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Abstract

The costs of offshore wind are decreasing rapidly. However, there is a need to better understand
the key drivers behind these cost reductions. New environmental regulations, economic policies,
technological advancements and financing structures have resulted in a set of relationships that
need to be considered in order to define risks and profitability for the next generation of offshore
wind farms. We use an industry-leading offshore wind cost modelling tool which integrates site
characteristics, technology specificities and financial modelling expertise and apply state-of-art
global sensitivity analysis methods for different classes of offshore wind farms, ranking the con-
tribution of around 150 input parameters that influence the cost of offshore wind development.
We show that the top 5 parameters when building an offshore wind investment business case are
the wind speed, target equity rate of return, turbine costs, drilling costs and debt service cover-
age ratio. The contribution of this paper can help guide additional efforts towards reducing the
uncertainty of those key parameters to decrease costs and provide a framework to choose global
sensitivity analysis techniques for offshore wind techno-economic models.
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1 INTRODUCTION

1 Introduction

By the end of 2018, the European offshore wind market had installed a cumulative total capacity of
more than 18GW. Within Europe, the UK is the market leader for offshore wind, responsible for 43%
of the total number of all grid-connected turbines.1 To sustain this leading position in the market,
a Levelised Cost of Energy (LCOE) target of £100/MWh was set jointly by the UK government and
industry in 2012,2 which was expected to be met by 2020. However, four years ahead of schedule,
wind farms taking final investment decisions in 2015/2016 were already achieving prices lower than
this target, not just in the UK but across Europe. In continental Europe, record-low contracts for
offshore wind farms were awarded to Borsselle 3 and 4 offshore wind project in the Netherlands at
54.5e/MWh in July 2016 and Kriegers Flak in Denmark at 49.9e/MWh in November 2016. Following
these, competitive tenders for feed-in subsidies in Germany resulted in bid prices of 0e/MWh in April
2017. In the UK, the Contract for Difference (CfD) Allocation Round (AR) 2 resulted in the lowest
strike price seen at that moment with a value of £57.5/MWh in September 2017, down from a lowest
£114.39/MWh in CfD AR 1 in February 2015. In April 2018 in the second German auction, results
once again included zero subsidy bids. In September 2019 in the UK CfD AR 3, prices dived to a
staggering value of £39.65/MWh, 60% lower than the target imposed to be met by 2020. Since the
details of subsidy schemes vary it is not possible to directly compare them across countries, but as
figure 1 shows for the UK, cost reductions have been very rapid.

In addition to these rapid cost reductions, offshore wind support mechanisms are also changing, with
a general trend towards regularly scheduled auctioning systems for offshore wind feed-in tariffs or con-
tracts for differences. The UK government, for example, has committed to a series of CfD auctions
starting in May 2019 and every other year from then on.3 The combination of rapid cost reductions
and the transition to central auctioning systems has pushed developers to make cost predictions further
into the future, increasing the level of uncertainty in their estimates and challenging the way offshore
wind cost modelling has previously been addressed. Changing environmental regulations and financing
structures have furter complicated cost modelling.
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1 INTRODUCTION

As the offshore wind market continues to thrive, a wider range of products is being offered to devel-
opers; more reliable sensing devices to measure the wind speed, taller, bigger and more powerful wind
turbines, higher voltage inter-array systems, new bottom-fixed and floating foundation designs, longer
export cables, better O&M strategies and data-driven solutions to operate the farms, advanced types
of financing, etc. This increased variety of technology and product choices has resulted in an increased
complexity for project developers to make decisions regarding the optimal selection of technology and
products for a given site. In addition to the increased variety, the unprecedented pace of the sector
is pushing developers to conduct periodical market research reports to keep up with the latest tech-
nological trends, as there is room for accommodating innovations in the design of the farms due to
long development periods before commissioning. The case study in Section 5 will shed light on which
parameters are key when building offshore wind investment business cases.

The first studies to assess the techno-economic and financial viability of offshore wind farms were
based on projecting onshore data to offshore developents.4 In doing so the models did not account for
specific offshore parameters and consequently, did not represent the harsh environmental conditions
offshore wind farms operate in. As the industry started to grow, developers, contractors and suppliers
invested time and resources to come up with new cost models tailored to the sector. In parallel, local
sensitivity analysis and probabilistic techniques were applied to those in order to quantify key cost
drivers and their associated uncertainties.4–6 Since then, both commercial and academic models have
attempted to estimate offshore wind capital costs, operational expenditure and LCOE.

LCOE is a theoretical metric and it therefore has a number of weaknesses associated with it;7 for exam-
ple, it does not take into consideration wider system benefits or costs nor does it deal with variability
and intermittency. An example related to variability and intermittency is the process whereby an
offshore wind developer strikes a Power Purchase Agreements (PPA) deal with a buyer. PPAs impact
the LCOE in ways that are no accommodated in existing cost models through penalties imposed by
contractual arrangements.8 In addition, as the analysis looks at the project’s LCOE in isolation, it
excludes any potential synergies with the existing portfolio of energy projects. Therefore, this metric
might become less relevant as the penetration of renewables into the energy system increases and
projects are designed to add value to and complement the aggregated portfolio of energy projects.

In 2012, the UK government published a simple LCOE model to assess the impact of innovations
on a generic offshore wind farm. A stochastic version of that model was implemented in Excel by
means of the @RISK extension.9 In addition, a local sensitivity analysis was carried out to identify
the impact of several uncertain input parameters. Given the fundamentally multidisciplinary nature
of cost modelling, many approaches have since been followed to develop new models. Whereas cost
modelling engineers tend to place more emphasis on a detailed breakdown of the different offshore wind
farm components, as shown in,10,11 investors typically take a high-level approach on technology and
focus on the specificities of the financing conditions, as shown in.12,13 Global sensitivity analysis has
already been applied to offshore wind techno-economic models. Whereas14 used screening techniques
to assess the sensitivity of operation and maintenance costs,15 used variance-based techniques to assess
the sensitivity of capital and operation and maintenance costs.

Despite these attempts to capture offshore wind technicalities, the introduction of new environmental
regulations and economic policies, rapid technological advancements, and financing structures has re-
sulted in a new set of relationships that need to be considered in order to define risks and profitability
for the next generation of offshore wind farms. For these reasons, simple cost models are no longer
suitable to accurately represent these relationships, when being used as decision-making tools. Instead,
tailored techno-economic models are being developed, integrating site characteristics, technology speci-
ficities and financial modelling expertise. These models are very complex, resulting in relationships
between inputs and outputs that are poorly understood and cannot be explored by simple intuition
alone. Formal sensitivity analysis, and in particular, global sensitivity analysis (GSA) methods are
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2 STOCHASTIC COST MODELLING

therefore necessary.

GSAs determine the system’s critical points in the combined space formed by the parameters.16 They
are rapidly gaining traction in different fields.17 For the purposes of this paper, the GSA helps deter-
mine which input parameters most significantly impact model outputs. Ranking the input parameters
in order of their effect on model outputs (known as as Factor Prioritization18 ) provides useful in-
sight, especially if the model is complex and/or still in development. The factor prioritization process
may show that variation in a subset of input parameters has such a small impact on outputs that
uncertainty in these parameters can safely be ignored. This is a common result, as the sensitivity of
model outputs to input parameters often follows a highly asymmetric distribution, with a small subset
of inputs paremeters being responsible for most of the output variation, while most inputs play no
significant role.19 In further model development, model complexity can then be reduced by ignoring
potential variation in insignificant input parameters, a process known as Factor Fixing .18 In this
paper, we employ both factor prioritisation and factor fixing. For a detailed discussion of more GSA
techniques in general, see.18,20–23

To our best knowledge, state-of-art GSA methods have not been applied to complex techno-economic
offshore wind cost models. Therefore, the aim of the current paper is to remedy the lack of understand-
ing of the relationship between offshore wind cost modelling input and outputs by using state-of-art
global sensitivity analysis techniques combined with an advanced stochastic cost modelling tool to
investigate the most relevant parameters influencing cost and uncertainty in the design of offshore
wind farms. Doing so, it makes two contributions to existing knowledge. First, it presents a consistent
method for state-of-art applications of GSA in offshore wind cost modelling, which will be of use to
cost modellers. Second, through applying this method, it investigates which variables are the most im-
portant drivers of offshore wind costs, contributing to the literature on reasons behind cost reductions
and informing where additional efforts to reduce cost levels or variability can further reduce LCOEs.

The remainder of this paper is structured as follows: Section 2 starts with the description of the
stochastic framework, Section 3 reviews the state-of-the-art GSA techniques in terms of its use and
suitability for the cost modelling tool. Section 4 introduces the variance-based and PAWN distribution-
based GSA techniques. These techniques are then applied to a case study in Section 5, where the
contribution of around hundred fifty parameters in the cost and uncertainty of offshore wind farms is
assessed. Finally, results and conclusions are drawn in Section 6.

2 Stochastic Cost Modelling

The modelling approach to assess the impact of input parameter variation on offshore wind costs is
based around the Offshore Wind Cost Analysis Tool (OWCAT) developed at the EDF Energy R&D
UK Centre. OWCAT has a modular design and its structure is represented in Figure 3. Further in-
formation regarding its inputs, outputs and the processes that link them can be found in.24 Although
specific to EDF Energy’s requirements, the model is representative of state-of-art offshore wind cost
models used throughout the offshore wind sector. The cost modelling tool integrates site characteris-
tics, technology specificities and financial modelling expertise in a more detailed manner than existing
cost modelling tools in the literature that do not have access to the data and expertise from the offshore
wind sector.

The transition from deterministic to stochastic models requires an added level of complexity that can
only be justified if the three following basic features exist.19 First, a deterministic model must exist.
Second, there must be a variety of sources of uncertainty affecting the model inputs. Third, there
must be a need for GSA methods, i.e., decision-making processes that motivate the uncertainty assess-
ment. All of these are met; the OWCAT model is already in use, its inputs clearly include uncertain
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2 STOCHASTIC COST MODELLING

parameters, including future costs across the supply chain, and improving understanding of cost and
uncertainty in the design of offshore wind farms is urgently required.

OWCAT is a numerical model linking inputs (uncertain x or fixed variables d) to outputs z (from
which decision criteria can be established). This can be formally defined in Equation 1.

x, d =⇒ z = OWCAT (x, d) (1)

It is worth noting the difference between these two set of inputs. Whereas some inputs have uncer-
tainty associated to them, others may be fixed – as they will play another role in the model, those
are represented with notation d. This is the case when: (i) input parameters represent variables un-
der full control of the developer: for example, the number of pinpiles of a jacket foundation, (ii) the
uncertainties affecting the model inputs are considered to be negligible and (iii) the decision process
conventionally fixes some variables for comparative purposes and time constraints: for example the
discount rate may be set by the developer or state. However, it is important to bear in mind that a
distinction between ”uncertain” and ”fixed” variables usually involve an iterative process by means of
sensitivity analyses of the model which is out of the scope of this paper.

The methodology of quantitative uncertainty management is a staged process, which is represented
in Figure 2. First, the specification of the problem needs to be considered. This is mathematically
represented as the OWCAT model or Step A. After that, Step B consists in characterizing and quan-
tifying the uncertain inputs modelled by probability distributions. Once this is done, the propagation
of uncertainty sources to the quantities of interest outputs can be carried out. As shown in Figure 2,
Step C can be performed in both directions: C representing the propagation of uncertainty sources to
the outputs and C’ representing the feedback from output to input variable probability distributions.
In this paper, we will focus on step C’ in order to understand the influence or rank the importance
of the main cost drivers. This will allow the model user to identify the key variables for cost and
uncertainty in the design of offshore wind farms. Furthermore, at this stage this could mean that
‘uncertain’ variables could be shifted to ‘fixed’ variables and the other way around in future studies,
depending on the results of the global sensitivity analysis.

Figure 2: Uncertainty Management- The Global Methodology25
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2 STOCHASTIC COST MODELLING

Figure 3: OWCAT structure
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3 IN SEARCH OF GSA METHODS FOR OFFSHORE WIND COST MODELS

3 In Search Of GSA Methods For Offshore Wind Cost Models

Complex techno-economic offshore wind cost models such as OWCAT consist of many input variables
linked by a large number of functions or algorithms. An example of GSA methods applied to a
techno-economic model can be found in;26 this study applies the variance-based, δ density-based and
entropy density-based GSA methods to a simple biodiesel production model. Other authors have
used a combination of methods at different stages of modelling; an example of those can be found
in,27 where the author applies different GSA methods to the aero-elastic time domain response of an
offshore wind turbine. As far as offshore wind techno-economic models are concerned, an O&M model
was investigated by means of the Morris method in14 and a life-cycle cost model was interrogated by
means of the variance-based Sobol method in.9 An extensive review of different sensitivity analysis
methods has been carried out and displayed in the Appendix in Table 4. From that, a flowchart has
been drawn and displayed in Figure 4. The aim of the flowchart is to facilitate the choice of sensible
sensitivity analysis techniques for a particular model, based on the following questions:

� Properties of the pre-existing model. Is the model linear or non-linear? is the model monotonic
or non-monotonic?

� The number of inputs or CPU time. This will, to some extent, condition the number of model
evaluations that can be undertaken in order to characterize the behaviour of the model.

� The goal of the study. Does the study need to be qualitative or quantitative? local or global?
does it need to capture the interactions between parameters?

� The methodology to represent uncertainty. Is variance a good measure to represent the uncer-
tainty in the model? This concerns the moment independent property.

The model we use for our case studies, OWCAT, is non-linear and non-monotonic and hence, no a priori
assumptions can be stated. Since the model is composed of many different inputs, a screening tech-
nique has been considered appropiate for factor fixing, as Figure 4 suggests. However, more recently,
Campologno28 has shown that it is better to use the total sensitivity indices of the variance-based
method at low sample sizes, instead of the Morris method which implies many modelling assumptions.
The same study suggests a unified practice when transitioning from screening to quantitative sensi-
tivity analysis, using the same experimental design and sampled parameter instances to move from
the former to the latter. This is the reason why in Figure 4 we have linked the screening techniques
with the variance-based Sobol method. The same figure starts off by requesting assumptions on model
properties. If our model was linear or non-linear but monotonic, several sensitivity analysis techniques
could be applied in a very efficient manner by exploiting the internal structure of the problem. How-
ever, as is common for models of this type, in our case there is no prior knowledge on the behaviour
of OWCAT. OWCAT is made up of different modules with highly non-linear functions and internal
iterative processes. These include (a) cost modelling functions depending on exponents; (b) mass foun-
dation and electrical components correlations also depending on exponents; (c) double loop iterative
process for advance project finance modelling requirements, among others. As a result, only the right
hand side of Figure 4 is appropriate. We are interested in using a global quantitative assessment that
takes into consideration interactions between the different input parameters. Also, we would like to
see how the contribution of model inputs to the output might change when considering the cumulative
distribution function instead of variance to represent output uncertainty.
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3 IN SEARCH OF GSA METHODS FOR OFFSHORE WIND COST MODELS

Assumptions on model properties?

Linear or Quasi Linear. Many input 
factors or high CPU time?

Non-linear and non-monotonic OR no a priori 
assumptions. Number of inputs?

Variance-based  
FAST

Variance-based 
Extended FAST

Variance-based 
PAWN 

distribution-based 

Density-based 
Entropy Density-based ? 

Regression/Correlation

OAT- Tornado 
Diagrams

Extended OAT 
-Tornado diagrams

Graphical methods

Differentiation-based 
methods

Screening techniques

Assumptions on uncertainty 
representation?

Non-linear but monotonic

Low

Yes
Yes

No

Rank Regression/ 
Correlation

Variance is a good proxy for 
uncertainty

Moment independent for 
uncertainty characterization

High

Low sample

High CPU or 
numerous inputs

Low CPU or few 
inputs

Figure 4: Decision diagram guiding the choice of SA techniques, expanded from19

Given the current state-of-the-art in GSA methods, it is appropriate to apply GSA methods to OWCAT
in two stages. The first stage applies the variance-based method at low sample size to screen out
irrelevant inputs, whereby the complexity of the input domain is reduced - this is the factor fixing
stage. Then, the second stage applies the variance-based method and the PAWN distribution-based
method to the subset of relevant inputs to identify which key inputs drive the response of the model,
i.e., factor prioritisation. We compare the PAWN distribution-based method to the variance-based
method in OWCAT, given that the latter is model-independent. A theoretical benchmark of these two
methods was conducted in previous work.29 The overall GSA process is displayed in Figure 5.

Factor Fixing
Low sample 

Variance-based 
method

OWCAT

 Variance-based 
method

OWCAT
PAWN 

distribution-based 
method

Factor PrioritisationFactor Prioritisation

Figure 5: SA techniques chosen for OWCAT
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4 GSA METHODS

4 GSA methods

4.1 Sobol method

The Sobol or variance-based method aims to decompose model output variance by the variance of
model input parameters. Following30 and its extension to non-uniform random variables in,31 we
assume that the model in question can be represented by a High Dimensional Model Representation
(HDMR) as in Equation 3, which is made up by summands which are increasing in dimensionality.
The total number of summands is equal to 2N . Since the Xi variables are independent, the joint
probability distribution function fX(X) is the product of the marginals, as displayed in Equation 2:

fX(X) = f1(X1)f2(X2)...fn(XN ) (2)

where g(X) is the model to which the GSA is applied, and the number of elements of increasing
dimensionality is an increasing function of

(
N
i

)
∀i ∈ 1, ..., N .

Y = g(X) = g0 +
∑
i

gi(Xi) +
∑
i<j

gi<j(Xi, Xj) + ...+ g12...n(X1, X2..., XN ) (3)

If the model variables are mutially independent (i.e. if Equation 4 holds), the model representation is
an Analysis of Variance (ANOVA) HDMR. In,32 Sobol proves that, in this case, this decomposition is
unique for any k = 1, 2, ..., s, and any 1 ≤ i1 < i2 < ... < is ≤ N and s = 1, 2, ..., N .∫

gi1...is(Xi1 , ..., Xis)fik(Xik)dxik = 0 (4)

If, in addition, g(X) and all its terms are square integrable, then the expectation and total variance
of this function is given in Equation 5 and 6, respectively.

E[Y ] =

∫
g(X)fX(X)dx = g0 (5)

V[Y ] =

∫
(g(X)fX(X))

2
dx− g02 (6)

Partial variances Vi and the total variance V [Y ] can then be calculated as in Equations 7 and 8.

Vi = V (gi(Xi)) = VXi
(EX∼i

[Y |Xi]) (7)

V[Y ] =
∑
i

Vi +
∑
i<j

Vi,j + ...+ V12...n (8)

The decomposition of the variance allows users to define the first order and total order sensitivity
indices. The first order index Si indicates the reduction in output variance that can be achieved by
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4.2 PAWN distribution-based method 4 GSA METHODS

fixing input parameter Xi, disregarding interactions with other parameters, i.e. it is a mesaure of the
main effect, as shown in Equation 9.

Si =
VXi(EX∼i

[Y |Xi])

V (Y )
=

Vi
V (Y )

(9)

where Xi is the i-th factor. The expected value of Y is calculated by varying all X∼i while keeping Xi

constant. In an outer loop over all possible values of Xi, the outer variance can then be computed. Note
that the number of compututations increases exponentially in the number of uncertain parameters. In
a high-dimensional model, computing all Sobol components can therefore quickly lead to prohibitive
computational costs.33 therefore introduces the total effect index, as defined in Equation 10. This
measures the total contribution of the variation in outputs that can be attributed to factor Xi, through
not only the first order effect but also through all higher-order interactions.

STi =
EX∼i

(VXi
([Y |X∼i])

V (Y )
= 1− VX∼i

(EXi
([Y |X∼i])

V (Y )
(10)

Following the introduction of the Sobol method, many studies have attempted to increase the efficiency
of the computational process. Two of the latest advances are radial sampling28 and winding stairs.34

Since these studies show that the latter outperforms the former, we use the winding stair design. Using
this method, the total sensitivity indices STi

can be estimated by 11 and 12 respectively,35 where A
and B are independent sampling matrices with elements aji and bji, j ∈ [1, ..., N ] and i ∈ [1, ...k] is a

dummy variable, AB
(i) is a transformed A such that column i belongs to B, while the generic elements

of the matrix are determined using quasi-random numbers, or the so-called shifted LPt sequences. This
process significantly improves the computational cost of the Sobol method compared to conventional
Monte Carlo sampling, and open-source libraries exist to facilitate the generation process of the low-
discrepancy series.36

EX∼i
(VXi

([Y |X∼i]) =
1

2N

N∑
j=1

[f(A)j − f(AB
(i))j ]

2 (11)

EX∼i
(VXi([Y |X∼i]) =

1

2N

N∑
j=1

[y(a1
(j), a2

(j), ..., ak
(j))− y(a1

(j), a2
(j), ..., bi

(j), ..., ak
(j))]2 (12)

4.2 PAWN distribution-based method

The PAWN distribution-based method assesses the difference between the unconditional cumulative
distribution function (UCDF) Fy(y) and the conditional cumulative distribution function (CCDF)
Fy|xi

(y) of output y when each input parameter xi is fixed. This absolute value for a particular
realisation of xi is the Kolmogorov-Smirnov (KS) statistic, as defined in Formula 13 . This KS statistic
provides an alternative measure of the impact of variation in xi on model output variability. When
it is close to zero, this implies that fixing input xi does not significantly reduce output variance, and
therefore, that variation in xi can safely be ignored.

KS(xi) = |Fy(y)− Fy|xi
(y)| (13)

10



4.2 PAWN distribution-based method 4 GSA METHODS

Note that the KS statistic is calculated locally, i.e. it may depend on the particular realisation of
xi. To convert it into a useful metric that is not dependent on arbitrary assumptions, it is therefore
necessary to instead use its mean or median, given all possible realisations of xi; so in general this is
represented in Equation 14 as:

Ti = statxi
|KS(xi)| (14)

where statxi is the chosen statistic. Ti is now a global estimate of the impact of fixing xi on the
variation in model output. It is also moment-independent, in contrast to the variance-based methods
described above, easy to interpret and stable. Since computing all KS(xi) is generally impossible, it

is usually approximated numerically as ̂KS(xi), as shown in 15.

̂KS(xi) = |F̂y(y)− ̂Fy|xi
(y)| (15)

We can then split the distribution of xi into n equally spaced intervals Ik and define conditional
samples Fy|xi

. The unconditional sample Fy(y) can coincide with the entire sample Y or consist of
only a subsample. This is represented in Equation 16. Further information regarding the latest PAWN
method can be found in.37

T̂i = statk=1,...,nKS(Ik) where KS(Ik) = |F̂y(y)− ̂Fy|xi
(y) ∈ Ik| (16)

Both the Ti and STi metrics range from 0 to 1.
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5 CASE STUDY

5 Case Study

A key metric for the life-cycle costs of an offshore wind project is the Levelised Cost of Energy (LCOE),
defined as the discounted sum of the cash flow expenditures divided by the discounted sum of electricity
production over the life span of the project. In order to calculate the LCOE, DEVEX, CAPEX, OPEX
as well as DECEX have to be assessed. These costs are highly influenced by the physical characteris-
tics of the wind farm, including but not limited to the water depth, distance from shore, wind speed
and seabed conditions. Throughout the case study we consider the LCOE as the metric of interest.
Therefore, we are interested in evaluating how different techno-economic model inputs affect the LCOE.

The purpose of the case study is to identify the main parameters for the development of an offshore
wind farm, once an area has been awarded to the developer. For this reason, two theoretical offshore
wind farms have been considered. Given that the average size of European commercial offshore wind
farms commissioned in the year 2017 is 500MW;1 the same size is chosen as a reference in our case
study. The case study considers two types of commercial offshore wind farms. Type A is representative
of UK Round 2 site allocations, whereas site type B is similar to the Scottish Territorial Water and UK
Round 3 sites. We have assumed that there is a trade-off between how close the farm is from shore, its
water depth and the wind resource available. Site Type A is most suitable for monopile foundations,
since the seabed soil conditions are simple and drilling operations are kept to a minimum. At site
Type B, on the other hand, jackets are the most cost-effective foundation, as seabed soil conditions are
complex. To simplify the analysis, we assume that export cable lengths and vessel movement paths
are equal to the closest distance to shore. Another assumption is that both offshore wind projects
use project finance. Both sites are to be assessed with a generic 8.3 MW wind turbine with a rotor
diameter of 164m. The project specifications for those generic offshore wind farms are shown in Table
1 and based on a report from The Crown Estate.38 Apart from the fixed variables chosen to represent
Site Type A and B, a list of the categories of uncertain variables used in OWCAT is given below.

Parameter Site Type A Site Type B

Water Depth [m] 25 45

Distance from shore [km] 25 35

Wind Speed @ 100m [m/s] 9 9.5

Foundation Type Monopile Jacket

Electrical Infrastructure HVAC HVAC

Wind Turbine Type 164-8.3 MW 164-8.3 MW

Table 1: Site Type A and B

� Project specifications, which refer to the offshore wind project characteristics. Examples of these
would be the uncertainty regarding the wind speed at a given height, the average water depth,
soil conditions, spacing between turbines, the length of the onshore cable route, etc.

� Technology specifications, which address the technological details of the wind turbine, foundation,
inter-array cable, export system and grid connection. This includes the turbine availability, the
average loading, installation and commissioning time of the different components, etc.

� Economic specifications, which include the the risk-free rate and cost of debt, insurance costs,
contingency requirements, taxes, depreciation rates, seabed rent, exchange rates and inflation.

� Vessel specifications for all vessels used during installation and decommissioning. This includes
day rates, vessel transit speeds, positioning time, mobilisation time, weather window require-
ments and carrying capacities.
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6 Results

First stage - Factor Fixing
With the objective of screening out irrelevant inputs, the variance-based method (at low sample size)
is applied to approximately 150 model inputs; this is described in Section 3 as the first stage GSA. We
have used a high performance computing cluster at the University of Edinburgh to compute the total
indices with 300 000 model evaluations. The same process is employed for both Type A and Type B
offshore wind farms, with the only difference that Type A has 149 uncertain parameters whereas Type
B has 150.

Figure 6 shows the total contribution of factor Xi to the LCOE variation, in descending order of
importance. Note that Figure 6 does not show the contribution of the first factor, the measured (P50)
annual mean wind speed, given that it is two orders of magnitude higher than the rest, which would
distort the figures. Total sensitivity indices STi (small circles in blue) are estimated via Monte Carlo
simulation (using the Sobol low-discrepancy sequence described above) for input factors Xi i = 1,...,149
for Type A (150 for Type B). 95% confidence intervals (vertical dashed lines in blue) are estimated by
bootstrapping 1000 replicas. Figure 6 highlights that the distribution of input parameter importance
follows a highly asymmetric distribution, with a small number of input parameters accounting for most
of the variation in output, while most inputs play little to no role. If we were to sum the separate
STi contributions of the different inputs, we would see that, for the cost modelling tool, these do not
add up to 100%. As a result, the cost modelling tool features interaction between parameters. Only
additive models, models that have no interactions between inputs, can be decomposed in terms of
the contribution of individual inputs - the sum of the STi contributions of the different inputs would
add up to %100. The results of the global sensitivity analysis highlight the importance of the mean
wind speed uncertainty in the design of offshore wind farms; STi for the measured (P50) annual mean
wind speed is 91% for Type A (89% for Type B). In addition to that, the five key inputs in Type A
add up to 98% of STi, whereas the sum of the rest of the inputs amount to 1%. Type B follows a
similar result, where the five key inputs add up to 100% of STi and the rest of the inputs 3%. As
previously mentioned, these results demonstrate the very asymmetric distribution of importance in
offshore wind investment models. We use a threshold STi of 0.02% to select the relevant inputs for the
second global sensitivity analysis phase: a benchmark between the PAWN distribution-based method
and the variance-based method. As a result, 20 model inputs were selected for Type A and 22 for
Type B.

Second stage - Factor Prioritisation
In order to enable a fair comparison between the PAWN distribution-based method and the variance-
based method, the same number of model evaluations is considered; this is the second stage of the
GSA. The benchmark is carried out by applying the PAWN distribution-based method with 20 con-
ditioning points, against the variance-based with the selected parameters from the previous analysis,
resulting in approximately 300 000 model evaluations for each method.

The top chart in Figure 7 displays the total contribution of the LCOE variation due to factor Xi

in ascending order of importance for the variance-based method. Total sensitivity indices STi (small
circles in blue) are estimated via a Monte Carlo simulation (again using the Sobol low-discrepancy
sequence) for input factors Xi i = 1,...,20. 95 % confidence intervals (vertical dashed lines in blue) are
estimated by bootstrapping 1000 replicas. The bottom chart in Figure 7 displays the total contribution
of the LCOE variation due to factor Xi in ascending order of importance for the PAWN distribution-
based method. Total Kolmogorov Smirnov (KS) statistics Ti (small circles in blue) are estimated via
random sampling, and confidence intervalswere estimated using bootstrapping as before. To capture
the level of noise for the PAWN distribution-based method (vertical dashed lines in red), we use a
dummy variable which is bootstrapped 1000 times, resulting in the upper and lower horizontal dashed
lines in red. This does mean that, if Ti is below the upper bound, we cannot distinguish between this
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happening because of the importance of the input, or because of the level of noise. The same process
is repeated for Type B offshore wind farm for the 22 selected inputs and displayed in Figure 8.
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Figure 6: First stage global sensitivity analysis applied to OWCAT for Type A and B offshore wind
farms. This figure does not show the contribution of the first factor, the measured (P50) annual mean
wind speed, given that it is two orders of magnitude higher than the rest and would render difficult
its interpretation.
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Figure 7: Second stage global sensitivity analysis applied to OWCAT for Type A offshore wind farm
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Figure 8: Second stage global sensitivity analysis applied to OWCAT for Type B offshore wind farm
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The bottom 5 parameters in Figure 7 and 8 represent the items that contribute the most to the vari-
ability of the LCOE, and therefore the paremeters the decision maker should focus on. A side-by-side
comparison shows that these 5 parameters for Type A are ranked the same for both the variance-based
and PAWN distribution-based methods; these are the measured (P50) annual mean wind speed, the
target equity rate of return, the default cost for generic turbine, the fraction of position requiring
drilling, the minimum debt service coverage ratio and the additional time when drilling is required.
This is similar for Type B, where the difference between the variance-based and PAWN distribution-
based methods is reflected in a swap on the fifth and 6th parameter - the additional time when drilling
is required for the average installation duration for pinpiles. Further details for each of them are given
below:

� Estimated (P50) annual mean wind speed, i.e. the mean wind speed that is expected to be
exceeded in 50% of the estimates – the median mean wind speed. Further information on the
estimated annual mean wind speed can be found in.24

� MARR: the minimum acceptable rate of return the company is willing to accept, given its attitude
to risk and opportunity costs. The MARR is typically defined by the company and imposed to
be no lower than the IRR of the project. The cost modelling tool imposes a MARR to work out
the LCOE. Further information on the financial modelling can be found in the ”Formation of
the financial module” section of.24

� Default costs for generic wind turbine: Generic offshore wind turbine costs expressed as units of
currency per kW.

� Fraction of position requiring drilling: This concerns the foundation installation part of the cost
modelling tool. Foundations can be either driven or drilled depending on the soil conditions. A
distinction needs to be made between Type A and Type B offshore wind farm. Whereas Type
A is impacted by the use of monopiles which are highly sensitive to soil conditions, Type B uses
jackets which are typically less sensitive.

� Minimum debt service coverage ratio, i.e. the cash flow available for debt service divided by the
actual debt service. This metric is typically used in private infrastructure project debt analysis
to decide if the project generates enough cash to repay its obligation.

� Additional time when drilling is required:

The installation time of the monopiles or pinpiles depends upon whether or not drilling is re-
quired. The model captures this characteristic by increasing the average installation time by an
additional duration. Whereas this parameter models the additional time, the fraction of position
requiring drilling depends on the bathymetry of the offshore wind farm.

Table 2 in the Appendix includes further information regarding the 20 selected parameters for Type
A and 22 selected parameters for Type B in table 3. The data have been obtained from discussions
with practitioners.

17



9 APPENDIX

7 Conclusions

Global sensitivity analysis for offshore wind cost modelling provides a methodological framework to
unlock further cost reductions. The methodological framework allows users to choose global sensitivity
analysis techniques for offshore wind techno-economic models. A strategy to interrogate the model
by means of the latest global sensitivity analysis techniques has been developed and applied to the
offshore wind cost modelling tool.

The results of the global sensitivity analysis highlight the importance of the mean wind speed un-
certainty in the design of offshore wind farms. This highlights that the overriding factor to further
decreased in costs falling costs is larger turbine sizes. Larger turbines sweep a larger area and, be-
cause of their higher hub height, are subject to higher and more consistent wind speeds, increasing
their yield and capacity factors. Larger turbines not only increase yield but also reduce offshore wind
CAPEX and OPEX, with key impacts on balance of plant and installation costs due to the reduced
number of units. Beyond this, sensitivities to input parameters follow a very asymmetric distribution
of importance, with few inputs accounting for most of the LCOE output uncertainty and most inputs
playing little to no role. Although results for different sites are similar, monopile foundations are more
sensitive to water depth than jackets. However, jacket offshore wind farms are very sensitive to pinpile
installation times, especially when drilling is required.

In general, the top 6 parameters to consider when building an offshore wind investment business case
are: the measured (P50) annual mean wind speed, the target equity rate of return, the default cost
for generic turbine, the fraction of position requiring drilling, the minimum debt service coverage ra-
tio and the additional time when drilling is required. The two global sensitivity analysis methods
give very similar results in terms of the key drivers to unlock further cost reductions - these top
6 parameters. However, differences in the ranking are observed when looking at the contribution of
the second order effects of the rest of the parameters to the variability of the LCOE output uncertainty.

This study is of interest to developers, investors and policy-makers alike seeking to understand which
techno-economic parameters are key when building offshore wind investment models.
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9 Appendix

The second stage GSA comprises the following list of input parameters, described by Input Tag,
Input Description, Units and Uncertainty Type. The Uncertainty Type represents the probability
distribution associated to a given input. Xi ∼ N(µ, σ) represents a normal distribution with mean
(µ) and relative standard deviation (σ) expressed as a percentage of the mean. Xi ∼ PERT (a, b, c)
represents a PERT distribution defined by the minimum (a), most likely (b) and maximum (c) values
that a variable can take. Xi ∼ U(a, b) represents a uniform distribution with the bounds defined by
the parameters a and b, which are the minimum and maximum values.
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27 Hübler Clemens, Gebhardt Cristian Guillermo, Rolfes Raimund. Hierarchical four-step global sen-
sitivity analysis of offshore wind turbines based on aeroelastic time domain simulations. Renewable
Energy. 2017;111(May):878–891.

28 Campolongo Francesca, Saltelli Andrea, Cariboni Jessica. From screening to quantitative sensitivity
analysis. A unified approach. Computer Physics Communications. 2011;182(4):978–988.

29 Mora Esteve Borràs, Spelling James, Weijde Adriaan H.. Benchmarking the PAWN distribution-
based method against the variance-based method in global sensitivity analysis: Empirical results.
Environmental Modelling and Software. 2019;122(October).

30 Sobol I M. Sensitivity analysis for nonlinear mathematical models. Math. Model. Computer.Exp.
1993;1(4):407–414.

31 Baudin, Michael; Matinez Jean-Marc. Introduction to Sensitivity Analysis with NISP. January: ;
2013.

32 Sobol I. M.. Theorems and examples on high dimensional model representation. Reliability Engi-
neering & System Safety. 2003;79(2):187–193.

33 Homma T, Saltelli Andrea. Importance measures in global sensitivity analysis of nonlinear models.
Reliability Engineering & System Safety. 1996;52:1–17.

34 Saltelli Andrea, Annoni Paola, Azzini Ivano, Campolongo Francesca, Ratto Marco, Tarantola Ste-
fano. Variance based sensitivity analysis of model output. Design and estimator for the total sensi-
tivity index. Computer Physics Communications. 2010;181(2):259–270.

35 Jansen Michiel J.W.. Analysis of variance designs for model output. Computer Physics Communi-
cations. 1999;117(1):35–43.

36 Sobol I.M, Turchaninov Yu, Leviatan B.V. Quasi Random Sequence Generator. Keldysh Institute of
Applied Mathematics, Russian Accademy of Sciences, Moscow. 1992;.

37 Pianosi Francesca, Wagener Thorsten. Distribution-based sensitivity analysis from a generic input-
output sample. Environmental Modelling and Software. 2018;108(August 2018):197–207.

23



REFERENCES REFERENCES

38 The Crown Estate . Offshore wind cost reduction-Pathways study. : ; 2012.

39 Borgonovo Emanuele, Plischke Elmar. Sensitivity analysis: A review of recent advances. European
Journal of Operational Research. 2016;248(3):869–887.
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