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Summary  

Objectives 

Maternal Plasmodium falciparum-specific antibodies may contribute to protect infants against 

severe malaria. Our main objective was to evaluate the impact of maternal HIV infection and 

placental malaria on the cord blood levels and efficiency of placental transfer of IgG and IgG 

subclasses. 

Methods 

In a cohort of 341 delivering HIV-negative and HIV-positive mothers from southern 

Mozambique, we measured total IgG and IgG subclasses in maternal and cord blood pairs by 

quantitative suspension array technology against eight P. falciparum antigens: Duffy-binding like 

domains 3-4 of VAR2CSA from the erythrocyte membrane protein 1, erythrocyte-binding antigen 

140, exported protein 1 (EXP1), merozoite surface proteins 1, 2 and 5, and reticulocyte-binding-

homologue-4.2 (Rh4.2). We performed univariable and multivariable regression models to assess 

the association of maternal HIV infection, placental malaria, maternal variables and pregnancy 

outcomes on cord antibody levels and antibody transplacental transfer. 

Results 

Maternal antibody levels were the main determinants of cord antibody levels. HIV infection and 

placental malaria reduced the transfer and cord levels of IgG and IgG1, and this was antigen-

dependent. Low birth weight was associated with an increase of IgG2 in cord against EXP1 and 

Rh4.2. 

Conclusions 

We found lower maternally transferred antibodies in HIV-exposed infants and those born from 

mothers with placental malaria, which may underlie increased susceptibility to malaria in these 

children.  
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Maternal antibodies; cord blood antibodies; placental transfer; HIV; placental malaria; IgG; IgG 

subclasses. 
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Introduction 1 

Each year, more than 200 million cases of malaria occur worldwide, the majority in Africa [1]. 2 

Pregnant women and children older than 6 months of age are the most vulnerable groups 3 

affected by malaria. In fact, malaria in pregnancy is estimated to account for 100,000 neonatal 4 

deaths annually and it increases the risk of severe maternal anaemia, premature delivery, low 5 

birth weight (LBW) and perinatal mortality [2, 3]. The lower impact of malaria disease in 6 

infants younger than 6 months of age is thought to be due to a number of factors, such as 7 

passive transfer of maternal antibodies or higher presence of foetal haemoglobin associated with 8 

slower parasite growth [4–8]. However, recent reports show that the number of malaria cases 9 

may be underestimated [9, 10] and the risk of severe malaria increases when the transferred 10 

maternal antibodies start to wane [11].  11 

Maternal antibodies contribute to protection of infants for the first 3-6 months of life by passive 12 

immunity, especially from severe malaria and its major complications [12, 13]. This immunity 13 

is acquired mainly through the transplacental transfer of antibodies that is facilitated by neonatal 14 

fragment crystallisable (Fc) region receptor (FcRn), expressed in the human syncytiotrophoblast 15 

[14]. Only IgG is transferred across the placenta, the majority during the third trimester [15]. 16 

The efficiency of transplacental transfer of antibodies is affected by many factors, such as 17 

maternal antibody levels, IgG subclass, avidity, antigen specificity, gestational age, parity, 18 

maternal infections, and differs between locations [16–20]. Maternal hypergammaglobulinemia, 19 

LBW and maternal infections have been inconsistently associated with reduced cord blood 20 

antibody levels and placental transfer [21–26]. Malaria in pregnancy, for example, has been 21 

reported to reduce transplacental IgG transfer against several common pathogen antigens in 22 

some studies [19, 21, 23, 27], although others have shown no impact [23, 25, 26, 28].  23 

The effect of maternal HIV infection is also controversial. A study in Kenya showed that HIV-24 

positive (HIV+) women had less transplacental transfer of IgG against the circumsporozoite 25 

protein (CSP) than HIV-negative (HIV-) women, but no differences were found for any other 26 
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malarial antigen [29]. Another study in Kenya assessed the effect of maternal HIV infection on 27 

the transplacental transfer of 14 P. falciparum antigen-specific IgG antibodies and reported that 28 

HIV+ women had a reduced transfer of IgG only against the merozoite surface protein 9 29 

(MSP9), CSP and erythrocyte binding antigen 181 (EBA181) [28]. In contrast, a study in 30 

Mozambique found that HIV+ women had a subclass-dependent reduction of cord blood IgG 31 

and placental transfer, with lower total IgG and IgG1 cord blood levels and placental transfer 32 

against erythrocyte binding antigen 175 (EBA 175), lower total IgG against apical membrane 33 

antigen 1 (AMA1) and lower IgG3 levels and placental transfer against merozoite surface 34 

protein 1 (MSP1) [30]. That study also assessed the effect of malaria in pregnancy, which 35 

reduced the transfer of antibodies against these antigens, and others have also reported reduced 36 

placental transfer of antibodies due to placental malaria [19]. Another study in Cameroon 37 

showed that there was a decreased transfer of CSP, MSP1 and AMA1 IgG antibodies in HIV+ 38 

mothers [31]. Moreover, only a few studies assessed the effect of maternal HIV infection on 39 

IgG subclasses against malaria, and they had several limitations: a low number of HIV+ 40 

women, a lack of viral load data, a small number of antigens tested and an absence of IgG2 and 41 

IgG4 analyses [30, 31]. Thus, further studies are needed to clarify the impact of maternal HIV 42 

infection on the transplacental transfer of antimalarial antibodies, especially IgG subclasses that 43 

have been reported to have differential associations with protection from malaria in childhood 44 

[32–36]. 45 

Maternal antibodies to P. falciparum antigens, could also interfere with the acquisition of a 46 

protective immune response after malaria vaccination, as suggested in previous studies [37–39], 47 

especially when the transferred antibodies are against a vaccine target antigen. This is known to 48 

be a significant issue for measles vaccines [40–44]. Therefore, it is important to decipher the 49 

factors that affect maternal antimalarial antibody transfer, not only because of their protective 50 

role in the infant, but also because of their implications on the antibody build-up against some 51 

vaccine target antigens and naturally acquired immunity (NAI) to malaria [45, 46].  52 
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Here, our main objective was to evaluate the effect of maternal HIV infection and placental 53 

malaria (PM), on the cord blood levels and placental transfer of total IgG and IgG subclasses to 54 

8 P. falciparum antigens associated with malaria exposure and protection in a large sample size 55 

cohort of Mozambican women. As exploratory objectives, we also aimed to assess the impact of 56 

maternal variables (age, gravidity, malaria treatment, antiretroviral therapy, CD4+ T cell counts, 57 

HIV viral load), pregnancy outcomes (maternal anaemia, prematurity, gestational age and 58 

LBW) and seasonality. 59 

A better understanding of factors affecting cord levels and placental transfer is essential towards 60 

the design and implementation of malaria vaccines, particularly in malaria endemic areas with 61 

high HIV prevalence.  62 

Materials and Methods 63 

Study design and sample collection 64 

A total of 197 HIV- and 144 HIV+ pregnant women were recruited between May 2011 and 65 

September 2012 in the Manhiça District, Southern Mozambique, a semi-rural area in Maputo 66 

Province. These women were participants of two clinical trials of antimalarial intermittent 67 

preventive treatment in pregnancy (IPTp, ClinicalTrialGov NCT00811421) (Additional file 1: 68 

Figure S1) [47, 48] that evaluated i) mefloquine (MQ) as an alternative IPTp drug to 69 

sulfadoxine-pyrimethamine (SP) in HIV- pregnant women and ii) MQ as IPTp drug in HIV+ 70 

pregnant women in whom SP is contraindicated and who received daily cotrimoxazole (CTX). 71 

Pregnant women of all gravidities and gestational age ≤28 weeks attending an antenatal care 72 

clinic for the first time and who had not received IPTp during their current pregnancy were 73 

invited to participate in the study after provision of informed consent. The study arms for the 74 

first trial were (1) SP, (2) single dose MQ (MQ full), and (3) split dose over two days MQ (MQ 75 

split), and for the second trial, women received either three monthly doses of MQ or placebo. 76 

Antiretroviral therapy (ART) with daily monotherapy with zidovudine (AZT) was 77 

recommended when CD4+ T cell count was below <350 cells/μL and/or when women were in 78 
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WHO HIV clinical stage III or IV [49]. At the time of the study, the intensity of malaria 79 

transmission was low/moderate and the HIV prevalence in pregnant women was 29% [50, 51]. 80 

Before delivery, 50 μl of maternal peripheral blood samples were collected on Whatman 903TM 81 

filter paper at recruitment and in two visits (one during the second trimester and the other during 82 

the third trimester) for the detection of P. falciparum by real-time quantitative polymerase-83 

chain-reaction (qPCR) targeting the 18S ribosomal RNA [52]. Data of qPCR were available for 84 

287 women (at recruitment), 240 women (visit 1) and 74 women (visit 2). 85 

At delivery, a total of 332 plasma samples from peripheral blood (195 HIV- and 137 HIV+) and 86 

303 cord blood samples (178 HIV- and 125 HIV+) were available. Peripheral blood smears 87 

were performed according to standard procedures for the microscopic detection of P. falciparum 88 

species [47, 48] and data were available for 308 women (183 HIV- and 125 HIV+). 50 μl of 89 

maternal peripheral blood were also collected at delivery on Whatman 903TM filter paper for the 90 

detection of P. falciparum by qPCR, and data were available for 242 women (163 HIV- and 79 91 

HIV+). 92 

To assess PM, placental blood was collected to perform blood smears and qPCR. Data of blood 93 

smears and qPCR were available for 340 (197 HIV- and 143 HIV+) and 236 (157 HIV- and 79 94 

HIV+) women, respectively. Tissue samples from the maternal side of the placenta were also 95 

collected and placental histology was performed on samples from 307 study participants. Acute 96 

PM was defined by the presence of parasites on sections without malaria pigment; chronic PM, 97 

by presence of parasites and pigment; or past PM, by the presence of pigment alone. PM was 98 

considered positive if any of the tests performed (blood smear, qPCR or histology) were 99 

positive, therefore the 341 women had PM data for at least one of the tests.  100 

Antibody assays 101 

For the quantification of IgG, IgG1, IgG2, IgG3 and IgG4 responses, quantitative suspension 102 

array technology (qSAT) applying the xMAP™ technology (Luminex Corp., TX) was 103 

performed. 104 
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Eight P. falciparum recombinant proteins were selected for our analysis: Duffy-binding like 105 

domains 3-4 (PfEMP1 DBL3-4 of var2csa PfEMP1, INSERM) [53], erythrocyte-binding 106 

antigen 140 (EBA140, Burnet Institute) [54], exported protein 1 (EXP1, Sanaria) [55], 42 kDA 107 

fragment of merozoite surface protein 1 (MSP142, WRAIR) [56], merozoite surface protein 1 108 

block 2 (MSP1 bl2, University of Edinburgh) [57], merozoite surface protein 2 (MSP2, 109 

University of Edinburgh) [58], merozoite surface protein 5 (MSP5, Monash University) [59] 110 

and reticulocyte-binding-homologue-4.2 (Rh4.2, Burnet Institute) [60]. The proteins included in 111 

the panel are a selection of P. falciparum pregnancy-specific markers (DBL3-4) [53] and 112 

markers of malaria exposure (EXP1, MSP142 and MSP2) and immunity (EBA140, MSP1 bl2, 113 

MSP5 and Rh4.2 ) as defined in our previous study [38]. 114 

Standardization and optimization of the qSAT assays were previously performed to control for 115 

sources of variability [61–63]. First, antigens covalently coupled to MagPlex beads and 116 

resuspended in 50µL of PBS, 1% BSA, 0.05% Azide pH 7.4 (PBS-BN) were added to a 96-well 117 

μClear® flat bottom plate (Greiner Bio-One) in multiplex. Fifty µL of test samples, negative or 118 

positive controls [64] were added to multiplex wells and incubated overnight at 4ºC protected 119 

from light. After incubation, plates were washed three times with PBS-Tween 20 0.05%. Then, 120 

100µL of anti-human IgG (Sigma B1140, dilution 1/2500), anti-human IgG1 (Abcam ab99775, 121 

dilution 1/4000), anti-human IgG2 (Invitrogen MA1-34755, dilution 1/500), anti-human IgG3 122 

(Sigma B3523, dilution 1/1000) or anti-human IgG4 (Invitrogen MA5-16716, dilution 1/500) 123 

were added and incubated for 45 min. After another plate washing cycle, 100µL of streptavidin-124 

R-phycoerythrin (Sigma 42250) at 1/1000 dilution was added and incubated 30 min for IgG, 125 

IgG1 and IgG3. For IgG2 and IgG4, 100 µL of anti-mouse IgG (Fc-specific)−biotin (Merck 126 

B7401, 1/40000 and 1/10000 dilution, respectively) was added and incubated for 45 min, 127 

followed by another washing cycle and then incubation with streptavidin-R-phycoerythrin for 128 

30 min. Finally, plates were washed and beads were resuspended in 100 μL/well of PBS-BN. 129 

The Luminex 100/200 analyser was used for reading the plates and at least 20 microspheres per 130 
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analyte were acquired per sample. Antibody levels were measured as median fluorescence 131 

intensity (MFI). Data were captured using xPonent software.  132 

Test samples were assayed at 2 dilutions for IgG (1/250 and 1/10000), and IgG1 and IgG3 133 

(1/100 and 1/2500). Only 1 dilution was tested for IgG2 and IgG4 (1/50) because of their usual 134 

low levels. A positive control (WHO Reference Reagent for anti-malaria P. falciparum human 135 

serum, NIBSC code: 10/198) in twelve serial dilutions (1:3, starting at 1/25) was used for 136 

QA/QC and to select optimal sample dilution for data analysis. For quality control, two blanks 137 

were added to each plate. Test samples were distributed across plates ensuring balanced groups.  138 

Statistical analysis 139 

MFI data were log10-transformed. The Shapiro-Wilk test of normality and the quantile-quantile 140 

(Q-Q) plot were performed to evaluate the distribution of such log10-transformed MFI antibody 141 

data. Boxplots and radar charts were used to represent the differences on antibody levels (log10 142 

MFI) and placental transfer (measured as the cord blood/mother ratio) between groups of 143 

categorical variables (HIV and PM). The non-parametric Mann-Whitney U test was used to 144 

compare antibody levels and placental transfer between groups as log10 MFI data were not 145 

normally distributed. Due to the high dimensionality of the data regarding the number of 146 

variables (5 IgG and IgG subclasses and 8 antigen combinations), Principal Component 147 

Analysis (PCA) of the cord and maternal blood log10 MFI data was performed to explore and 148 

visualize overall antibody patterns. Only individuals with complete data for all the antigens and 149 

antibodies were included in the PCA analysis. The aim of a PCA analysis is to find a new 150 

reduced set of variables (called principal components, or dimensions) that explain as much of 151 

the information in the dataset as possible. The first dimension contains the most information 152 

about the original dataset, and explains most of the variation, and the last contains the least. We 153 

selected the two principal components or dimensions that best explained the variance of the data 154 

and plotted the PCA scores. These plots allow visualizing clusters of samples based on their 155 

similarity. 156 
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Univariable linear regression models were performed to determine the effect of covariables on 157 

the cord blood antibody levels or placental transfer of antibodies. The variables analysed in the 158 

univariable models were maternal antibody levels (log10 MFI), maternal HIV infection, PM, age, 159 

gravidity (defined as primigravidae and multigravidae), maternal anaemia (defined as 160 

haemoglobin levels <11g/dL), LBW (defined as <2500g at birth), prematurity (defined as 161 

delivery before 37 weeks of gestational age), gestational age (measured by Ballard score [65]), 162 

treatment arms (defined as MQ or placebo in the HIV+ women study and MQ full, MQ split or 163 

SP in HIV- women study), antiretroviral therapy (ART) received before pregnancy, started at 164 

recruitment or not received at all, CD4+ T cell counts (<350 cells/μL or ≥350 cells/μL), HIV 165 

viral load (<400, 400-999, 1000-9999 and >9999 copies/mL), and seasonality (dry or rainy). 166 

Gravidity was defined as primigravidae and multigravidae following the approach used in 167 

previous studies and due to the lack of significant differences on antibody levels between 168 

secundigravidae and multigravidae in other studies [47, 48, 66–68]. Seasonality was defined as 169 

rainy if at least 4 of the pregnancy months fell under the category of rainy period (November-170 

April), and defined as dry in any other case. Multivariable regression analyses were performed 171 

for each antigen and IgG or IgG subclass including always maternal antibody levels and 172 

maternal HIV infection (statistically significantly associated in all univariable analyses) and the 173 

additional predictors that resulted in the best fitted and simpler (less variables) models. 174 

Specifically, we tested exhaustively all possible combinations of the predictor variables and 175 

selected the models with lower Akaike information criterion (AIC) and Bayesian information 176 

criterion (BIC) and higher adjusted r-square. Then, variables that appeared significant in most of 177 

the best models for each antigen/subclass and that also had more significant associations in 178 

univariable analyses (significant adjusted p-values) were included in all the models, i.e. PM and 179 

LBW. The betas obtained in each case were transformed into a percentage for interpretation. For 180 

maternal antibody levels (log-log model) the beta transformed value (%) was calculated with the 181 

formula ((10^(beta*log10(1.1)))-1)*100. This represents the effect (in percentage) of a 10% 182 

increase in the corresponding predictor variable on IgG and IgG subclass cord blood levels. For 183 

maternal HIV infection, PM and LBW (log-linear models), the beta transformed value (%) was 184 
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calculated with the formula ((10^beta)-1)*100. This gives the difference (in percentage) in IgG 185 

and IgG subclass cord blood levels or placental transfer between the reference group and the 186 

study group (e.g. the difference between cord antibody levels of HIV- women compared with 187 

HIV+ women cord antibody levels). 188 

All p-values were considered statistically significant when <0.05 after adjusting for multiple 189 

testing through Benjamini-Hochberg. Adjustments for multiple testing were done separately for 190 

each IgG subclass. Data were managed and analysed using the R software version 3.6.3 and its 191 

package devtools [69]. The ggplot2 package was used to perform boxplot graphs [70]. The 192 

FactoMineR [71] and factoextra [72] packages were used to perform PCA.  193 

 194 

Results 195 

Description of participants 196 

Study participants consisted of 341 pregnant women (197 HIV- and 144 HIV+) (Table 1). Their 197 

median age was 25 years old (interquartile range [IQR] 19-29) and HIV+ women (median of 27 198 

years) were older than HIV- women (median of 21 years). Less than a fourth (24%) of the 199 

participants were primigravidae, and there were more primigravidae in the HIV- group (35%) 200 

compared to the HIV+ group (9%). Maternal anaemia was more prevalent among HIV+ women 201 

(68.8%) than HIV- women (56.2%). No significant differences were found in birth weight or 202 

prematurity between infants born to HIV+ and those born to HIV- women. Only 20 women had 203 

PM and the proportion of PM between HIV+ and HIV- women was similar: 13 HIV- (6.6%) 204 

and 7 HIV+ (4.9%). Among these 20 women, 3 had acute PM and 8 past PM (defined through 205 

histology), 5 had positive placental blood smears and 11 had positive placental qPCR, of which 206 

7 were only qPCR positive. A total of 51 women had peripheral malaria (positive in peripheral 207 

blood by microscopy and/or PCR at any of the visits during pregnancy) but there were no 208 

differences by HIV infection.  209 

Profile of cord blood antibody levels and placental transfer to P. falciparum antigens  210 
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The PCA analysis of antibody levels in 303 cord and 332 maternal blood samples showed very 211 

similar patterns (maternal antibody PCA analyses not shown). Clusters showing similarity of 212 

responses were detected in cord antibody levels by IgG subclasses (Fig. 1a) and antigens (Fig. 213 

1b). While dimension 1 explained the majority of the variance and contributed to the separation 214 

of IgG4, IgG2 and IgG/IgG1/IgG3, dimension 2 contributed to the separation of the IgG1 and 215 

IgG3 responses (Fig. 1a) and MSP1 bl2, MSP2 from the rest of the antigens (Fig. 1b). DBL3-4 216 

greatly contributed to IgG1 whereas MSP1 bl2 and MSP2 contributed more to the IgG3 217 

responses (Fig. 1a). DBL3-4 was clearly separated from the rest indicating a different antibody 218 

profile (Fig. 1b). Consistently, DBL3-4 had lower IgG3 levels and MSP1 bl2 and MSP2 had 219 

lower IgG1 levels than the other antigens (Fig. 1c). Overall, IgG2 had lower median levels than 220 

IgG1 and IgG3 for most antigens, except for MSP1 bl2, MSP2 and DBL3-4. The lowest levels 221 

were shown for IgG4 in all antigens, with especially very low responses for DBL3-4, MSP5 and 222 

Rh4.2 (Fig. 1c).  223 

For the placental transfer, DBL3-4 antibodies were the most efficiently transferred, especially 224 

IgG4 followed by IgG3 and finally IgG2 (Fig. 1d). For the rest of antigens, the four IgG 225 

subclasses showed similar placental transfer, of which IgG2 was the lowest. 226 

Altered maternal and cord blood anti-P. falciparum IgG levels by HIV and placental malaria  227 

First, we compared total IgG levels in HIV+ and HIV- mothers for 332 maternal (137 HIV+ and 228 

195 HIV-), and 303 cord samples (125 HIV+ and 178 HIV-). In HIV+ women, both maternal 229 

and cord blood IgG levels were lower for EXP1 and MSP5 (Fig. 2a). Second, we assessed the 230 

differences between mothers with and without PM in maternal and cord total IgG levels (Fig. 231 

2b). IgG levels against MSP2 were higher among women with PM than those without PM. 232 

Also, cord blood IgG levels against EXP1 and MSP2 were higher among women with PM.  233 

We also looked at the differences in maternal and cord IgG subclasses levels by HIV infection 234 

(Fig. 2c). In HIV+ women, maternal levels were lower for IgG1 DBL3-4, MSP2 and MSP5 than 235 

for HIV+ women (Fig. 2c). Maternal levels of IgG2 against EXP1 and MSP2 were also lower in 236 
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HIV+ women compared with HIV- women. IgG3 maternal levels were only lower among HIV+ 237 

women against DBL3-4, whereas IgG4 levels in HIV+ women were lower than HIV- women 238 

against EBA140, EXP1, MSP142 and MSP1 bl2. Statistically significant differences were found 239 

in the cord for the same antigens and IgG subclasses as in the mother, with the exception of 240 

DBL3-4 IgG3 and EXP1 IgG4 that were not significantly different in the cord. Regarding PM, 241 

there were no significant differences between women with and without PM in IgG subclass 242 

levels, although there was a general positive trend in women with PM (Additional file 1: Figure 243 

S2-S3). 244 

Factors associated with anti-P. falciparum IgG cord blood levels  245 

For the multivariable analyses, we selected log10 MFI maternal antibodies, HIV infection, PM 246 

and LBW, as they were significant in univariable models (Supplementary material 1) and 247 

improved the model performances, having lower AIC and BIC, and higher adjusted r-squares. 248 

Maternal antibody levels had a high positive correlation with cord blood antibody levels for all 249 

the antigens and subclasses (Fig. 3a). A 10% increase in maternal total IgG levels and IgG 250 

subclasses was associated with 6.03% to 9.75% increases in total IgG and IgG subclass cord 251 

blood levels, depending on the antigen and IgG subclass. 252 

Maternal HIV infection was negatively associated with cord blood antibody levels, reducing 253 

IgG to EXP1 and MSP5 by 3.84% and 1.47%, respectively; IgG1 to MSP2 and Rh4.2 by 9.09% 254 

and 3.12%, respectively; and IgG4 to MSP142 by 1.91%. No significant effect was found for 255 

IgG2 and IgG3 levels in cord blood (Fig. 3b). PM negatively impacted IgG cord blood levels 256 

against EBA140, MSP1 bl2 and Rh4.2 (2.19%, 2.53% and 3.52% reduction, respectively), and 257 

IgG2 to EBA140 (4.58% reduction) (Fig. 3c). When analysing HIV+ women only, PM was also 258 

associated with lower IgG2 to DBL3-4 (Additional file 1: Figure S4). LBW was positively 259 

associated with cord blood IgG2 levels against EBA140 and Rh4.2, with a 5.46% and 8.14%, 260 

increase, respectively (Fig. 3d). No significant associations were found for LBW and total IgG 261 

or the rest of the subclasses. Age, maternal anaemia, gravidity, IPTp treatment, prematurity, 262 



11 
 

seasonality, and CD4+ T cell counts, ART and viral load for HIV+ women were not included in 263 

the models following the AIC, BIC and r-square criteria. 264 

Decreased placental transfer of anti-P. falciparum IgGs by HIV and placental malaria 265 

The radar charts (Fig. 4) showed that HIV+ women had a reduced placental transfer of 266 

antibodies compared to HIV- women. This was significant for IgG and IgG1 against DBL3-4, 267 

EBA140, EXP1, MSP142, MSP1 bl2, MSP2 and MSP, IgG1 against Rh4.2 (Fig. 4a-4b), and 268 

IgG4 against MSP142 (Additional file 1: Figure S4). However, HIV infection increased the 269 

transfer of IgG4 against DBL3-4 and also a trend was seen for IgG3 (Additional file 1: Figure 270 

S5). No significant differences in placental transfer between the two groups were found for 271 

IgG2 or IgG3.  272 

In multivariable models including HIV, PM and LBW (variables showing an effect on placental 273 

antibody transfer in univariable models (Supplementary Material 1) and that when included in 274 

the models these had lower AIC and BIC and higher adjusted r-square), HIV infection was 275 

associated with a reduced placental transfer of IgG against EXP1 (3.10% reduction) and IgG1 276 

against MSP2 and Rh4.2 (8.01% and 2.84% reductions, respectively) (Fig. 5a). PM was 277 

associated with a diminished placental transfer of IgG to MSP1 bl2 and Rh4.2 (3.47% and 278 

4.46% reductions, respectively) (Fig. 5b). LBW did not have any significant impact on 279 

transplacental transfer of antibodies, although when considering raw p-values LBW was 280 

associated with higher placental transfer of IgG2 to EXP1, MSP5 and Rh4.2 (Fig. 5c). No 281 

additional variables were included in the multivariable analysis as they did not provide any 282 

added value to the models following the AIC, BIC and r-square criteria. 283 

 284 

Discussion 285 

Our study provides a better understanding of the factors that affect placental transfer and cord 286 

blood levels of anti-malarial antibodies, especially IgG subclasses, which are relevant for 287 

malaria protection during the first months of life. We found that the main determinant of cord 288 
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antibody levels was the corresponding maternal levels, and that maternal HIV infection was 289 

generally associated with diminished cord IgG levels, although this effect was antigen-subclass 290 

dependent. Also, PM showed some association with lower cord blood IgG levels and placental 291 

transfer against malaria immunity-related antigens. 292 

The highly associated mother and cord blood antibody levels are consistent with previous 293 

studies [19, 30, 73, 74]. The maternal antibodies transferred to the newborn are suggested to be 294 

protective against malaria infection during the first months of life. At the same time, these 295 

transferred antibodies may interfere with the acquisition of protective antibodies after malaria 296 

vaccination, as seen in RTS,S/AS01E immunisation against CSP and indirectly against non-CSP 297 

protection-related antigens [37–39].  298 

Reaching protective cord antibody levels against malaria is essential for the newborn but HIV 299 

infection and PM could interfere with the efficiency of this passive immunity. Here, maternal 300 

HIV infection was associated with diminished antibody levels in the cord, but this was strongly 301 

antigen-subclass dependent, in line with previous studies in which maternal and cord IgG levels 302 

against some antigens related to malaria exposure and protection were lower in HIV+ women 303 

[28, 30, 31]. These previous studies show some discrepancies with the effect of maternal HIV 304 

infection on antimalarial cord antibody levels and placental transfer, and this could be due to 305 

different malaria prevalence, study sample sizes, sensitivities among the serological methods, 306 

and the variables used in the model adjustment [28, 30, 31]. 307 

Despite the low number of women with any evidence of PM in the study, PM also had an 308 

impact on the anti-malarial IgG transplacental transfer. Reduced transplacental transfer of 309 

antibodies associated with PM has been found in several studies [19, 26, 75] and may be due to 310 

damaged placental tissue. P. falciparum-infected erythrocytes and immune cells infiltrate within 311 

the intervillous spaces of the placenta causing inflammation, fibrinoid necrosis, basal membrane 312 

thickening and increase of the number of syncytial knots, and it may alter the exchange system 313 

between mother and foetus, including Fc receptors [76, 77].  314 
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Due to the importance of IgG subclasses on antimalarial effector immunity we wanted to assess 315 

their levels in the mother and their transfer to the foetus. Cord IgG1 and IgG3 levels were the 316 

highest and IgG4 the lowest for most antigens. In contrast, for most of the antigens, IgG4 was 317 

the most efficiently transferred, especially for the pregnancy-specific P. falciparum antigen 318 

DBL3-4 VAR2CSA, followed by IgG1 or IgG3 (depending on the antigen) and finally IgG2. 319 

This could be explained by lower maternal antibody concentrations having higher active 320 

placental transport [78]. Indeed, DBL3-4 had the highest placental transfer efficacy of IgG4 321 

despite cord IgG4 levels being the lowest. This ranking was unexpected because IgG1 followed 322 

by IgG4, IgG3 and finally IgG2 have been commonly stated as the best transferred subclasses 323 

[15, 79], although a recent manuscript reported a hierarchy of IgG1>IgG3>IgG4=IgG2 and 324 

identified a number of other studies that also observed different transfer efficiencies [80], such 325 

as our recent report [74]. This suggests that the IgG subclasses transfer efficiency may vary 326 

between study populations, as well as by maternal antigen exposure.  327 

IgG1 and IgG3 are cytophilic antibodies, which can interact with complement and Fcγ-receptors 328 

[81], and are considered to be protective [32, 33, 82]. Therefore, their high cord levels could be 329 

related with an effective induction of effector functions that are essential for Plasmodium 330 

clearance, as previously seen with members of the PfRh [83, 84], EBA invasion ligand families 331 

[35] and MSP5 [85]. IgG2 and IgG4 are non-cytophilic antibodies and have been classically 332 

correlated with disease [32, 86]. However, we recently proposed that the pattern of cytophilic 333 

and non-cytophilic IgG antibodies is antigen-dependent and both types could be involved in 334 

protection [34] since not all protective mechanisms require Fc-mediation [87]. A shift from anti-335 

MSP2 IgG1 in primary malaria infections towards IgG3 in subsequent malaria infections 336 

indicates that IgG3 could be related with protection [88, 89], similarly to MSP1 bl2 IgG3 [90]. 337 

Anti-IgG2 MSP2 increases with age and inversely associates with risk of infection, while IgG4 338 

levels have been positively associated with risk [91]. Thus, the high anti-MSP2 IgG2 and IgG3 339 

levels in the cord and lower IgG4 we observe could be associated with malaria protection in 340 
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infants. However, the relative importance of IgG subclasses in protective immunity is not clear 341 

and further research is needed in this regard.  342 

HIV infection reduced IgG1 cord levels against MSP2 and Rh4.2 due to an impairment of the 343 

IgG1 transplacental transfer. Although it has been previously reported that maternal HIV 344 

negatively affected MSP1 IgG1 [30, 31] and IgG3 [30] cord levels, we did not find any 345 

significant association between HIV infection and MSP1 IgG1-3 cord levels. However, we 346 

observed lower IgG4 cord levels against MSP142. Diminished levels of these antibodies could 347 

explain higher risk of infection, as cytophilic antibodies have been suggested to contribute to 348 

protection from clinical malaria in adults and children in endemic areas [34, 92] and IgG4 349 

subclass has also been associated with malaria protection [34, 93]. LBW was previously 350 

associated with a reduction in cord blood levels and placental transfer of antibodies [94–96], but 351 

in this study we did not observe any association of LBW with lower cord levels or placental 352 

transfer. However, our results are consistent with other studies that did not show any impact of 353 

LBW on IgG and subclass cord levels against some antimalarial antigens [30, 31]. Surprisingly, 354 

LBW was associated with higher cord IgG2 levels against EXP1 and Rh4.2 and, to our 355 

knowledge, this is the first time that this observation has been reported. IgG2 antibodies are 356 

associated with increased risk of severe malaria [97] and, therefore, LBW infants may have 357 

higher risk to suffer from malaria complications than normal weight infants. No associations 358 

were found between maternal age, anaemia, gravidity and IPTp treatment and cord levels or 359 

placental transfer of antibodies against antimalarial antigens [28, 30]. We did not find either any 360 

significant differences between mothers who initiated ART before pregnancy, mothers who 361 

started during pregnancy, and mothers not taking ART. Previous studies on the effect of ART 362 

on placental transfer of antibodies are controversial and the effect varied depending upon the 363 

antigen, the initiation and type of treatment, and the dose. For example, Goetghebuer et al. 364 

observed the lowest maternal antibody transfer ratios against 5 vaccine and 2 pathogen antigens 365 

in HIV+ mothers who initiated ART during pregnancy, compared with those who initiated ART 366 

before pregnancy [98]. However, this study did not include P. falciparum antigens. Moro et al. 367 
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found reduced placental transfer of antibodies against MSP1, AMA1 and EBA175 in HIV+ 368 

women receiving no ART, although in this cohort women with ART were not included [30]. 369 

Ray et al. showed lower placental transfer of antibodies against the same antigens in women 370 

taking optimal ART treatment [28], suggesting that ART treatment did not make any difference 371 

in the transplacental transfer of these antimalarial antibodies. In the same line, Babakhanyan et 372 

al. reported lower placental transfer of antibodies against CSP, AMA1 and MSP1 in HIV+ 373 

women taking only nevirapine at delivery than HIV- women [31]. On the contrary, Ayisi et al. 374 

found that HIV+ women not receiving ART had reduced transfer of antibodies against CSP but 375 

not against MSP1 or EBA175 [29].  376 

Our study is subjected to some limitations. Specifically, hypergammaglobulinemia, which has 377 

been associated with a reduced transplacental transfer of antibodies [23, 25, 26], was not 378 

measured. Chronic infections such as HIV, but also malaria, induce hypergammaglobulinemia 379 

[99, 100], and it has been reported that 94% of women with hypergammaglobulinemia also had 380 

PM [25]. Consequently, the effect of maternal HIV and PM on cord blood levels and placental 381 

transfer might be in part due to hypergammaglobulinemia. Another limitation is that we had a 382 

low number of PM cases, which may result in low statistical power to detect significant 383 

associations. In addition, qPCR data were not available from all women and, consequently, we 384 

may have missed some cases of submicroscopic PM (only detected by qPCR). This is of 385 

specially importance as there are studies reporting that women with submicroscopic PM had 386 

higher inflammation markers than women without PM [101, 102], which could affect the 387 

placental transfer of antibodies. Finally, the impact of the observed differences in cord antibody 388 

levels on the malaria risk in the infants was not evaluated of this cohort and will be addressed 389 

on future studies. 390 

In conclusion, our results demonstrate that maternal HIV infection was associated with reduced 391 

levels of antibodies, mostly IgG and IgG1, against some antimalarial antigens in cord blood. 392 

Part of this reduction in antibody levels was due to altered antibody levels in the mother, which 393 

is the main determinant of cord blood levels, but HIV-infection also diminished transplacental 394 
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transfer of antibodies. PM also reduced IgG cord levels to some malaria protection-related 395 

antigens, and LBW was associated with increased anti-malaria IgG2 cord levels, also related to 396 

a higher risk of severe malaria in the infant. Overall, the findings are important for better 397 

understanding the role of maternal HIV infection and malaria in the placental transfer of 398 

antimalarial antibodies, which is essential for protecting the infant against the severe 399 

consequences of malaria during the first months of life.  400 
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Table 1: Characteristics of study participants. 

 

All 

N=341 

HIV- 

N=197 

HIV+ 

N=144 

p–value  

a 

Age a (years median [IQR]) 25.0 [19.0; 29.0] 21.0 [18.0; 28.0] 27.0 [22.0; 31.0] < 0.001 

Gravidity (n, %)    < 0.001 

Multigravidae 259 (76.0) 128 (65.0) 131 (91.0)  

Primigravidae 82 (24.0) 69 (35.0) 13 (9.0)  

Maternal haemoglobin (n, %)    0.025 

Anaemia (< 11 g/dL) 208 (61.5) 109 (56.2) 99 (68.8)  

Normal (≥ 11 g/dL) 130 (38.5)  85 (43.8) 45 (31.2)  

Birth weight (n, %)    1.000 

Low (< 2500 g) 29 (8.5) 17 (8.6) 12 (8.33)   

Normal (≥ 2500 g) 312 (91.5) 180 (91.4) 132 (91.7)   

Prematurity (n, %)    0.502 

No (≥ 37 weeks) 312 (94.3) 181 (95.3) 131 (92.9)  

Yes (< 37 weeks) 19 (5.7) 9 (4.7) 10 (7.1)  

Treatment     < 0.001 

MQ  71 (20.9) 0 (0.0) 71 (49.7)   

MQ full  68 (20.8) 68 (34.5) 0 (0.0)  

MQ split 73 (21.5) 73 (37.1) 0 (0.0)  

Placebo 72 (21.2) 0 (0.0)  72 (50.3)  

SP 56 (16.5) 56 (28.4)  0 (0.0)  

ART (n, %)    NP 

No 24 (7.1) – 24 (17.1)  

Yes 116 (34.4) – 116 (82.9)  

CD4+ T cell counts (n, %)    NP 

Lower (< 350 c/µL) 40 (12.3) – 40 (31.2)  

Higher (≥ 350 c/µL) 88 (27.1) – 88 (68.8)  

HIV viral load (copies/mL)    NP 

< 400 21 (6.4) – 21 (16.0)  

(400–999) 41 (12.5) – 41 (31.3)  

(1000–9999) 48 (14.6) – 48 (36.6)  

> 9999 21 (6.4) – 21 (16.0)  

Placental malaria b (n, %)    0.659 

No 321 (94.1) 184 (93.4) 137 (95.1)  

Yes 20 (5.9) 13 (6.6) 7 (4.9)  

Peripheral malaria c (n, %)    0.531 

No 290 (85.0) 165 (83.8) 125 (86.8)  

Yes 51 (15.0) 32 (16.2) 19 (13.2)  

For numerical variables, the median and first and third quantile, in brackets, are given. For the categorical variables the number of 

individuals for each group and percentages in parentheses, are given. 
a For the age, the Mann-Whitney U test was used to compare differences between median values. For the categorical variables, the 

Chi-square test was used. 
b Placental malaria was considered positive if there was any evidence of P. falciparum placental parasitaemia by any method. 
c Peripheral malaria was considered positive if there was any evidence of P. falciparum peripheral parasitaemia by any method. 

Statistical significance was considered when p–value ≤0.05; MQ, mefloquine; NP, not−performed tests; SP, sulfadoxine-

pyrimethamine. 
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Figures 785 

 786 

Fig. 1: Overview of cord blood levels of IgG and IgG subclasses to P. falciparum antigens for 787 
all women. a) Principal component analysis (PCA) plots of cord IgG and IgG subclass levels 788 
against all antigens clustered by subclass type. b) PCA plots of cord IgG and IgG subclass levels 789 
clustered by antigen type. The two principal components (Dim 1, Dim 2) that explained the 790 
highest percentage of the variance of the data (percentage in parenthesis) were chosen for 791 
representation. The arrows in a) and b) represent how the variables contribute to each of the two 792 
principal components. c) Medians of IgG and IgG subclass levels (log10 MFI) in cord blood for 793 
each antigen. d) Medians of IgG and IgG subclass placental transfer for each antigen, 794 
represented as the cord/mother ratios. 795 
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 797 

Fig. 2: Mother and cord blood antibody levels (log10 MFI) in HIV-positive and HIV-negative 798 
women and women with PM and without PM. Boxplots illustrate the medians and the 799 
interquartile range for IgG in HIV-positive and HIV-negative women (a), IgG in women with 800 
PM and women without PM (b), and IgG1, IgG2, IgG3 and IgG4 subclasses in HIV-positive 801 
and HIV-negative women (c). Levels between groups were compared by the non-parametric 802 
Mann–Whitney U test and p-values were adjusted for multiple testing by the Benjamini-803 
Hochberg approach. Statistically significant differences are highlighted with an asterisk. HIV-804 
positive women are represented in red, HIV-negative women in blue, women with PM in green 805 
and women without PM in purple.  806 
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 808 

Fig. 3: Difference of IgG and IgG subclass levels in cord blood by study factors. Forest plots 809 
show the effect (in percentage) of a) maternal antibody levels, b) HIV infection, c) placental 810 
malaria and d) low birth weight, on cord blood levels of IgG and IgG subclasses for all the 811 
antigens tested. The differences in percentage correspond to beta transformed values (%) that 812 
were calculated from the beta values obtained in the multivariable models. Beta transformed 813 
values (%) are displayed when raw p-values are significant. Asterisks are shown when adjusted 814 
p-values by Benjamini-Hochberg are significant. *** = p-value ≤ 0.001, ** = p-value ≤ 0.01, * 815 
= p-value ≤ 0.05. 816 
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 818 

Fig. 4: Antibody placental transfer in HIV-positive and HIV-negative women. Radar charts 819 
representing the medians of each analyte antibody cord/mother ratio in HIV-positive and HIV-820 
negative women for IgG (a) and IgG1 subclass (b). Ratios between HIV-positive and negative 821 
women were compared by the non-parametric Mann-Whitney U test and p-values were adjusted 822 
for multiple testing by the Benjamini-Hochberg approach. Statistically significant differences 823 
between HIV-positive and negative women ratios are highlighted with asterisks.  *** = p-value 824 
≤ 0.001, ** = p-value ≤ 0.01, * = p-value ≤ 0.05. HIV-positive women are represented in red 825 
and HIV-negative women in blue. 826 
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 830 

 831 

Fig. 5: Difference of IgG and IgG subclass placental transfer by study factors. Forest plots show 832 
the effect (in percentage) of a) HIV infection, b) placental malaria and c) low birth weight, on 833 
placental transfer of IgG and IgG subclasses for all the antigens tested. The differences in 834 
percentage correspond to beta transformed values (%) that were calculated from the beta values 835 
obtained in the multivariable models. Beta transformed values (%) are displayed when raw p-836 
values are significant. Asterisks are shown when adjusted p-values by Benjamini-Hochberg are 837 
significant. *** = p-value ≤ 0.001, ** = p-value ≤ 0.01, * = p-value ≤ 0.05. 838 
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