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Abstract. In a model of N volume-excluding spheres in a d-dimensional tube, we

consider how differences between particles in their drift velocities, diffusivities, and

sizes influence the steady state distribution and axial particle current. We show that

the model is exactly solvable when the geometrical constraints prevent any particle

from overtaking every other—a notion we term quasi-one-dimensionality. Then, due

to a ratchet effect, the current is biased towards the velocities of the least diffusive

particles. We consider special cases of this model in one dimension, and derive the

exact joint gap distribution for driven tracers in a passive bath. We describe the

relationship between phase space structure and irreversible drift that makes the quasi-

one-dimensional supposition key to the model’s solvability.
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1. Introduction and summary

Models of colloidal particles diffusing in narrow channels constitute an important

class of nonequilibrium systems, being both empirically relevant and readily analysed

analytically or in silico [1]. A principal feature of such systems is that directed particle

transport generically arises as out-of-equilibrium conditions conspire with spatial,

temporal, or noise-induced asymmetries to rectify fluctuations [2, 3]. Iconic studies

of a single particle ratcheted by an asymmetric potential [4,5] have been complemented

by descriptions of inherently many-body ratchet phenomena, e.g. collectively induced

asymmetric ratchet potentials in magnetic vortices in superconducting films [6], density-

dependent current reversals [7, 8], and active matter motion rectified by asymmetric

obstacles [9]. In this article, we demonstrate how even in a static, structureless

environment, particles can themselves be the source of inter-particle ratcheting when
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Figure 1. Tube geometry: constant cross section and periodic or infinite axial

direction. Illustrated here for dimension d = 3.

they have heterogeneous properties and interact via volume exclusion. This inter-

particle ratchet effect underlies correlation-phenomena found in a range of models

including lattice exclusion processes with particle-wise disorder [10–12] or driven tracers

[13,14], continuous-space single-file diffusion with random diffusivities [15–17] or friction

[18], and a recent many-filament ratchet model [19].

To demonstrate the inter-particle ratchet effect analytically, we consider the steady-

state properties of N hard d-spheres in a d-dimensional periodic ‘tube’ (Figure 1).

In particular, we are interested in the net particle current and how it is shaped by

collective effects arising from the interplay of particle heterogeneity and interactions.

Heterogeneity means that the particles can have different sizes, and experience

differently the (time-homogeneous) external or internal drive, and thermal noise. In

other words, there is a quenched disorder in the particle properties. Interactions

occur between particles and with the tube boundaries via volume exclusion. A key

insight of this work is that the model is solvable when all particles have a common

net velocity, defined as the long-time net translation per unit time given the presence

of interactions. (This is equivalent to the net current up to a choice of units.) For

instance, the requirement of common net velocity holds in the common scenario where

the tube is narrow enough that particles cannot overtake at all. But it also holds when

particles can overtake, as long as no particle can overtake all others, or when there is

a movable barrier which prevents the particles from dispersing. We will adapt existing

terminology and call either situation quasi-one-dimensional (q1D). In the q1D case with

spatially constant drift and diffusion coefficients, we derive the exact expression for the

current. This reveals the ratchet effect, by which the least diffusive particles, i.e. the

most deterministic, exert the greatest influence on the current. Furthermore, as far as

the current is concerned, most model features—the tube dimension d, the shape of the

(constant) tube cross section, whether the tube is periodic or infinite, the relative sizes

of all particles, and even which pairs of particles are mutually volume-excluding—are

not directly relevant. This is evidence for the robustness of the effect.

In section 2 below, we give the mathematical definition of the model as introduced

above, and define the notation necessary to express our main result, Eq. (10), for the

common net velocity ṽ. The bulk of this work is then structured into two complementary
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parts which can be read independently:

In section 3 we consider three one-dimensional special cases of the general model,

presenting novel detailed calculations and interpretations of the result in terms of a

ratchet effect. First, we study single-file diffusion on a ring with fully heterogeneous

particle properties and derive Eq. (10) for d = 1. If the inverse diffusivities are drawn

from a heavy-tailed distribution, corresponding, e.g., to a Gamma distribution for the

diffusivities, one particle will dominate the current due to the ratchet effect. The particle

heterogeneity, conceived of as a quenched disorder, is then not self-averaging. Secondly,

by specializing to only two distinct particle species, we can model driven tracers in a

passive medium. The tracers cooperate through ratcheting to achieve a current that

scales linearly with the number of tracers. Lastly, we describe how the many-filament

ratchet of Ref. [19] relates to the previous cases through a simple mapping.

In section 4 we take a more formal approach in order to understand when and why

the general tube model affords a solution through direct integration of the steady-state

equation—this is the meaning we assign to the term ‘integrable’ in this work. To this

end, we develop an inverted method of finding solutions to stationary Fokker-Planck

equations. Instead of solving directly for the density, one attempts to solve for the

‘irreversible drift’ [20]. By making an ansatz on the latter which is consistent with

the boundary conditions, one implicitly introduces constraints on the model parameters

which are in essence integrability conditions. In the tube model, we show that an

ansatz of constant direction for the irreversible drift is consistent when the process is

q1D, but otherwise not. The integrability conditions tell us which interaction potentials,

beyond the volume exclusion, can be added between the particles without breaking the

solution structure. In the absence of any such potentials it transpires that while the

model is decidedly out-of-equilibrium, there exists a moving reference frame relative

to which the system obeys detailed balance—this explains the solvability. We must

emphasize, however, that this is not a trivial situation of an “equilibrium system on

wheels”, because the common net velocity emerges microscopically from the interaction

of particles through a non-equilibrium effect, rather than being dictated by fiat.

In the concluding discussion, section 5, we summarise our findings and discuss them

from the point of view of non-dissipative effects in nonequilibrium systems.

2. Model definition and main result

Let us now present the model and main results in more detail. The spherical particles

exist in a tube which has one periodic axial direction r̂ (although we will show how

an infinite tube can be treated as well), and a cross section that is constant along

the tube, but otherwise of arbitrary shape—our focus is on inter-particle effects rather

than particle-boundary effects, e.g. stemming from periodically varying channels [21,22].

We consider overdamped motion, so that the system is fully described by the spatial

coordinates Q(i)(t) in d dimensions for the particles i = 1, . . . , N . We organize these
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into

X(t) =




Q(1)(t)
...

Q(N)(t)


 =

N∑

i=1

êi ⊗Q(i)(t), (1)

where êi is a standard basis vector of RN , ⊗ is the Kronecker product [23]. X(t) is thus

an N × d-dimensional drift-diffusion process evolving in a state space Γ representing

all possible configurations of the particles inside the tube geometry (the explicit

construction of Γ is given in subsection 4.1). We define the model dynamics through

the formal stochastic differential equation

dX(t) = v dt + B dW(t) + dR(t). (2)

Here, v is the spatially constant drift vector, B a spatially constant noise amplitude

matrix, dW white noise, and dR a reflection term. The drift vector can be split as

v =

N∑

i=1

êi ⊗ v(i), (3)

and v(i) interpreted as either an external force applied uniquely to particle i (e.g.

due to its unique charge qi), or as an intrinsic velocity generated by it through self-

propulsion. We define the diffusion matrix D = (1/2)BB⊤. In the simplest scenario,

D is diagonal with non-zero elements Di that may for instance be specified via the

Einstein relation Di = µikBT with µi the unique, size-dependent mobility of particle

i. Alternatively, Di may relate to fluctuations in the self-propulsion mechanism under

the active-matter interpretation of the model. However, we allow more generally for D

to be non-diagonal, with spatially anisotropic diffusion and noise correlations between

particles. The reflection term dR represents particle–particle and particle–wall contact

forces and is only ‘active’ when X(t) ∈ ∂Γ, the phase space boundary. It then simply

reflects the process back into the interior of Γ. (This is the “boundary local time”

implementation of reflection [24], but we will instead unambiguously define reflection in

the density-picture below.)

The process approaches a steady state whose density is defined

P (x) = lim
t→∞

Prob(X(t) = x |X(0) = x0). (4)

In the interior of the phase space Γ, the stationarity condition is

∇ · J(x) = 0, (5)

using the probability current

J(x) = vP (x)− D∇P (x). (6)

The volume exclusion appears as reflective boundary conditions on ∂Γ, meaning that

the probability current normal to the boundary vanishes:

J(x) · n̂(x) = 0, x ∈ ∂Γ. (7)
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Periodicity conditions on P (x) make it invariant under simultaneously translating all

particles by one axial period L,

P (x) = P (x+ Lτ ), (8)

where the translation vector τ is the direction in phase space of moving all particles

forward in the axial direction r̂ by one unit length:

τ =
∑

i

êi ⊗ r̂. (9)

(Note that τ is not a vector in Γ but belongs to its tangent space at any point.) If any

particle is able to overtake all others, i.e. the system is not q1D, then P (x) must be

invariant under translating that particle alone by one period. This additional condition

would break an important symmetry that allows the steady state to be determined, and

so we concentrate on q1D where this condition does not hold.

Our main result for this model is that under q1D conditions a common net velocity

ṽ emerges, which is equal for all particles and is obtained from the probability current

via integration as

ṽ =
1

N

∫
dxτ · J(x) = τ⊤

D
−1v

τ⊤D−1τ
. (10)

In the trivial case where all particles diffuse (i) independently, (ii) isotropically, and (iii)

identically, the common net velocity is simply

ṽ = r̂ · 1

N

∑

i

v(i), (11)

as for unconfined, non-interacting particles. We are interested in violations of these

conditions where the common net velocity is nontrivial. Violations of the three

conditions are related to the structure of the matrix D which in different ways biases the

current. The examples considered in the next section all relate to violating condition

(iii); the other ones we touch upon in the discussion section 5.

3. One-dimensional special cases

3.1. Single-file diffusion heterogeneous particles

3.1.1. Introduction In one spatial dimension, heterogeneous volume-excluding particles

have been studied as minimal models of single-file traffic both on- [10–12, 25] and off-

lattice [15–18, 26]. In the lattice setting, the problem drew inspiration from vehicular

or motor-protein transport. A drift-diffusion version of the problem can be physically

motivated by noting that colloidal particles differing in size and electrical charge will

have different thermal diffusivities (as given by the Einstein relation) and drift velocities

in response to an applied electrical field.

On the lattice, the model is the (totally) asymmetric exclusion process ((T)ASEP)

with particle-dependent hopping rates. For periodic boundary conditions its steady
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xi

xj

{xk}k 6=i,j

xi = xj

n̂

Figure 2. Illustration of phase-space boundary

state was solved by a mapping to the zero-range process with site-wise disorder [10–13].

In the ASEP, each particle i out of N has a forward (clockwise) hopping rate pi and

a backwards rate qi (with all qi = 0 for TASEP). It was shown for the TASEP that

if the pi are drawn independently from a power-law f(p) ∼ (p − c)γ with support in

[c, 1], platoon-formation—O(N) queue-formation behind the slowest particle—occurs

above a critical density of walkers if γ > 0, in a way mathematically analogous to Bose-

Einstein condensation. While the more general ASEP was also solved exactly for any

realization of the disorder, its behaviour as a function of different disorder distributions

was difficult to analyze due to the complicated dependence of the steady-state on the

model parameters [10, 12]. In the continuum, diffusive model studied in the present

work we shall see that we do not observe the Bose-Einstein like condensation behind

the slowest particles; instead it is the diffusivities that control the common net velocity.

On the continuum, the analogue of a one-dimensional exclusion process is

conventionally referred to as single-file diffusion (SFD) [27] (although some make

no distinction in terminology on/off-lattice). SFD has been previously studied for

disordered diffusivities and zero drift [15, 16], zero diffusivity and disordered drift (i.e.

deterministic motion) [28], or identical diffusivity but disordered drift [18,26]. The focus

in these studies is on density relaxation and the scaling of the mean square displacement

of a tagged particle in the long-time limit, which is famously sub-diffusive [29]. In

contrast, our focus is on the steady-state density and current, which would be trivial

unless drifts are heterogeneous. Let us also point out that so far we know of no exact

time-dependent solution to the problem of simultaneously heterogeneous diffusivities

and drifts; critically, the Bethe ansatz that solves the identical-particle SFD [27,30–32]

fails in the presence of such heterogeneity as a crucial particle-exchange symmetry of

the ansatz is violated.

The main result of this section is the derivation of the steady-state density and

current, and the expounding of the inter-particle ratchet effect that lets the least diffusive

particle exert the greatest influence on the global current.
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3.1.2. Exact solution The N particles exist on a ring, each one i moving with

constant intrinsic drift velocity vi and experiencing thermal noise of amplitude
√
2Di.

All together, the positions, velocities and diffusivities are x = (x1, . . . , xN)
⊤, v =

(v1, . . . , vN)
⊤, and D = diag{D1, . . . , DN}. Two particles i, j collide when |xi − xj | =

ri+rj , with r denoting the particle radius. As pointed out in [31] we may without loss of

generality take ri = 0 for all i. This is because what matters is the free space between two

particles. The particle radii only enter through the total, conserved amount of free space

throughout the system L−∑N
i=1 ri. The boundary conditions (7) prevent the probability

current J(x) (6) from flowing past the xi = xj hypersurface in phase space, thereby

preventing the particles from cross. From Figure 2 one sees that n̂ = (êi − êj)/
√
2 and

hence

Ji(x, t) = Jj(x, t) for xi = xj . (12)

The steady state density P (x) is solved for by an exponential ansatz, similar to

how a factorized ansatz solves the lattice version of the model:

P (x) ∝ ek·x × { ordering constraint }. (13)

The ordering constraint means particles must appear in the same order on the ring

as they do in the initial condition x0. From the exclusion boundary condition (12) it

follows that

ki =
vi − ṽ

Di

, (14)

where ṽ (the common net velocity) is to be determined. The periodicity condition (8)

requires that
∑

i ki = 0, which implies that the common net velocity ṽ is given by

ṽ =

N∑

i=1

(
D−1

i∑
j D

−1
j

)
vi. (15)

One can also check that (15) satisfies the stationarity condition ∇ · J(x) = 0.

Introducing the effective diffusivity D̃ via

1

D̃
=

N∑

i=1

1

Di

(16)

we can express (15) more suggestively as

ṽ

D̃
=

N∑

i=1

vi
Di

. (17)

D̃ also features in the prefactor of the (t → ∞) mean-square displacement of unbiased

random walkers with heterogeneous diffusivities [16, 25]. Furthermore, it is formally

equivalent to the formula for an effective spring constant replacing springs coupled in

series.
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To prove that ṽ is indeed the common net velocity, note that it is given by

integrating the ith component Ji(x) of the probability current over phase space, and

presently

Ji(x) = ṽP (x). (18)

The best strategy to determine the normalization constant of (13) is to change

variables to the ‘gaps’ yi between a particle i and its clockwise neighbour particle i+ 1

(with N + i equivalent to i),

yi = xi+1 − xi . (19)

The following notational convention is useful:

yi:j = yi + yi+1 + yi+2 + . . .+ yj =

{∑j

l=i yl, i ≤ j

0, i > j
. (20)

We then go from absolute coordinates xi to gap coordinates via

xi = x1 + y1:i−1. (21)

This allows us to rewrite

k · x = x1

N∑

i=1

ki

︸ ︷︷ ︸
=0

+

N∑

i=1

kiy1:i−1 =

N∑

i=1

ki+1:N yi, (22)

where the last equality follows from writing out the sums in the previous step term

by term and summing up the coefficient for each yi before summing over i. For our

convenience, let us define

wi = ki+1:N = −k1:i. (23)

Then the exact stationary probability distribution may be expressed as

P (x) = Pctr(x)× Pgaps(y(x)) =
1

L
× 1

ZN(w;L)
exp[w · y]δ

(
N∑

i=1

yi − L

)
, (24)

a product of the flat centre-of-mass distribution (1/L) and the gap distribution. Note

that the gap distribution factorises into weights ewiyi for each gap, but the gaps are still

correlated due to the global constraint that they sum to L, which is implied by the delta

function. The partition function ZN is defined

ZN(w1, . . . , wN ;L) =

(
N∏

i=1

∫ L

0

dyi e
wiyi

)
δ (L− y1:N) (25a)

=

N∑

i=1

ewiL

N∏

j=16=i

1

wi − wj

. (25b)

The integral in (25a) can be shown to yield (25b) by taking a Laplace transform in L,

which decouples the integrals, thus allowing them to be computed. The inversion is

then obtained using the Bromwich contour and the residue theorem.
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3.1.3. Demonstration of the ratchet effect We now consider the effect of the disorder in

the particles’ parameters (velocities and diffusivities). We can write (15) as a weighted

sum

ṽ =
∑

i

αivi, (26)

αi =
D̃

Di

=
D−1

i∑
j D

−1
j

≥ 0,
∑

i

αi = 1. (27)

Now consider the Di to be i.i.d. random variables. The αi are then dependent but still

identically distributed, which together with their conservation law implies [αi]D = 1/N ,

where [·]D denotes averaging over the diffusivity disorder. Hence

[ṽ]D =
1

N

N∑

i=1

vi, (28)

the right-hand side of which is the sample mean over velocities, independently of the

diffusivity distribution chosen. In particular, this is the same as for particles with

identical diffusivity. If also the vi are considered i.i.d. random variables, with a well-

defined mean v̄, then

[ṽ]D,v = v̄. (29)

However, the typical current ṽ∗ may be very different from v̄, meaning that the

current is not self-averaging over the disorder. For this to be possible, there must be some

spread in the velocities because if all vi = v then ṽ = v independently of the diffusivities.

Now, (26) is a sum of i.i.d. random variables Ri = αivi. It is well known that if the

distribution of R has a power-law tail ∼ R−(a+1) with 0 < a < 1, then the sum will be

dominated by one particular i, say i∗ [33]. The physical significance of this is that particle

i∗ dictates the current. To illustrate a situation where self-averaging does not occur,

assume finite support for the velocity distribution, and consider Prob(1/Di) ∼ (Di)
a+1,

0 < a < 1, for Di small, for example by drawing Di from the appropriate Gamma

distribution. Then one αi∗ will be of order one and ṽ ≈ vi∗ . For instance, if the vi are

±|v| with equal chance, then the typical current will be either ≈ ±|v|, which is different

from [ṽ]D,v = 0.

Turning now to the distribution of particle gaps, ideally one would like to average

the exact gap distribution (24) over various disorder distributions. However, due to

the complexity of e.g. the partition function (25), the average over the disorder is

forbiddingly difficult. Instead, we make progress by assuming a simple case where

particle one, say, is dominating, so that ṽ ≈ v1, whereas the other N − 1 particles can

approximately be treated as having identical parameters v and D. Then

ṽ = αv1 + (1− α)v, α =
1

1 + (N − 1)D1

D

, (30)

and for the non-dominant particles

ki =
v − ṽ

D
=

v − v1
D + (N − 1)D1

≡ −k, (31)
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I II

IIIa

IIIb

IV

Figure 3. In this illustration of the inter-particle ratchet effect, the blue particle

(‘shepherd’) has positive drift and small diffusivity; the red particle (‘sheep’) has

zero drift and higher diffusivity. I→II: the shepherd catches up with the sheep.

II→III: a fluctuation creates a separation, which is more likely the sheep meandering

forward (IIIb) than the shepherd backward (IIIa). IIIb→IV: shepherd again catches

up. Through rectification, the sheep gets a non-zero net velocity.

whereas

k1 = (N − 1)k (32)

due to the conservation law
∑

i ki = 0.

We seek the density ρ(x) of particles a clockwise distance from the dominant particle

one. It is possible, but arduous, to perform the necessary marginalization over the joint

position distribution . Fortunately, the exact result can be obtained by the following

heuristic argument. We replace the dominant particle with a hard wall moving at fixed

velocity ṽ. A single (v,D)–particle trapped between two hard walls moving at velocity ṽ

would have spatial distribution ∝ exp[−(v−ṽ)/D)x] = exp[−kx], where x is the position

relative to the left wall. By a certain reflection-symmetry of Brownian trajectories [30],

identical particles in single-file behave as a set of non-interacting particles. We therefore

expect the density

ρ(x) = (N − 1)
ke−kx

1− ekL
, (33)

which can be proved exactly from (24) (cf. the main calculations in subsection 3.2) .

Without loss of generality we assume v1 > v so that 1/k > 0 gives the characteristic

length scale over which particles are clustered ahead of particle one. It is thus apparent

that when diffusion enters the picture, a ‘shepherd’ particle that is both fast and has low

diffusivity can force ‘sheep’ particles ahead of it to speed up through a ratchet effect:

if a gap opens up between the shepherd and the sheep, it is most likely to be because

a sheep diffuses forward than the shepherd diffusing backward. The shepherd is then

quick to close the gap. This is illustrated in Figure 3. Similarly, a stubborn ‘donkey’

particle with speed v1 < v and low diffusion will slow down the faster ‘horse carriages’

behind it if the horses are more diffusive.

As a final comment, if we consider the quasi- as opposed to exactly one-dimensional
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single-file diffusion, with isotropic diffusivity Di, then with recourse to (10)

ṽ =
∑

i

αir̂ · v(i), (34)

with αi as defined above. The conclusions about the effects of disorder will thus be

quantitatively the same in the quasi-one-dimensional case.

3.2. Driven tracers in a passive bath

A typical scenario in statistical mechanics is measuring the response of a system when

a force is applied to a selected particle—a tracer—in a collection of otherwise identical

particles. For an equilibrium system experiencing a small perturbation, classical linear

response theory governs the outcome. Out of equilibrium, an array of intriguing response

phenomena are possible. For example, in the case of a single driven tracer which can

overtake with some rate, this parameter separates phases in the tracer current [14], and

can enable absolute negative mobility [34].

A recent paper [13] studied the steady state properties of one or more driven tracers

in a bath of passive particles, in the absence of any overtaking. The tracers are totally

asymmetric random walkers on a periodic lattice, and the bath particles are symmetric.

For a single driven tracer, there is an exponentially decaying pile-up of bath particles

ahead of it (cf. (33) with v = 0, D > 0 for the bath particles and v1 > 0, D1 = 0 for the

tracer). For a system with several tracers, a cooperation effect was described where the

system current grows with the density of tracers.

We can view the dichotomy of tracer/non-tracer particles as an instance of particle

heterogeneity, and utilize the results of the previous section to analyse the continuum-

version of driven tracers in a passive bath. Strictly speaking, the continuum-limit of the

lattice model [13] would have the tracers be deterministic, and since the bath particles

diffuse, ratcheting would force the current to be exactly the tracer speed vT . Instead,

let us suppose both tracers and bath particles have identical diffusivity D. Then if

ρT = NT/N is the fraction of all particles that are tracers, the common net velocity of

the system will according to (26) be

ṽ = ρTvT , (35)

since the bath particles have zero intrinsic velocity. Here, it does not matter for the

current where amongst the bath particles the driven tracers are placed: because all

particles are diffusive, tracers can ratchet each other if they are adjacent, just as well as

they can ratchet bath particles.

In the remainder of this section we derive an exact expression for the joint

distribution of gaps between the driven tracers by integrating out the bath particles

in the steady state density (24) for arbitrary disorder. As we shall see, the exact

solution for the driven tracers—which we emphasize represents the steady state of a

system driven arbitrarily far from equilibrium—can be interpreted as a subsystem of
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z1

b1=4︷ ︸︸ ︷

z2

b2=2︷︸︸︷
· · ·

zNT

bNT
=3

︷ ︸︸ ︷

Figure 4. Sketch of driven tracers in a passive medium. Blue balls are tracers and

red balls are passive bath particles. The distance between a tracer i and the next is

zi, and there is a number bi of bath particles in between.

interacting heterogeneous tracers, and subsystems of bath particles self-distributing in

boxes (the space between the tracers), with these subsystems conjoined through the

conservation of space and Eq. (35). The effective heterogeneity between tracers arises

when they differ in the number of bath particles ahead of each one before the next

tracer.

In preparation for this calculation, let us write down the marginalized density for

a selected subset of particles, even for full particle-wise disorder. Select a subset of M

particles, with index τ1, . . . , τM , and let zi be the gap between particle τi and τi+1. Using

the colon summation notation (20),

zi = yτi:τi+1−1, (36)

with yi the gap between particle i and i+ 1, as before. Then

P{τ}(z1, . . . , zM) =

〈
M∏

i=1

δ
(
yτi:τi+1−1 − zi

)
〉

(37a)

=
1

ZN(w1, . . . , wN ;L)

(
N∏

i=1

∫ L

0

dyi e
wiyi

)
δ (L− y1:N)

M∏

i=1

δ
(
yτi:τi+1−1 − zi

)
(37b)

= δ (L− z1:M)

∏M

i=1Zτi+1−τi(wτi, . . . , wτi+1−1; zi)

ZN(w1, . . . , wN ;L)
. (37c)

To get to the last line, we note that the product of delta functions decouple the integrals

into “blocks” [τ1, τ1 + 1 . . . τ2 − 1] [τ2, . . .] · · · [τM , . . . , N ], each of which by definition

recovers a partition function (25) for the appropriate arguments.

Now, let the particle τn be the nth tracer, in front of which there are bn bath

particles until the next tracer, as shown in Figure 4. The total number of tracers is

NT and the bath particles number NB = b1:NT
= N − NT . Recall the definitions of

wi = ki+1:N (23) and ki = (vi − ṽ)/Di (14). For a two-species setup, ki is either

kB ≡ −k or kT = (NB/NT )k. (38)

Since k is the only continuous parameter on which the distribution depends, we can

without loss of generality assume both particles types to have the same diffusivity D,

whereas vT > 0, and vB = 0. Then

k = ṽ/D = ρT vT/D > 0. (39)
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We need to calculate partition functions of the form

Zbn+1(wτn, . . . , wτn+bn ; zn) =

bn∑

i=0

exp[wτn+i zn]

bn∏

j=06=i

1

wτn+i − wτn+j

. (40)

We write the weight factor in the exponential as

wτn+i = kτn+i+1:N = kτn+i+1:τn+1−1 + kτn+1:N

= (−k)(bn − i) + (−k)gn. (41)

By definition, −kgn = (NT − n)kT + bn+1:NT
kB, which using the expressions for kT and

kB (38) can be written more meaningfully as

gn = b̄n− b1:n =
n∑

m=1

(b̄− bm), (42)

where b̄ = NB/NT is the average number of consecutive bath particles. Next, the

difference of weight factors in the product in (40) can be written

wτn+i − wτn+j = (−k)(j − i). (43)

Hence
bn∏

j=06=i

1

wτn+i − wτn+j

=
1

kbn

(−1)bn−i

i!(bn − i)!
. (44)

Putting these results together,

Zbn+1 =
e−kgnzn

kbnbn!

bn∑

i=0

(−1)bn−ie−k(bn−i)zn

(
bn
i

)
(45a)

=
e−kgnzn

bn!

(
1− e−kzn

k

)bn

. (45b)

Finally, the tracer gap distribution comes out as

P{τ}(z1, . . . , zNT
) = δ

(
L−

NT∑

n=1

zn

)
1

ZN

NT∏

n=1

e−kgnzn

bn!

(
1− e−kzn

k

)bn

. (46)

This is the main result of this section. We now turn to its interpretation.

We first note that expression (46) factorises over the tracer particles labelled by n.

Each factor involves only the gap size zn to the next tracer. Note, however, that the

gap sizes are not independent due to the global constraint that their sum must be equal

to the system length L, which is implied by the delta function.

Let us refer to each factor in the product as a gap size weight. Each contains

an exponential factor exp[−kgnzn] and a factor involving bn (the number of bath

particles between tracer n and n + 1), which we now consider in turn. By themselves,
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the exponential factors give exp[−k
∑

n gnzn] which has (with gap conservation and

appropriate normalization) the form of the gap distribution (24) pre-marginalization.

That hypothetical gap distribution would formally describe a system of NT interacting

heterogeneous tracers, each with its own effective velocity, with no surrounding bath.

Comparing the exponential constant −kgn with wn in (24) for fixed diffusivity D one

deduces that the effective velocity of tracer n would be

un = uref − ṽbn = uref − [bn/(1 + b̄)]vT , (47)

where uref is some arbitrary reference velocity. A tracer with fewer bath particles ahead

of it with respect to the actual model than the average tracer, would here have larger

(signed) effective velocity un. As a result, it will disproportionally compress the space to

its neighbours in the positive direction. This effect grows with k. For instance, taking

NT = 2, if b1 > b2, then typically z1 will be large, as tracer two with fewer bath particles

in front of it succeeds in compressing the relatively fewer bath particles in front of it

until it gets close to tracer one.

Note that if all bn = NB/NT there is no heterogeneity and all gn = 0. As one then

expects from symmetry, typically all zn ≈ L/NT and the remaining factor involving bn
in (46) determines the distribution.

To interpret this remaining factor, consider a single bath particle trapped in a box

[0, L] whose boundaries move forward at velocity ṽ. Its position with respect to the left

box boundary would be distributed with cumulative density qB(x) ∝ 1−exp[−kx]. The

probability of finding bn indistinguishable particles crammed into [0, zn] would be

qbnB (zn)/bn! , (48)

which is precisely the factor appearing in the gap size weight.

In conclusion, the full gap distribution (46) may be viewed as a product of two

subsystems (each of which factorises): one describing a system of tracers without bath

particles with heterogeneous effective velocities, and one representing a system of bath

particles distributed in boxes (the space between a pair of tracers). The weight for a

single gap size zn is then the product of the weight for gap size zn in the tracer subsystem

multiplied by the probability that bn bath particles occupy space less than zn in the bath

subsystem. However, these subsystems are correlated through the conservation of space

and the global current established cooperatively by all particles.

3.3. The Brownian many-filament ratchet

A recent paper by Wood et al. [19] introduced a model for membrane growth, where

a number of filaments grow by polymerization and extend a membrane in the growth

direction through a ratchet effect (Figure 5 (b)). A central result of that work was the

solution for the net velocity ṽM of the membrane, when the N filaments have constant

nominal growth rates vF,i with a diffusivity DF,i, whereas the membrane has a nominal
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(a) Periodic SFD

filaments membrane

(b) Filament ratchet

Figure 5. In SFD no particle can cross its neighbour. In the N -filament ratchet, we

put the absolute length xi of the N filaments as mutually non-interacting particles on

the real line. Each filament however cannot cross through the membrane, represented

as particle N + 1.

velocity −vM and diffusivity DM:

ṽM =
−vMD

−1
M +

∑N
i=1 v

(i)
F,iD

−1
F,i

D−1
M +

∑N

i=1D
−1
F,i

. (49)

This expression is formally identical to (15) derived for single-file diffusion. This

ultimately follows from the fact that in both models, all degrees of freedom must have

a common net velocity for geometric reasons.

Figure 5 shows how to map the Brownian many-filament ratchet to a particle

problem directly comparable to SFD. The absolute positions of the membrane and each

filament correspond to the positions of particles on an infinite line. Two particles cannot

pass one another if they are connected by a dashed line. For a periodic domain, it is

intuitively clear that if the graph of mutual exclusions (dots and dashed lines in Figure 5)

includes all particles—whether any given two particles are directly connected—then they

are geometrically constrained to have a common net velocity. This is true also for the

infinite line, with the caveat that the model parameters must allow the particles to

cluster rather than disperse in the long-time limit.

From a mathematical point of view, if we make the ansatz Ji(x) = ṽiP (x), then

the no-crossing condition (12) for particles i and j immediately implies ṽi = ṽj, so that

all particles in the graph of mutual exclusion must have the same ṽ. If we define u(x)

by J(x) = u(x)P (x) for any steady state, then u(x) is known as the irreversible drift

(provided x is even under time-reversal in all its components). In the version of SFD

treated here, and in related cases, u is a constant vector. The significance of this is

that one can change variables into a frame moving through phase space with velocity

u, relative to which the process satisfies detailed balance—this explains the solvability

of the model. This is more than an “equilibrium system on wheels”, however, as the
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velocity of the metaphorical cart arises non-trivially from microscopic interactions. We

expound the role of the irreversible drift, and its relation to phase space structure, in

section 4.

4. N-body volume exclusion process in a d-dimensional tube: integrability

conditions and steady-state solution

4.1. Phase space structure and stochastic dynamics

The physical meaning and broad mathematical structure of the general model were

described in the section 2. Here we give the further details. The drift-diffusion process

X(t) evolves in a phase space Γ ⊂ R
d×N constructed as follows. The tube is a space

Q ⊂ R
d within which there is a unique ‘axial’ direction r̂ that is unbounded whereas

all other directions are bounded. The boundary ∂Q is axially constant, meaning that a

boundary normal n̂ is always orthogonal to r̂. Each particle i ∈ {1, 2, . . . , N} inherits

a copy Q(i) of Q so Γ ⊂ Q(1) × · · · × Q(N). The inclusion is strict because we have yet

to exclude phase space points forbidden due to physical volume exclusion. Recall that

the components of x ∈ Γ are organized according to (1) as

x =
N∑

i=1

êi ⊗ q(i), (50)

with q(i) ∈ Q(i). The part of the phase space boundary ∂Γ arising from particle i

touching the tube walls at q ∈ ∂Q is

Bi(q) = {x ∈ Γ : ||q(i) − q|| = ri}, (51)

where ri is the radius specific to particle i. For future reference we compute the boundary

normal by applying the gradient operator

∇ ≡ ∇x =
N∑

i=1

êi ⊗∇q(i) (52)

to the locus ||q(i) − q|| = ri. The result is

n̂(x) = êi ⊗ δq̂(x), x ∈ Bi(q), (53)

with δq̂ = (q(i) − q)/ri as illustrated in Figure 6 (left panel). Note that δq̂ · r̂ = 0.

For mutual volume exclusion between particles we consider an ‘interaction graph’

G where a node represents a particle, and an edge between two particles signifies that

they mutually exclude volume. E.g., SFD has the complete graph, and the filament

ratchet a star graph (see Figure 5). If (i, j) ∈ G then we must introduce a boundary

surface

Bij = {x ∈ Γ : ||q(i) − q(j)|| = ri + rj}. (54)



Inter-particle ratchet effect determines current of heterogeneous confined particles 18

riδq̂q

q(i)

r̂

(ri + rj)δq̂

q(i)

q(j)

Figure 6. Direction of incidence δq̂ for collision between particle i and a wall or

between particle i and particle j.

Its normal is

n̂(x) =
1√
2
(êi − êj)⊗ δq̂(x), x ∈ Bij, (55)

where δq̂ ∝ q(i) − q(j), illustrated in Figure 6 (right panel).

The full phase space boundary is then

∂Γ =

(
⋃

i,q∈∂Q

Bi(q)

)
⋃



⋃

(i,j)∈G

Bij



 . (56)

Γ is the restriction of Rd×N that lies inside or on this boundary. If the geometry of the

tube and particles is such that a certain ordering of particles is logically preserved, e.g.

as is necessarily the case for SFD (d = 1 and G the complete graph) then the process is

confined to the sector Γx0 ⊂ Γ containing the initial condition x0.

We now generalize the dynamics given in (2) to allow non-constant drift and

diffusion parameters. In terms of a formal Itô SDE,

dX(t) = a(X(t))dt+ B(X(t))dW(t) + dR(t), (57)

where W(t) is a Nd-dimensional Wiener process, and the exact definition of the

reflection term R(t) will be provided in the Fokker-Planck picture. The density P (x, t)

defined similar to (4), given x in the interior Γint = Γ \ ∂Γ of the phase space, evolves

by the Fokker-Planck equation

∂tP (x, t) = −
∑

i

∂xi
ai(x)P (x, t) +

1

2

∑

i,j

∂xi
∂xj

[B(x)B⊤(x)]ijP (x, t). (58)

We find the following parameters more convenient:

vi(x) = ai(x)−
1

2

∑

j

∂xj
[B(x)B⊤(x)]ij , D(x) =

1

2
B(x)B⊤(x). (59)

We will refer to v(x), rather than a(x), as the drift vector, pointing out that this may

break from common convention if the diffusion matrix D(x) is non-constant. For the

latter we make the mild assumption that it is invertible. Since the diffusion matrix

is a covariance matrix, it is symmetric and positive semi -definite. Its invertibility is
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therefore equivalent to strict positive definiteness. What this means is that there is

no linear combination of the components of X(t) that has zero variance, hence evolves

deterministically.

We then compactly write the FPE as

∂tP (x, t) +∇ · J(x, t) = 0, (60)

using the probability current

J(x, t) = v(x)P (x, t)− D(x)∇P (x, t). (61)

On the phase space boundary ∂Γ the process is reflected. This means that the

probability flow through boundaries must vanish:

J(x, t) · n̂(x) = 0, x ∈ ∂Γ. (62)

The remaining conditions differ depending on whether the tube is periodic or

infinite. In the following we will suppose periodicity, and leave the case of infinite

tube to subsection 4.4. Thus we require invariance under translating the whole system

by one axial period L,

P (x+ Lτ , t) = P (x, t). (63)

Recall that τ is the global translation vector

τ =

N∑

i=1

τ̂ (i) = 1⊗ r̂, (64)

constructed from the vectors

τ̂ (i) = êi ⊗ r̂ (65)

that move particle i forward axially a unit distance, keeping all else constant. By

assuming more strongly translation invariance of the model parameters, i.e. axial

homogeneity of the tube,

v(x+ rτ ) = v(x), D(x+ rτ ) = D(x), r ∈ R, (66)

we obtain (63) automatically.

As mentioned in the introduction, further conditions appear if the geometry is

not quasi-one-dimensional. Suppose that there exists some possible trajectory ω =

{x(s)}Ts=0, where x(T ) = x(0) + Lτ̂ (i). That is, particle i has made one net circulation

of the tube, while the other particles have not. Then x(0) and x(T ) are physically the

same due to tube periodicity and therefore we must require,

P (x+ Lτ̂ (i), t) = P (x, t). (67)

However, if no such trajectory exists for particle i, i.e. it is prevented by other particles

from circling the tube by itself, then there is no logical reason to impose (67).
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4.2. Conditions for a solvable steady state

It is known in the literature that there exists certain “potential conditions” [20, 35, 36]

which make the steady state of a drift-diffusion solvable in terms of an explicit integral—

this is what we mean by integrability in this article. In this section we derive these

conditions in an unconventional way, tailored to the presence of a phase space boundary.

A steady state density P (x) for the process X(t) in its original coordinates exists, as

guaranteed by the boundedness of the phase space of the periodic tube. Let us define

the function u(x) by

J(x) = u(x)P (x). (68)

Assuming P (x) > 0 for all x this definition is unambiguous. We take the components

of X(t) to be even under time reversal. Then u(x) is called the irreversible drift [20] for

reasons to become clear. Eliminating J for u in the stationary versions of (60), (61),

and (62) the result is






∇ · u(x) + u(x) · ∇ lnP (x) = 0, x ∈ Γ, (69a)

∇ lnP (x) = D
−1(x)[v(x)− u(x)], x ∈ Γ, (69b)

u(x) · n̂(x) = 0, x ∈ ∂Γ. (69c)

By combining (69a) and (69b) we can view (69) as a closed equation for u(x),

{
∇ · u(x) + u(x) · D−1(x)[v(x)− u(x)], x ∈ Γ, (70a)

u(x) · n̂(x) = 0, x ∈ ∂Γ, (70b)

together with the definition of a potential Φu(x) by

∇Φu(x) = D
−1(x)[v(x)− u(x)]. (71)

This potential generates the probability density through

P (x) =
eΦu(x)

Z
, (72)

following the path-independent integration

Φu(x)− Φu(c) =

∫ x

c

dy · ∇Φu(y). (73)

The assumed existence and uniqueness of the steady state has two important

consequences: For given v(x) and D(x), the problem (70) (together with any additional

boundary conditions, like periodicity) has a unique solution u(x), and this solution

necessarily makes (71) integrable.

But we can turn the logic around. Instead of fixing v(x) and D(x), which implies

a specific u(x), we assume that u(x) is of a certain form, which imposes restrictions

on which v(x) and D(x) are consistent with this form. The constraints on v(x) and

D(x) are that they must solve (70) for the given u(x) while also making (71) integrable.
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For example, u = 0 is always a trivial solution of (70). Equation (71) then states the

well-known integrability conditions for a detailed-balanced system.

Observe that given the process X(t) with drift vector v(x) and diffusion D(x)

leading to irreversible drift u(x), we can always define a new process X′(t) with the

same steady state density but satisfying detailed balance: take this process to have

v′(x) = v(x) − u(x) and D
′(x) = D(x). The trivial solution u′ = 0 is then most

general one because it assumes no new integrability conditions on v′(x) and D
′(x) in

order to solve for Φ′
u′(x) ( = Φu(x)). This shows that the irreversible drift u(x) is

the part of the drift without which detailed balance holds, but the density remains the

same, hence its name.

To make progress with the tube problem, consider the following ansatz for the

solution u(x):

(i) The direction û is constant

(ii) The magnitude u(x) 6≡ 0 is invariant in the û-direction,

u(x) = u(x+ sû) for all s ∈ R. (74)

The condition (i) is motivated by the observation that there may exist such a constant

direction that solves all the reflective boundary conditions. We make the ansatz

û ∝
∑

i

ûiτ̂
(i) (75)

(recall (65)). Then û · n̂ = 0 for the normal (53) of particle-wall boundary, and holds

as well for the normal (55) of the particlei-particlej boundary if

ûi = ûj. (76)

Let us assume that all particles are connected in the graph of mutual exclusions, but

not necessarily that the graph is complete. Then it follows that û = τ̂ .

The condition (ii) has the effect that ∇ · u(x) = û · ∇u(x) = 0. Then u(x) can be

solved for algebraically from (70a) as

u(x) =
û

⊤
D

−1(x)v(x)

û
⊤
D−1(x)û

. (77)

For condition (ii) to hold, we would generically require

v(x+ sû) = v(x), D(x+ sû) = D(x), for all s ∈ R. (78)

Since û = τ̂ , the above simply states translation invariance which was already assumed.

With this trial solution, we have

∇Φu(x) = H(x)v(x), H(x) = D
−1(x)− D

−1(x)û⊗ û
⊤
D

−1(x)

û⊤
D−1(x)û

. (79)
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The matrix H(x) is symmetric and H(x)û = 0. We have implicitly assumed that this

potential exists, which may be difficult or artificial except for v,D constant.

If the system is not quasi-one-dimensional, then we must also satisfy (67). For

instance, with constant model parameters, we will find P (x) ∝ exp[v⊤
Hx]. The

condition is then that

v⊤
Hτ (i) = 0 (80)

for every particle i that is able to overtake every other particle. Generically, these

constraints cannot be accommodated because they overdetermine the components of

the irreversible drift. Logically, assumptions (i) or (ii) on u will be violated. Then, we

cannot solve (69) by algebraic means. A trivial case where (80) can in fact be solved, is

when the particles have the same drift v = vû which is then only in the axial direction.

Then we have a flat steady state. As seen directly from (69), a flat density P = 1/Ω

with current v(x)/Ω occurs whenever v(x) · n̂(x) = 0 and ∇ · v(x) = 0, i.e. when

u(x) = v(x).

4.3. Derivation of the current

We now seek the expression for the net velocity ṽi of particle i. Up to a choice of units,

net velocity and current are equivalent and we will use the terms interchangeably by

setting L = 1. Consider the hypersurface S
(i)
r in Γ given by q(i) · r̂ = r and whose normal

is n̂ = ∇(q(i) · r̂) = τ̂
(i). It corresponds to all configurations where the ith particle is a

distance r down the tube. The net velocity at this axial distance is given by integrating

the probability flow across S
(i)
r , i.e. by integrating J(x) · n̂ over all x ∈ S

(i)
r :

ṽi = L

∫

S
(i)
r

dx τ̂ (i) · J(x) (81a)

= L

∫

Γ

dx δ(q(i) · r̂ − r)τ̂ (i) · J(x). (81b)

Using the translation invariance of the system,

ṽi =
1

L

∫ L

0

dr ṽi(r) (82a)

=

∫

Γ

dx τ̂ (i) · J(x) (82b)

=
〈
τ̂
(i) · u(x)

〉
. (82c)

When, as we found before, u = uτ̂ , all ṽi = ṽ are identical, with the final result

ṽ =
τ⊤

D
−1v

τ⊤D−1τ
. (83)

This case has a special interpretation because it represents the situation where a

change of variables X(t) → X′(t) = X(t)−ut into a moving frame brings about detailed

balance relative to it.
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Figure 7. In the infinite tube, quasi-one-dimensionality can be achieved by inserting

a movable ‘piston’ preventing dispersal of the particles.

4.4. Extension to infinite tube

For the infinite tube with a finite number of particles to have a sensible long-time limit,

the particle’s properties must be such that all particles form a cluster with a shared group

velocity. Either, the particles may be effectively single-file, or they can overtake but we

add a movable piston—with its own velocity and diffusivity—as shown in Figure 7.

Suppose that there is a a phase space velocity u such that

P (x, t)
t→∞−→ P ′(x′) = P ′(x− ut) (84)

Then the FPE (60) implies

J(x, t)
t→∞−→ J ′(x′) = uP ′(x′). (85)

Then we can apply most of the previous section done for the periodic tube to P ′,J ′,

with the conditions—instead of periodicity—that P ′ must be normalizable over the now

infinite domain Γ: ∫

Γ

dx exp[v⊤
Hx] < ∞. (86)

The precise conditions on the drift velocities and diffusivities will depend on whether

the particles are forced into single-file or not.

5. Discussion

We have used a minimalistic model of hard spheres, drifting and diffusing in a periodic

tube, to show how heterogeneity in particle properties together with volume exclusion

interactions determine the global current in a non-trivial way. Specifically, the slower-

diffusing particles have a greater influence on the current, which is explained through

an inter-particle ratchet effect—one to be added to a growing catalogue of ratchet

effects in non-equilibrium systems. Our technical results rest upon an assumption of

quasi-one-dimensionality in an extended sense—the inability of any particle to overtake

all others, or alternatively the presence of moving walls, such that all particles are

geometrically constrained to a common net velocity in the steady state. We studied

several strictly one-dimension scenarios. Then the general-dimensional case was treated,

and a formal explanation for the solvability of the model under quasi-one-dimensionality

and tube homogeneity was provided: a unique direction in phase space exists, which

never encounters a boundary, is in fact always perpendicular to the all boundaries,
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and the system is invariant in this direction. This direction is that of the irreversible

drift, whose magnitude arises microscopically through particle interaction under non-

equilibrium conditions, but which affords a change of reference frame relative to which

the system obeys detailed balance.

The global current, expressed by Eq. (10) or its one-dimensional version Eq.

(15), showcases the principle that under non-equilibrium conditions, time-symmetric

parameters can have an arbitrarily large influence even on time-asymmetric observables

[37]. Here, diffusivities are the time-symmetric quantities, which have a non-linear and

unrestrained impact on the particle current in our model. In contrast, the steady state

and linear response of an equilibrium system is entirely determined by the dissipative

model parameters. As noted at the end of the Introduction, because of the way the

whole diffusion matrix D enters the expression for the current, non-diagonality, arising

from noise-correlations between particles or spatial bias in the diffusion, may be a source

of new non-dissipative effects on the current. The generalization of the ratchet effect

to a non-diagonal diffusion matrix would be that the current is most influenced by

the eigenmode of diffusion with smallest eigenvalue. We invite the identification of a

physically motivated problem where this generalized ratchet effect is observed.

Other modifications to the minimalistic tube model may deserve consideration. For

instance, what is the impact of a non-spherical particle shape on the described ratchet

effect? The problem with incorporating this feature in the mathematical framework

we have employed, is not so much the extra complication to the reflective boundary

conditions, but that degrees of freedom describing the orientation of a particle and their

dynamic must be defined. The integrability conditions derived from the irreversible drift

would almost certainly impose severe limitations on which coupling between orientation

and other degrees of freedom would be allowed.

Beyond deriving the integrability conditions, we have not explicitly investigated

any particle interactions beyond volume exclusion. In Ref. [19], spring forces between

the filaments ratcheting a membrane could be analysed, and presumably relevant

interactions could also be treated for other special cases of the tube model, with the

current then governed by Eq. (77).

A different direction would be to study the open-boundary tube, where particles

enter with properties drawn from some distribution. One might anticipate different

phases of the current as injection rates are altered, as well as different phase diagrams

depending on the distribution of properties chosen, e.g. with regards to the weight of

the tails in the reciprocal diffusivity distribution.

In conclusion, particle heterogeneity under nonequilibrium conditions is likely to

be a source of many collective non-dissipative phenomena, with inter-particle ratcheting

being but one exemplar.
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