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Abstract

Theoretically, any chaotic system or chaotic map has ideal complex dynam-

ics. However, because of the finite precision of simulation software and digital

devices during implementation, chaotic systems often undergo dynamical degra-

dation, which hinders the further application of digital chaotic systems in many

fields. Therefore in this paper, the method based on the perturbation and Un-

scented Kalman Filter (UKF) theory is designed to counteract the dynamical

degradation of digital chaotic systems. Specifically, the UKF algorithm is em-

ployed to reinstate the original dynamic performance of the chaotic system, and

then perturbation feedback technology is used to cause the chaotic system to

obtain strong dynamic performance to resist attacks. The experimental and

simulation results demonstrate that this method has good effect on improving

the dynamic degradation of digital chaotic map. In addition, the corresponding

pseudorandom number generator (PRNG) is constructed via this method, and

its randomness is evaluated using the National Institute of Standards and Tech-

nology (NIST) SP800-22 and TestU01 test suites. By comparing with other

schemes, it can be seen that this PRNG has better performance which illus-

trates the proposed scheme can be applied in the chaos-based cryptography and
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utilized in other potential applications.

Keywords: Digital chaotic systems, dynamical degradation, Unscented

Kalman Filter, pseudorandom number generator, cryptography

1. Introduction

As a common natural phenomenon, chaos has been applied in a variety of

fields, especially for cryptography, image encryption and secure communication,

because of the inherent random-like behaviour and other rich properties [1, 2,

3, 4, 5, 6]. Specifically, many chaos-based cryptographic algorithms have been5

proposed, and the digital implementation of real chaotic systems occupies a

pivotal position for the high security of these cryptosystems. In other words,

the generation of pseudorandom binary sequences based on chaos is important,

and it has been widely utilized in the fields of spread-spectrum communications,

error control coding, stochastic computation, data security and so on. Chaotic10

system is a deterministic system, and it has a kind of random-like movement

which can be expressed as the extremely sensitivity to initial conditions and

parameters, and the long unpredictable behaviour. Therefore, it can be suitable

to design pseudo-random number generators (PRNGs). Then large numbers of

pseudo-random number generators derived from chaotic systems have emerged15

[7, 8, 9, 10, 11, 12]. When an ideal chaotic system is realized via a computer or

digital device, it will be discretized, which could result in dynamical degradation

of the original system because of the finite precision of these devices, causing

the system to develop short-cycle lengths, non-traversal, a low linear complexity

and strong correlations [13, 14]. If these drawbacks are ignored, then serious20

security problems will occur for digital chaos-based applications. Several chaos-

based encryption schemes have been compromised and proven to be insecure

[15, 16, 17, 18, 19, 20, 21]; for example, the proposed image encryption method

in [21] can be broken by a differential chosen-plaintext analysis only through

three chosen plain images. Therefore, research on the degradation problem of25

digital chaotic systems has attracted the attention of scholars.
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In general, five methods are widely employed to counteract the dynami-

cal degradation of digital chaos. (a) Methods with higher finite precision [22],

which can prevent the dynamical degradation to a certain extent by slowing

down the degradation process; however, degradation still occurs. In addition,30

this method may significantly increase the computational cost, which will limit

the practical application of the digital chaotic systems. (b) Cascading mul-

tiple chaotic systems [23, 24], which can effectively extend the orbital cycles.

However, this method would cause a poor statistical distribution. (c) Switching

multiple chaotic systems [25, 26], which aims to expand the time before entering35

a short cycle by using a superposition of multiple chaotic systems to minimize

the degradation. One challenge is the difficulty of designing an approximate

and optimal switching rule for multiple chaotic systems. In addition, for each

chaotic system used in this switching method, its own degradation is not solved;

therefore, the degradation phenomenon is still observed. (d) Error compensa-40

tion technology [27], which is a good means to ameliorate the performance of

the digital chaotic system, although it also exists some limitations. For exam-

ple, this method is difficult to apply for high-dimensional systems because of the

computational complexity. (e) The perturbation method (e.g. in the approaches

of [28, 29, 30, 31, 32, 33]), which is a common method and is easy to imple-45

ment on a digital platform. The perturbed objects include inputs, outputs, and

parameters of the chaotic systems, and when the feedback-control algorithm is

well designed, the perturbation method can effectively ameliorate the dynam-

ical degradation of the digital chaotic systems without large-scale computing

and system integration, which makes it universally applicable to chaos-based50

cryptosystems and communication [28].

Theoretically, if the discretization and digital implementation of one chaotic

system is accomplished under ideal conditions, i.e., without the finite precision

problem of the digital platform, then the generated digital sequence must ex-

hibit the basic characteristics of the original system, e.g., good randomness and55

ergodicity. Otherwise, only if the error of degradation of each state of the digital

chaotic system can be appropriately estimated and compensated, the dynam-
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ical behaviour of original chaotic system can be recovered to a great extent.

In such a case, the generated digital sequence will have good chaotic features,

and it is then suitable for the chaos-based cryptosystems and for ensuring a60

system’s security and robustness. As is well known, the Kalman Filter (KF) is

an optimal estimation algorithm that optimally estimates the internal state of

a dynamical system through the state equation and the observation equation;

therefore, it is widely applied in all kinds of fields, such as communication, guid-

ance and navigation. Hypothetically, the degradation of digital chaotic systems65

may be caused by external noise; as a result, the KF concept can be utilized to

resolve the problem of the degradation of digital chaotic systems, and the basic

KF algorithm is proposed only for linear systems, however, chaotic systems are

nonlinear systems. Of the developed KFs, the Extended Kalman Filter (EKF)

and Unscented Kalman Filter (UKF) are adopted for nonlinear systems, where70

the UKF takes advantage of the unscented transformation (UT) to calculate the

statistics of the random variable. The EKF and UKF realize the nonlinear trans-

formation and yield identical performances similar to the basic KF, although

the EKF is based on the propagation of linearized dynamics, but this will in-

troduce a significant estimation error and cause high computational complexity75

and time consumption as the order of the system increases [34]. Therefore, the

UKF is widely applied in a variety of nonlinear systems [35, 36, 37].

In our previous work [38], a perturbation method is designed to solve the

dynamical degradation of digital Chebyshev chaotic system, but it is only effec-

tive for a particular chaotic system (i.e., Chebyshev map). In order to design80

a universal method and also overcome some drawbacks in the aforementioned

approaches, the dynamical degradation of digital chaos systems is analysed and

described in this paper, with the error of degradation initially assumed to be the

interference result of white noise. The UKF algorithm is used to predict and

estimate the approximate ideal digital chaotic sequence (AIDCS). Then, the85

AIDCS is employed to perturb the actual sequence generated from the chaotic

system with an effective precision effect through the feedback-control mecha-

nism. Two examples are experimentally studied and illustrated with the above
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method, and the simulation analysis and experimental results demonstrate that

there exist an effectiveness, superiority and robustness for this method. Finally,90

the corresponding PRNG based on the previous example is constructed, and

the randomness and security are tested through NIST and TestU01. The results

show that the designed PRNG is superior and applicable for chaos-based cryp-

tography and the other potential applications. The contributions of this paper

include (a). The approximately ideal digital chaotic sequence can be predicted95

and estimated by using UKF algorithm. (b). The chaotic attractor structure of

original chaotic system is destroyed by using the perturbation method, of which

there will be difficultly to reconstruct the phase space property of the system.

(c). The improved algorithm has better performance under low precision, which

is suitable for the application in the digital devices with finite precision.100

The remainder of this paper is organized as follows. Section 2 briefly dis-

cusses the degradation theory of digital chaotic systems. Section 3 describes

the proposed UKF-based perturbation method in detail. Section 4 presents two

examples to check the performance of this method, and Section 5 constructs the

corresponding PRNG and analyses the statistical properties. Finally, Section 6105

gives the conclusions of this paper.

2. Preliminaries

2.1. Dynamical Degradation of Digital Chaotic Systems

Theoretically, chaotic systems are aperiodic, and the digital chaos systems

are normally implemented by using the computers or digital circuit systems in110

various application fields. However, the computing precisions of the computer

or digital circuit are finite, and this leads to short period lengths of digital

chaotic systems. This short period phenomenon due to the limited computing

precisions are known as the finite precision effect. One example is used in this

section to visually show this short-period phenomenon.115

Consider that the generic expression of any discrete map of chaos system is

X (i+ 1) = C (X (i)) . (1)
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In the situation of an ideal state, the behaviour of any chaotic system should

be sensitive to the initial states, i.e., ergodic, aperiodic, etc. However, if a chaotic

system such as that described in Eq. (1) is realized on a digital platform or

device (e.g., computer) with finite P -bit precision, the digital output will be

limited to a collection that containing 2P elements, which can be described by

ΩP =
{

(xi) = k × 2−P |k = 0, 1, . . . ., 2P − 1
}
, (2)

where xi denotes the output values of the original chaotic system and (xi) is

the decimal part of xi. Then, the original chaotic system will degrade into

X (i+ 1) = BP (C (X (i))) , (3)

where X (i) ∈ ΩP , BP : Ω → ΩP is a quantization function, which generally

has three forms [39]: floorP (x) = bx · 2P c/2P , ceilP (x) = bx · 2P c/2P , and

roundP (x) = round(x · 2P )/2P . Generally, three situations can lead to the

dynamical degradation of digital chaos [40] as follows: first of all, it is the

discreteness because the Lebesgue measure of any subset will tend to zero in120

discrete phase space ΩP , and then most of the dynamical properties will exist

in continuous phase space will become weak and insignificant. Second, the

orbit of the generated digital sequence will fall into a periodic orbit because

there are only a finite number of isolated elements in the discrete phase space

ΩP . Third, quantization errors occur, and these errors cause the orbit of the125

generated digital system to deviate far from the original chaotic orbit because

of the sensitivity to the initial state values of the chaotic system.

2.2. Remedies and enhancements for dynamical degradation of digital chaotic

systems

Chaos systems have an ideal pseudo-random characteristic in theoretical130

analysis, but the digital performance will be degenerated to some extent when

it is implemented on devices with digital platform, i.e., there will be a short

period length for the state space, low linear complexity, degraded distribution

and strong correlation etc. In order to improve this problem to broaden the
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application of the digital chaos, five methods have been recently proposed to135

address the challenge for the dynamical degradation of digital chaotic systems,

that is, using high finite precision chaotic systems, cascading multiple chaotic

systems, switching multiple chaotic systems, using error compensation technol-

ogy and using perturbation method. For instance, the cycling problem of the

pseudo-random number can be combatted to any desired degree by using chaos140

theory [22], and it can be of cryptographic interest as well. In the work of [24],

a cascade chaotic system (CCS) is introduced to generate a large number of

new chaotic maps, in which two one-dimensional chaotic maps are used to be

the seed maps. Although the orbital cycle of the new chaotic system by using

CCS is extended, the structure of CCS is still complex compared with the orig-145

inal one-dimensional seed map and so it may be hard to control the dynamical

complexity of CCS and some other properties may be ignored to some extent.

Besides, a chaotic map based on topological conjugacy is proposed in [26],which

aims to expand the time before entering a short cycle by using a superposition of

multiple chaotic systems to minimize the degradation. However, the switching150

rule for the multiple chaotic systems and the degradation of each chaotic sys-

tem are not solved. In the approach of [27], the performance of digital chaotic

systems under the finite computing precision can be improved by using error

compensation technology, but the high dimension systems are difficult employed

by this method. In addition, perturbing the chaotic systems can also prevent the155

dynamics degradation of digital chaotic systems, in which the system variables,

parameters or both of them can be as the perturbation source. Therefore, the

properties of the digital chaotic system are usually depended on the perturba-

tion source. In [30], a variable function is used to replace the input variable of

the chaotic system to improve the dynamical degradation of the original digital160

chaotic system. In the work of [41], a double perturbation method is proposed

for reducing the dynamical degradation of the digital Baker map, in which the

both state variables and system parameters are perturbed by the digital logistic

map.
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3. Algorithm Description165

Based on the above discussion, to obtain good properties for a digital chaotic

system and enhance the security application, a novel method which is based on

perturbation feedback technology and UKF theory is designed to counteract

the dynamical degradation of digital chaotic systems. Specifically, the UKF

algorithm is used to compensate for the quantization error resulting from the170

finite computing precision, and the perturbation technology is used to adjust

and control the dynamic performance to make the chaotic system more resistant

to attacks such as phase space reconstruction technology. The corresponding

block diagram is shown in Fig.1, which mainly contains two parts: the UKF

and perturbation. The UKF includes two major steps: initialization and state175

estimation, where the initial value and parameters are formed through the ini-

tialization stage, and then the new state estimating value x̂k is obtained through

the three steps of calculating sigma points, time update, and measurement up-

date. Then the perturbation method is used to aid generating more random

final chaotic system output value zk+1. The main notations in this paper are180

listed in Table 1.

3.1. UKF Algorithm

The UKF is a good recursive algorithm for estimating internal state of the

nonlinear dynamical system through noisy measurements. Specifically, if the

dynamical degradation of a digital chaotic system is considered to be caused by185

noise, which indicates that the finite precision effect can be regarded as noise,

then the UKF can be used to evaluate the quantization error resulting from

finite computing precision.

A nonlinear discrete system with the state equation and observation equation

can be expressed by

xk = f (xk−1) + wk, (4)

and

yk = h (xk) + vk, (5)
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Chaotic system

UKF 

Initialization

S
tate e

stim
atio

n

  Step 1: Calculate sigma points

  Step 2: Time update

  Step 3: Measurement update

Perturbation

Chaotic map

Figure 1: The diagram of the proposed scheme, where x is the unknown state-vector, y is

the known observation-vector, and w and v are the assumed independent variables, and x̂k

denotes the corrected state estimate, zk is the output of the improved system, and η is the

controlling parameter.

where k is time step, x is the unknown state-vector, y is the known observation-

vector, and w and v are the assumed independent variables, i.e., zero-mean white190

Gaussian and observation noise vectors, and the corresponding covariances are

denoted by Qk and Rk, respectively.

In (4) and (5), the nonlinear functions f (·) and h (·) capture the state-space

and the measurement types, respectively, and in this paper, the function f is

set as a digital chaotic system generated under finite P -bit precision and the h195

function is set as the same digital chaotic system generated under finite P ′-bit

precision (P ′ > P ).
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Table 1: The main notations description of this paper.

Notation Description

χik−1 Sigma points

χik|k−1 Propagated state sigma points

γik|k−1 Propagated output sigma points

x̂k̄ Predicted state estimate

ŷk̄ Predicted output

P−x,k Predicted covariance

Py,k Output covariance

Pxy,k Cross covariance

x̂k Corrected state estimate

Px,k Corrected covariance

K Kalman gain

3.1.1. Initialization

First, the initial conditions (e.g., state estimate value x̂0 and covariance P0

) of the filter can be calculated by

x̂0 = E [x0] , (6)

and

P0 = E
[
(x0 − x̂0) (x0 − x̂0)

T
]
. (7)

These initial conditions of x̂0 and P0 are used as the inputs of the filter.

3.1.2. State estimation200

The UKF is a UT-based nonlinear KF algorithm, for which the Jacobi matrix

does not need to be calculated; therefore, this method can resolve nonlinear

functions.

Step 1: Calculate the sigma points. Based on the UT theory, the sigma

10



points χik−1 is defined by205

χik−1 =


x̂k−1, i = 0

x̂k−1 +
(√

(n+ σ)Px,k−1

)
i
, i ∈ [1, n]

x̂k−1 −
(√

(n+ σ)Px,k−1

)
i
, i ∈ [n+ 1, 2n]

(8)

where x̂k is corrected state estimate, n is the length of the augmented, σ is the

scaling factor of UT which is set to be σ = α2(n+λ)−n, Px,k−1 is the covariance

of xk−1, (
√

(n+ σ)Px,k−1)i denotes the ith column of
√

(n+ σ)Px,k−1, and α

is a positive scaling parameter which could be made as small as possible to

minimize the effects of higher order (1e−4 < α ≤ 1), λ is a scaling parameter

which is usually set to be 0 or 3−n. Moreover, the corresponding mean weights

W
(m)
i and variance weights W

(c)
i of the χik−1 can be calculated by

W
(m)
0 =

σ

n+ σ
, i = 0, (9)

W
(c)
0 =

σ

n+ σ
+ (1− α2 + β), i = 0, (10)

and

W
(m)
i = W

(c)
i =

1

2 (n+ σ)
, i ∈ [1, 2n]. (11)

where β is a parameter which minimizes the effects from high order terms, and

in this work β is set to be 2.

Step 2: Time update. The (2n + 1) sigma points are propagated through

the state-output equations of (1) and (2), which are given by

χik|k−1 = f(χik−1), (12)

and

γik|k−1 = h(χik|k−1). (13)

Then, the state-output means are calculated by

x̂k̄ =

2n∑
i=0

W
(m)
i χik|k−1, (14)
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and

ŷk̄ =

2n∑
i=0

W
(m)
i γik|k−1. (15)

Moreover, the predicted covariance are calculated by

P−x,k =

2n∑
i=0

W
(c)
i [χik|k−1 − x̂k̄][χik|k−1 − x̂k̄]T +Qk. (16)

Step 3: Measurement update. The output covariance and cross covariance

are calculated by

Py,k =

2n∑
i=0

W
(c)
i [γik|k−1 − ŷk̄][γik|k−1 − ŷk̄]T +Rk, (17)

and

Pxy,k =

2n∑
i=0

W
(c)
i [χik|k−1 − x̂k̄][γik|k−1 − ŷk̄]T . (18)

Thus, the corrected state estimate and the corresponding covariance would210

be given by

x̂k = x̂k̄ +K(yk − ŷk̄), (19)

and

Px,k = P−x,k −KPy,kK
T . (20)

where K is the Kalman gain, which is given by

K = Pxy,kP
−1
y,k . (21)

3.2. Perturbation Algorithm

Because of the above-mentioned advantages of the UKF algorithm in terms

of prediction, such as the close approximation between the predicted data and

the ideal data in the mathematical sense, almost all the characteristics of the

improved system could be similar as that of the original chaotic system. Besides,

considering the effect of finite precision and to further enhance the applicability

12



in cryptography, the predicted chaotic system in the terms of UKF is then

feedback and disturbed. The specific implementation is described by

zk+1 = mod (BP ′(f (zk + η ∗ x̂k)), 1) , (22)

where mod(A,B) returns the modulus after division of A by B, and BP ′ :

Ω → ΩP ′ is a universal function of a quantization process, which is defined

by BP ′(.) : floorP ′(.), and the output x̂k of the predicted chaotic system is215

utilized to disturb the input of the original chaotic system, zk is the output of

the improved system, η is the controlling parameter and η = eλ, and λ is the

exponential factor.

4. Scenarios

In this section, experiments are conducted on two examples to confirm the220

performance of the proposed method. In other words, the proposed method is

applied to the 1-D Chebyshev map and the 3-D hyperchaotic Henon map to test

its effectiveness.

4.1. Example 1: 1-D Chebyshev Chaotic Map

Consider the Chebyshev map [38], which is given by

xi+1 = cos (β · arccosxi) , xi ∈ [−1, 1] , (23)

where when the parameter β ≥ 2 it would be chaotic in an ideal situation.225

Moreover, if the Chebyshev map is realized with P -bit finite precision, the orbit

of its state space will be confined to the discrete set of the Eq. (2).

As a result, the original chaotic state would degrade into the digital system

of

xi+1 = BP (cos (β · arccosxi)) , (24)

where BP : Ω → ΩP is a universal function of a quantization process, which is

defined by BP (·) = floorP (·) in this approach.
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According to the UKF theory, the specific state equation and observation

equation can be calculated by

xk = f(xk−1) = BP (cos(β · arccosxi−1)), P = 8, (25)

and

yk = h (xk) = BP ′ (xk) , P ′ = 16. (26)

Then, the output x̂k of the predicted system is utilized to disturb the input

of the original chaotic system. Therefore, the improved digital system can be

given by

zk+1 = mod(BP ′(cos(6 ∗ arccos(zk + η ∗ x̂k))), 1) ∗ 2− 1, P ′ = 16. (27)

4.1.1. Parameter Selection230

As discussed above, the dynamical behaviour of the improved digital Cheby-

shev map mainly depends on the exponential factor λ of the controlling param-

eter η. Therefore, the impact of exponential factor λ on the dynamics of the

Chebyshev map is first discussed in accordance with the approximate entropy

to check the degree of complexity of a dynamical system. As we all known,235

approximate entropy was firstly proposed by Pincus [42] to measure the com-

plexity of time series and the randomness of binary sequence. The greater the

approximate entropy, the higher the complexity of the system. The test process

of approximate entropy can be described in the following steps.

Step 1. Taken a 1D discrete-time sequence with a length of N as an example,240

which is defined as ts(i) = 1, ...N , then rebuild it into an m-dimensional vector

Xi = ts(i), ts(i+ 1), . . . ts(i+m− 1), where i = 1, 2, ..., N −m+ 1.

Step 2. The distance between two vectors Xi and Xj(j = 1, 2, . . . N −m +

1, j 6= i) is computed, and the maximum absolute value of the corresponding

elements between any two different vectors can be described by

dij = max|ts(i+ j)− ts(j + k)|, k = 0, 1, ...,m− 1. (28)

Step 3. A threshold value γtv ∈ (0.2, 0.3) is given, and then the number

of d[X(i), X(j)] < γtv is counted and denoted as ∂n. Moreover, the resulting

14



number Cmi (γtv) can be written by

Cmi (γtv) =
1

N −m
∂n, k = 0, 1, ...,m− 1. (29)

Step 4. Transform Cmi (γtv) into logarithmic form and the average value can

be obtained by

φm(γtv) =
1

N −m+ 1

N−m+1∑
i=1

lnCmi (γtv), k = 0, 1, ...,m− 1. (30)

Step 5. m is added by one, and repeat the above steps, the corresponding

Cmi (γtv) and φm(γ) are obtained again.

Step 6. The approximate entropy can be computed by employing φm+1(γtv)

and φm(γtv):

ApEn =
∑
N→∞

[φm(γtv)− φm+1(γtv)]. (31)

The experimental result is shown in Fig. 2, which describes the approximate245

entropy trend with different λ values. Fig. 2 shows that the approximate entropy

of the improved digital map becomes larger sharply as λ ∈ (−10,−1), and

it leads to stable when λ exceeds a critical value (λ = 4). As mentioned in

the approach of [38], the approximate entropy is closely related to the space

distribution of system; therefore, it will achieve the maximal value when the250

distribution of the assumed random sequence is uniform. Based on this theory,

we analyse the distribution error by comparing the value of the approximate

entropy of the system. As shown in Fig. 2, the distribution error becomes

increasingly small with increases in λ, and the system will enter into a relatively

stochastic situation as λ exceeds the critical value (λ = 4).255

Based on this analysis of the approximate entropy, the exponential factor

λ of the controlling parameter η is selected from the interval [0, 8], and exper-

iments are performed to test the evolution of the controlling system in phase

space. The experimental results are shown in Fig. 3, and they indicate that

the regular state pattern will be confused and then finally distributed uniformly260

with an increase of λ. Specifically, when the exponential factor λ is equal to 5,

the phase space distribution gradually becomes uniform and resembles random

noise, which shows that the system is becoming random.
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Without a loss of generality, the frequency distribution (FD) is further used

to test the effect of the range of the exponential factor λ on the system. As265

shown in Fig. 4, the FD simultaneously changes as λ changes. Specifically, the

FD becomes increasingly uniform as λ grows and incline to stabilize when λ

exceeds the threshold λ = 5.
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Figure 3: Chaotic attractors of the improved Chebyshev map with different λ values. (a). λ

= 1. (b). λ = 2. (c). λ = 3. (d). λ = 4. (e). λ = 5. (f). λ = 6. (g). λ = 7. (h). λ = 8.
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Figure 4: Frequency distributions of the improved Chebyshev map with different λ values.

(a). λ = 1. (b). λ = 2. (c). λ = 3. (d). λ = 4. (e). λ = 5. (f). λ = 6. (g). λ = 7. (h). λ =

8.

Lyapunov exponent is an important qualitative and quantitative characteri-

zation to evaluate the convergence and divergence degree of two adjacent phase270

space tracks of the dynamical system to some extent.[43, 44]. Generally, when a

system has a positive Lyapunov exponent, it demonstrates that two orbits will

exponentially increase even if there is small difference for initial values, and it

also shows the system is chaotic. In this paper, the largest Lyapunov exponents

are calculated by the Wolf method with the change of system parameters λ, and275

Fig. 5 shows the experimental data. From Fig. 5, it can be seen the improved

Chebyshev system is chaotic under the certain parameters.

4.1.2. Dynamical Behaviour

The complexity of a time series can reflect the dynamical behaviour, and it

can be verified through approximate entropy which can report the randomness280

of a binary sequence. Here, it is also used to test the dynamical behaviour

of the original Chebyshev and the improved systems. As shown in Fig. 6, the

approximate entropy of the improved Chebyshev system is larger than that of

the original Chebyshev system, which illustrates that this method can effectively

improve the dynamical behaviour of the original system.285
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Figure 5: Lyapunov exponents of the improved Chebyshev map with different λ.

Generally, the chaotic attractor has a specific geometric shape for each

chaotic system, and the complexity degree can reflect the confusion to some

extent. The chaotic attractor of Chebyshev map is likely a trigonometric func-

tion, and its state space is in the range of [-1, 1] (see Fig. 7(a)). After the process

of prediction and perturbation, the system orbit of the map constantly diffuses290

and folds and finally becomes irregular and breaks the correlation between two

adjacent states (see Fig. 7(b)). This correlation is uniform, which means that

it is likely a noise signal. Accordingly, reconstructing the mathematic structure

of the original map is impossible.

The auto-correlation function describes the degree of dependence between295

two state values of any one sequence, and the cross-correlation function describes

the degree of dependence between two state values of different sequences. Ide-

ally, the auto correlation function of any random series should be a delta func-

tion, and the cross-correlation function should be zero. As shown in Fig. 8, the

correlation characteristics of the improved systems are good.300

The FD of a state value of any system can reflect the arbitrariness degree.

From the Fig. 9(a), it can be seen that the FD function of the original Chebyshev

system is relatively uniform but emerge a ‘U’-type invariant density function

because of the frequency at -1 and 1. However, Fig. 9(b) shows that the dete-
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Figure 7: Chaotic attractors of the (a) digital Chebyshev map and (b) improved Chebyshev

map.

rioration effect is weakened and the FD function is smoothed and homogenized305

by using the aforementioned improved method. Therefore, the frequency attack

can be effectively overcome by means of this proposed UKF-based perturbation

method.

Recurrence plot (RP) analysis is also an important trick to visualize the

phase space recursion [45]. As for a time series {x1, x2, ..., xn}, the reconstructed

space vector is Xi = (xi, xi+τ , ..., xi+(m−1)τ ), then the RP of a trajectory xiεR
d
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Figure 8: Auto-correlation (a) and cross-correlation (b) of the sequence of a digital improved

Chebyshev map.
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Figure 9: Frequency distributions of the (a) original digital Chebyshev map and (b) improved

Chebyshev system.

can be given by the matrix

Ri,j(ε) = θ(ε− ‖ Xi −Xj ‖), i, j = 1, ..., N, (32)

where N is the number, ε is a threshold distance, ‖ · ‖ is a norm, and θ(·) is

Heaviside function, in that, θ(·) = 0, if x < 0, and θ(·) = 1 otherwise. A RP can310

be obtained by drawing Ri,j(·) on a two-dimensional i−j graph, and the specific

process is as follows: when the state Xi is close to Xj , i.e. ‖ Xi−Xj ‖≤ ε, then

Ri,j(·) = 1, and black dots are visualized in RP flat; otherwise, Ri,j(·) = 0 and
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white dots are visualized in RP flat. Therefore, RP can be viewed as a visual

inspection of the high-dimensional phase space trajectory, in that, RP could315

give a hint for the time evolution of a trajectory.

The RP of stationary signal should be evenly distributed, in that, if some

straight lines exist to be parallel to the main diagonal line, it means that the

signal is not completely stable. For example, white noise is completely station-

ary, so its coordinates of the time series are full of RP distribution. And the320

RP distributions of the original Chebyshev system and improved Chebyshev

system are shown in Fig. 10(a) and Fig. 10(b). The results show that compared

with Fig. 10(a), Fig. 10(b) does not obviously occur short lines to be parallel

to the main diagonal. Therefore, the PR result illustrates that the improved

Chebyshev system is as random as white noise.325
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Figure 10: (a)Recurrence plot (RP) of original Chebyshev system.(b)Recurrence plot (RP) of

improved Chebyshev system.

4.1.3. Performance Comparison of Different Remedies

To better illustrate the superiority of the proposed method, the simulation

results (such as attractor distribution, FD, and approximate entropy) obtained

through the proposed method in this paper are compared with those of three

other methods, which are used to counteract the dynamical degradation of a330

digital Chebyshev map. Specifically, the approach in [28] proposed a novel per-

turbation method that is on the basis of tent and Chebyshev map; the approach
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in [30] used the variable function to be the input data of the Chebyshev map,

and the original system structure remained unchanged; and the approach in [10]

constructed a new multi-delayed Chebyshev map.335

As shown in Fig. 11, although the attractor distributions of the four meth-

ods are all more complicated than the original parabolic shape, which makes

the generated sequences random and hard for an intruder to predict, the attrac-

tor distribution of this method is more uniform than those of the other three

methods. Therefore, the attractor is likely a noise pattern, which means that340

the correlation between adjacent states is weak and can obtain better random

sequences for direct application in chaos-based digital information security.

The FDs of the four modified digital Chebyshev maps are shown in Fig. 12.

To better show the results, the state space of [-1, 1] is divided into 200 equal

subintervals. The results illustrate the improved design in this paper has a better345

improvement effect because the whole FD is almost ergodic and homogeneous.

However, the FDs of the other three methods still appear to be ‘U’-type invariant

density functions, which may be uniform except at the two endpoints, -1 and 1.

Moreover, as shown in Fig. 13, the approximate entropy of the proposed350

system in this paper is better than those of other three methods. Therefore,

compared with the other three methods, this improved method can make the

digital chaotic system more complicated to some extent, which is better for the

digital application of the Chebyshev map.

4.2. Example 2: Hyperchaotic Henon Map355

Consider that the generalized Henon map [39] is
xk+1 = a− y2

k − b× zk

yk+1 = xk

zk+1 = yk

(33)

where a and b are the system parameters, and when a=1.76 and b=0.1, the

system is a hyperchaotic system. If this hyperchaotic Henon system is realized
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Figure 11: Attractors of different modified digital Chebyshev maps. (a). Ref. [28]. (b). Ref.

[30]. (c). Ref. [10]. (d). Improved system.

with a finite precision of P bits, then the state space of system will be degraded

into the situation of 
xk+1 = BP

(
a− y2

k − b× zk
)

yk+1 = BP (xk)

zk+1 = BP (yk).

(34)

Similarly, the improved digital system will be given by



xk+1 = BP (a− (4 · mod(BP (ȳk), 1)− 2)2

−b× (4 · mod(BP (z̄k), 1)− 2))

yk+1 = 4 ·mod(BP (x̄k) , 1)− 2

zk+1 = 4 ·mod(BP (ȳk) , 1)− 2

(35)

where x̄ = xk + η · x̂k, ȳ = yk + η · ŷk and z̄ = zk + η · ẑk (x̂k, ŷk, and ẑk are

the outputs of the predicted chaotic system), and BP : Ω → ΩP is a common

quantization function, such as BP (·) = floorP (·), in this approach.
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Figure 12: Frequency distributions of different modified digital Chebyshev maps. (a). Ref.

[28]. (b). Ref. [30]. (c). Ref. [10]. (d). Improved system.

Figure 13: Approximate entropies of different modified digital Chebyshev maps.
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The experimental phase diagrams are shown in Fig. 14. Fig. 14(a) shows360

the original hyperchaotic Henon map and 14(b) displays the chaotic attractor

structure of digital hyperchaotic Henon map under the precision of 6. Figure

14(a) and (b) are same as Ref. [39], while Fig. 14(c) is the chaotic attractor

structure of chaotic system by using this improved algorithm under the precision

of 6, in which the attractor distribution is more complex to be likely a honey-365

comb. It is indicated that the proposed improved algorithm has more excellent

performance than Ref. [39].
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Figure 14: Attractors of three comparative systems with randomly chosen initial values. (a)

Hyperchaotic Henon map. (b) Digital generalized hyperchaotic Henon map with computer

precision P=6. (c) Improved hyperchaotic Henon map with computer precision P=6.

Moreover, experimental result about the approximate entropy is shown in

Fig. 15, which demonstrates the approximate entropy of the improved digital

system gradually becomes closer to the value of 2.63 even though under a lower370

precision, and moreover it is still much larger than that of the original Henon

system.

Frequency distributions (FD) of the original Henon map and the improved

Henon map under a low precision are shown in Fig. 16(a) and (b). In this test,

the interval [−2, 2] of the x-axis is divided into 200 equal sub-intervals. The375

results show that the FD of the original hyperchaotic Henon map is not uniform,

whereas the FD obtained using UKF-based perturbation feedback technology is

very uniform.

In addition, the NIST test suite, i.e., it is an industry standard of random

test through 15 tests, is used to verify the performance of the designed binary380
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Figure 16: Frequency distributions of the digital generalized: (a) Henon map; (b) Improved

Henon map.

sequence. Specifically, these 15 tests focus on evaluating the same sequence with

n bits to obtain a p-value. For the specific experiment, the binary sequence is

with a length of 107 bits. The significance level α is set at 0.01, which is com-

monly used in the NIST test. The result demonstrates that the binary sequence

can pass the statistical test if p-value ≥ α; otherwise, it fails. Table 2 summa-385

rizes the experimental result and it illustrates the binary sequence generated by

the improved Henon map can pass all the standard, which means the binary
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sequence is randomness to some extent.

5. Pseudo-Random Number Generator (PRNG) and Performance

Analysis390

5.1. Proposed PRNG

The PRNG is a crucial element of a variety of digital applications, such

as cryptology, spread-spectrum communication, computer games, and artificial

intelligence. Taking the UKF-based improved digital Chebyshev map as an

example, a PRNG is briefly constructed by

b (zi) =

0, if zi ∈ (−0.5, 0.5)

1, if zi ∈ [0.5, 1) or zi ∈ (−1, −0.5]

(36)

where zi ∈ [−1, 1] is the state value of the improved Chebyshev map in (27).

5.2. Linear Complexity

Linear complexity is another index and it also reflects the complexity of a

sequence to a large extent. Ideally, if the length of a binary sequence is n, its395

expected linear complexity would be n/2. The linear complexity of this PRNG

in (36) is shown in Fig. 17, which illustrates that the result approximately equal

to the straight line of n/2. Therefore, the sequence from the proposed PRNG

has good linear complexity.

5.3. Statistical Test400

The statistical test is another basic criterion with which to measure the

performance of a PRNG, and an ideal PRNG should pass all tests in the corre-

sponding standard test suites. As for the proposed PRNG, the NIST SP 800-22

test suit [46] and TestU01 [47] software library are employed to test the statisti-

cal performance for the PRNG by using the UKF-based perturbation feedback405

technology.

First, the SP800-22 testing experiment is performed, and Table 3 summarizes

the results. Specifically, there are 103 different binary sequences to be generated
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Table 2: Uniformity of the p-value under each test in the NIST suite (improved hyperchaotic

Henon map)

Statistical tests p-value Conclusion

Frequency test 0.574986 pass

Block Frequency test 0.395625 pass

Cusum test mode 1 (forward) 0.798332 pass

Cusum test mode 2 (reverse) 0.629204 pass

Rank test 0.462431 pass

Long runs of ones test 0.379543 pass

Runs test 0.645132 pass

FFT test 0.785632 pass

Non-overlapping Templates test 0.989489 pass

Overlapping Template test 0.682447 pass

Universal test 0.486281 pass

Approximate entropy 0.347256 pass

Random Excursions 0.769701 pass

Random Excursions Variant 0.774092 pass

Linear Complexity (M=500) 0.520404 pass

Serial (m=16) 0.379513 pass
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Figure 17: Linear complexity of the generated binary sequence.

through altering initial value of the improved system, where the length of each

sequence is supposed to be 107 bits. From Table 3, it can be seen that the410

binary sequence can pass all the standard of test suite, so it has good statistical

properties.

Furthermore, TestU01, which offers a collection of utilities to test random

number generators, is used to evaluate the PRNG. This test provides several

batteries of tests, and each battery consists of multiple tests and focuses on415

different performance aspects. Here, only the Small-Crush battery and the

Crush battery that included in the TestU01 test suite are utilized to examine

the randomness and security of this PRNG. Specifically, each sequence is set to

a length of 229 bits (4 GB of data) or 235 bits (256 GB of data). Similarly, each

statistical test generates a p-value, which is used to judge whether the PRNG420

passes the test or not, i.e., if it is in the range of [0.001, 0.999], the PRNG can

pass the test. Table 4 lists the failure counts of tests in TestU01 for the proposed

PRNG and other several schemes, including the Chebyshev map, the schemes

in [9], [38], [48], and [49], the scheme of Li et al. [8] and the rand function.

From Table 4, it can be seen that our PRNG has a relatively good statistical425

performance.
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Table 3: Uniformity of the p-value under each test in the NIST suite (improved Chebyshev

map).

Statistical tests p-value Conclusion

Frequency test 0.629806 pass

Block Frequency test 0.803342 pass

Cusum test mode 1 (forward) 0.643918 pass

Cusum test mode 2 (reverse) 0.613746 pass

Rank test 0.681142 pass

Long runs of ones test 0.362045 pass

Runs test 0.341994 pass

FFT test 0.963403 pass

Non-overlapping Templates test 0.990697 pass

Overlapping Template test 0.733140 pass

Universal test 0.078714 pass

Approximate entropy 0.608828 pass

Random Excursions 0.908554 pass

Random Excursions Variant 0.951556 pass

Linear Complexity (M=500) 0.295124 pass

Serial (m=16) 0.124101 pass
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Table 4: Statistical test comparison of the proposed PRNG with other PRNGs (failure counts

are given).

System Small-Crush (15) Crush (144)

Our PRNG 2 23

Chebyshev map 15 139

Scheme in Ref. [38] 2 37

VPCMDP [48] 3 15

Scheme in Ref. [49] 2 12

Scheme in Ref. [9] 3 19

Scheme of Li et al. [8] 15 144

Rand function 7 63

5.4. Information Entropy Analysis

Information entropy [50] reflects the randomness of stochastic data from the

perspective of information probability. Suppose the information source to be

m; then, its information entropy would be defined by

H (m) =

2L−1∑
i=0

p (mi) log2

1

p (mi)
, (37)

where L is the information length, p(m) represents the probability of some

symbol m. Ideally, we can get a maximum information entropy 8 if L = 8 for a

random sequence.430

In terms of (37), each computing results of different sequence generated by

the same system only with different initial values are shown in Table 5. The

data shows that each entropy is very close to 8, so it indicates that this PRNG

is independent of the initial value and the proposed system has strong ability

to resist information leakage.435

5.5. Key Space and Sensitivity Analysis

For the application of the PRNG in information security, the key space and

sensitivity are two significant targets to be sure the system safe. First, the
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Table 5: Information entropy results for different initial values.

m0 0.38 0.78 -0.59

H(m) 7.9813 7.9813 7.9813

parameters β and λ and the initial value x0 of the system can be determined as

keys of this PRNG. Specifically, the parameter β is in the range of [2,+∞), λ440

is in the range of [7,+∞) and the initial value x0 is in the range of (−1, 1). If

the precision is 10−15 (precisely 252 for 64-bit double float) [51], then the size of

key space would be approximately 2× 252 × 252 × 252 = 2157. In general, such

a large key space can withstand attacks.

Further, key sensitivity is tested through experiments. For a binary se-445

quence, a change rate of 50% will occur if there is a tiny difference for the

parameters or initial value in the ideal situation. In the simulation experiment,

the initial value and system parameters are slightly changed with 10−15 preci-

sion, and the change rate H is calculated between the original binary sequence

and the new binary sequence. Specifically, the length of each binary sequence450

is set to 1000000 bits. The experimental results are summarized in Table 6.

The change rate in different situations is approximately 50%, which means the

system is extreme sensitive to the initial value x0 and parameters β and λ.

Table 6: Results of the test for key sensitivity.

Change for keys H

x0 = 0.3891 + 10−15, β = 6, λ = 7 50.55%

x0 = 0.3891, β = 6 + 10−15, λ = 7 50.24%

x0 = 0.3891, β = 6, λ = 7 + 10−15 49.06%
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6. Conclusion

By combining the UKF and a perturbation algorithm, a novel method has455

been proposed in this work to resolve the dynamical degradation of chaotic

system. It can prevent the dynamical degradations of digital chaotic systems.

Results show that the proposed method can not only enhance the complexity of

nonlinear dynamical behaviours of a digital chaotic system but can also make

the improved digital chaotic system possess better ergodicity, better statistical460

characteristics, and a phase space with no pattern. A high credibility of ran-

domness PRNG has been constructed by using the improved chaotic system

and the testing results show the good performance outputs. In addition, the

performance comparisons with other synchronization schemes further reveal the

superiority of this method. All of these results demonstrate that the proposed465

method can be used in potential applications such as cryptography due to its

cryptographic properties.
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