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Abstract. Scan-to-BIM systems convert image and point cloud data
into accurate 3D models of buildings. Research on Scan-to-BIM has
largely focused on the automated identification of structural compo-
nents. However, design and maintenance projects require information
on a range of other assets including mechanical, electrical, and plumbing
(MEP) components. This paper presents a deep learning solution that
locates and labels MEP components in 360◦ images and phone images,
specifically sockets, switches and radiators. The classification and loca-
tion data generated by this solution could add useful context to BIM
models. The system developed for this project uses transfer learning to
retrain a Faster Region-based Convolutional Neural Network (Faster R-
CNN) for the MEP use case. The performance of the neural network
across image formats is investigated. A dataset of 249 360◦ images and
326 phone images was built to train the deep learning model. The Faster
R-CNN achieved high precision and comparatively low recall across all
image formats.

Keywords: Scan-to-BIM · MEP · Radiators · Sockets · Switches · Con-
volutional Neural Network · Deep Learning.

1 Introduction

In Scan-to-BIM research, work on automating object detection has mostly fo-
cused on large structural components such as floors, ceilings, and walls, or open-
ings such as doors and windows [5,27,32]. However, the effective maintenance of
buildings and other structures requires BIM models that contain many other de-
tails including mechanical, electrical and plumbing (MEP) components. In fact,
MEP assets account for a large share of building maintenance costs [1]. They,
thus, constitute important information to collect for maintenance and renova-
tion. Therefore, there is a clear need to develop Scan-to-BIM technology that
extends current capability to MEP components.

Detecting MEP components presents a set of unique challenges. They are
generally much smaller than structural components which makes it difficult for
object detection models to identify them [23]. MEP assets also have a greater
range of variation within classes than structural components do; therefore, an
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MEP detector must learn more feature patterns. For example, different brands
of radiators will have slightly different markings, valve designs and other char-
acteristics.

Recent developments in deep learning have led to impressive results in the
detection of many classes of small objects [23, 24]. If successful, the application
of deep learning to detect MEP components in photographic and point cloud
data will support their integration into Scan-to-BIM frameworks and ultimately
deliver more detailed BIM models.

This paper describes work on using deep learning models to detect MEP com-
ponents in images, specifically sockets, switches and radiators. In addition, the
performance of the object detection neural networks across different image for-
mats, specifically 360◦ images and standard images collected by mobile phones,
is interrogated. One of the main challenges of training deep learning models
for MEP detection is that building a large dataset is a time-intensive process.
If it was possible for models trained on one image format to infer detections
on another this would create the opportunity to aggregate larger cross-format
datasets. In addition, this cross-format functionality would make the models
useful in a wider variety of settings.

2 Related Work

2.1 Mathematical algorithms

The automatic identification and positioning of MEP components in building
interior spaces is a field that has received limited research attention. Methods
that have been developed usually only detect a single class of object, e.g. pipes.

Regarding electrical components, researchers have experimented with various
techniques for detecting sockets. [12] propose a method that finds the holes
of sockets in input images using a feature detector algorithm, then applies a
geometric equation to group them into coherent sets. A 3D position of the outlet
is then determined using a mathematical algorithm called a planar Perspective-n-
Point solver. [29] detect a specific variant of orange on white electrical outlets in
images using a colour thresholding technique and geometric filtering. Finally, [15]
identify the features of a socket in an image using Gaussian filters and contrast
limited adaptive histogram equalisation (CLAHE), then apply thresholding to
extract the outlet boxes.

[10] detect ceiling lights in laser scan data. The ceiling of the interior space
is segmented using a Random Sample Consensus (RANSAC) algorithm. Then
the ceiling point cloud is converted into an image by the application of nearest
neighbour rasterisation. A Harris corner detector function finds the fluorescent
lights in the image and a Hough transform algorithm identifies the circular form
of the standard light bulbs.

In the field of plumbing, much of the object detection research has focused
on pipes. [9] propose a method for identifying pipes in cluttered 3D point clouds.
Assuming that the curvature of a pipe spool would differ from the surrounding
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clutter, they filter the point cloud for clusters of points that had a cylindrical
shape. Then, using the Bag-of-Features method – a computer vision technique
where features are aggregated into a histogram – they compare each potential
pipe object to what was present in a 3D CAD file of the scene. The clusters with
the highest similarity are registered as being accurate representations of as-built
pipe spools.

[36] also apply a curvature-based algorithm to point cloud data in order to
detect pipelines. Their system uses region growth to segment the point cloud.
Then segments are classified as pipelines based on whether 30 randomly selected
points fit a curvature requirement. Alternative research detects pipes in laser
scans of interior spaces by applying the Hough transform algorithm to slices of
the point cloud [2, 6]. [11] proposed a point cloud MEP detection method that
begins with a multi-level feature extraction of each 3D point, including variables
such as the curvature and roughness, followed by the development of potential
pipe segments from promising ’seed’ points.

It is also notable that automated pipe detection in point cloud data is a
functionality that a number of commercial software packages already offer.

More recently, [1] built a system that detected multiple classes of MEP com-
ponents including extinguishers, sockets and switches. First, the system extracts
orthoimages of walls from point clouds of interiors spaces. Then these orthoim-
ages are separated into their geometric and colour components. Colour-based
detection algorithms are applied to the colour images, and geometric detection
algorithms are applied to the depth images. Finally, objects are recognised and
positioned based on the consensus between the two results.

2.2 Machine learning

Machine learning, where computer models learn how to perform tasks from ex-
perience, has also been employed in research on MEP detection [30].

[20] use a random forest classifier – a type of machine learning classifier –
together with a sliding window on orthophotos of walls to detect sockets and
light switches.

[17] developed a framework for detecting a range of objects in point cloud
data, including MEP assets such as valves and spotlights. Primitive shapes, such
as pipes and planes, are identified using a support vector machine SVM) which
is another type of machine learning classifier. Large primitives, such as walls, are
assumed to be background elements and discarded. Then, the remaining points
are clustered using their Euclidean distance. Clusters that passed a linearity
filter undergoes a detailed matching process comparing them to components in
a pre-made 3D object library. If the alignment between a cluster and a target
component exceeds a threshold, the cluster is deemed to be a detected instance
of the target.

[21] extracted visual features from images using a ’Histogram of Oriented
Gradients’ and used them to train a SVM to detect radiators. Based on whether
the radiator was present or not present their system could evaluate the progress
of installation works.
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Alternative data sources, such as thermal imaging have also been used. [19]
identify light fixtures and display monitors by applying a machine learning clus-
tering model to a thermal point cloud.

2.3 Deep learning

Deep learning models have outperformed conventional computer vision systems
when applied to industry-standard object classification and detection bench-
marks such as the Pascal VOC challenge and the MS COCO challenge [13]. In
these challenges, models are tasked to detect a wide array of common objects
such as cars, humans, chairs and clocks in 100,000s of images [25]. Based on the
widely documented success of deep learning in computer vision solutions, apply-
ing deep learning technology to the MEP use case should produce significantly
better results than prior attempts.

There are already many positive case studies of the application of object
detection deep learning models to construction and asset management problems.
[3] developed a deep learning model that semantically segmented furniture in
laser scans of interior spaces. [7] used a neural network to detect structural
elements such as beams and columns in the S3DIS point cloud data set. These
successes offer further motivation to investigate the application of deep learning
to MEP asset detection.

3 Methodology

3.1 Dataset

Building a large, diverse dataset is the most critical step in any successful deep
learning project. By providing a large quantity and variety of examples for the
model to learn from, a robust dataset ensures the model will perform well when
applied to a range of real-world cases [31]. Currently, there are no open-source
image databases focused on MEP assets in interior spaces. Therefore, one of the
main objectives of this project was to build a small MEP dataset that could be
used to train models using transfer learning.

In fact, we built one dataset composed of two sub-datasets. A Ricoh Theta
V 360◦ camera was used to capture the RGB images that make up the 360◦ sub-
dataset. And a selection of mobile phones (including the Pixel 2, Galaxy S8, and
iPhone5s) was used to collect samples for the standard image sub-dataset. A va-
riety of lighting conditions, camera angles and levels of occlusion are represented
in the data. The images were collected from different residential and educational
(University) buildings in UK. The dataset contains radiators of different models,
shapes and sizes, Type-G sockets of different types(single and double sockets)
and styles, and switches of different styles. Figure 1 shows the variety of the data
in each category. This diversity ensures that models trained on the dataset will
generalise well to a range of realistic cases.

The images gathered for the dataset were large and this presented a problem
(360◦ images = 5376 × 2688; standard images = 4272 × 2848 - 1600 × 739).
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Fig. 1: Sample Images from Dataset

Training the deep learning model on such massive images would be very com-
putationally expensive so they had to be scaled down to a reasonable input size.
This process makes sockets, switches and radiators that are already small with
respect to the image harder for a model to detect [13]. The amount of detail in
the images that the model can use to make decisions is compressed.

To address this issue, the dataset images were segmented into ’tiles’ as shown
in Figure 2. Thus, the MEP objects were made larger with respect to their images
and the scaled down inputs. Each 360◦ image was divided into six tiles and each
standard image was divided into four tiles. Then the tiles that contained sockets,
switches and radiators were selected for use in the corresponding sub-datasets.

Fig. 2: Tiling

Using a Python program, 80% of images were randomly assigned to the
training portion of each sub-dataset, and the remaining 20% were assigned to
validation. The sockets, switches and radiators in the images were labelled using
the open-source tool LabelImg. Finally, the completed dataset of images and
labels was uploaded to Google Drive where it could be accessed from a remote
server and used to train models.

3.2 Model Training and Validation

The deep learning model chosen for this research is one with the Faster Region-
based Convolutional Neural Network (Faster R-CNN) meta-architecture that
uses Neural Architecture Search Net (NASNet) as a feature extractor and was
previously trained on the Microsoft Common Objects in Context (COCO) detec-
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tion dataset. Faster R-CNN has achieved state-of-the-art accuracy on industry
standard benchmarks [33].

Model parameters and training process settings were defined in a configura-
tion file before the training began. These included variables such as the input
image size the model would accept, the number of training steps that should
occur and the location of the dataset files.

During each validation trial, the values of loss, average recall (AR) and aver-
age precision (AP) were saved in log files. Once training was complete, the data
was used to analyse the model’s learning progress, as shown in Section 4.

During the model development process it was observed that growth in per-
formance usually stagnated in the 10,000 to 20,000 training step range. This
stagnation signalled that overfitting was occurring and that the model was learn-
ing feature patterns that were useful when applied to the training data but did
not generalise to new validation data. Thus, the training process for all of the
experimental models was stopped at 20,000 steps in order to deliver the highest
performance models using the least possible computational resources.

3.3 Dataset Augmentation

Dataset augmentation was used to increase the size of the dataset and thereby
improve model performance. Horizontal flip was randomly applied to the images
with a 50% probability. Patch Gaussian, was also implemented. This method
adds a square of Gaussian noise to a random location on the input image [26]. The
square was applied with a 50% probability at random sizes between 300pixels2

and 600pixels2 with a random standard deviation between 0.1 and 1.

4 Experiments and Results

4.1 Dataset

A total of 249 360◦ images were collected and labelled. When segmented into
six tiles as described in Section 3.1, this image base expanded to 1,494 images.
105 of these contained radiators and were selected for the radiator sub-dataset.
The 80/20 split resulted in 84 training examples and 21 validation images. 224
images contained sockets and were selected for the socket sub-dataset, with 179
training images and 45 validation images.

326 landscape phone camera images were captured. After being cut into
four tiles as described in Section 3.1, the standard image set expanded to 1,304
images. The result was a radiator sub-dataset of 97 images, a socket sub-dataset
of 190 images and a switch sub-dataset of 76 images.

4.2 Measuring Performance

Measuring the Average Precision (AP) and Average Recall (AR) is a common
strategy for evaluating the performance of object detection neural networks [13,
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18, 34]. During each validation step, these metrics are calculated by comparing
the detections the model made on the validation images to the labelled reality.

The AP of an object class is the area under the precision-recall curve. AP is
defined according to the Intersection over Union (IoU) threshold that was used.
For example, mAP@0.5 is the mAP when 0.5 is the IoU threshold for a positive
detection.

AR is the maximum recall given a defined number of detections per image,
averaged over a range of IoU thresholds, specifically IoU=0.5 to IoU=0.95 with
a step of 0.5 [8,16]. For example, AR@100 is the average recall at a maximum of
100 detections per image. Since all the images in our dataset contain more than
one and less than ten MEP assets AR@10 is used in the experimental analysis.

K-fold cross-validation was used to verify the accuracy of the results. This
strategy is standard practice in leading-edge object detection research [28, 38].
For the following experiments K=3 was used and images were allocated to train-
ing and validation at an 80%/20% split.

4.3 360◦ Image MEP Detector

As shown in Table 1, the maximum AP@0.5 achieved by the Faster R-CNN
when trained on the 360◦ radiator sub-dataset was 0.897. This means that at
peak precision an average of 89.7% of the model’s detections were accurate.

The AR@10 of the radiator model reached a maximum of 0.728, as seen in
Table 2. This metric indicates that, on average, 72.8% of the radiators in the
validation images were detected.

The socket model had higher performance in terms of precision with an
AP@0.5 of 0.939 but lower recall with an AR@10 of 0.698.

Comparing these values of recall with the relatively high precision, it is evi-
dent that although most of the Faster R-CNN’s predictions were accurate there
were a high number of false negatives where radiators and sockets of interest
were missed entirely.

Table 1: Peak AP@0.5 of 360◦ models
Class Fold 0 Fold 1 Fold 2 Average

Radiator 0.884 0.960 0.892 0.897

Socket 0.929 0.936 0.951 0.939

Table 2: Peak AR@10 of 360◦ models
Class Fold 0 Fold 1 Fold 2 Average

Radiator 0.719 0.735 0.730 0.728

Socket 0.693 0.706 0.694 0.698

4.4 Standard Image MEP Detector

Training the Faster R-CNN on standard images yielded improved accuracy. The
peak AP@0.5 of the standard image radiator model was 0.995, as seen in Table 3.
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Therefore, the fraction of the detections the model made that were accurate was
higher. This could be due to more frequent true-positive detections, fewer false-
positive detections, or both. The maximum AR@10 exhibited during validation
was 0.886, as shown in Table 4. This is evident that the Faster R-CNN was able
to identify and locate a greater proportion of the ground-truth radiators when
trained with standard images.

The precision and recall of the socket models was also higher than those
trained with 360◦ images with a maximum AP@0.5 of 0.977 and a peak AR@10
of 0.762.

Table 3: Peak AP@0.5 of standard image models
Class Fold 0 Fold 1 Fold 2 Average

Radiator 0.985 1.000 1.000 0.995

Socket 0.978 0.963 0.989 0.977

Switch 0.980 1.00 0.965 0.982

Table 4: Peak AR@10 of standard image models
Class Fold 0 Fold 1 Fold 2 Average

Radiator 0.929 0.855 0.873 0.886

Socket 0.770 0.725 0.791 0.762

Switch 0.844 0.906 0.822 0.857

This improved performance could be the result of a number of factors. The
number of training samples collected for the standard image sub-datasets was
lower than that gathered for the 360◦ sub-datasets, therefore the jump in model
accuracy must have been a result of the content of the images as opposed to
their quantity.

The standard image data may have presented a less diverse range of examples
to study and therefore fewer patterns for the model to learn, resulting in im-
proved validation results [35]. The increased accuracy could also be because the
randomly selected validation testing examples were too similar to the training
examples. This is likely judging from the unrealistically high AP results recorded
in some of the experiments. In fact, an AP of 1 which would normally be judged
as anomalous was observed when training the radiator models on two of the
folds. More K-fold trials could have been used to ensure that training-validation
splits that proved too easy for the model did not overly skew the results.

Another explanation is that even though the 360◦ camera had high pixel
resolution, the level of detail in the images was low because the pixels were
stretched over a 360◦ frame [4]. The phone cameras captured a much smaller
field of view. Therefore, even if their pixel resolution was lower than the 360◦

camera a higher level of detail could be achieved for objects of interest. This could
explain the superior performance of the models trained on standard images.

The switch models also exhibited strong performance with an AP@0.5 of
0.982 and an AR@10 of 0.857. As was the case for the 360◦ models, precision
was higher than recall in all of the standard model experiments.
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4.5 Cross-format Testing

Proving that MEP detection models trained with this methodology can deliver
high performance across different image formats would make them useful in a
wider range of settings. For the sake of repeatability and fair comparison all the
models used for the following cross-format experimentation had the exact same
20,000 steps of training time. The previously explored Peak AP models all had
different amounts of training because peak AP was achieved at different stages
in the training process for each fold.

It is expected that cross-format functionality should be possible between 360◦

and standard images because the only major difference between the two formats
is the level of distortion created by the 360◦ camera. The Ricoh Theta V camera
used for this research employs two fisheye lenses on the front and back. Fisheye
lenses make use of barrel distortion, where object scale decreases with distance
from the optical centre, to capture an extended field of view seen in Figure 3 [22].

Fig. 3: Barrel Distortion

The distortion that the 360◦ model encounters during training could poten-
tially help it to fare better when faced with ‘simpler’ image samples. There is
evidence that intentionally applying optical distortion to training images for aug-
mentation purposes can improve precision. For example, [39] used different lens
distortions, including barrel distortion, to augment image training data for their
Deep Image neural network and achieved state of the art classification accuracy.

In support of this theory, testing the 360◦ radiator model on 360◦ images
and standard images yielded similar results. As shown in Table 5, the AP was
only 0.001 lower when the model was applied to standard images.

However, as seen in Table 6, the 360◦ socket model exhibited significantly
lower accuracy when tested with standard images.

Occlusion may have played a significant role in this drop in performance.
31% of the sockets in the standard image dataset are only partially visible in the
image tile (note that a fully visible socket with a plug is still considered partially
visible), while only 2% of the sockets in the 360◦ images were partially hidden.
As research has demonstrated, objects that are only partially visible are harder
for a model to recognise because they offer fewer visual features [14]. The 360◦

socket model was not prepared to handle a high incidence of occluded objects.



10 J. Kufuor et al.

Table 5: AP@0.5 results of testing the 360◦ radiator model on 360◦ images and
standard images

360◦ images Standard images

Fold 0 0.794 0.874

Fold 1 0.943 0.822

Fold 2 0.847 0.885

Average 0.861 0.860

Table 6: AP@0.5 results of testing the 360◦ socket model on 360◦ images and
standard images

360◦ images Standard images

Fold 0 0.920 0.661

Fold 1 0.918 0.609

Fold 2 0.941 0.651

Average 0.926 0.640

To verify whether occlusion was actually hindering the performance of the
360◦ models on the standard images, the 360◦ models were tested on the un-
cropped standard images. In their uncropped format all of the sockets in the
images were fully visible. As explained in Section 3.1, using uncropped images
came with the disadvantage that the MEP assets would be smaller with respect
to the images and therefore harder to detect in the feature map. Despite this
handicap, the performance of the 360◦ models on the uncropped standard im-
ages was much higher. As shown in Table 7, AP on standard image sockets rose
21% to 0.773.

Interestingly, testing on uncropped standard images also improved the cross-
format performance of the radiator 360◦ model. As shown in in Table 8, AP
increased 10% to 0.949. This improvement can similarly be attributed to the
fact that most of the radiators are fully visible in the 360◦ training data and
uncropped standard images, but not in the standard image cropped tiles.

Therefore, it can be concluded that the high occurrence of occlusion in the
tiled image examples hindered model performance. This indicates that in future
research on the use of neural networks for MEP detection, models should be
developed with occlusion invariance so that they can better handle such cases.
This could be achieved through further diversification of the training data to
ensure that the proportion of occluded objects is similar to what is expected in
the testing and real-world samples. There are also many examples in published
research of deep learning object detection architectures that have been designed
to handle occlusion using techniques that could be applied to the MEP context
[37].

The standard image models fared much worse when tested on 360◦ images.
As shown in Table 9, AP was 34% lower when the standard image radiator model
was applied to 360◦ images. Similarly, Table 10 shows that AP was 43% lower
when the socket model was applied to 360◦ images. This supports the theory
that the barrel distortion of the 360◦ images better prepares the 360◦ models to
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Table 7: AP@0.5 results of testing the 360◦ socket model on standard images
and uncropped standard images

Standard Images Uncropped Standard images

Fold 0 0.661 0.788

Fold 1 0.609 0.731

Fold 2 0.651 0.801

Average 0.640 0.773

Table 8: AP@0.5 results of testing the 360◦ radiator model on standard images
and uncropped standard images

Standard Images Uncropped Standard images

Fold 0 0.874 0.950

Fold 1 0.822 0.951

Fold 2 0.885 0.946

Average 0.860 0.949

handle standard images with less optical distortion but hampers the performance
of the standard image models when they are tested on 360◦ images.

Table 9: AP@0.5 results of testing the standard image radiator model on stan-
dard images and 360◦ images

Standard Images 360 images

Fold 0 0.976 0.615

Fold 1 0.984 0.660

Fold 2 0.996 0.649

Average 0.985 0.641

Based on these results, it can be concluded that in future applications of
Faster R-CNN to cross-format object detection, models trained on the format
with the most distortion will likely perform the best when applied to other
formats.

5 Conclusion

5.1 Summary and Limitations

This paper aimed to investigate the usefulness of deep learning neural networks
in detecting sockets, radiators and switches in images. A dataset of 360◦ images
and standard phone images was built and used to retrain an existing Faster R-
CNN model. Then, an analysis of the deep learning model performance in and
across these formats was carried out to explore how best to apply the Faster
R-CNN for this use case. The results proved that neural networks can be an
effective tool for detecting MEP assets and thereby add value to Scan-to-BIM
frameworks.

As discussed in Section 4, the Faster R-CNN exhibited high precision and
comparatively low recall when trained on both the 360◦ images and standard
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Table 10: AP@0.5 results of testing the standard image socket model on standard
images and 360◦ images

Standard Images 360 images

Fold 0 0.973 0.595

Fold 1 0.960 0.539

Fold 2 0.988 0.531

Average 0.974 0.555

images. This indicates that most of the model’s predictions were accurate, but
there were many false negatives i.e. sockets and radiators that were overlooked.
Strategies to overcome this challenge are discussed in the following sub-section.

The primary limitations faced in this research have been high computational
demand, and a limited dataset. Training multiple models to cross-validate each
experiment was a time intensive process. In further research that builds upon
this project, the existing setup could be scaled to make use of a cluster of dedi-
cated GPU or TPU servers. This would facilitate the execution of more detailed
experiments exploring a wider range of model configurations.

The dataset for this project did not achieve the scale of industry-standard
datasets which usually have millions of object instancess [25]. Also, the standard
image sub-datasets did not have sufficient differentiation between the training
and validation images which resulted in anomalously high validation results.
Therefore, this project can only give a limited view of the accuracy that could
be achieved in the practical application of Faster R-CNN to detecting MEP
components. However, the observations that have been made on the model’s
precision-recall relationship and cross-format performance in this use case can
be applied to future work backed by more resources.

5.2 Future Research

There are many promising methodologies outside the scope of this paper that
could be investigated to support the integration of MEP object detection into
other processes, such as scan-to-BIM.

The cross-validation experiments detailed in Section 4.5 evidenced that oc-
clusion can significantly hinders model performance. One technique that could
be investigated for addressing this issue is the use of overlapping tiles as op-
posed to the discrete ones used in this project. Using an overlapping tile system
as shown in Figure 4, would mean that even if an MEP asset was not fully visi-
ble in one tile it would be more likely to appear fully in another. The detections
from the overlapping images could then be combined to yield improved overall
performance. This is preferable to the discrete tile system where, if one tile con-
tains a portion of an asset, then none of the other tiles can provide a full view
of that asset.

Another area of research that should be explored is the combination of detec-
tion data from multiple images of an interior space linked through photogram-
metric reconstruction. Gathering the classification and location data for all the
MEP components in a room using detection models applied to overlapping im-
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(a) Discrete tile system (b) Overlapping tile system

Fig. 4: Comparison of tiling methods

ages and merging this information with 3D photogrammetric data would be use-
ful to improve overall detection performance, as well as to support subsequent
processes, for example to automatically insert those assets into BIM models
generated through Scan-to-BIM processes.
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6. Bosché, F., Ahmed, M., Turkan, Y., Haas, C.T., Haas, R.: The value of integrat-
ing Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using
laser scanning and BIM: The case of cylindrical MEP components. Automation in
Construction 49, 201–213 (jan 2015)

7. Chen, J., Kira, Z., Cho, Y.K.: Deep Learning Approach to Point Cloud Scene
Understanding for Automated Scan to 3D Reconstruction. Journal of Computing
in Civil Engineering 33(4) (jul 2019)



14 J. Kufuor et al.

8. COCO Dataset: Detection Evaluation (2019), http://cocodataset.org/#detection-
eval

9. Czerniawski, T., Nahangi, M., Haas, C., Walbridge, S.: Pipe spool recognition in
cluttered point clouds using a curvature-based shape descriptor. Automation in
Construction 71(2), 346–358 (nov 2016)
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