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Abstract— Achieving a proper balance between planning
quality, safety and efficiency is a major challenge for au-
tonomous driving. Optimisation-based motion planners are
capable of producing safe, smooth and comfortable plans, but
often at the cost of runtime efficiency. On the other hand,
naı̈vely deploying trajectories produced by efficient-to-run deep
imitation learning approaches might risk compromising safety.
In this paper, we present PILOT– a planning framework
that comprises an imitation neural network followed by an
efficient optimiser that actively rectifies the network’s plan,
guaranteeing fulfilment of safety and comfort requirements.
The objective of the efficient optimiser is the same as the
objective of an expensive-to-run optimisation-based planning
system that the neural network is trained offline to imitate. This
efficient optimiser provides a key layer of online protection from
learning failures or deficiency in out-of-distribution situations
that might compromise safety or comfort. Using a state-of-the-
art, runtime-intensive optimisation-based method as the expert,
we demonstrate in simulated autonomous driving experiments
in CARLA that PILOT achieves a seven-fold reduction in
runtime when compared to the expert it imitates without
sacrificing planning quality.

I. INTRODUCTION

Guaranteeing safety of decision-making is a fundamental
challenge on the path towards the long-anticipated adoption
of autonomous vehicle (AV) technology. Attempts to address
this challenge show the diversity of possible approaches
to the concept of safety: whether it is maintaining the
autonomous system inside a safe subset of possible future
states [1], [2], preventing the system from breaking domain-
specific constraints [3], [4], or exhibiting a behaviour that
matches the safe behaviour of an expert [5], amongst others.

Approaches to motion planning in AVs can be cate-
gorised in different ways, e.g., data-driven vs. model-based.
The hands-off aspect of purely data-driven approaches is
lucrative, which is evidenced by the growing interest in
the research community in exploiting techniques such as
reinforcement or imitation learning applied to autonomous
driving [6], [7], [8], [9]. Moreover, inference in a data-
driven model is usually efficient when compared to more
elaborate search- or optimisation-based approaches, which
is a key requirement in real-time applications. However, this
does not come for free as these systems struggle to justify
their decision making or to certify the safety of their output
at deployment time without major investments in robust
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Fig. 1. PILOT framework: (top) PILOT uses an expert-in-the-loop
imitation learning paradigm to train a deep neural network,Nθ , that imitates
the output of an expensive-to-run optimisation-based planner Ω. (bottom)
At inference time, PILOT uses the output of Nθ to initialise an efficient
optimiser ν to compute a feasible and low cost trajectory.

Fig. 2. An example CARLA scenario with trajectories generated with
the planner-in-the-loop with a horizon of 8s per planning stage for 1) the
expensive-to-run planner 2S-OPT (in red) that took 175 ms per planning
stage on average, and 2) PILOT (in blue) that took 44 ms per planning stage
on average. More examples in the accompanying video five.ai/pilot

training [10], [11] or post-hoc analysis [12]. This constitutes
a major setback to the deployment of such methods in safety-
critical contexts. On the other hand, model-based approaches
tend to be engineering-heavy and require deep knowledge
of the application domain, while giving a better handle on
setting and understanding system expectations through model
specification. Moreover, they produce more interpretable
plans [13], [14], [15], [16]. This, however, usually comes
at the cost of robustness [3] or runtime efficiency [4]. We
aim to bring the efficiency benefits of data-driven methods
together with the guarantees of model-based systems in a
hybrid approach for urban driving applications. Our goal is
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to introduce a general planning architecture that is flexible
enough to capture complex planning requirements, yet still
guarantee the satisfaction of sophisticated specifications at
deployment, without sacrificing runtime efficiency.

In this work, we propose an approach that combines
model-based optimisation and deep imitation learning, using
as the expert a performant optimisation-based planner that is
expensive to run. We introduce PILOT – Planning by Imita-
tion Learning and Optimisation – in Sec. III. At training time
(Fig. 1, top), we distil [17] the expert planner’s behaviour us-
ing imitation learning, with online, expert-in-the-loop dataset
augmentation (e.g. DAgger – Dataset Aggregation [18]) to
continually enrich the training dataset with relevant problems
sampled from the state distribution induced by the learner’s
policy. At inference time (Fig. 1, bottom), to actively correct
potential learning failures and improve safety, we employ
an efficient optimisation component that optimises the same
objective function as the expert but benefits from informed
warm-starting provided by the network output.

In this paper, without loss of generality to our approach,
we use the two-stage optimisation framework introduced by
Eiras et al. [4] as the expensive-to-run planner to imitate
in a simulated environment. As discussed by the authors,
the framework in [4] suffers in terms of runtime, effectively
trading off efficiency for better solution quality, which makes
it a suitable choice for PILOT. We use the CARLA simu-
lator [19] to validate our approach under a wide variety of
conditions in realistic simulations. This is an important step
in the direction of understanding the viability and safety of
such methods before deploying on the roads. A qualitative
example of PILOT’s performance in CARLA is in Fig. 2.

The contributions of this work are:
• A robust and scalable framework that imitates an

expensive-to-run optimiser, with expert-in-the-loop data
augmentation at training time and active correction at
inference time using an efficient optimiser.

• Applying this framework to the two-stage optimisation-
based planner from [4] leading to a 7× runtime im-
provement in our benchmark CARLA datasets at no
significant loss in solution quality (measured by the
objective function cost of the output trajectory).

II. BACKGROUND AND RELATED WORK

In this section we review related work in motion plan-
ning for AVs regarding imitation learning with optimisation
experts (Sec. II-A) and motion planning via optimisation
(Sec. II-B). Then, we give an overview of a planning method
we use in this work to demonstrate PILOT for (Sec. II-C).

A. Imitation Learning with Optimisation Experts for AVs

With the complexity of specifying the objective function
of safe, assertive driving, imitation learning offers a promis-
ing alternative. However, naı̈ve attempts to leverage expert
traces, e.g. with vanilla behavioural cloning [20], usually fails
at deployment to exhibit safe behaviour in complex scenarios
due to covariate shift between the training and deployment
settings [21], [22]. To mitigate this issue, techniques for

training data augmentation range from online methods that
actively enrich the training dataset with actual experiences
from the deployment environment [18], and offline synthesis
of realistic scenarios for the expert to demonstrate recovery
from perturbations [23] or near-misses [24].

Still, data augmentation by itself cannot guarantee the
safety of decisions at inference time, which we believe is
a fundamental requirement for any deployed system in the
safety-critical autonomous driving task. Yet, most of the
existing literature on imitation learning of optimisation [7],
[25], [26], [27] propose pure end-to-end learning pipelines.

Pan et al. in [7] proposed an end-to-end system for off-
road, fixed route, real-world planning that learns to map
basic sensory input into controls with the guidance of a
Model Predictive Control (MPC) expert that has access
to better sensors and more compute. However, no safety
guarantees are provided at deployment time beyond what
a low-level controller employed to track the network output
does. A related approach by Sun et al. in [26] employs a
shallow neural network with selected state features as input
to imitate an MPC expert that optimises progress and control
effort in long-term, two-lane driving scenarios with two
other vehicles. On top of that, an online, short-horizon MPC
controller tracks the initial portion of the inferred trajectory,
constrained by the same feasibility and collision constraints.
For online augmentation, the optimisation problems in which
the network output deviates away from the expert’s are
included in the augmented training dataset. Acerbo et al.
in [27] pre-train a fully-connected neural network to map
state features of a simple lane-keeping scenario involving no
other vehicles into parameters of smooth, second-order poly-
nomial curves, using a dataset generated by a short-horizon
nonlinear MPC expert. In addition to the usual L2 term,
the training loss incorporates other terms related to collision
avoidance, implemented with barrier functions. A related,
supervised learning approach is Constrained Policy Nets [28]
in which the loss of a policy network is derived directly from
an optimisation objective. This, however, requires careful
treatment of the constraint set to ensure differentiability.

Another approach to rectify an imitation network output
employs control safe sets to validate acceleration and steering
commands of an imitation network trajectory [23]. This,
however, is limited to taming the predicted trajectory inside
the safe set, but unable to suggest other viable corrections.

B. Motion Planning as Optimisation for AVs

For any variable vj with j ∈ Z∗, we will use the shorthand
vi:e = {vi, ..., ve}. In its most general form, motion planning
via optimisation is defined as follows [16]: assume the input
to the motion planning problem is given by a scene s ∈ S
(vehicle states/positional uncertainty, layout information, and
predictions of other agents over a fixed horizon). The goal
is to obtain a plan for the ego-vehicle (or ego for short) as
a sequence of N + 1 states, τ∗ = τ0:N ∈ T , such that:

τ∗ = argmin
τ
J (τ)

s.t. τ0 = sego, gs(τ0:N ) ≤ 0, hs(τ0:N ) = 0
(1)
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Fig. 3. PILOT for 2S-OPT: (a) The planning input state is first transformed from the global coordinate frame to the reference path-based coordinate
frame. After the plan is obtained, the output is transformed back to the global coordinate frame by the inverse transform. See [4] for more details; (b)
Architecture of 2S-OPT (expert, expensive-to-run planner Ω): a MILP solver initialises an NLP optimiser; (c) Architecture of PILOT for 2S-OPT: input
pre-processing produces a sequence of images of the scene, encoding road surface information and the predicted future of dynamic road users, the network
N 2s-OPT
θ which was specifically designed for this problem, and the NLP problem as in 2S-OPT (ν).

where J is a cost function of progress and comfort terms
defined over the plan τ , sego refers to the initial ego state
in the scene s, gs and hs are sets of general inequality
and equality constraints, respectively, parameterised by the
input scene on the ego-vehicle states. These constraints
typically ensure the satisfaction of strict requirements of
model dynamics and safety (up to the predicted horizon) of
the output plans [16], [3], [4].

There is a wide-ranging literature on attempts to solve
relaxations of the problem in Eq. 1, e.g. by turning it into
unconstrained optimisation, taking a convex approximation,
tackling simplified driving scenes, or limiting the planning
horizon [16], [26], [27]. A recent work by Schwarting et
al. solves Eq. 1 directly in a receding horizon fashion [3],
yet the authors identify local convergence as a setback of
their method1. In [4], Eiras et al. mitigate this issue by
warm-starting the solver, which negatively affects runtime
efficiency. We describe next the architecture of [4], which
we then use in Sec. IV to practically demonstrate the
effectiveness of PILOT.

C. A Two-stage Optimisation-based Motion Planner

Fig 3(a, b) show the general architecture of the two-stage
optimiser of [4], which we will refer to as 2S-OPT. The
input to the system are: 1) a birds-eye view of the planning
scene, that includes the ego-vehicle, other road users and
the relevant features of the static layout; 2) a reference route
provided by an external route planner; and 3) predicted traces
for all road users provided by a prediction module. Projecting
the world state and predictions into a reference path-based
coordinate frame produces the 2S-OPT input (Fig 3(a)).

The Nonlinear Programming (NLP) problem solved in [4]
follows the structure of Eq. 1 with the following constraints:
1) Kinematic feasibility (equality): an ego state at time k
can be obtained by applying a discrete bicycle model to
the state at time k − 1; 2) Velocity limits (inequality): the
speed is lower-bounded by the minimum speed (typically
0) and upper-bounded by the speed limit; 3) Control input
bounds (inequality): the control inputs are lower- and upper-
bounded; 4) Jerk bounds (inequality): the change in the
control inputs is lower- and upper-bounded; 5) Border limits

1While the cost function in that work is for semi-autonomous driving,
this does not affect the general difficulty of the problem.

(inequality): the ego remains within the driveable surface
(e.g., the road surface, or lane if overtaking is not allowed);
6) Collision avoidance (inequality): the ego does not collide
with any other road user or object.

The cost function J2s-OPT comprises a linear combination
of quadratic terms of comfort (bounded acceleration and
jerk) and progress (longitudinal and lateral tracking of the
reference path, as well as target speed). More details on
the precise formulation of the constraints, cost function and
parameters are available in Appendix A.

To solve this optimisation problem, the two-stage archi-
tecture presented in Fig 3(b) is applied. The first stage
solves a receding-horizon, linearised version of the planning
problem using a Mixed-Integer Linear Programming (MILP)
solver. The output of the MILP stage is fed in one go
as a warm-start initialisation to the NLP optimiser. This
second optimisation stage ensures that the output trajectory
is smooth and feasible, while maintaining safety guarantees.

III. PILOT: PLANNING BY IMITATION LEARNING AND
OPTIMISATION

We now introduce PILOT, an efficient general solution
to attain the benefits of expensive-to-run optimisation-based
planners. As is well known in the community, while solving
the general problem in Eq. 1 globally is NP-hard [29],
[30], there are efficient solvers that can compute local
solutions within acceptable times if a sensible initialisation
is provided [31], [32]. We define ν : S × T → T to be
such an efficient optimiser. We denote by Ω : S → T the
‘expert’, expensive-to-run optimisation procedure that has
the potential to converge from an uninformed initialisation
to lower cost solutions than ν. Practical examples of Ω
include recursive decompositions of the problem and taking
the minimum cost [33], or informed warm-starting [4], [34].

The goal of PILOT is to safely achieve low costs on
J comparable to the ones achievable by Ω, in runtimes
comparable to the efficient ν. To do so, PILOT employs an
imitation learning paradigm to train a deep neural network
Nθ to imitate the output of Ω, which it then uses at inference
time to initialise ν. While in theory the network would
naturally achieve a low cost while satisfying the constraints
(perfect learning), in practice this is not the case. As such,
ν works as an efficient online correction mechanism that



Algorithm 1: PILOT INFERENCE STEP

input : state s, trained imitation network Nθ,
efficient planner ν

output: optimal plan τ∗

Obtain initial trajectory τNθ ← Nθ(s)
Get τ∗ by optimising J using ν(s, τNθ )
return τ∗

Algorithm 2: PILOT TRAINING PROCEDURE

input : initial dataset D0 = {(si, τ∗i )}i=1:n, expert
planner Ω, efficient planner ν, simulator S,
training problems count J , retrain count K

output: trained network parameters θ
Initialise D to D0

Pre-train θ ← TRAIN(N ,D)
for j ∈ {n+ 1, . . . , J} do

if simulation finished then
s′ ← Initialise a new simulation

else
s′ ← sj−1

Obtain sj from S by PILOT(s′;Nθ, ν) step
Get τ∗j by optimising J using Ω(sj)
Update D ← D ∪ {(sj , τ∗j )}
// retrain network every K steps

if (j − n) mod K = 0 then
Update θ ← TRAIN(N ,D)

return θ

uses this informed initialisation to output low cost, safe
and feasible trajectories. More details about the inference
procedure is shown in Algorithm 1 and Fig. 1 (bottom).

In order to achieve that, we pre-train the network on prob-
lems solved by the expert planner Ω, D0 = {(si, τ∗i )}i=1:n.
Then, with the pre-trained network Nθ and the efficient
optimiser ν acting as a planner, we employ a DAgger-style
training loop [18] in a simulator to adapt to the covariate
shift in D0 to the learner’s experience in the simulator. For
more details about training, see Algorithm 2 and Fig.1 (top).

IV. PILOT FOR THE TWO-STAGE OPTIMISATION-BASED
MOTION PLANNER

To demonstrate the effectiveness of PILOT, we apply it to
the use case of 2S-OPT. To do so, we take 2S-OPT as the
expensive-to-run planner Ω, and borrow its NLP constrained
optimisation stage as the efficient optimisation planner ν –
see Fig. 3(c). We design a deep neural network N 2s-OPT

θ

that outputs smooth trajectories given as input a graphical
representation of the scene and other scalar parameters of
the problem (e.g. ego-vehicle speed). We train the network
using Algorithm 2 to imitate the output of 2S-OPT when
presented with the same planning problem.

The planning scene, s, comprises the static road layout,
road users with predicted trajectories, and a reference path
to follow which acts as a behaviour conditioning input

(Fig. 3(a)). As the problem is transformed to the reference
path coordinate frame, the resulting scene is automatically
aligned with the area of interest – the road along the
reference path, simplifying the network representation.

To graphically encode the predicted trajectories of dy-
namic road users, C greyscale, top-down images of the scene
Ist ∈ RW×H are produced by sampling the predicted posi-
tions of road users uniformly at times t ∈ {0, h

C−1 , . . . , h},
for a planning horizon h = N∆t. These images are stacked
Is = Is1:C ∈ RC×W×H and fed into convolutional layers
to extract semantic features, as shown in Fig. 3(c). This is
similar to the input representation in previous works, e.g.
ChauffeurNet [24], with the exception that in our case the
static layout information is repeated on all channels.

Additional information of the planning problem that is not
visualised in the top-down images (such as the initial speed
of the ego-vehicle) is appended as scalar inputs along with
the flattened convolutional layers output to the first dense
layer of the network. Refer to Appendix B for more details.

The desired output of the network is a trajectory in the
reference path coordinate frame, encoded as a vector of time-
stamped positions ρθ = {(xj , yj)}j=1,...,N ∈ R2×N . With
this representation, we define the training loss to be the L2

norm between the expert trajectory and the network output:

Lθ(D) =
1

nN

∑
i∈D
||ρθi − ρ∗i ||2 + µ||θ||2, (2)

where θ is the neural network parameter vector, D is the
training dataset, ρ∗i is the expert’s time-stamped position at
index i from the dataset, and µ is a regularisation parameter.

The efficient NLP optimisation planner (Sec. II-C) ex-
pects as initialisation a time-stamped sequence of positions,
speeds, orientations and control inputs (steering and ac-
celeration) over the full-horizon, all in the reference path
coordinate frame, as a single optimisation problem (cf. the
traditional receding-horizon setting). We calculate speeds and
orientations from the network’s output sequence (after post-
processing – Appendix C), and derive the control values from
the inverse dynamics model.

V. EXPERIMENTS

In this section, we attempt to answer the following ques-
tions to demonstrate the effectiveness of PILOT:

1) How does PILOT fare compared to the expert,
expensive-to-run optimiser it is trained to imitate?

2) Is the imitation neural network alone sufficient to
produce safe, feasible and low cost solutions, similar
to those of the expert?

3) Is the imitation network necessary for the efficient
optimiser ν to converge to feasible and low cost
solutions, or are simple heuristics sufficient?

4) How does PILOT compare to a baseline that trains a
network to directly optimise the objective of ν?

To answer question 1), we compare PILOT and 2S-OPT
in terms of solving time and closed-loop trajectory cost using
J2s-OPT (Sec. V-B). We investigate question 2) by comparing
constraint satisfaction in PILOT and in the imitation network



Fig. 4. Representative example scenarios from the CARLA LARGESCALE
benchmarking dataset, showing a variety of conditions like handling moving
vehicles, overtaking static vehicles, road stretches and junctions in Town01.

N 2s-OPT
θ alone (Sec. V-C). To shed light on question 3) we

perform an ablation on the initialisation of the efficient opti-
miser, in this case the NLP solver, by swapping the network
with different heuristics and comparing the solution quality
(Sec. V-D). Finally to answer question 4), we implement the
state-of-the-art Constrained Policy Net (CPN) [28], in which
a neural network is trained directly with a loss function that
approximates the optimiser’s objective, and compare it to
PILOT with regard to constraint satisfaction (Sec. V-E).

A. Experimental Setup

We trained and benchmarked PILOT using CARLA
simulator (v 0.9.10) [19], where we can realise complex
interactions with, and between, other vehicles that would
be hard to generate by synthetically perturbing a scenario.
To that end, we obtained 20,604 planning problems from
randomly generated scenarios in Town02 with up to 40 non-
ego vehicles controlled by CARLA’s Autopilot. These
problems are then solved using 2S-OPT to get the base
dataset D0. We trained PILOT using Algorithm 2, randomly
spawning the ego and other vehicles in new simulations. For
benchmarking, we generated a dataset of 1,000 problems
in Town01, with representative example problems shown
in Fig. 4. We refer to this dataset as LARGESCALE to
differentiate it from the one used in Sec. V-E.

B. PILOT vs. 2S-OPT

We compare the quality of the plans produced by PILOT
and 2S-OPT with two metrics:
• Solving times (s) – the time required to initialise the

efficient NLP stage (using the MILP stage in 2S-OPT,
and using the neural network for PILOT), NLP solver
runtime after initialisation, and the total time. Lower
solving time is better.

• Cost – the J2s-OPT cost of NLP output upon convergence
as in Eq. 3 (Appendix A), reflecting the quality of the

TABLE I
PILOT VS. 2S-OPT: SOLVING TIME AND COST (J2S-OPT ) ON 962/1,000

PROBLEMS WHERE BOTH PILOT & 2S-OPT CONVERGE (MEAN ±
STANDARD DEVIATION OVER A VARIED SET OF DRIVING PROBLEMS)

Planner
Time (s)

Cost
Initialisation NLP Total

PILOT 0.02± 0.00 0.10± 0.15 0.12± 0.15 0.58±0.69

2S-OPT 0.70± 1.25 0.17± 0.23 0.87± 1.31 0.57±0.68
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Fig. 5. PILOT vs. N 2s-OPT
θ : constraint satisfaction percentages in the

LARGESCALE benchmarking dataset of 1,000 problems.

final solution, where lower cost values are better.
We report the value of these metrics in the LARGESCALE

benchmarking dataset in Table I, vindicating our approach of
combining an imitation learning network with an optimiser
to produce an efficient, safe planner. PILOT shows a clear
advantage in runtime efficiency when compared to 2S-OPT,
leading to savings of ∼ 86% in total runtime, with no
significant deterioration in solution quality (∼ 5% drop).

C. PILOT vs. N 2s-OPT
θ

We showcase the advantages of having an efficient op-
timiser rectifying the network mistakes at inference time
by comparing the trajectories obtained by PILOT to those
obtained by N 2s-OPT

θ , PILOT’s trained imitation network,
when used by itself as a planner. We show in Fig. 5 the
satisfaction rate of the constraints as defined in Sec. II-C in
the LARGESCALE benchmark dataset.

As can be observed, N 2s-OPT
θ struggles to reach the con-

straint satisfaction levels of PILOT, particularly with the
equality kinematic feasibility constraints. While this partic-
ular kind of constraint could be addressed with additional
kinematic output layers in the network [35], PILOT provides
a simpler and a more general approach that improves the
satisfiability of most constraints.

D. Efficient optimiser initialisation ablation

We present an ablation study on the quality of the imitation
network as an initialisation to the efficient NLP optimiser,
compared to simple, heuristic alternatives. In particular we
consider: None – an initialisation which sets ego position,
yaw and speed to zero at all timesteps; ConstVel – a constant



TABLE II
ν INITIALISATION ABLATION: COMPARISON OF EACH METHOD W.R.T.

2S-OPT ON MEAN SOLVING TIME/NLP COST (IN PROBLEMS SOLVED BY

BOTH 2S-OPT & INITIALISATION) AND CONVERGENCE PERCENTAGE.

Initialisation ∆ NLP solve
time (s)

∆ NLP cost
(%)

Converged
(%)

None +0.66 +9.3% 89.5%

ConstVel +0.18 +2.9% 95.3%

ConstAccel +0.44 -0.1% 91.7%

ConstDecel +0.35 +8.9% 95.3%

N 2s-OPT
θ (PILOT) -0.07 +2.3% 96.8%

MILP (2S-OPT) - - 99.2%

velocity initialisation that maintains the ego’s heading; and
ConstAccel/ConstDecel – constant acceleration and decel-
eration initialisations for which the speed is changed with a
constant rate until it reaches the speed limit or 0, respectively.

We compare the alternatives, relative to the original
2S-OPT MILP stage initialisation, in the LARGESCALE
benchmarking dataset with three metrics:

• ∆ NLP solving time and ∆ NLP cost– we report the
average difference in solving time (relative to MILP)
and the percentage change in the cost of the output
trajectory compared to MILP in the problems that both
the initialisation method and 2S-OPT solved.

• Percentage of solved problems – constrained, non-linear
optimisation in general is not guaranteed to converge to
a feasible solution, hence the quality of an initialisation
would be reflected in a higher percentage of solved
problems. We report the percentage of solved problems
out of the problems that 2S-OPT solved.

Results in Table II show that PILOT’s neural network
initialisation produces trajectories that are easier to optimise
(reduced NLP solving time) with only a small averaged
increase in the final cost compared to MILP. ConstAccel has
a slight advantage in NLP cost on the problems it solves, but
solves far fewer and takes significantly longer to converge.

E. PILOT vs. CPN

We showcase the advantages of our framework by com-
paring it to an optimiser-free alternative: CPN [28], a state-
of-the-art method that trains a neural network directly with a
loss function that approximates the optimiser cost function.

Attempts to train CPN naı̈vely on LARGESCALE failed to
result in an effective network, leading to the more elaborate
training procedure discussed in Appendix D. Thus, to facili-
tate a fair comparison between PILOT and CPN, we created
a simpler dataset in Carla’s Town02 (SMALLSCALE), with
20,000 problems that are limited to up to 3 static vehicles on
a straight stretch of road. We use a dataset of 1,000 problems
randomly generated in the same way for benchmarking.

Fig. 6 shows a bar plot of constraint satisfaction rates in
SMALLSCALE benchmark dataset. CPN fails to guarantee
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Fig. 6. PILOT vs. CPN: constraint satisfaction percentages in
SMALLSCALE benchmarking dataset of 1,000 problems.

kinematic feasibility, collision safety and comfort require-
ments in the output. On the other hand, PILOT is guaranteed
to satisfy these requirements when the efficient optimiser ν
converges – 99.4% of the problems in this dataset.

VI. DISCUSSION AND CONCLUSION

We now review the questions posed in Sec. V in light
of the experimental results. We demonstrated in Sec. V-B
the effectiveness of PILOT in replacing an expensive-to-run
optimiser (e.g., 2S-OPT) by showing a reduction of nearly
7× in runtime compared to the optimiser while only suffering
a marginal increase in final cost. As mentioned in Sec. II,
the expensive-to-run optimiser we use here builds on the
fast framework of Schwarting et al. [3] that can re-plan at
10Hz but suffers from local convergence issues. 2S-OPT [4]
offers an improvement in convergence and quality at the cost
of runtime efficiency, with our implementation having a re-
plan rate of around 1Hz. PILOT, when applied to 2S-OPT,
allows for a re-plan rate of 8Hz, approaching the original
speed of [3] but with improved convergence and lower cost
solutions similar to 2S-OPT.

Our training procedure is an imitation learning paradigm
with online dataset augmentation using the expensive-to-run
optimiser as the expert. This could be interpreted as a tech-
nique of policy distillation [17], replacing the sophisticated
expert with a much more efficient proxy. The generalisation
power of the expert is maintained to some extent through
the efficient optimiser stage that actively tries to satisfy the
same constraints as the expert. The initialisation ablation
of the efficient optimiser presented in Sec. V-D showcases
the benefits and the quality of trained imitation network
when compared to simple alternatives. The simplicity of our
training paradigm is corroborated further by the comparison
to CPN in Sec. V-E. The nature of the optimisation of CPN
training for complex formulations with many constraints as
we have in 2S-OPT results in a difficult training process,
requiring careful fine-tuning (see Appendix D). PILOT, on
the other hand, relies on the solutions of the expert with a
simple L2 loss, limiting the need for fine-tuning.

We justify the design of our inference procedure in Sec. V-
C, showing that PILOT’s efficient optimiser effectively



corrects the network output, leading to safer, constraint sat-
isfying solutions. Moreover, the efficient optimiser operates
on the full-length, long-horizon trajectory that is produced
by the network, in contrast to existing approaches in which
the optimisation at inference time is restricted to a limited
horizon [26]. In the case of [26] in particular, the short-
term MPC problem is highly conditioned on the network’s
output, which has the potential of creating sub-optimal, and
even unsafe, solutions if the network yields a poor result.

The complexity of the expert optimiser and the cost of
running it within our framework influences only the training
phase of the imitation network and has no effect on the
inference phase. Thus, in the future we are interested in
exploring more advanced experts, e.g., returning the solu-
tion with the minimum cost using an ensemble of initial-
isations [33]. Furthermore, one could investigate applying
conditional imitation learning [36] and other loss functions,
e.g. L1 [9], to improve further the quality of the initialisation
provided by the network and bridge the existing gap between
the expert and efficient optimisers.

APPENDIX

A. Nonlinear programming problem formulation

Following the definition from [4], we take ∆t to be the
timestep between states, N to be the desired plan length,
and we assume the discretised kinematic bicycle model
xk+1 = f∆t(xk,uk) where xk = (xk, yk, θk, vk) is ego state
(pose and speed) and uk = (ak, δk) is the control inputs
(acceleration and steering) applied to the ego at step k. The
goal of the 2S-OPT framework is to solve the following
constrained optimisation problem:

argmin
x1:N ,u0:N−1

J2s-OPT(x1:N ,u0:N−1)

s.t. xk+1 = f∆t(xk,uk)

0 ≤ vmin ≤ vk ≤ vmax

|δk| ≤ δmax

amin ≤ ak ≤ amax

|ak+1 − ak| ≤ ȧmax

|δk+1 − δk| ≤ δ̇max

E(xk) ∩
([
R2 \ B

]
∪ S1:w

k

)
= ∅, ∀k

(3)

where vmin is the minimum desired speed, vmax is the
road’s speed limit, δmax is maximum allowed steering
input, [amin, amax] is the allowed range for accelera-
tion/deceleration commands, ȧmax is the maximum allowed
jerk, δ̇max is the maximum allowed angular jerk. Addition-
ally, B ⊂ R2 is the driveable surface that is safe to drive
based on the layout, S1:w

1:N ⊂ R2×N are unions of elliptical
areas that encompass the w road users, S1:w

k , for timesteps
k ∈ {1, ..., N}, E(xk) ⊂ R2 is the area the ego occupies
at step k with, and J2s-OPT is a cost function comprising a
linear combination of quadratic terms of comfort (reduced
acceleration and jerk) and progress (longitudinal and lateral
tracking of the reference path, as well as speed) [4]. In
2S-OPT, the ego’s area E(xk) is approximated by its corners,

TABLE III
NLP WEIGHTS AND PARAMETERS

Parameter Value Parameter Value Parameter Value

L 4.8 m δ̇max 0.18 rad/s2 ωx 0.1

δmax 0.45 rad/s vmax 10 m/s ωv 2.5

amin −3 m/s2 vmin 0 m/s ωy 0.05

amax 3 m/s2 ωδ 2.0 ωa 1.0

ȧmax 0.5 m/s3

so that the intersection with the driveable surface – delimited
by its borders which are defined as C2 functions – and road
user ellipses can be computed in closed form [4].

The cost function to optimise is defined as

J2s-OPT(x1:N ,u0:N−1) =

N∑
k=0

∑
ι∈I

ωιθι(xk,uk) (4)

where ωι ∈ R are scalar weights, and θι(zk,uk) are soft
constraints that measure deviation from the desired speed
(ωv), the reference path (ωy) and the end target location
(ωx), and that control the norms of acceleration and steering
control inputs (ωa and ωδ). We fine-tune the parameters of
the optimisation using grid-search in the parameter space.

The parameters of the optimisation are in Table III.

B. PILOT for 2S-OPT: deep neural network architecture

Fig. 7. PILOT for 2S-OPT network architecture.

C. Output transformation checks

The network produces a sequence of spatial positions, then
the rest of the required input of the efficient optimiser are
computed from that sequence. A number of checks of upper
and lower limits are applied to tame abnormalities in the
network output and to improve the input to the optimiser:
• Velocity limits: vk ∈ [0, vmax]
• Acceleration/deceleration limits: ak ∈ [amin, amax]
• Maximum jerk limit: |ak+1 − ak| ≤ ȧmax

• Maximum steering angle limit: |δk| ≤ δmax

• Maximum angular jerk limit: |δk+1 − δk| ≤ δ̇max

D. CPN baseline training procedure

After many failed attempts at training with all constraints
from a random initialisation, we applied a curriculum learn-
ing approach [37], sequentially introducing constraints and
tuning their weights with each introduction. This approach



does not scale well to complex constraint sets as it requires
expert knowledge of the constraints.

In our case, all terms of J2s-OPT satisfy differentiability.
To make the hard constraint terms differentiable, we approx-
imate them with ReLUs that penalise constraint violation as
in [28]. The ReLUs have large gradients to ensure they are
prioritised over soft constraints. As the hard constraints have
different units, they require normalising to ensure the cost
function and gradient used for training reflect this.
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