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Abstract

The tumor microenvironment is abnormal and associated with tumor tissue hypoxia, immunosuppression,
and poor response to treatment. One important abnormality present in tumors is vessel compression.
Vessel decompression has been shown to increase survival rates in animal models via enhanced and
more homogeneous oxygenation. However, our knowledge of the biophysical mechanisms linking tumor
decompression to improved tumor oxygenation is limited. In this study, we propose a computational
model to investigate the impact of vessel compression on red blood cell (RBC) dynamics in tumor
vascular networks. Our results demonstrate that vessel compression can alter RBC partitioning at
bifurcations in a hematocrit-dependent and flowrate-independent manner. We identify RBC focussing
due to cross-streamline migration as the mechanism responsible and characterise the spatiotemporal
recovery dynamics controlling downstream partitioning. Based on this knowledge, we formulate a reduced-
order model that will help future research to elucidate how these effects propagate at a whole vascular
network level. These findings contribute to the mechanistic understanding of hemodilution in tumor
vascular networks and oxygen homogenisation following pharmacological solid tumor decompression.

Significance statement

In tumors, tissue oxygen heterogeneity leading to the appearance of hypoxic regions is linked to poor
prognosis and reduces the efficiency of therapeutic treatment. Following previous reports that vessel com-
pression, caused by the tumor, leads to tumor tissue oxygen heterogeneity, we formulate a computational
model to investigate the mechanism whereby vessel compression affects tissue oxygenation. Our results
show that compressed vessels lead to an abnormal partitioning of red blood cells at vascular bifurcations
and therefore heterogeneity in oxygen transport to tissue. This work uncovers a biomechanical causal
link between vessel compression and tumor tissue oxygen heterogeneity, furthering our understanding of
the tumor microenvironment and contributing to an emergent theory of biotransport in tumors that can
underpin future therapeutic approaches.

Introduction 1

The tumor microenvironment (TME) is abnormal and associated with tumor tissue hypoxia [1], which is 2

a known biomarker for poor prognosis [2]. In addition, tumor hypoxia is a source of immunosuppression 3

[3] and constitutes a barrier to the success of recent promising immunotherapeutic approaches [3, 4]. 4

As such, researchers have proposed normalising the TME to improve oxygenation and overcome these 5

limitations [3]. One of the abnormalities of the TME is vessel compression [5, 6] which is a consequence 6

of the proliferation of cells within a solid tumor and the growth of the tumor against its surroundings 7

[7]. Fang et al. showed that the presence of compressed microvessels in tumor tissue is a promising 8
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prognosis predictor in non-small cell lung cancer patients [8]. Furthermore, Chauhan et al. demonstrated 9

that normalising the TME through decompressing solid tumors leads to increased survival rate in 10

animal models, when combined with chemotherapy, as well as increased tumor tissue oxygenation and 11

homogeneity [9]. However, our knowledge of the biophysical mechanisms linking tumor decompression to 12

increased tumor oxygenation is limited. 13

Oxygen binds to hemoglobin in red blood cells (RBCs) and is transported through the vasculature 14

with the RBCs. Early investigations demonstrated that hematocrit (the volume fraction of RBCs in 15

total blood) can vary between child branches of a vascular bifurcation as a function of hemodynamic 16

and geometrical vessel properties (see [10] for a review). Our recent work has shown that vascular 17

development works to avoid vessel segments with rare or transient RBC flow through them [11]. However, 18

the abnormal TME is associated with marked heterogeneity in hematocrit [12], including reports of 19

plasma-only channels [13]. We recently identified reduced inter-bifurcation distance as a source of 20

hematocrit variation via its impact on RBC partitioning at bifurcations [14]. However, the impact that 21

other tumor vascular phenotypes such as vessel compression play on this process is not known. 22

In vitro work has provided some evidence of how RBC suspensions behave in the presence of a 23

compression in single, straight, channels. At low hematocrits (≤5%), the narrowing of a channel leads to 24

a focussing of the RBCs towards the centre of the channel [15, 16]. Fujiwara et al. performed a similar 25

experiment in an asymmetric geometry at higher hematocrits (≤20%) and similarly saw a focussing of 26

the RBCs towards the channel centre. They observed that this is more pronounced at lower hematocrits 27

[17]. The focussing of RBCs is identified to be due to an increased shear rate within the compressed 28

section of the channel [15, 17]. However, whether the narrowing in RBC cross sectional distribution post 29

compression is permanent or not is unclear, nor is it clear how the narrowing of the RBCs toward the 30

channel centre has an impact on RBC partitioning at a downstream bifurcation. 31

Investigating the transport dynamics of oxygen and other blood-borne solutes in realistic tumor 32

networks is challenging due to the limited experimental tools available. Several groups have proposed 33

the use of mathematical modelling to bridge this gap [18–21]. In this work, we propose a computational 34

model to study how vessel compression impacts the partitioning of RBCs at a downstream bifurcation. 35

We report the novel finding that, below a critical hematocrit threshold, vessel compression alters the 36

partitioning of RBCs at the downstream bifurcation due to a change in the cross-sectional distribution of 37

the RBCs induced by the compression. Furthermore, we show that this is independent of flow rate and 38

compression asymmetry. In addition, we report the mechanism and length scale for the cross-sectional 39

distribution of RBCs to return to their pre-compression configuration. Finally, we propose a reduced-order 40

model to calculate RBC partitioning at a bifurcation downstream of a compression in a computationally 41

efficient manner. Future investigations can use this reduced-order model to link vessel compression to 42

tumor tissue oxygen heterogeneity on a whole vascular network level. 43

Taken together, our findings suggest that: a) protection against abnormal partitioning at bifurcations 44

due to naturally occurring morphological variations in vessel cross-section can be achieved during 45

development by homogenising and increasing the average hematocrit in networks, b) increased perfusion 46

(in terms of total flow rate through the network) is not sufficient to reverse the anomalous RBC 47

partitioning due to vessel compression, and c) the link between solid stress and oxygen heterogeneity in 48

tumors, and its reported reversal via stress alleviation, can be partially explained via anomalous RBC 49

partitioning at bifurcations due to compressed vessels. 50

Methods 51

Physical model 52

We model blood flow as a suspension of deformable RBC particles in a continuous plasma phase. The 53

plasma is treated, to leading-order effect within the range of shear rates considered [22], as a continuous 54

Newtonian fluid, with the non-Newtonian properties of blood arising from the presence of the deformable 55

RBCs. The model for the RBC membrane is hyperelastic, isotropic and homogeneous. We characterise 56
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Table 1. Dimensions of the geometry (D is channel diameter).

compression distance between
Geometry name length compression and bifurcation

Control N/A N/A
Long compression no recovery 4D 0

Short compression short recovery D 2D
Short compression long recovery D 25D

the RBC deformability with the capillary number, 57

Ca =
µγr

κs
, (1)

where µ is the fluid dynamic viscosity, γ is a characteristic shear rate, r is a characteristic length (the 58

RBC radius) and κs is the strain modulus of the RBCs. The capillary number is set to 0.1, unless stated 59

otherwise. 60

The numerical algorithm is implemented in the software HemeLB (https://github.com/hemelb- 61

codes/hemelb) [23], and the simulations have been run on the ARCHER supercomputer. Further 62

information on the model and the numerical implementation is available in the supplementary material. 63

Geometry 64

We produced four geometries representing a vessel with diameter D and a downstream bifurcation. The 65

first geometry is a control (no compression, Figure 1a), while the remaining three geometries feature a 66

single compression upstream of the bifurcation. The first compression model (Figure 1b) contains a long 67

compression without a recovery length between compression and bifurcation. In the second compression 68

model (Figure 1c), the compression is short, and there is a short recovery length between compression 69

and bifurcation. The last geometry (Figure 1d) features a short compression followed by a long recovery 70

segment. The relevant geometrical parameters of all four geometries are summarised in Table 1. 71

We set the channel diameter to D = 33 µm, a typical value for the tumor microvasculature [12]. 72

We assume the cross section of the channel to be circular, except for the section that is compressed, 73

where it takes an elliptical form. We assume the perimeter of the cross section to be constant along 74

the channel, setting the ellipse perimeter to the same value as the uncompressed circular cross section. 75

The segment with elliptical cross section has an aspect ratio of 4.26 [8]. The assumption of an elliptical 76

cross-section within the compression is in line with observations from tumor histological slices where 77

vessel compression is commonly reported as the aspect ratio of the elliptical shape of the vessel cross 78

sections [8, 24–26]. 79

Our aim is to focus on the effect of the compression. Therefore, we remove any effect from the slope 80

leading to the compression by having a steep transition to and from the compression. We also remove 81

the effect of a bifurcation asymmetry by having both child branches at the same diameter and angle 82

from the parent branch. 83

Inlet and outlet boundary conditions 84

We set the outflow boundary conditions at the child branches as a Poiseuille velocity profile with an 85

imposed maximum velocity and control the ratio of these velocities such that one child branch receives 86

80% of the flow and the other child branch 20%. Unless specified otherwise, the inlet branch has an 87

average velocity of 600 µm/s, a typical value for the tumor microvasculature [12]. 88

The inlet boundary condition is an arbitrary pressure value that has no impact on the simulation 89

result. In order to reduce any memory effects and establish a quasi steady-state distribution of RBCs, 90

the cells flow through a straight tube with a length of 25 tube diameters before entering the compression 91

[27]; we call this length the initialisation length. 92

We vary the value of hematocrit within our system from 10% to 30%, covering a wide range which is 93

physiologically present within the tumor microvasculature [12]. 94
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The physical Reynolds number of the system is 0.04. Therefore, viscous forces dominate and the 95

system is in the Stokes flow regime. For computational tractability we set the numerical Reynolds 96

number to 1, where inertial forces still do not play a significant role. 97

Processing results 98

All hematocrits reported are discharge hematocrits. We calculate the discharge hematocrit, Hd, by 99

calculating the fraction of RBC flow to total blood flow at any channel cross section normal to the 100

direction of flow, 101

Hd =
QRBC
Qblood

, (2)

where QRBC is the volumetric flow rate of RBCs and Qblood is the volumetric flow rate of blood, 102

i.e. plasma and RBCs. The flow rate of RBCs is calculated by counting the RBCs crossing a plane 103

normal to the direction of flow over a given period of time, ∆t. Knowing the volume of an RBC, 104

VRBC = 100 µm3, one can calculate the RBC flow rate, 105

QRBC =
NVRBC

∆t
, (3)

where N is the number of cells that have crossed the plane. 106

In order to quantify the distribution of the RBCs in a cross section, we measure the root mean 107

squared distance (RMSD) of the RBC centres of mass with respect to the channel centreline, 108

RMSD =

√√√√ 1

N

N∑
i=1

(~xi − ~x0)2, (4)

where ~xi is the ith RBC position, and ~x0 is the channel centre, both taken on a cross section normal to 109

the direction of flow at points of interest. Figure S1 illustrates how we obtain the positions ~xi in practice. 110

We non-dimensionalise length by the vessel diameter D, unless stated otherwise. By definition, we 111

set the downstream end of the compression as the reference point with an axial position of 0. Axial 112

positions are positive in downstream direction (l > 0) and negative in upstream direction (l < 0). 113

The separatrix is an imaginary surface separating fluid particles going to one child branch from those 114

going to the other child branch. It is an important tool for the investigation of RBC partitioning at 115

a bifurcation [28]. We determine the separatrix by completing a simulation without RBCs to obtain 116

streamlines unperturbed by RBCs (see Figure S2 for details). 117

Results 118

At 10% hematocrit, vessel compression alters RBC partitioning at a down- 119

stream bifurcation 120

We start by investigating whether vessel compression has an impact on RBC partitioning at a downstream 121

bifurcation. Simulation results for a long compression at 10% hematocrit (Figure 1b) reveal that the 122

RBC split at the bifurcation is strongly affected by the compression. Figure 1e shows that, for a long 123

compression, the child branch with the lower flow rate is almost depleted of RBCs and has approximately 124

0.5% hematocrit, whereas the control simulation indicates that the same branch has ∼8% hematocrit in 125

the absence of a compression. The control simulation is in agreement with the standard plasma skimming 126

model, see Figure S3. 127

The short compression short recovery geometry (Figure 1c) shows a smaller impact on the RBC split 128

than the long compression. With ∼ 3.5% hematocrit in the child branch with the lower flow rate, this is 129

still less than half of the hematocrit in the control simulation. 130

In order to test whether the symmetry of the compression has an effect on the partitioning of the 131

RBCs at the downstream bifurcation, we investigated an asymmetric compression (Figure S4). The 132
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Figure 1. Phase separation in child branches after a bifurcation at Hd = 10%. (a–d) are snapshots of
the control, long compression no recovery, short compression short recovery and short compression long
recovery, respectively. (e) shows the hematocrit in the child branches for these four cases. Black/grey
indicates the higher/lower flowing child branch, respectively. Solid lines are the control discharge
hematocrits. The dotted line illustrates the discharge hematocrit of the parent branch.

simulation results are similar to those obtained with a symmetric compression. Thus, we infer that, 133

under the present conditions, the asymmetry of the compression does not have an important effect on 134

the downstream partitioning of RBCs. 135

We also investigated the effect of flow rate on RBC partitioning. By changing the flow rate, we change 136

the capillary number, which quantifies the deformation of the RBCs. We performed two additional 137

simulations at a capillary number of 0.02 and 0.5, to cover the RBC tumbling and tank-treading regimes 138

and the range of flow rates typical for the tumor microvasculature [12]. Figure S5 shows that the RBC 139

partitioning does not change with capillary number, which implies that the flow rate and capillary 140

number are not important parameters for RBC partitioning in the presence of a compression within the 141

studied range of flow rates. 142

Narrowing of cell distribution alters partitioning of RBCs 143

Next we investigated which mechanism leads to the observed changes in partitioning, and why the 144

different geometries have different effects. 145

As blood flows through the compression, the shear rate increases since 1) the fluid velocity within the 146

compression is larger due to mass conservation and 2) the width of the channel along the compression 147
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axis is reduced. Our simulations show that RBCs situated close to the wall prior to the compression 148

migrate across streamlines towards the channel centre. After leaving the compression, RBCs do not 149

immediately migrate back towards the wall. As a consequence, the RBC distribution downstream of the 150

compression is more narrow than upstream of the compression. This explanation is in line with prior 151

findings from experimentalists [17]. Figure 2a–d illustrates this mechanism. 152

In order to quantify the narrowing of the RBC distribution, we plot the RMSD of the RBC centres 153

of mass along the compression axis. Figure 2e–g shows that, for all geometries, there is a narrowing of 154

the distribution of cells in and after the compression compared to the region before the compression. 155

However, in the short recovery geometries (Figure 2f–g), the RBC distribution partially recovers before 156

the cells reach the bifurcation. This explains why the RBC partitioning is more affected when there is 157

no recovery length between compression and bifurcation (Figure 2e). Previous studies report an increase 158

of the cell free layer (CFL) post compression compared to the CFL thickness pre compression, here seen 159

as a narrowing of the RBC distribution, which leads to a partitioning bias of RBCs towards the higher 160

flowing branch [29]. 161

In order to investigate the behaviour of the RBC distribution after the compression, we increased the 162

distance between the compression and the bifurcation from 2D to 25D (Figure 1d). Figure 2g shows a 163

gradual recovery of the RBC distribution between the compression and bifurcation, although 25 channel 164

diameters are not sufficient to reach the same RMSD as before the compression. 165

While our data imply that a mechanism exists that leads to the recovery of the RBC distribution, it is 166

not clear a priori what the underlying mechanism is. We assume that, given enough channel length after 167

the compression, the RBC distribution will fully recover eventually. Katanov et al. demonstrated that, 168

from an initially uniform distribution of RBCs in a channel, the formation of a stable CFL is governed 169

by the shear rate time scale and takes a length of about 25 vessel diameters to form, independently of 170

flow rate, hematocrit or vessel diameter [27]. Our data suggest that the opposite effect, the recovery of 171

an initially heterogeneous RBC distribution where most of the RBCs are close to the channel centre, 172

cannot be described in the same way since a length of 25 channel diameters is not sufficient for recovery. 173

The shear rate is lower and cells move faster near the channel centreline, which should lead to a weaker 174

shear-induced recovery of the cell distribution along a distance of 25D. We hypothesise that cell-cell 175

interactions are the dominant driver for the recovery. 176

Abnormal partitioning is present in a large range of flow ratios 177

We next investigate the effect of the flow ratio on the abnormal partitioning of RBCs downstream of 178

the compression. We varied the flow ratio from 50:50 to 90:10 in five steps and measured the difference 179

between the compression geometry and the control geometry. Figure 3 reveals that abnormal partitioning 180

is present over a wide range of flow ratios, except for the 50:50 case. Since the compression is symmetric 181

(Figure 2) and both downstream branches behave identically in the 50:50 case, the overall symmetry is 182

retained and an equal number of RBCs enter both branches. Therefore, the 50:50 split does not lead to 183

abnormal partitioning. The presence of a small difference between the compression and the control for 184

the 50:50 case in Figure 3 is attributable to the finite number of RBCs in the simulations. 185

We also observe that the degree of abnormal partitioning is largest for the 80:20 case and sharply 186

decreases for the 90:10 case. When the flow ratio in a bifurcation increases, the low flow branch has a 187

decreasing discharge hematocrit, until the branch eventually becomes a pure plasma branch [10], even in 188

uncompressed geometries. Therefore, in the 90:10 case, the discharge hematocrit in the low flow branch 189

is already small, and any change due to abnormal partitioning will also be small. Eventually, when the 190

flow ratio is sufficiently high, there will be no difference between the compression and control geometries. 191

192

Increasing hematocrit reduces bias in RBC partitioning 193

To test the hypothesis that cell-cell interactions drive the recovery of the distorted RBC distribution, we 194

investigate blood flow at an increased hematocrit of 20%. Figure 4 shows that the long compression 195

no recovery geometry still leads to a deviation from the control simulation. However, the deviation is 196
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Figure 2. Narrowing of RBC distribution in compression. (a–d) In red are the streamlines of the
underlying fluid. In bright red is an RBC of interest. (a) An RBC situated prior the compression near
the vessel wall. (b) The same RBC after it has crossed streamlines within the compression. (c) The RBC
exits the compression on a more central streamline than the one on which it entered the compression. (d)
The RBC goes to a different branch than the pre-compression streamline it was on. (e–g) RBC RMSD
along the vessel length, rigid line at Hd = 20% and dashed line at Hd = 10%. Blue line is the RMSD,
black vertical line is the point of bifurcation, and shaded grey zone is the compression area. Geometries
are (e) Long compression no recovery, (f) short compression short recovery, and (g) short compression
long recovery. The child branch flow ratio is 4:1 in all cases.
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Figure 3. Effect of flow ratio on phase separation of blood downstream of a compression at Hd = 10%.
The difference between the control geometry (Figure 1a) and the control geometry (Figure 1b) is an
absolute hematocrit value. A positive value denotes a hematocrit enrichment compared to the control
geometry, a negative value denotes a hematocrit reduction compared to the control geometry. Note that
the flow ratios X:Y and Y:X would give the same results due to the symmetry of the geometry.

smaller than at 10% hematocrit (Figure 1). This observation can be explained by Figure 2e–g which 197

reveals that the narrowing of the RBC distribution is less pronounced at higher hematocrit compared to 198

lower hematocrit. We conclude that, as the hematocrit increases, hydrodynamic cell-cell interactions 199

become more relevant, leading to a smaller narrowing of the cell distribution by the compression as well 200

as a faster decay of the narrowed RBC distribution after the compression. 201

For the short compression long recovery geometry, the deviation from the control is almost non- 202

existent at Hd = 20% (Figure 4). Whilst the control simulation shows 15.6% hematocrit in the lower 203

flowing child branch, the compression merely alters that value to 13.7%. As can be seen from Figure 204

2f, not only is the narrowing of the RBC distribution in the compression smaller, but after exiting the 205

compression the RBC distribution is much closer to its pre-compression counterpart. 206

We also investigated the role of the distance between the short compression and the bifurcation by 207

increasing it from 2D to 25D. Figure 2g shows that the RBC distribution with Hd = 20% eventually 208

recovers and goes back to its pre-compression level, contrary to the simulation at 10% hematocrit. 209

The decreasing effect of the constriction on the RBC distribution at increasing hematocrit raises the 210

question whether there is a critical hematocrit above which the RBC partitioning is not modified by the 211

presence of an upstream constriction. To that end, we increased the hematocrit in the parent branch to 212

30% and revisited the long compression geometry that has no recovery length between compression and 213

bifurcation. Figure 5 shows that there is no significant difference in RBC split when compared to the 214

control without compression. We conclude that the critical hematocrit value lies near 30%. 215

Reduced-order model 216

A challenge in the theoretical study of RBC transport in networks is computational expense [30–32]. For 217

this reason, several authors have proposed the use of reduced-order models to quantify the partitioning 218

of RBCs at bifurcations, which is key for tissue oxygenation modelling due to the RBC’s role as oxygen 219

carrier. The most common model existing for partitioning of RBCs is that presented by Pries et al. [33, 220

34], although others exist, e.g. [35]. 221
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Figure 4. Phase separation in child branches after a bifurcation at Hd = 20%. Black/grey indicates the
hematocrit in the higher/lower flowing child branch, respectively. Solid lines are the control discharge
hematocrits. The dotted line illustrates the discharge hematocrit of the parent branch. The child branch
flow ratio is 4:1 in all cases.

We have demonstrated that vessel compression indeed has an impact on the partitioning of RBCs 222

at a downstream bifurcation and that this is not captured by a state-of-the-art reduced-order model. 223

In order to investigate how this effect propagates on a network level, we propose a novel reduced-order 224

model that captures this phenomenon. We make four main assumptions for the reduced-order model: 225

1. An RBC’s centre of mass will go to the same child branch as its underlying streamline. This 226

assumption relies on the low Reynolds number of the system, which is true for the microcirculation, 227

where the Reynolds number is � 1 [10]. Similarly to reports of RBCs crossing the separatrix prior 228

to a bifurcation [28, 29, 36], in our simulations we observed < 5% of RBCs near the separatrix 229

crossing streamlines. Due to this small fraction, we deem the assumption appropriate. 230

2. A curved separatrix independent of the diameter ratio between the child and parent branch and 231

independent of Reynolds number is used, whereas the curvature of the separatrix generally depends 232

on both parameters [28, 37]. Since blood flow in the microvasculature is in the low-Reynolds regime, 233

a small change in Reynolds number has a negligible effect on the separatrix. The diameter ratio 234

has been shown to have a more significant impact, even at a Reynolds number of 0 [37]. However, 235

the impact on the curvature of the separatrix is higher towards the vessel walls, where there are 236

fewer or no RBCs due to the existence of the CFL. Considering the difficulty of parameterising a 237

curved separatrix as a function of diameter ratios, a curved separatrix for a diameter ratio of 1 is 238

used at the expense of a small but acceptable modelling error. 239

3. The cross-sectional distribution of RBC centres of mass can be approximated by a step function, 240

whereas the distribution profile of RBCs tends to quickly, but not instantaneously, reduce at the 241

edge of the RBC distribution as is often reported [38, 39] and indeed observed in our simulations. 242

The step function, however, is a good fit and simplifies the model considerably. We assume the 243

step function to take the shape of an ellipse on any given cross section of the channel (Figure 6a–c). 244

The fraction of RBCs ending up in the top and bottom child branch is A/(A+B) and B/(A+B), 245

respectively, defined by the areas A and B above and below the separatrix. Since the separatrix is 246

a consequence of the geometry and flow ratio to each child branch, our model is applicable to all 247

cases for which the separatrix is known. 248
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Figure 5. Phase separation in child branches after a long bifurcation at Hd = 30%. (a) shows the
hematocrit of the child branches. Black/grey indicates the higher/lower flowing child branch, respectively.
Solid lines are the control discharge hematocrits. The dotted line illustrates the discharge hematocrit of
the parent branch. (b) shows the snapshot of the simulation in the long compression. The child branch
flow ratio is 4:1.

4. The cross section that determines which child branch an RBC enters is located about 2D/3 249

upstream of the bifurcation. Our simulations show that this is the upstream perturbation length 250

after which the streamlines start to curve in order to enter the child branches. The length 2D/3 251

is similar to that found in other studies [28]. Therefore, the reduced-order model needs to be 252

able to predict the cross-sectional distribution of the RBCs up to a point 2D/3 upstream of the 253

bifurcation. 254

The step function that approximates the RBC distribution in a channel cross section has the form of 255

an ellipse. Therefore, the major and minor semi-axes of this ellipse, a and b, need to be defined. We 256

found that the best results are obtained when 257

1. the aspect ratio of the ellipse is determined by the ratio of the RMSD along the width and height 258

directions (where the height direction is the axis of the compression), 259

2. the ellipse encloses 90% of the RBCs’ centres of mass. 260

Next, we propose a function that describes the development of the radius m, along the compression 261

axis, of the step function along the channel length l between the end of the compression (defined as 262
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Figure 6. Reduced-order model. (a) The RBCs’ centres of mass are shown on a cross section. (b)
An ellipse is used to represent the distribution of the RBCs. (c) The curved separatrix is added. Any
RBC above the separatrix is assumed to go to the top branch, and any RBC below it to go to the
bottom branch. (d) m(l) from the reduced-order model in Eq. (5) with parameters from Table 2 for 20%
hematocrit compared to simulation data.

l = 0) and the point 2D/3 upstream of the bifurcation. The area of the ellipse is given by A = πab 263

where a and b are the major and minor semi-axis of the ellipse for the step function. Once the minor 264

axis b, which is m(l), and the aspect ratio ε(l) = a(l)/b(l) are known, the model can predict the number 265

of RBCs entering either child branch. 266

Our simulations show that there are three key mechanisms governing the lateral RBC distribution 267

when entering and leaving the compression. The first is that the RBC distribution is suddenly narrowed 268

by the compression. Secondly, upon exiting the compression, the RBC distribution sees a quick but only 269

partial lateral recovery due to the expansion of the streamlines. Lastly, cell-cell interactions lead to a 270

slow recovery of the RBC distribution to its pre-compression distribution via cross-streamline migration 271

if given sufficient length. We model the flow expansion of the RBC distribution with a logistic term and 272

the cross-streamline recovery with an exponential decay: 273

m(l) = mc +
msl

1 + e−(l−lg)/ls
+md

(
1− e−l/lr

)
. (5)

For l = 0, at the downstream end of the compression, the equation returns the ellipse radius inside the 274

compression, which is within 5% of mc, due to the second term becoming very small when l = 0, but not 275

vanishing. msl is the change in RBC distribution due to the flow expansion which occurs over a length 276

scale 2lg. The length ls determines the steepness of the slope. md is the change in RBC distribution due 277

to cell-cell interaction, which occurs over a longer length scale lr � lg. For long distances, l→∞, we 278

have m(l) = mc +msl +md which is the width of the fully recovered RBC distribution and the width 279
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Table 2. Parameter values for Eq. (5) obtained by fitting the reduced-order model to simulation data.

hematocrit mc msl md ls lg lr
10% 1.62 µm 6.40 µm 2.19 µm 0.17D 0.69D 13.8D
20% 2.75 µm 7.41 µm 1.79 µm 0.16D 0.67D 5.1D

Table 3. Absolute differences of the discharge hematocrit in both child branches between the results of
the HemeLB simulations and the predictions of the reduced-order model. In each box, the top left is the
difference for the higher flowing child branch, whereas the bottom right is the difference for the lower
flowing child branch. See Figure 1a–d for the respective geometries.

Long compression Short compression Short compression
hematocrit Control no recovery short recovery long recovery

10%
−0.02%

2.02%
0.22%

0.42%
0.00%

0.84%
0.29%

−0.25%

20%
0.89%

−2.70%
−0.62%

3.23%
0.29%

−0.61%
0.96%

−2.54%

of the unperturbed RBC distribution before the compression. If l is not sufficiently large, the RBC 280

distribution is still affected by the compression, and the RBC split in the bifurcation tends to be biased 281

accordingly. Although it may be possible to construct a reduced-order model with fewer parameters, the 282

advantage of Eq. (5) is that all parameters have a physical meaning and can potentially be predicted by 283

separate models. 284

We obtained the numerical values of the parameters in the reduced-order model by fitting m(l) to 285

the simulation data for 10% and 20% hematocrit, respectively. The parameters are listed in Table 2, 286

and Figure 5d shows an excellent agreement between m(l) and the simulation data at Hd = 20%. In 287

particular, we find that lg ≈ 0.66D, independently of the chosen hematocrit. This value corresponds to 288

the characteristic length which describes the streamline recovery after a distortion. We find that the 289

cross-streamline recovery length lr reduces by a factor of about 2 when the hematocrit is increased from 290

10% to 20%. This is in line with literature reporting that shear-induced diffusion is directly proportional 291

to the particle concentration [40]. 292

With the reduced-order model being calibrated, we can now predict the RBC partitioning at the 293

downstream bifurcation and compare these results with actual RBC simulation data. We apply the 294

separatrix model to the cross-sectional RBC distribution predicted by the reduced-order model at the 295

length l that marks the distance between the compression and the point of bifurcation. 296

Table 3 compares the absolute difference in discharge hematocrit obtained from the HemeLB 297

simulations and the reduced-order model. We find that the reduced-order model accurately predicts the 298

impact of the compression on the RBC partitioning at the downstream bifurcation within 1% on average. 299

Notwithstanding the assumptions underlying the reduced-order model, the relative error is low. Our 300

novel approach, therefore, provides a means of modelling the disturbance caused by a compressed vessel 301

in network simulations, which has not been possible using established empirical models [33, 35]. Despite 302

this success, further simulations are necessary to extend the applicability of the reduced-order model to 303

a larger parameter space. 304

At 10% hematocrit, a converged suspension of RBCs requires a long devel- 305

opment length 306

We observed that, at 20% hematocrit, the RMSD of the RBCs after 25D downstream of the compression 307

has recovered to 98% of its original value prior to the compression (Figure 7a). However, at 10% 308

hematocrit in the same geometry, the RMSD recovery is incomplete after the 25D. In fact, the reduced- 309

order model predicts a partial recovery of the RMSD at 50D to only 91% of its pre-compression value 310

(Figure 7b). 311

Given the results in Figure 7b, we hypothesise that, at 10% hematocrit, details of the RBC initialisation 312
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Figure 7. Recovery of RBC distribution after short compression. (a) Simulation at Hd = 20%, (b–c)
simulations at Hd = 10%. (a) and (b) are simulations with the cells inserted after 25D of initialisation
length. (c) is a simulation with cells inserted after an initialisation length of 100D. The blue line is the
simulation data, the black line is the prediction of the reduced-order model, and the green line is the
mean value of the RMSD prior to the compression.

in the simulation play a role. An inconsistent RBC distribution upstream of the compression might affect 313

the overall outcome of the simulation. To confirm this, we increased the length of the periodic tube 314

that is used to generate the RBC distribution fed into the compression geometry from 25D (Figure 7b) 315

to 100D (Figure 7c). We observed that the longer tube leads to a narrowing in the pre-compression 316

distribution of the RBCs (Figure 7c). At 10% hematocrit, when the initialisation length is 100D, we can 317

assume that the RBC distribution has reached a steady state. In fact, Figure 7c shows that after 50D 318

the RMSD of the RBCs has recovered to 98% of its pre-compression value. Despite the sensitivity of the 319

pre-compression distribution on the cell initialisation strategy at Hd = 10%, we found that the RBC 320

dynamics after the compression is quantitatively and qualitatively similar for both RBC initialisation 321

lengths used. 322

Discussion 323

The tumor microvasculature is abnormal and linked to tumor tissue hypoxia [1], which is a known 324

biomarker for poor prognosis [2] and a barrier to recent promising immunotherapeutic approaches [3]. One 325

such abnormality is vessel compression [5]. Previous studies have shown that decompressing tumor vessels 326

leads to increased survival rates [8] via increased perfusion [1, 8] and oxygen homogenisation [9]. However, 327

the mechanism linking tumor decompression to increased oxygen homogeneity is unclear. Oxygen binds 328

to hemoglobin in red blood cells (RBCs) and is transported through the vasculature with the RBCs. 329

We recently identified the reduced inter-bifurcation distance associated with the pro-angiogenic tumor 330

environment as a source of oxygen heterogeneity via its impact on RBC splitting at bifurcations [14]. 331

However, the impact that other tumor vascular phenotypes, such as vessel compression, play on this 332

process is not known. 333

Motivated by the limitations on experimental methods available to query this process, we propose a 334

computational model to elucidate the link between vessel compression and abnormal RBC partitioning 335

at bifurcations. Our numerical simulations show that a vessel compression enhances the disproportional 336

partitioning of RBCs at a downstream bifurcation in favour of the higher flow rate child branch, occurring 337

over a wide range of flow ratios. This is a consequence of the previously identified narrowing of the RBC 338

distribution within the vessel cross section [17]. 339

Similarly to previous studies [15, 17], we identify the mechanism leading to this narrowing as RBC 340

cross-streamline migration towards the vessel centre due to an increased shear rate within the compression. 341

Once the RBCs leave the compression, their cross-sectional distribution gradually goes back to their 342

pre-compression configuration in a hematocrit-dependent manner. This process is significantly slower 343
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at 10% hematocrit, where the dynamics occur over a length of ∼ 50 vessel diameters. However, at 344

20% hematocrit, there is an almost instantaneous recovery, and after 2 vessel diameters in length, the 345

difference in RBC partitioning compared to a control simulation is negligible. Furthermore, we show 346

that at 30% hematocrit, the difference between the compressed and control simulation is negligible. 347

This suggests the presence of a critical hematocrit above which vessel compression no longer alters the 348

partitioning of RBCs at a bifurcation. We hypothesise that the different dynamics at 10%, 20% and 30% 349

hematocrit are caused by cell-cell interaction which increases with hematocrit. We also show that an 350

asymmetric compression does not lead to a measurable difference in the partitioning of RBCs compared 351

to a symmetric compression. Likewise, a reduction and increase in flow rate by a factor of 5, respectively, 352

does not significantly change the RBC partitioning. 353

Our study focusses on a single vessel diameter of 33 µm. As the abnormal partitioning of RBCs is 354

attributed to a narrowing of the cross-sectional distribution of RBCs in the vessel, it follows that for 355

single file RBC flow in the microvasculature, the abnormal partitioning will be reduced or negligible. 356

Therefore, we expect the abnormal distribution to be of significance in channels with diameter larger 357

than around 8 µm, the diameter of an RBC. 358

We propose a reduced-order model to approximate the partitioning of RBCs at a bifurcation 359

downstream of a compression, which we show has an error of 1% compared to our fully resolved 360

numerical simulations, in the range of parameters studied. This model has the potential to overcome 361

the computational tractability limitations associated with simulating RBC flow in large computational 362

domains. The reduced-order model will help to understand the network effects arising from the abnormal 363

partitioning of RBCs, such as haematocrit heterogeneity at a network level and compensatory mechanisms 364

due to changes in vessel resistance with haematocrit. This will contribute to unravelling the dynamics of 365

oxygen transport in large vascular tumor networks. 366

The implications of our findings are multiple. First, our results show that the effect of vessel 367

compression on the downstream partitioning of RBCs is only apparent when discharge hematocrit and 368

the distance between the compression and the bifurcation is sufficiently low. Another study by our 369

group showed that two consecutive bifurcations within a short distance can also alter the partitioning of 370

RBCs at the downstream bifurcation [14]. Furthermore, we showed that interbifurcation distances are 371

much reduced in the tumor micro-environment, and Kamoun et al. showed that hemodiluted vessels are 372

more common and are present across a larger range of diameters in tumor networks than in controls 373

[12]. Taken together, this suggests that healthy vascular networks are structurally adapted to protect 374

themselves from mechanisms leading to RBC transport heterogeneity and that this may be compromised 375

in diseased networks. 376

Second, previous studies have shown that decompressing tumor vessels leads to increased survival rates 377

[8, 9]. This effect has been attributed to a) increased tumor perfusion due to reduced vessel resistance [1, 378

8] and b) reduced hypoxia fraction and increased oxygen homogeneity [9]. Our results of anomalous RBC 379

partitioning being unaffected by increases in flow rate support the view that increasing total perfusion 380

through the network may not be sufficient to homogenise oxygenation if it is not accompanied by vessel 381

decompression (or other forms of structural remodelling normalising RBC partitioning). This finding is 382

further supported by recent work demonstrating that haematocrit plays a more important role in the 383

delivery of oxygen to tissue than the speed of the RBCs [41], indicating that haematocrit normalisation 384

can play a more critical role than increased perfusion for improved tissue oxygenation. 385

Third, Kamoun et al. found that up to 29% of tumor vessels in an animal model of glioma experience 386

hemodilution (defined as having hematocrits below 5%) and proposed a mechanism whereby extravasated 387

plasma from leaky vessels would be reabsorbed by other vessels and lead to hemodilution [12]. Along 388

similar lines, recent studies have reported findings of tissue hypoxia near perfused vessels [2]. Our results 389

demonstrate that, in the presence of vessel compression and uneven flow split at bifurcations, hematocrit 390

can decrease from 20% to nearly 0% following two consecutive bifurcations without contributions from 391

interstitial fluid. Our present findings, therefore, provide an alternative explanation of the occurrence 392

of hemodilution in tumor networks. Future work should elucidate the relative importance of these two 393

mechanisms. 394

Lastly, we identified that, in the semi-dilute regime of 10% hematocrit, achieving convergence in an 395

RBC suspension that has been disturbed requires longer distances than previously thought. Katanov et 396
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al. reported that it takes a length of 25 diameters for the CFL of a randomly initialised suspension in a 397

straight channel to converge [27]. However, our data suggest that up to 100D of length is required for an 398

initially compacted RBC distribution to expand and reach a steady distribution when the hematocrit 399

is 10%. This finding supports the view that the cross-sectional distribution of RBCs at low in vivo 400

hematocrits may be away from equilibrium not only in diseased vascular networks, as we previously 401

showed in tumors [14], but also under physiological conditions where inter-bifurcation lengths average 402

fewer than 100D. Further research into the network-level dynamics arising from our results is warranted. 403

As a final comment, our results should be considered for in vitro experiments that need to carefully 404

consider the design of microfluidic devices if full convergence of RBC suspensions is required in the 405

semi-dilute regime. It is also an additional challenge for in silico studies with open boundary conditions, 406

where not only the insertion of cells needs to be considered [42], but also their cross-sectional distribution. 407

Conclusions 408

In this work we have demonstrated that vessel compression can alter RBC partitioning at a downstream 409

bifurcation. Interestingly, this happens in a hematocrit-dependent and flow rate-independent manner. 410

We argue that these findings contribute to the mechanistic understanding of hemodilution in tumor 411

vascular networks and oxygen homogenisation following pharmacological solid tumor decompression. 412

Furthermore, we have formulated a reduced-order model that will help future research elucidate how 413

these effects propagate at a whole network level. Unravelling the causal relationship between tumor 414

vascular structure and tissue oxygenation will pave the way for the development of new therapeutic 415

strategies. 416
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46. Timm Krüger. Computer simulation study of collective phenomena in dense suspensions of red
blood cells under shear PhD thesis (2012).

47. Kruger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Goncalo, S. & Viggen, E. M. The lattice
boltzmann method, principles and practice 207, 1–705 (Springer, 2017).

48. Guo, Z., Zheng, C. & Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann
method. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary
Topics 65, 1–6 (2002).

49. Bouzidi, M., Firdaouss, M. & Lallemand, P. Momentum transfer of a Boltzmann-lattice fluid with
boundaries. Physics of Fluids 13, 3452–3459 (2001).

50. Ladd, A. J. Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation.
Part 1. Theoretical Foundation. Journal of Fluid Mechanics 271, 285–309 (1994).

51. Evans, E. & Fung, Y.-C. Improved Measurements of the Erythrocyte Geometry. Microvascular
research 4, 335–347 (1972).

52. Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. Strain Energy Function of Red Blood Cell
Membranes. Biophysical Journal 13, 245–264 (1973).

18/24



Supplementary material

Details of the numerical methods

In the following, the numerical model for red blood cells (RBCs) suspended in blood plasma is summarised.
The model has been shown to recover the most important properties of red blood cell flow relevant to
this study, i.e. the motion and deformation of individual RBCs and dense suspensions of RBCs [43, 44],
and the partitioning of RBCs in a semi-dilute suspension within a network [45]. The interested reader is
referred to [31, 46] for more details about the method.

Fluid model. The lattice-Boltzmann method (LBM) is used to numerically solve the Navier-Stokes
equation for our Newtonian fluid model; see [47] for more details on the LBM. Our LBM algorithm
employs the D3Q19 lattice, the Bhatnagar-Gross-Krook collision operator, Guo’s forcing scheme [48],
the Bouzidi-Firdaouss-Lallemand no-slip boundary condition at the walls [49], and the Ladd velocity
boundary condition for inlets/outlets [50]. The parameters for the LBM are provided in Table S1.

Table S1. Simulation parameters used for the lattice-Boltzmann method.

Parameter Symbol Unit Value
Voxel size ∆x µm 0.6667
Timestep ∆t s 7.41× 10−8

Relaxation time τ dimensionless 1
Fluid viscosity µ mPa s 1

RBC cytoplasm viscosity µ mPa s 1
Fluid density ρ kg/m3 1000

Red blood cell model. Each RBC is modelled as a biconcave discocyte with shape parameters taken
from physiological RBCs [51]. The RBC model includes a membrane energy,

W = WS +WB +WA +WV , (6)

where each superscript S, B, A, V denotes the source of the energy contribution, strain, bending, area
and volume energies, respectively. Our model uses the surface strain energy density for RBCs as proposed
by Skalak et al. [52],

WS =

∮
wS dA, wS =

κs
12

(I21 + 2I1 − 2I2) +
κα
12
I22 , (7)

where κs and κα are the elastic shear and dilation moduli. κs is set through the capillary number and
κα is set to maintain near incompressibility of the RBC membrane. I1 and I2 can be calculated from the
local stretch ratios; see [46] for details. The strain energy WS is discretised as

WS =

Nf∑
j=1

A
(0)
j wSj , (8)

where each RBC membrane is approximated by a mesh of Nf triangular faces j of initial undeformed

area A
(0)
j . The remaining three energy contributions (bending, surface area, volume) are calculated

through

WB =
√

3κB
∑
〈i,j〉

(θi,j − θ(0)i,j )2, (9)

where θi,j is the angle between two neighbouring triangular faces,

WA =
κA(A−A(0))2

2A(0)
, (10)
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where A is the surface area of the RBC,

WV =
κV (V − V (0))2

2V (0)
. (11)

where V is the volume of the RBC. The superscript (0) denotes values for an undeformed RBC. κB,
κA, κV are the bending, surface area and volume moduli. κB is known from experiments, whereas κA
and κV are set to achieve conservation of the surface area and volume of each RBC [31, 46]. The forces
acting on each vortex of an RBC mesh are calculated through the principle of virtual work:

~Fi = −δW
δ~xi

, (12)

where ~Fi is the force acting on the ith node, W is the total energy functional, and ~xi is the position of
the node. The parameters for the RBC model are provided in Table S2.

Table S2. Parameters used for the red blood cell model. All values are given in simulation units, unless
specified otherwise.

Parameter Symbol Value
Strain modulus κs depends on capillary number

Dilation modulus κα 0.5
Bending modulus κB depends on capillary number

Surface area modulus κA 1
Volume modulus κV 1

Föppl-von Kármán number Γ = κB/(κSr
2
RBC) 1/400

Number of faces in RBC mesh Nf 720
RBC radius rRBC 4 µm

Fluid-cell interaction. The RBC membrane is coupled to the fluid through the immersed boundary
method (IBM) [31]. After the forces acting on each vortex of the mesh of an RBC have been calculated,
these forces are spread to the fluid lattice:

~f( ~X, t) =
∑
i

~Fi(t)δ( ~X − ~xi(t)), (13)

where ~f( ~X, t) is the force density acting on the fluid node at position ~X and time t, ~Fi(t) is the force

acting on the ith membrane node, and δ( ~X − ~xi(t)) is a discretised delta function. We use a three-point
stencil for the discretised delta function [31]. The force that is spread from the RBC mesh to the fluid
lattice is considered as external force during the next lattice-Boltzmann time step. Once the flow field
has been updated at time t+ ∆t through the LBM, the fluid velocity is interpolated at each RBC mesh
vortex:

~ui(t+ ∆t) =
∑
~X

~u( ~X, t+ ∆t)δ( ~X − ~xi(t)), (14)

where ~ui(t+ ∆t) is the velocity of the ith RBC mesh node at time t+ ∆t and ~u( ~X, t+ ∆t) is the updated

velocity at a fluid lattice point ~X. RBC mesh vortices are updated according to

~xi(t+ ∆t) = ~xi(t) + ~ui(t+ ∆t)∆t, (15)

and the overall algorithm proceeds to the next iteration.
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Figure S1. (a) Three RBCs before and after a plane of interest. Lines indicate RBC trajectories,
assumed as straight. (b) Side view as each cell crosses the plane at a given coordinate (x, y, z). The
RMSD is calculated in the compression axis (here seen as height of channel) by setting x0 as the channel
centreline (always zero) and xi as the height coordinate of the RBC as it crosses the plane. This measures
the distribution in the height of the channel. For illustration purposes only three cells are shown, whereas
several hundred are accounted for.

Figure S2. Intuition for separatrix. Blue/red lines are streamlines ending in the top/bottom child
branch, respectively. The separatrix is the surface separating the blue from the red streamlines on the
plane.
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Figure S3. Comparison of simulation control data with empirical plasma skimming model [33, 34]
with a flow ratio of 4. (a) Simulation at Hd = 10%. (b) Simulation at Hd = 20%. (c) Simulation at
Hd = 30%.
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Figure S4. Phase separation of child branches after bifurcation at Hd = 10% comparing effect of
compression asymmetry. (a) Snapshot of the asymmetric short geometry with the same dimensions as
the short geometry. (b) From left to right are the hematocrit of the child branches for a control geometry,
a symmetric compression, and an asymmetric compression (a). Results show a negligible difference
between a symmetric and asymmetric geometry. In black is the higher flowing child branch and in grey
the lower flowing child branch. The solid lines are the control discharge hematocrits. The dotted line
illustrates the discharge hematocrit of the parent branch.
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Figure S5. Phase separation of child branches after bifurcation at Hd = 10%, comparing effect of
different channel flow rates (increasing capillary number denotes increasing flow rate). (a) Snapshot of
the short compression with a higher channel flow rate and a capillary number of 0.5. (b) hematocrit of
the child branches for a control geometry, on the left, and a compression geometry (a) at three different
capillary numbers. In black is the higher flowing child branch and in grey the lower flowing child branch.
The solid lines are the control discharge hematocrits. The dotted line illustrates the discharge hematocrit
of the parent branch.
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