined in
the Section 6.

Neccesity for defining Astrolabous: The construction in [49] is very simple and
easily implementable, which is not the case in our theoretical framework (e.g.
UC framework). The security of the construction is based on the repeated squar-
ing problem, which states that: “Given a composite number n and an element
b ∈ Zn it is hard to compute b2

τ

with less than τ repeated squaring”. To define
this construction in UC, we have to introduce this new hardness assumption and
we have to correlate it with the pair of encryption/decryption algorithms. Specif-
ically, we would have to define an oracle, like the FOeval

, that is responsible for
that computation. The algorithms must communicate with the oracle to ensure
that a provided witness is created only from queries through the oracle rather
than local computations, where we can not restrict the access via a functionality
wrapper and thus can not capture the whole concept of TLE in UC framework.
If we want to formulate the communication of the encryption/decryption algo-
rithms with the functionality oracle, we have to define them as ITMs rather than
just plain algorithms. This approach is rather new to UC and out of the scope
of this work. Instead, we searched solutions where the functionality oracle is the
random oracle, such as in [42]. With that approach, the algorithm need not com-
municate with the oracle because the computations to solve the time-lock puzzle
are not deterministic (e.g. like in [49]), in fact, they are probabilistic. So, even if
the adversary knows the distribution where the oracle responses to the queries,
he can not predict the actual outcome. As a result, when the adversary tries to
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decrypt the message that is created based on the random oracle functionality, it
is impossible to do so without interacting with the oracle first. However, we can
not adapt directly the construction from [42] because the adversary can learn
parts of the plaintext before the desired decryption time, leading to a weak en-
cryption scheme concerning cryptographic standards [39]. That is why we use
the construction from [42] to encrypt not the actual message but the key that is
used to encrypt our message with some symmetric encryption scheme, like AES,
in the same spirit as [49]. Although that this construction without the extension
presented in Supporting Material C.5 is enough if we want to stress the security
of Astrolabous against a standalone definition, like the one in Subsection 6.3,
for a UC realization is not enough as we have already discussed.

D Supporting Material for Astrolabous section

D.1 Proof of Theorem 2

Theorem 2: Let AST.encE,H,AST.decE,H be the pair of encryption/decryption
algorithms described in Subsection 6.1. If the underlying symmetric encryption
scheme E satisfies IND− CPA security and correctness then the pair (AST.encE,H,
AST.decE,H) is a secure TLE scheme according to Definition 1 in the random
oracle model.

Proof. In order to prove that the pair AST.encE,H,AST.decE,H satisfies Defini-
tion 1 we need to prove that it satisfies both Correctness and qSecurity.

Proving Correctness: We know that the decryption algorithm of the symmetric
scheme E returns the correct plaintext with probability 1 [19]. Specifically it
holds ∀m ∈ M:

Pr[kE
$← KE;m′ ← dec(enc(m, kE), kE) : m = m′] = 1

where KE and M is the key space and message space of the E respectively.
Let RH be the relation as defined in Subsection 6.1 with FOeval

instantiated
by the random oracle, abbreviating here as H, that correlates the time τdec and
the puzzle c with the correct witness for decryption wτdec . Because the correct
decryption of AST.decE,H is solely based on the correct decryption of the under-
lying symmetric scheme E, ∀m ∈ M and τdec ← N it holds that:

Pr

[
m′ ← AST.decE,H(AST.encE,H(m, τdec), wτdec)
RH(wτdec , fpuzzle((AST.encE,H(m, τdec)), τdec))

: m′ = m

]
= 1

Proving qSecurity: We argue about qSecurity by defining a new experiment, sim-
ilar to the one in Figure 5, where the decryption key used in the symmetric
encryption scheme E does not appear at all but still the distribution of messages
the adversary sees in both experiments are statistically close based on the secu-
rity parameter λ. Thus, there is no way for the adversary to learn the real key
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with less queries than the maximum allowed number and as long as E is secure,
the adversary can retrieve the plaintext only with negligible probability.

First, let us define the event that the adversary B wins in the experiment
EXPTLE as WinEXPTLE

and the event to make less oracle queries than the ex-
pected ones for the challenged ciphertext (e.g. τ > Clexp, see Figure 5) as Bad.
Note that it holds that WinEXPTLE

⊆ Bad because the necessary requirements
for the adversary to win the EXPTLE is by making less oracle queries than the
expected ones for the challenged ciphertext. Thus, it holds that

Pr[WinEXPTLE
] = Pr[WinEXPTLE

∧ Bad] (5)

Thus, we need to show that Pr[WinEXPTLE
∧Bad] is negligible with respect to

λ. Let us define the experiment EXP∗TLE which is the same as EXPTLE except
that the challenged ciphertext does not contain the key that is used to encrypt
the message with the symmetric encryption scheme. Specifically, the last part of
the time-lock puzzle in the challenged ciphertext in EXPTLE is kE⊕H(rqτdec−1),
whereas in EXP∗TLE it is H(rqτdec−1) instead. Observe that the distribution of
messages that B receives in the two experiments are exactly the same, in the
case the adversary did less oracle queries for the challenged ciphertext (the event
Bad), because we are in the random oracle model. So we have:

Pr[WinEXPTLE
∧ Bad] = Pr[WinEXP∗TLE

∧ Bad] (6)

In the case event Bad does not happen, B can retrieve the key of the challenged
ciphertext from the puzzle. As a result, the distributions of messages in the
two experiments are no longer the same because the key that the challenged
ciphertext was created with and the key that B retrieved from the puzzle in
EXP∗TLE do not match.

We argue that the event WinEXP∗TLE
∧Bad happens with negligible probability.

Let us assume that:
Pr[WinEXP∗TLE

∧ Bad] > α(λ) (7)

where α is a non-negligible function. We construct an adversary BIND−CPA that
uses the adversary B to win in the IND− CPA game of the symmetric scheme E
with non-negligible probability. Specifically, BIND−CPA works as follows:

He initializes the algorithms eOeval
, dOeval

, responds to B and keeps the same
counters/database as if it was Ch and Oeval in the experiment EXP∗TLE except
when he receives the challenged query from B for a labelling τ . When the lat-

ter happens, BIND−CPA chooses two random messages m0,m1
$← Mλ and sends

them to the challenger of the IND− CPA game. Upon receiving the ciphertext

c back from the challenger, BIND−CPA picks (r0||r1|| . . . ||rqτ−1)
$← {0, 1}p2(λ)(see

description: 6.1) and computes cτ ← (r0, r1 ⊕ H(r0), r2 ⊕ H(r1), . . . ,H(rqτ−1))
where the random oracle calls H(·) are simulated by BIND−CPA. Then, he returns
(τ, c, cτ ) to B as if it was Ch. Observe that, BIND−CPA does not know the key
that it is used for the production of the ciphertext c and thus the probability to
create a time puzzle cτ where the actual key appears in the last XOR operation
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would be negligible. For that reason it was necessary to define the intermediate
experiment EXP∗TLE.

At some point, BIND−CPA receives the answer for the challenged ciphertext,
namely m̃, from B. If m̃ = m0∨m̃ = m1, BIND−CPA returns m̃ to the challenger of
IND− CPA as the answer to the challenged ciphertext, else it returns mb where

b
$← {0, 1}.
Let us define the event BIND−CPA to win the experiment IND− CPA as WinIND−CPA.

Observe that, if B correctly finds the message in experiment EXP∗TLE and the
event Bad holds then BIND−CPA wins as well in the experiment IND− CPA. Specif-
ically:

Pr[WinIND−CPA] = Pr[WinIND−CPA|ABad] Pr[ABad]+Pr[WinIND−CPA|ABad] Pr[ABad]
(8)

where ABad is the abbreviation for the event WinEXP∗TLE
∧ Bad.

By the description of the adversary BIND−CPA, we have that Pr[WinIND−CPA|ABad] =
1 and Pr[WinIND−CPA|ABad] ≥ 1/2. Therefore, by Equation (8), it holds that:

Pr[WinIND−CPA] ≥ 1/2 + 1/2 Pr[ABad] (9)

By Equations (7),(9) it holds that:

Pr[WinIND−CPA] > 1/2 + α(λ)/2 (10)

which is a contradiction. As a result it holds that:

Pr[WinEXP∗TLE
∧ Bad] = negl(λ) (11)

Finally, by Equations (5),(6),(11) we have:

Pr[WinEXPTLE
] = negl(λ) (12)

which completes the proof.

D.2 Equivocable Astrolabous scheme description
(EAST.encE,H,G,EAST.decE,H,G)

EAST.encE,H,G: The algorithm accepts as input the message m and the time-lock
puzzle difficulty τdec and does the following:

– It picks r1
$← {0, 1}p3(λ) and computes c1 ← AST.encE,H(r1, τdec).

– It computes c2 ← G(r1)⊕m and c3 ← G(r1||m).
– It outputs c = (c1, c2, c3).

EAST.decE,H,G(c, wτdec): The algorithm accepts as input the ciphertext c and the
witness wτdec :

– It computes r1 ← AST.decE,H(c1, wτdec) and m← G(r1)⊕ c2.
– If c3 6= G(r1||m) it outputs ⊥, else it outputs m.
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D.3 Mahmoody et al.’s construction is not IND-CPA-TLE

The encryption eMM0.1(m, τ) for a message m and difficulty τ works as follows:

1. It uses an encoding function Fe to dividem into τq+1 bit-blocks, Fe(m, τ, q)→
(m0, . . . ,mτq).

2. Then it computes c = (m0,m1⊕H(m0), . . . ,mτq ⊕H(mτq−1) as the cipher-
text of the plaintext m.

The decryption algorithm dMM0.1(c, (m0,H(m0), . . . ,H(mτq−1)) for a ciphertext
c and witness (m0,H(m0), . . . ,H(mτq−1) which acts as the secret key, works as
follows:

1. It computes the τq + 1 blocks of message m as mj = cj ⊕Hj−1.
2. It computes the message m with the decoding function Fd((m0, . . . ,mτq))→
m

It is worth mentioning that this algorithm as presented in [42] , it was not
intended to be used as an encryption algorithm rather than a puzzle creation one.
Observe that the message is spread all over the puzzle. As a result, the adversary
B can easily win the IND-CPA-TLE game with probability 1. Specifically, he
chooses the messages m0 and m1 such that the leading bit is different. Next he
starts to solve the puzzle. As the message is revealed in a progressive way, when
he finds either the bit 0 or 1 first he will know with probability 1 which of the
two messages is without depleting all the available oracle queries and thus wins
the game.

D.4 Proof of Theorem 3

Theorem 3: The construction MMV 2.0 is IND-CPA-TLE secure according to
Definition 2.

Proof. The reasoning of the proof is very similar with the one in Theorem 2.
Specifically, we define a second experiment where the last XOR instead of con-
taining the message it is just a random hash evaluation. Again, with exactly the
same reasoning we argue that:

Pr[WinEXPIND−CPA−TLE
∧ Bad] = Pr[WinEXP∗IND−CPA−TLE

∧ Bad] (13)

In EXP∗IND−CPA−TLE the challenged message it does not appear at all (in contrast
with Astrolabous where it appears in the symmetric encryption scheme), so the
probability to win there is 1/2 exactly. This completes the proof.
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