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Summary Heterologous gene expression draws resources from host cells. These resources include

vital components to sustain growth and replication, and the resulting cellular burden is a widely recog-

nised bottleneck in the design of robust circuits. In this tutorial we discuss the use of computational

models that integrate gene circuits and the physiology of host cells. Through various use cases, we

illustrate the power of host-circuit models to predict the impact of design parameters on both burden

and circuit functionality. Our approach relies on a new generation of computational models for mi-

crobial growth that can flexibly accommodate resource bottlenecks encountered in gene circuit design.

Adoption of this modelling paradigm can facilitate fast and robust design cycles in synthetic biology.

Keywords Cellular burden; growth models; whole-cell modelling; gene circuit design; synthetic

biology; resource allocation

1 Introduction

The grand goal of Synthetic Biology is to engineer living systems with novel functions. The approach

relies on the combination of biological knowledge with design strategies from engineering sciences

[1, 2, 3, 4]. Engineering principles, such as modularity and standardisation, have led to gene circuits

with a wide range of functions such as cellular oscillators [5, 6], memory devices [7] and biosensors

[8, 9]. As synthetic biology matures into an engineering discipline of its own, mathematical modelling

is playing an increasingly important role in the design of biological circuitry [10]. Moreover, model-

based design offers opportunities for other fields such as computer-aided design [11], control theory

[12] and machine learning [13] to contribute with new methods and protocols for gene circuit design.

The success of the celebrated “design-build-test-learn” cycle [14] relies on the availability of good

quality models for circuit function. A major drawback of current modelling frameworks, however, is
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Host-circuit modelling

the implicit assumption that biological circuits function in isolation from their host. This simplification

limits the predictive power of circuit models and slows down the iterations between system design,

testing and characterisation. In reality, gene circuits interact with their host in many ways, including

the consumption of molecular resources such as amino acids, nucleotides or energy, as well as using

major components of the genetic machinery such as polymerases and ribosomes.

Competition for a limited pool of host resources produces a two-way interplay between synthetic

circuits and the native physiology of the host [15]. This interplay is commonly known as burden and

perturbs the homeostatic balance of the host, resulting in slowed growth, reduced biosynthesis and

the induction of stress responses [16]. Since such effects can impact circuit behaviour, they create

feedback effects that can potentially break down circuit function [17, 18, 19]. As a result, individual

modelling of circuit parts and their connectivity is not sufficient to predict circuit function accurately.

In a seminal study on host-circuit interactions, Tan and colleagues [20] studied a simple circuit

consisting of T7 RNA polymerase that activates its own expression in Escherichia coli. Contrary to

what standard mathematical models would predict, the circuit displayed bistable dynamics. The au-

thors show that synthesis of the polymerase produced an indirect, growth-mediated, positive feedback

loop, which when included in their model was able to reproduce the observed bistability. This study

was the first empirical demonstration that growth defects can drasticlly change circuit function. A

number of subsequent works have focused on the sources and impact of burden on gene circuits. For

example, Ceroni et al showed that genes with weaker ribosomal binding strength are less taxing on the

host resources [21]. Other works have focused on strategies to mitigate burden. An and Chin built a

gene expression system that combines orthogonal transcription by T7 RNA polymerase and translation

by orthogonal ribosomes [22]. The system reported in [23] allows to allocate resources among com-

peting genes, while [24] built libraries of promoters that tune expression of burdensome proteins and

decrease cellular stress. The work by Shopera et al showed that negative feedback control can reduce

the cross-talk between gene circuits [25]. Another strategy for reducing burden was proposed in [26]

using an orthogonal ribosome for translation of heterologous genes. A particularly attractive strategy

is to exploit burden to improve functionality. For example, Rugbjerg and colleagues increased metabo-

lite production by coupling pathway expression to that of essential endogenous genes [27], while [28]

employed stress-response promoters to build a feedback system with increased protein yield.
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As a result of the increasing interest in cellular burden and host-circuit interactions, the modelling

community has devoted substantial attention to improving models for gene circuits and their interaction

with a host. A key challenge is to find a suitable level of model complexity with enough detail to

describe tunable circuit parts but without excessive granularity that makes models impractical. At one

end of the complexity spectrum, a number of works have proposed simple resource allocation models

for the interplay between circuit and host genes [29, 30, 31]. Using different modelling approaches

and assumptions, these models generally predict a linear relation between expression of native and

heterologous genes. Increases in the expression of one gene causes a linear drop in the expression

of another gene, as a result of a limited abundance of ribosomes for translation. At the other end

of the spectrum, the whole-cell model of Mycoplasma genitalium [32] was an ambitious attempt to

describe all layers of cellular organization under a single computational model. A subsequent work

demonstrated the use of the whole-cell model in conjunction with gene circuits [33]. Yet to date such

whole-cell models have not been built for bacterial hosts commonly employed in synthetic biology,

and their high complexity prevents their systematic use in circuit design and optimization.

A number of approaches have sought to find a middle ground between model complexity and

tractability. Inspired by the widely established “bacterial growth laws” [34, 19], Weiße and colleagues

built a mechanistic growth model for Escherichia coli [35]. The model uses a coarse-grained partition

of the proteome to describe how cells allocate their resources across various gene expression tasks.

It accurately predicts growth rate from the interplay between metabolism and gene expression, and

can be extended with a wide range of genetic circuits. Applications of the Weiße model include the

design of orthogonal ribosomes [26], the addition of extra layers of regulation [36] and its extension

to single-cell growth dynamics [37]. Most recently, Nikolados et al employed the model to study the

impact of growth defects in various exemplar circuits [38].

In this tutorial we describe how mechanistic growth models can be employed to simulate gene

circuits together with the host physiology (Fig. 1). In Section 2 we first revisit the bacterial growth

laws and explain the core principles of the mechanistic growth model. In Section 3 we present how

to extend the growth model with heterologous genes. We illustrate the methodology with a number of

transcriptional logic gates in Section 4. We conclude the chapter with a perspective for future research

in the field.
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Figure 1: Host-circuit modelling. Integrated host-circuit models provide a quantitative basis to study

the impact of design parameters on circuit function and genetic burden on their host.

2 Coarse-grained models for bacterial growth

We begin by describing the bacterial growth laws that form the basis for most current models for

growth. Our focus is on coarse-grained models that describe cell physiology using lumped variables

representing aggregates of molecular species. We deliberately exclude whole-cell models [32] and

genome-scale models [39], both of which have been discussed extensively in the literature [40, 41, 42]

and so far have found relatively limited applications in gene circuit design.

2.1 Bacterial growth laws

Bacterial growth has been an active topic of study for many decades. The celebrated work of Nobel

laureate Jacques Monod provided a key quantitative description for growth [43], based on the obser-
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vation that bacteria in batch cultures exhibit several phases of growth:

• Lag phase: cells do not immediately start to grow after nutrient induction, as they first must

adapt to the new environment; RNA and proteins are produced as the cell prepares for division.

• Exponential phase: cells duplicate at a constant rate, so that their number grows exponentially

as N(t) = N02
t/τ with τ being the average doubling time. Equivalently, the number of cells

can be expressed as N(t) = N0e
λt, where λ = log 2/τ is the growth rate.

• Stationary phase: cell replication stops because an essential nutrient has been depleted from

the batch. The number of cells remains constant during this phase.

• Death phase: cells begin to die, resulting in a decreasing cell population.

The vast majority of studies on bacterial growth focus on the exponential phase, and to date this

remains the best characterised growth phase. A widely empirical model for exponential growth is

given by Monod’s law, which relates the instantaneous growth rate and the substrate concentration:

λ =
λmaxs

s+Ks
, (1)

where s is the growth substrate, λmax is the maximum growth rate possible in the substrate and Ks is

the substrate concentration for which growth rate is half maximal. The relationship in Eq. (1) is known

as Monod’s law and describes the hyperbolic dependence of the growth rate λ on the concentration of

a growth-limiting nutrient s in the medium.

Measurements of bacterial cells growing at different rates [44, 45] have revealed a central role

of ribosome synthesis in maintaining exponential growth [46, 47]. In particular, the ribosomal mass

fraction, φR, has been shown to increase linearly with growth rate [48, 44]. This is the second growth

law, described mathematically as:

φR = φminR +
λ

κt
, (2)

where φmin
R is an offset term and κt is a phenomenological parameter related to protein synthesis.

The third growth law relates to growth inhibition. It has been shown that sublethal antibiotic doses

targeting ribosomal activity produce a negative linear relation between growth rate and the ribosomal

mass fraction [19]. Mathematically, this growth law can be described by:

φR = φmax
R − λ

κn
, (3)
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where the parameter κn describes the nutrient capacity of the growth medium and φmax
R is the maximum

allocation to ribosomal synthesis in the limit of complete translational inhibition.

Taken together, Equations (1)–(3) provide a remarkably simple description of exponential growth.

Yet a common caveat of such descriptions is their lack of explicit links between phenomenological

parameters and the molecular processes that drive growth. Some works have indeed found quantitative

descriptions of model parameters in terms of intracellular properties [34, 19]. However, another strand

of research has moved away from phenomenological models toward mechanistic descriptions of cell

physiology [49, 50]. Notably, earlier work by Molenaar and colleagues [51] proposed a model that

integrates metabolism and protein biosynthesis into a resource allocation model. Key assumption in

that approach is that microbes adjust their proteome composition to maximize growth. This leads to

growth predictions that rely on an optimality principle, without the need of a mechanistic description

of how cellular constituents contribute to growth and replication.

2.2 A mechanistic model of bacterial growth

The mechanistic model in [35] describes bacterial growth based on first principles. The model re-

produces the bacterial growth laws and, at the same time, contains detailed mechanisms for nutrient

metabolism, transcription and translation. It employs a partition of the proteome similar to an earlier

work [51], but it does not require the assumption of growth maximization. The model is versatile

and can predict how cells reallocate their proteome composition under various types of perturbations,

including nutrient shifts, genetic modifications and antibiotic treatments.

The model combines nutrient import and its conversion to cellular energy with the biosynthetic

processes of transcription and translation. In its basic form, the model includes 14 intracellular vari-

ables: an internalised nutrient si; a generic form of energy, denoted a, that models the total pool of

intracellular molecules required to fuel biosynthesis, such as ATP and aminoacids; and four types of

proteins: ribosomes pr, transporter enzymes pt, metabolic enzymes pm and house-keeping proteins pq.

The model also contains the corresponding free and ribosome-bound mRNAs for each protein type,

denoted by mx and cx respectively, with x ∈ {r, t,m, q}. The model can be described by the chemical

reactions listed in Table 1. From these reactions we model the cell as a system of ordinary differential

equations, describing the rate of change of the numbers of molecules per cell of a particular species.
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Figure 2: Mechanistic model for bacterial growth. The model predicts growth rate from the allo-

cation of two cellular resources (energy and ribosomes) among the various processes that fuel growth

and replication [35].

Next we explain in detail how the model equations are built.

Table 1: Chemical reactions in the mechanistic growth model [35].
transcription dilution/degradation ribosome binding dilution translation dilution

ribosomes φ
wr−→ mr mr

λ+ dm−−−→ φ pr + mr
kb−⇀↽−
ku

cr cr
λ−→ φ nr a + cr

vr−→ pr + mr + pr pr
λ−→ φ

transporter enzyme φ
wt−→ mt mt

λ+ dm−−−→ φ pr + mt
kb−⇀↽−
ku

ct ct
λ−→ φ nt a + ct

vt−→ pr + mt + pt pt
λ−→ φ

metabolic enzyme φ
wm−→ mm mm

λ+ dm−−−→ φ pr + mm
kb−⇀↽−
ku

cm cm
λ−→ φ nm a + cm

vm−→ pr + mm + pm pm
λ−→ φ

house-keeping proteins φ
wq−→ mq mq

λ+ dm−−−→ φ pr + mq
kb−⇀↽−
ku

cq cq
λ−→ φ nq a + cq

vq−→ pr + mq + pq pq
λ−→ φ

nutrient import s
vimp−−→ si internal nutrient si

λ−→ φ

metabolism si
vcat−−→ nsa energy molecules a

λ−→ φ

The environment, or growth medium, of the cell contains a single nutrient described by the constant

parameter s. A transport protein pt is responsible for the uptake of the external nutrient at a fixed

concentration, which once internalised, si, is catabolised by a metabolic enzyme pm. The dynamics of

the internalised nutrient obey:

ṡi = vimp − vcat − λsi. (4)
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Similarly to the bacterial growth laws described in Section 2.1, the growth rate is denoted by λ. All

intracellular species are assumed to be diluted at a rate λ because of partitioning cellular content

between daughter cells at division. Nutrient import (vimp) and catabolism (vcat) are assumed to follow

Michaelis-Menten kinetics:

vimp = pt
vts

Kt + s
, vcat = pm

vmsi

Km + si
, (5)

where vt and vm are maximal rates, while Kt and Km are Michaelis-Menten constants. Since trans-

lation is known to dominate energy consumption [48], the model neglects other energy-consuming

processes. Using cx to denote the complex between a ribosome and the mRNA for a protein px, the

translation rate for every protein obeys

vx = cx
γ(a)

nx
. (6)

The parameter nx in Eq. (6) is the length of the protein px in terms of amino acids, and the term γ(a)

represents the net rate of translational elongation. Assuming that each elongation step consumes a

fixed amount of energy [35], the net elongation rate depends on the energy resource by:

γ(a) =
γmaxa

Kγ + a
, (7)

where γmax is the maximal elongation rate and Kγ is the energy required for a half-maximal rate.

From Eq. (6) we can compute the total energy consumption by translation of all proteins and get a

differential equation for the net turnover of energy:

ȧ = nsvcat −
∑

xε{r,t,m,q}

nxvx − λa, (8)

where the sum over x is over all types of protein in the cell. Overall, energy is created by metabolizing

si and lost through translation and dilution by growth. The positive term in Eq. (8), determines energy

yield per molecule of internalized nutrient from Eq. (4). The parameter ns describes the nutrient

efficiency of the growth medium.

In rapidly growing E. coli, it is known that transcription has a minor role in energy consumption

[52]. We therefore model transcription as an energy-dependent process, but with a negligible impact

in the overall energy pool. If wx,max denotes the maximal transcription rate, the effective transcription

rate has the form

wx = wx,max
a

θx + a
, (9)
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for all proteins except housekeeping ones, i.e. x ∈ {r, t,m}. We assume that the transcription of

housekeeping mRNAs is subject to negative autoregulation so as to keep constant expression levels in

various growth conditions:

wq = wq,max
a

θq + a︸ ︷︷ ︸
energy-depedent

translation

× 1

1 + (pq/Kq)hq︸ ︷︷ ︸
negative

autoregulation

. (10)

In Eqs. (9) and (10), the parameter θx denotes a transcriptional threshold, while Kq and hq are regula-

tory parameters. The differential equations for the number of mRNAs (mx) are therefore:

ṁx = wx − (λ+ dm)mx + vx − kbprmx + kucx, (11)

where x ∈ {r, t,m, q}. In Eq. (11), mRNAs are produced through transcription with rate wx, while

mRNAs are lost through dilution λ and degradation with rate dm. At the same time, mRNAs bind and

unbind with ribosomes, so that the ribosome-mRNA complexes (cx) follow

ċx = −λcx − vx + kbprmx − kucx, (12)

where kb and ku are the rate constants of binding and unbinding. Translation contributes with a positive

term to Eq. (11) and a negative term to Eq. (12). The differential equations for protein abundance are

therefore:

ṗx = vx − λpx, x ∈ {t,m, q}. (13)

We note that Eq. (13) applies to all proteins except free ribosomes. The equation for free ribosomes pr

includes an additional term:

ṗr = vr − λpr +
∑

x∈{r,t,m,q}

(vx − kbprmx + kucx). (14)

Through Eq. (14) the model accounts for competition among different mRNAs for free ribosomes, as

well as ribosomal autocatalysis. Ribosomal transcripts sequester free ribosomes for their own transla-

tion, and the pool of free ribosomes can increase as a result of translation of new ribosomes and, at the

same time, the release of ribosomes engaged in translation of non-ribosomal mRNAs.
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Finally, it can be shown (details in [35]) that under the assumption of constant average mass, the

specific growth rate can be computed in terms of the total number of ribosomes engaged in translation:

λ =
γ(a)

M
×

∑
x∈{r,t,m,q}

cx, (15)

where M is the constant cell mass.

Overall, Eqs. (4)–(15) constitute the core of the mechanistic growth model. Equations (8) and (14),

in particular, model the availability of energy and ribosomes, both regarded as cellular resources shared

between metabolism and protein biosynthesis. The model contains 22 parameters. For E. coli, some

parameter values were mined directly from the literature and others were estimated with Bayesian

inference on published growth data [35, 19]. The parameter values are shown in Table 2. We note that

we have assumed that all components of the proteome are not subject to active degradation. As we

shall see in the next sections, the core model can be extended with gene circuits of varying complexity.

Table 2: Model parameters for an Escherichia coli host, taken from [35]. Units of aa correspond to
number of amino acids per cell.

parameter value parameter value

s 104 (molecules) M 108 (aa)

nr 7459 (aa/molecules) θr 427 (molecules)

γmax 1260 (aa/min molecules) Kγ 7 (molecules)

vt 726 (min-1) Kt 1000 (molecules)

vm 5800 (min-1) Km 1000 (molecules)

wr,max 930 (molecules / min) wm,max, wt,max 4.14 (molecules / min)

wq,max 949 (molecules/min) dm 0.1 (min-1)

Kq 152219 (molecules) hq 4

θq, θt, θm 4.38 (molecules) nq, nt, nm 300 (aa/molecules)

kb 0.0095 (min−1molecules−1) ku 1 (min-1)

10
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3 Modelling gene circuits coupled with their host

In this section we discuss how to extend the mechanistic growth model with heterologous circuit

genes. The extended model can be employed for predicting the impact of genetic parameters, such as

promoter strengths or gene length, on the growth rate of the host strain and the resulting heterologous

expression levels. We first describe the steps needed to extend the model, and then illustrate the ideas

with a simple model for an inducible gene. This is a simple example that contains all the elements

needed by more complex circuits.

3.1 Extending the model with heterologous genes

The extension of the model requires three steps:

Step 1: add new model species. First, we include mass balance equations for the expression of

each heterologous gene. This requires three additional species per gene: the transcript, the mRNA-

ribosomal complex and the protein, all of which follow dynamics similar to Eqs. (11)–(13):

ṗc
i = vc

i − (λ+ dp)p
c
i ,

ṁc
i = wc

i − (λ+ dm)m
c
i + vc

i − kc
b,i prm

c
i + kc

u,i c
c
i ,

ċc
i = −λcc

i + kc
b,i prm

c
i − kc

u,i cx − vc
i ,

(16)

where the superscript c denotes heterologous species and the subscript i denotes the ith heterologous

gene. The ribosomal binding parameters kc
b,i and kc

u,i are specific to each gene and can be used, for

example, to model different ribosomal binding sequences. The translation rate vc
i is modelled similarly

as that of native genes in Eq. (6):

vc
i =

cc
i

nc
i

× γmaxa

a+Kγ
, (17)

with nc
i being the length of the ith circuit protein. Likewise, the transcription rate is similar to Eq. (9):

wc
i = wc

max,i
a

θc + a
Ri, (18)

where wc
max,i is the maximal transcription rate. Note that we have included an additional term Ri

to model regulatory interactions by other genes. Complex circuit connectivities can be modelled by
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suitable choices of the functionRi. Later in Section 4 we exemplify this with models for transcriptional

logic gates.

Step 2: modify allocation of resources. Second, we include the additional consumption of energy

and ribosomes in the model. Starting from the resource equations in Eqs. (8) and (14), we write:

ȧ = nsvcat −
∑
x

nxvx −
∑
i

nc
iv

c
i︸ ︷︷ ︸

energy consumption
by foreign genes

− λa, (19)

(20)

ṗr = vr − λpr +
∑
x

(vx − kbprmx + kucx) +
∑
i

(vc
i − kc

b,iprm
c
i + kc

u,ic
c
i)︸ ︷︷ ︸

consumption of free ribosomes
by foreign genes

.

Step 3: adjust growth rate prediction. Third, we update the prediction of growth rate in Eq. (15)

to include translation of heterologous genes:

λ =
γ(a)

M

(∑
x

cx +
∑
i

cc
i︸ ︷︷ ︸

ribosomal
complexes

)
. (21)

3.2 Simulation of an inducible gene

Inducible expression systems are widely employed as building blocks of complex gene circuits. As an

example, we consider a reporter gene (rep) under the control of an inducible promoter, modelled by

the reactions in Table 3.

Table 3: Reactions for an inducible reporter gene.
transcription dilution/degradation ribosome binding dilution translation dilution/degradation

REP φ
wrep−−→ mrep mrep

λ+dm,rep−−−−−→ φ pr +mrep
kb−⇀↽−
ku

crep crep
λ−→ φ nra+ crep

vrep−−→ pr +mrep + prep prep
λ+dp,rep−−−−→ φ

The model contains mRNAs of the heterologous gene, which can reversibly bind to free ribosomes

of the host, pr. Protein translation consumes energy (a) and, at the same time, proteins and other model

species are diluted by cell growth. In contrast to native proteins of the host, however, we assume that

12
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heterologous proteins are tagged for degradation by proteases, a strategy often employed to accelerate

protein turnover [53]. This active degradation is modelled by the parameter dp,rep in Table 3.

We do not explicitly model the molecular mechanism for induction, as this will depend on the

particular implementation of choice. For example, in the tetR inducible system, the inducer anhy-

drotetracycline (aTc) activates gene expression by reversible binding to the tetracyline repressor tetR,

whereas in the lac inducible system, the inducer Isopropyl-β-D-thiogalactoside (IPTG) binds to al-

losteric sites of the lac repressor lacR. Instead, we lump the induction mechanism into an effective

transcription rate, denoted as wrep in Table 3.

Using the general circuit equations in (16)–(18) of Section 3.1, for the inducible gene Eq. (16)

becomes:

ṗrep = vrep − (λ+ dp,rep)prep,

ṁrep = wrep − (λ+ dm,rep)mrep + vrep − kb,repprmrep + ku,repcrep,

ċrep = −λcrep + kb,repprmrep − ku,repcrep − vrep.

(22)

The rate of reporter translation follows as in Eq. (23):

vrep =
crep

nrep
× γmaxa

a+Kγ
, (23)

where nrep is the length of the reporter in amino acids. Likewise, the transcription rate in Eq. (18)

becomes:

wrep = wmax,rep ×
a

θc + a
. (24)

Note that in the transcription rate, the regulatory term is Ri = 1, because the inducible system does

not contain any regulatory interactions.

Before simulating the expression of the heterologous protein, we first need to obtain an estimate

for the proteome composition of the wild-type. This is required to initialize the host-circuit simulations

with a physiologically realistic cellular composition. To this end, we first simulate Eqs. (4)-(15) for the

“wild-type model” until steady state. The results, summarized in Fig. 3A, show that host proteins are

translated at different rates with most of the translating ribosomes bound to mRNAs of house-keeping

proteins. However, a sizeable fraction is bound to ribosomal mRNA, highlighting how the growth
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model accounts for ribosomal autocatalysis. A closer look (Fig. 3A, bottom) reveals that translation-

engaged ribosomes account approximately for two-thirds of the total ribosomal fraction in the form of

mRNA-ribosomal complexes, with one-third remaining free.

Next, we simulate heterologous expression using the maximal transcription ratewmax,rep in Eq. (24)

to describe the effect of different gene induction strengths. As shown in the dose-response curve in

Fig. 3B, the model predicts that increased induction causes an increase in expression. We observe,

however, that protein expression reaches a maximum at a critical induction strength and subsequently

drops sharply for stronger induction. This reflects the limitations that resource competition imposes

on the expression of a heterologous gene [38].
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Figure 3: Simulation of an inducible gene. (A) Steady state translation rates and ribosomal abun-

dance predicted for the wild-type Escherichia coli model, parameterized as in Table 2. (B) Predicted

steady state expression of a heterologous gene for increasing induction strength. The pie charts indi-

cate translation rates and ribosomal abundance as in the left panel. The inset shows the predicted

growth rate, relative to the wild-type. The induction strength was modelled with the parameter

wmax,rep in Eq. (24). The binding rate constant was set equal to the dissociation rate constant, so

that kb,rep = 1× 10−2 min−1molecules−1, ku,rep = 1× 10−2 min−1. Transcript and protein half-lives

were set to two and four minutes, respectively [5], so that dm,rep = ln 2/2min−1 and dp,rep = ln 2/

4min−1.

To understand the main source of the resource limitations, we use the model to explore the syn-
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thesis rates of the various components of the proteome. Because growth rate is linearly related to the

total rate of translation (Eq. (21)), we can make direct conclusions for cellular growth as well. As

shown in Fig. 3B (inset), the model predicts a sigmoidal decrease in growth rate for stronger gene

induction. At low induction, expression of the foreign gene is mostly at the expense house-keeping

proteins, while ribosomes, transporter and metabolic enzymes, show little decrease. This suggests that

the host can compensate for this load through transcriptional regulation and repartitioning of the pro-

teome (Fig. 3B). As the induction of the reporter gene increases, circuit mRNAs dominate the mRNA

population, hence increasing the competition for free ribosomes. Finally, for sufficiently strong induc-

tion, ribosomal scarcity leads to reduction of all proteins, which in turn leads to the drop in growth

rate observed in Fig. 3B (inset). These results are in agreement with the widespread conception that

ribosomal availability is a major control node for cellular physiology [19, 54, 55], with depletion of

free ribosomes being the main source of burden for translation of circuit genes [21, 31].

4 Simulation of transcriptional logic gates

There has been substantial interest in gene constructs that mimic digital electronic circuity [6, 56, 57].

Cellular logic gates, in particular, have been used to produce desired behaviours in response to various

inputs such as temperature, pH and small molecules [58, 59, 60]. Multiple logic gates can be combined

to build larger information-processing circuits with advanced cellular functions [8].

To illustrate our simulation strategy in more complex circuitry, here we build host-circuit models

for cellular logic gates based on transcriptional regulators [61]. We first build and simulate the models

for a NOT, AND and NAND gates shown in Fig. 4. To highlight the power of our approach for circuit

design, we then use the host-circuit models to predict circuit function across the design space, using

combinations of RBS strength and growth media. As discussed in Section 3.1, we model the circuits

by adding extra genes to the growth model and modifying the mass balance and growth rate equations.

We model the circuit connectivity by choosing suitable regulatory terms Ri in the transcription rates

in Eq. (18), and the gate inputs via the maximal transcription rate wc
max,i.

To compare our host-circuit simulations with those of traditional models, we built circuit-only
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models using mass balance equations for mRNAs and proteins:

ṁc
i = wc

iRi − (λeff + dm)m
c
i ,

ṗc
i = keff

i m
c
i − (λeff + dp)p

c
i ,

(25)

where the subscript i denotes the ith circuit gene and we assume a constant dilution rate, λeff = 0.022

min-1, which is equal to the growth rate predicted by the model for the wild-type with a nutrient

efficiency of ns = 0.5. The effective translation rates are fixed to keff
1 = keff

2 = 16.8min−1 and

keff
3 = 0.61min−1 for the AND gate, and keff

1 = keff
2 = 13.86min−1, keff

3 = 0.058min−1, and

keff
4 = 347min−1 for the NAND gate. In all cases, we assume that mRNAs and proteins are actively

degraded with rate constants dm = ln 2/2min−1 and dp = ln 2/4min−1.
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gene 1 gene 2
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ANDinput 2

input 1

output
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gene 2
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gene 2

gene 3 gene 4

NOT
NAND

input 1
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C

Figure 4: Logic gates based on transcriptional regulators. (A) The NOT gate contains two genes

connected in cascade. Repression of gene 2 inverts the input signal. (B) The AND gate contains three

genes, in which two transcriptional activators jointly trigger the expression of a third output gene. (C)

The NAND gate contains four genes and is the composition of an AND and a NOT gate. Circuit

connectivities are based on the implementation by Wang et al [61].

4.1 Host-aware NOT gate

The NOT gate contains two genes in cascade, where gene 1 codes for a transcriptional repressor that

inhibits the expression of gene 2; the circuit diagram is shown in Fig. 4A. We first model the NOT gate

in isolation using Eq. (25). We choose the regulatory functions Ri as

R1 = 1, R2 =
1

1 +

(
pc

1
Kc

)h . (26)

16



Host-circuit modelling

The choice of R2 models the inhibition of gene 2, and different inhibitory strengths and cooperativity

effects can be described by suitable choices of the threshold Kc
1 and Hill coefficient h. We fix Kc

1 =

250 molecules and h1 = 2.

As shown in Fig. 5A, the isolated models correctly predicts the expected circuit function, with

stronger induction of the input gene 1 gradually suppressing the expression of the output proteins (pc2),

with strong induction resulting in minimal output yield. In other words, the gate has high output only

when the input signal is low, in effect acting as an inverter of the input signal.

To simulate the host-aware NOT gate, we follow the procedure outlined in Section 3.1. The host-

aware simulations shown in Fig. 5B suggest that the function of the NOT gate remains largely unaf-

fected by host-circuit interactions. For intermediate input levels, simulations predict an increase in

growth rate of up to∼50% with respect to a basal case. Such apparent growth benefit is a consequence

of the circuit architecture (Fig. 4A): an increase in the input causes a stronger repression of gene 2 and

thus relieves the burden on the host. But since the expression of the repressor coded by gene 1 also

burdens the host, for high inputs the expression of gene 1 counteracts the growth advantages gained by

repression of gene 2, resulting in an overall drop in growth rate.
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Figure 5: Host-aware simulation of a NOT gate. (A) Gate output predicted by a model isolated from

the cellular host. Inset shows the boolean truth table for the NOT gate. (B) Output and growth rate

predictions from host-aware model of the NOT gate. Growth rate is normalized to a basal case.
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4.2 Host-aware AND gate

The AND gate comprises two genes that co-activate a third output gene (Fig. 4B). As built in the

original implementation [61], the promoter for gene 3 is activated only when both the co-dependent

enhancer-binding proteins, encoded by genes 1 and 2, are present in a heteromeric complex. Conse-

quently, the regulatory functions for the AND gate are:

R1 = 1, R2 = 1, R3 =

(
pc

1
Kc

1

)h1
1 +

(
pc

1
Kc

1

)h1 ×
(
pc

2
Kc

2

)h2
1 +

(
pc

2
Kc

2

)h2 , (27)

with Kc
1 = 200 molecules and h1 = 2.381 for the activation by gene 1, and Kc

2 = 3000 molecules and

h2 = 1.835 for the activation by gene 2; these values are similar to the parameter values estimated in

Wang et al [61].
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Figure 6: Host-aware simulation of an AND gate. (A) Output predicted by a model isolated from

the cellular host. Inset shows the boolean truth table for the AND gate. (B) Output and growth rate

predictions from host-aware model of the AND gate across the input space. Growth rate is normalized

to the basal case in lower left corner of the heatmap.

Simulations of the isolated model (Fig. 6A) show that, as expected, the gate has a high output only

when the input signals are high. This agrees with the expected truth table of the AND, shown in the

inset of Fig. 6A. In contrast, simulations of the host-aware model, shown Fig. 6B, suggest a strong

impact of host-circuit interactions. The host-aware model predicts a bell-shaped response surface,

where the output reaches a maximal value for an intermediate level of the inputs, beyond which the
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output drops monotonically. Such loss of function coincides with a drop in growth rate observed for

increased levels of either input, as seen in the right panel of Fig. 6B, and thus suggests a link between

growth defects and poor circuit function.

4.3 Host-aware NAND gate

The NAND gate is the negation of an AND gate, and thus produces a low output only when both

inputs are high. As shown in Fig. 4C, the gate has four genes connected as the composition of an AND

and NOT gates. As with the previous two cases, we simulate the isolated model using Eq. (25). The

regulatory functions for the NAND gate are:

R1 = 1,

R2 = 1,

R3 =

(
pc

1
Kc

1

)h1
1 +

(
pc

1
Kc

1

)h1 ×
(
pc

2
Kc

2

)h2
1 +

(
pc

2
Kc

2

)h2 ,
R4 =

1

1 +

(
pc

3
Kc

3

)h3 ,
(28)

with parameter values for R3 equal to those for R3 of the AND gate in Eq. (27), and parameter values

for R4 equal to those of R2 for the NOT gate in Eq. (26).

As shown in Fig. 7, simulations reveal substantially different predictions between the isolated and

host-aware models of the NAND gate. The host-aware model predicts a complex relation between

inputs and output that differs from the ideal response predicted by the isolated model. Host-aware

simulations produce the correct response across a range of the input space (Fig. 7B), but display sig-

nificant distortions possibly caused by the loss-of-function of the AND component shown in Fig. 6B.

The impact of host-circuit interactions can also be observed in the predicted growth rate, which sug-

gests a growth advantage for intermediate levels of the inputs. This is a result of the architecture of the

NOT gate, akin to what we observed in Fig. 5B.
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Figure 7: Host-aware simulation of a NAND gate. (A) Output predicted by a model isolated from

the cellular host. Inset shows the Boolean truth table for the NAND gate. (B) Output and growth rate

predictions from host-aware model of the AND gate across the input space. Growth rate is normalized

to the basal case in lower left corner of the heatmap.

4.4 Impact of design parameters on circuit function

In this final section, we conduct a series of simulations that mimic experiments commonly used in

circuit design. These aim to explore the impact of design parameters and growth media on circuit

function.

4.4.1 Ribosomal binding sites (RBS)

A number of studies have shown that RBS strength is a key modulator of cellular burden [21, 29, 31,

30]. Here we examine the impact of RBS strengths on the AND and NAND gates from the previous

section. Using the notation in our model, see e.g. Eq. (16), we define the RBS strength as:

RBSi =
kc

b,i

kc
u,i
, (29)

where kc
b,i is the mRNA-ribosome binding rate constant (in units of min−1molecules−1), and kc

u,i is

their dissociation rate constant (in units of min−1).

We simulated the AND and NAND gates with variable RBS strengths and gene induction strengths.

As shown in Fig. 8A (left), the AND gate retains its function for increasing RBS strength. We observe

that for the same induction, designs with stronger RBS lead to increased circuit yield. At the same
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time, the simulations predict (Fig. 8A, left) a larger bell-shaped response surface, suggesting, that by

increasing RBS, we expect a slightly larger design space where the output can reach a larger maximal

value for the same range of inputs. In all cases, however, after the output reaches a maximal value,

we find a monotonic drop in circuit yield. The loss-of-function coincides with a drop in growth rate

observed in all designs (Fig. 8A, right), which becomes more pronounced with stronger RBS.

As shown in Fig. 8B, the impact of RBS is more notable for the NAND gate. For designs with

stronger RBS (insets Fig. 8B, left), but weak induction, the gate displays a behaviour akin to that of the

basal case. For intermediate induction, increasing RBS strength has more detrimental effects on the

circuit’s function. Specifically, the NOT component fails to fully repress the AND component, thus

distorting the region where the circuit is functional. However, further increase in RBS, greatly impairs

the system leading to near total loss-of-function across the entire response surface (insets Fig. 8B,

left). Likewise, for stronger RBS and intermediate levels of the input, we observe loss of the growth

advantage gained by the NOT gate component (Fig. 8B, right).

4.4.2 Nutrient quality

Bacterial growth is known to depend critically on the quality of the growth media. As a final illustration

of our approach, we used the host-aware models to explore the impact of media on the function of the

transcriptional logic gates. We model the quality of the media via the nutrient efficiency parameter ns

in Eqs. (4) and (19), which determines the energy yield per molecule of internalized nutrient.

Our simulations suggest that nutrient quality affects the quantity of output, but not the specific

response of the AND gate (Fig. 9A). As the quality of the growth medium improves , the gene expres-

sion capacity of the host increases and, as a result, we observe an increase operational range of the

circuit. However, this is not the case for the NAND gate, which displays a more complex behaviour

for low nutrient quality. As seen in Fig. 9B, richer media improve the function of the gate, compared

to the basal case (Fig. 7A). This is because an increase in nutrient quality improves the output of the

gate’s AND component, which in turn leads to a stronger input for the NOT component, and hence

stronger repression. On the contrary, poor nutrient quality leads to loss-of-function for the circuit. As

observed in Fig. 9A, poorer media correspond to significantly decreased expression of the AND gate,

which is also true for the AND component of the NAND gate. This translates to very weak input for
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Figure 8: Impact of ribosomal binding site (RBS) strength. (A) Output and growth rate predictions

for the AND gate in Fig. 4B and three RBS strengths. (B) Output and growth rate predictions for the

NAND gate in Fig. 4C. RBS strengths were computed from Eq. (29) by simultaneously increasing

the binding rate constant kc
b,i ∈ {10−2, 10−1.5, 10−1.155} and decreasing the dissociation rate constant

kc
u,i ∈ {10−2, 10−2.5, 10−2.855} in a pairwise manner for i = 3 (AND gate) and i = 4 (NAND gate).

Gene induction strengths were varied in the range 100 ≤ wcmax,i ≤ 104 mRNAs/min for i = 1, 2 in

both gates, and fixed wcmax,3 = 375 mRNAs/min for the AND gate, and wcmax,3 = 375 mRNAs/min

and wcmax,4 = 250 mRNAs/min for NAND gate.

the NOT component, which in turn does not properly repress gene 4 (Fig. 4C), resulting in the loss of

gate functionality (Fig. 9B).
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Figure 9: Impact of growth media on circuit function. (A) Simulations of the AND gate in Fig. 4B

in various growth media. (B) Simulations of the NAND gate in Fig. 4C in various growth media. In

both cases the nutrient quality parameter was set to ns ∈ {0.2, 0.6, 1.0}; all other model parameters

are identical to the simulations in Figures 6 and 7B.

5 Discussion

In this chapter we discussed host-aware modelling in Synthetic Biology. Starting from the three bacte-

rial growth laws, we presented a deterministic model to simulate the single-cell dynamics of a bacterial

host [35]. We showed how to incorporate synthetic gene circuits into the host model, and used this

methodology to simulate host-aware versions of various gene circuits. Finally, we examined the im-

pact of host-circuit interactions on the gates, for combinations of inputs, RBS strength, and growth

media of different nutrient quality.

While we focused on host-circuit competition for energy and free ribosomes, in practice gene

circuits also consume other components that may become resource bottlenecks, such as RNA poly-

merases and σ-factors for transcription, or amino acids and tRNAs for translation. Molecular species

associated with these processes can be readily incorporated into the growth model. For instance, in-

stead of a single energy resource a, the catabolism of the internalised nutrient si by the metabolic

protein pm, could also produce a pool of amino acids, which would then participate in the downstream

transcription and translation processes. Explicit models of amino acid pools could be employed to

study amino acid recycling after protein degradation, or global effects such as upregulation of tran-
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scription triggered by nutrient starvation [36, 62]. Such extensions, however, need to be dealt with

caution since they can increase model complexity, and ultimately obscure the relations between differ-

ent sources of burden.

A grand goal of Synthetic Biology is to produce target phenotypes through rational design of gene

circuits. As with other engineering disciplines, predictive models are an essential step to accelerate

the design cycle, yet current models in synthetic biology are largely under-powered for this task. In-

tegrated host-circuit models can effectively bridge this gap and offer a flexible framework to account

for a wide range of resource bottlenecks. For example, recent data [63, 64] suggest highly nonlinear

relations between growth rate and heterologous expression and a sizeable burden caused by metabolic

imbalances typically found in pathway engineering [65]. Such findings raise compelling prospects for

the integration of mechanistic cell models with large-scale characterization data, ultimately paving the

way for more robust and predictable Synthetic Biology.
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[26] A. P. S. Darlington, J. Kim, J. I. Jiménez, and D. G. Bates, “Dynamic allocation of orthogonal

ribosomes facilitates uncoupling of co-expressed genes,” Nature Communications, vol. 9, p. 695,

dec 2018.

[27] P. Rugbjerg, K. Sarup-Lytzen, M. Nagy, and M. O. A. Sommer, “Synthetic addiction extends

the productive life time of engineered escherichia coli populations,” Proceedings of the National

Academy of Sciences, vol. 115, no. 10, pp. 2347–2352, 2018.

[28] F. Ceroni, A. Boo, S. Furini, T. E. Gorochowski, O. Borkowski, Y. N. Ladak, A. R. Awan,

C. Gilbert, G.-B. Stan, and T. Ellis, “Burden-driven feedback control of gene expression,” Nature

methods, vol. 15, no. 5, p. 387, 2018.
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