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ABSTRACT 

Awareness is mounting that urban greenspace is beneficial for residents’ health. While a plethora 

of studies have focused on greenspace quantity, scant attention has been paid to greenspace quality. 

Existing methods for assessing greenspace quality is either highly labor-intensive and/or 

prohibitively time-consuming. This study develops a new machine learning method to assess 

greenspace quality based on street view images collected from Guangzhou, China. It also 

examines whether greenspace exposure disparities are linked to the neighbourhood socioeconomic 

status (SES). The validation process indicated that our scoring system achieved high accuracy for 

predicting street view-based greenspace quality outside the training data. Results also show that 

there were marked differences in spatial distribution between aggregated NDVI (Normalized 

Difference Vegetation Index), street view greenness quantity and quality. Regression models show 

that neighbourhood SES is not associated with NDVI. Although neighbourhood SES is associated 

with both street view greenness quantity and quality index value, street view greenness quality is 

more sensitive to the change of neighbourhood SES. Our work suggests that policymakers and 

planners are advised to pay more attention to greenspace quality and greenspace exposure 

disparities in urban area. 

 

 

 

Keywords 

Greenspace; Socioeconomic conditions; Street view; Machine learning; Environmental disparity; 

China 

 

 

1. Introduction 

Awareness is mounting that urban greenspace is beneficial for residents’ health (Gascon et al., 

2015; Hartig et al., 2014; Markevych et al., 2017; Nieuwenhuijseng et al.,, 2017; Wu et al., 2020). 

Several meta-reviews identify three main potential pathways through which greenness exposure 

promotes health (Gascon et al., 2015; Markevych et al., 2017). First, greenspace can reduce 

people’s exposure to environmental stressors such as air pollution, noise and heat waves (Dadvand 

et al., 2015; Dzhambov et al.,, 2018a; Dzhambov et al., 2018b). Second, greenspace can restore 

people’s capacities. Attention restoration theory (ART) (Kaplan, 1995) and stress reduction theory 

(SRT) (Ulrich et al., 1991) suggest that greenspace can restore people’s attention by reducing 

stress and pressure. Last, greenspace can build people’s capacities such as encouraging more 

physical activity and facilitating social cohesion (Su et al., 2016; Wang et al., 2019a; Yang et al., 

2019; Yang et al., 2020).  

 

Previous studies have reported environmental inequities in terms of urban greenery exposure in 

developed countries (Li et al., 2016; Xu et al., 2018; Zhou and Kim, 2013). Since greenspace can 

Revised Manuscript with Changes Marked (without Author
Details)
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 2 

have potential health benefits, environmental disparities for greenspace such as unequal access or 

exposure to greenspace may result in disproportionate health benefits for different social groups 

(Jensen et al., 2004; Li et al., 2016). This kind of environmental disparities is also often associated 

with neighbourhood socioeconomic conditions (Apparicio et al., 2012, 2017; Barbosa et al., 2007; 

Jensen et al., 2004; Li et al., 2016; Landry and Chakraborty, 2009). Normally, neighbourhoods of 

high SES (socioeconomic status) often have greater financial resources, cultural and social capital, 

and political influence to maintain and enhance greenspace (Li et al., 2016; Li et al., 2015a), and 

potentially have more demand for greenspace quality (Jim and Shan, 2013). As a result, residents 

in high socioeconomic status neighbourhoods have better access to greenspace both in terms of 

quantity and quality. For example, Li et al. (2016) found that neighbourhoods in Hartford, 

Connecticut, USA with higher income have more street greenery than those with lower income. 

Similarly, in a study of six cities in Illinois, USA. However, Mears et al. (2020) found that 

although deprived areas in England had better access to greenspace, the greenspace was usually  

smaller in size, and worse in quality. Due to higher population density, deprived areas were 

disadvantaged with lower per capita greenspace. Therefore, the association between greenspace 

exposure and SES is complex and not always consistent. In China, although most of the 

greenspace is public greenspace and is provided by the government, it still distributes unequally 

across different neighbourhoods in terms of SES (Sun et al., 2019; You, 2016). First, local 

government finance usually is associated with neighbourhood socioeconomic conditions (e.g. 

taxes from property management fees or rents), so neighbourhoods with higher SES are more 

likely to support its local government to provide sufficient and better greenspace. Also, since 

greenspace may increase the land value in China, so local governments may follow land-based 

development process and are keen to provide more greenspace in neighbourhoods with higher 

SES (Chen and Hu, 2015). Second, neighbourhoods with more greenspace have higher housing 

price or rent in China, so  disadvantaged social groups are less likely to afford  the properties 

there (Xiao et al., 2017a). For example, You (2016) found inequalities in greenspace provision are 

associated with neighbourhood-level SES in Shenzhen while Shen et al. (2017) pointed out that 

disparities of greenspace provision exist for neighbourhoods with different levels of SES in 

Shanghai. 

 

Despite the growing awareness of the importance greenspace quantity for population health, the 

role of greenspace quality has received less attention (Brindley et al., 2019). Compared with 

greenspace quantity which is an objective characteristic, greenspace quality reflects more about 

people’s subjective attitudes towards surrounding greenness (Brindley et al., 2019). van Dillen et 

al. (2012) indicates that quality tends to be a marker for local people’s eagerness to use the 

greenspace and the affordances they gain from this utilization. Furthermore, a high aesthetical 

value is likely to improve the restorative experience which leads to reduction of stress. Previous 

epidemiological studies mainly focus on the effect of greenspace availability, access or quantity on 

health (Gascon et al., 2015; Markevych et al., 2017), so many scholars argued that future research 

on neighborhood greenspace and health should focus more on its quality rather quantity (Van 

Dillen et al., 2012). A limited number of studies have compared the health benefit of both quantity 

and quality of greenspace and found that the quality of greenspace is more relevant to residents’ 

health outcomes (Astell-Burt et al., 2014; Francis et al., 2012; Van Dillen et al., 2012). For 

example, Francis et al. (2012) found that residents living in neighbourhoods with high quality 
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 3 

greenspace had lower odds of psychological distress, but this association was insignificant with 

greenspace quantity. The reason may be that quality reflects people’s perception of the greenspace 

which directly influences the actual use of greenspace. However, Mears et al. (2020) found that 

whilst some quantity and quality indicators were not prominently associated with health outcomes, 

which highlights an urgent need for research including different measures of greenspace exposure. 

The omission of quality in research is not only due to the vagueness in definition but also due to 

methodological issues in operationalisation. (Brindley et al., 2019). Existing studies normally used 

one of two methods to evaluate greenspace quality including questionnaires and SSO (systematic 

social observation) (de Vries et al., 2013; Feng and Astell-Burt, 2017; Van Dillen et al., 2012). 

Both methods have obvious limits including being labor-intensive, time-consuming and difficult 

to apply across a large study area (Lu, 2018). 

 

Given the challenges of collecting information about green space quality at large scale for 

epidemiological analyses, recently there has been interest in developing new methods for 

auto-extracting spatial data that provide indicators of quality. Most notably, the recent 

development of machine learning approaches combined with online mapping data has enabled the 

automated extraction of sentiments from social media text such as Flickr and Twitter data 

(Brindley et al., 2019), and ground objects (i.e., trees and grasses) from interactive panoramas 

such as street view images (Helbich et al., 2019; Labib et al., 2020; Larkin and Hystad, 2019; Li et 

al., 2018; Lu, 2018; Toikka et al., 2020; Wang et al., 2019a). For example, Brindley et al. (2019) 

used social media text to extract people’s sentiments towards greenspace in order to better capture 

an indicator of urban greenspace quality. Hence, street view images have already been used for 

assessing eye-level greenspace quantity (Helbich et al., 2019; Labib et al., 2020; Larkin and 

Hystad, 2019; Li et al., 2018; Lu, 2018; Toikka et al., 2020; Wang et al., 2019a). For example, 

Larkin and Hystad (2019) used different exposure measures of visible greenspace and found weak 

relationships between street view quantity and other greenspace measures. Helbich et al.(2019) 

used both NDVI (Normalized Difference Vegetation Index) and street view images to assess 

greenspace quantity and found only greenspace evaluated by street view images is associated with 

mental health. Street view images have proven to be useful for field observation, since people can 

evaluate the local environment based on ground objects in street view images (Wang et al., 2019b; 

Wang et al., 2019c; Yao et al., 2019), an approach known as virtual systematic social observation 

(Plascak et al., 2020). For example, Ye et al. (2019) used street view data and machine learning 

methods to assess street quality, while Zhang et al. (2018) applied the similar approach in 

identifying different urban perceptions. People’s perception of greenspace quality is also based on 

different ground objects (e.g. the absence of trash cans), so besides assessing greenspace quantity, 

street view images can also be applied for quality assessment. Lu (2019) used Google street view 

images to assess greenspace quality and used field observation to validate the results. Their 

findings showed that the results from street view images is highly correlated with the results from 

field observation and therefore may be a potentially more efficient way for assessing greenspaace 

quality. 

 

This study addresses some of these research needs and develops a new method to assess 

greenspace quality based on street view images collected from Guangzhou, China and a machine 

learning approach. It also focuses on greenspace exposure disparities in terms of urban greenspace 
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quantity and quality that are linked to the neighbourhood socioeconomic status, which enables us 

to examine whether socioeconomic disadvantaged populations are exposed to poorer quantity and 

quality of greenspace. This study extends previous research in several respects. First, instead of 

only focusing on greenspace quantity, it develops a new method to assess greenspace quality 

based on street view data which is important for epidemiological studies. Second, although 

previous studies have tried to use street view images to assess greenspace quality, they still 

evaluate manually based on comparatively few images, which means their methods cannot be 

applied readily in large scale studies and may lead to bias. Our new approach relies on machine 

learning approach which can assess millions of images over a large scale. Third, it further 

compares greenspace exposure disparities in terms of neighbourhood socioeconomic status 

between quantity and quality.  

 

 

2. Method 

2.1. Study area 

Our analysis was conducted in Guangzhou which is located at the Pearl River in mainland China,  

part of a metropolitan area with a population of more than 13 million people. Our study area was 

restricted to seven old districts in the Guangzhou city (Liwan, Yuexiu, Haizhu, Tianhe, Baiyun, 

Panyu and Huangpu District) (Fig. 1) for two reasons. First, new districts (Huadu, Conghua, 

Zengcheng and Nansha District) are included in Guangzhou only recently due to administrative 

order, so they are economically and socially separated from seven districts in main urban zone. 

Second, new districts tend to have substantially lower population/housing density and have fewer 

built-up areas, and therefore much less street view data were collected there. The focus of this 

study is on neighbourhood-level (primary administrative unit) and there are 1677 residential 

neighbourhoods (juweihui) in our study area (average neighborhood size= 1 km2; average 

population= 5660 persons). A neighbourhood (juwei) usually consists of several gated 

communities (xiaoqu) and non-gated communities (xiaoqu), but a community is often too small 

and residents' daily activity space is not limited by the boundary of community. , so 

neighborhoods (juwei) should be the better analytical unit. Hence, using community  with a small 

area of greenspace may lead to,  underestimation of  residents’ greenspace exposure. 
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 5 

 

Fig. 1 Locations of the sampled districts in Guangzhou, China 

 

 

2.2. Data collection 

Street view images were collected from Tencent Online Map (downloaded through the Tencent 

Online Map API), the most comprehensive street view image database in China 

[https://map.qq.com/] (Helbich et al., 2019). Sampling points were created along each segment of 

the street network (obtained from OpenStreetMap (Haklay & Weber, 2008)) at 100m intervals 

following previous studies (Li et al., 2018). Street view images usually have a visual range of 

more than 50 meters, so 100m intervals can ensure that the street view images cover all the ground 
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 6 

objects between any two sampling points. Following previous studies (Helbich et al., 2019; Wang 

et al., 2019a), we collected four images from four headings (i.e., 0, 90, 180, 270 degree) for each 

sampling point. In total, we defined 71,286 sampling points which led to 285,144 street view 

images. A calibration of image brightness was conduct to avoid side effects. In order to obtain a 

measure of over-head view greenspace, remote-sensing based greenspace was assessed in this 

study. The data were derived from the Landsat 8 Operational Land Imager and the Thermal 

Infrared Sensor at a spatial resolution of 30 meters in 2016 (USGS EarthExplorer: 

https://earthexplorer.usgs.gov/). Last, neighbourhood socioeconomic condition indicators was 

collected from the sixth census of Guangzhou in 2010, which is part of 2010 China’s 10% 

population sample survey. 

 

2.3. Machine-learning based image segmentation 

In order to calculate an eye-level greenspace exposure, following previous studies (Helbich et al., 

2019; Wang et al., 2019a), we extracted greenspace objects (e.g., grasses, trees) with a fully 

convolutional neural network for semantic image segmentation (FCN-8s) (Long et al., 2015) 

based on the ADE20K dataset of annotated images for training purposes (Zhou et al., 2017; Zhou 

et al., 2019). The accuracy of the FCN-8s was with 0.814 for the training data and 0.811 for the 

test data in this study.  

 

2.4. Street view greenspace quantity and quality 

Quantity 

Following previous studies (Helbich et al., 2019; Wang et al., 2019a), street view greenspace 

quantity per sampling point was determined as the ratio of the number of greenspace pixels per 

image summed over the four cardinal directions to the total number of pixels per image summed 

over the four cardinal directions.  

 

Quality 

 

Fig 2 summarizes the workflow of assessing the street view greenspace quality. First, we 

constructed our training dataset. Specifically, 2000 images were randomly selected. Then, these 

images were scored (0 to 10) based on greenspace quality attributes by ten trained investigators 

who have resided in the research area for at least 3 years. As mentioned in literature review, there 

are various aspects of greenspace quality, so there are also many different operational items for 

assessing it. In order to get a robust greenspace quality indicator, we  included a wide range of 

attributes of greenspace quality. The attributes (Cronbach’s alpha=0.85) included accessibility 

(very bad-very good), maintenance (very bad-very good), variation (very monotonous-very 

varied), naturalness (very unnatural-very natural), colourfulness (very uncolourful-very colourful), 

clear arrangement (very unsurveyable-very surveyable), shelter (very enclosed-very open), 

absence of litter (very little trash-very much trash), safety (very unsafe-very safe) and general 

impression (very negative-very positive) (Lu, 2018; Van Dillen et al., 2012). This provided 10 

attributes scores for 2000 images. In the next step, since people evaluate the neighbourhood 

environment based on ground objects, ground object elements within each street view images can 
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 7 

be used to predict residents’ perception of the local environment (Wang et al., 2019b; Wang et al., 

2019c; Yao et al., 2019). Greenspace quality as one of people’s perception of the local 

environment can also be evaluated through this way. After the image segmentation and the 

attributes scores of 2000 images, we calculated the proportion of each ground object elements. 

The random forest model (Breiman, 2001) for automatic rating was trained by fitting the inputted 

rating scores with the proportion of 151 elements 

(https://groups.csail.mit.edu/vision/datasets/ADE20K/) in the image segmentations. In this way, 

151 ground elements within each image were automatically weighted based on the ten attributes 

scores. For example, with fewer trash can elements within an image, the absence of litter score 

would be higher for this image, and the trash can elements are given a weight based on ten 

attributes scores accordingly. Last, we used this automated scoring system to score all images in 

study area on these ten attributes. 

 

Fig 2 Workflow for assessing greenspace quality. 

 

 

We took two steps to validate our results. First, one hundred Tencent view images were  

randomly selected, and attributes of greenspace quality of those images were again assessed 

manually. The scores from the automated scoring system were highly correlated with attributes of 

greenness quality of those manually assessed images: accessibility (r=0.82, p<0.05), maintenance 

(r=0.87, p<0.05), variation (r=0.81, p<0.05), naturalness (r=0.95, p<0.05), colourfulness (r=0.92, 

p<0.05), clear arrangement (r=0.93, p<0.05), shelter (r=0.89, p<0.05), absence of litter (r=0.86, 

p<0.05), safety (r=0.98, p<0.05) and general impression (r=0.91, p<0.05). This process indicates 

that our scoring system can achieve high accuracy for predicting ten attributes scores outside the 

training data. 
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Second, 26 residential neighbourhoods were randomly selected using a multi-stage stratified 

probability proportionate to population size (PPS) sampling technique and physically visited by 

three observers and audited with the same audit tool. The results showed reasonable inter-rater 

reliability (Pearson correlation r > 0.90; percentage agreement > 85%). We averaged the score 

from three observers and calculated the score based on our scoring system for these 26 residential 

neighbourhood using all the images within the neighbourhood. The correlation between the score 

from the field audit and scoring system was as follows: accessibility (r=0.71, p<0.05), 

maintenance (r=0.73, p<0.05), variation (r=0.69, p<0.05), naturalness (r=0.72, p<0.05), 

colourfulness (r=0.68, p<0.05), clear arrangement (r=0.63, p<0.05), shelter (r=0.72, p<0.05), 

absence of litter (r=0.66, p<0.05), safety (r=0.88, p<0.05) and general impression (r=0.81, p<0.05). 

This process indicates further that the score from our automatic scoring system was correlated 

with the results from field audit. 

 

The above validation process suggested that our proposed method was suitable for measuring 

greenspace quality, so we collected scores of attributes of greenspace quality of those images for 

all images through the proposed automatic scoring system for all sampled neighbourhoods (1677 

residential neighbourhoods). Ten attributes for all images achieved excellent internal consistency 

(Cronbach’s alpha=0.88). Following previous studies (Lu, 2018; Van Dillen et al., 2012), the 

quality of greenspace in each image is the mean value of all 10 attributes. Thus, street view 

greenspace quality per sampling point was determined as the average greenspace quality score of 

four image from different cardinal directions. For each neighbourhood, the street view greenspace 

quality was calculated by the average score of all sampling point within the neighbourhood 

boundary. 

 

 

2.5. Remote sensing greenspace quantity 

Remote sensing greenspace quantity was assessed by NDVI (Normalized Difference Vegetation 

Index) (Tucker, 1979). We collected cloud-free images in the greenest season (i.e., June-August) 

to avoid assessment bias. The value of NDVI was calculated from the following formula: (NIR − 

VIS)/(NIR + VIS), where NIR stood for reflectance in the near-infrared band and VIS stood for 

reflectance in the visible region. We aggregated the value of each pixel within the neighbourhood. 

The value of NDVI varies between −1 and 1and more positive values refer to greener vegetation 

within the neighbourhood. 

 

2.6. Neighbourhood-level socioeconomic indicators 

Following previous studies (Li et al., 2016; Li et al., 2015a; Li et al., 2015b), five socio-economic 

variables at the neighbourhood-level were selected to represent area-level SES from the 2010 

population census data in Guangzhou. These include the proportion of residents with local hukou 

(registered permanent resident vs registered temporary resident), the proportion of residents with 

education attainment above high school, unemployment rate and the proportion of residents 
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working in low status occupation, and per capita housing area. Due to the multicollinearity, we 

used Principal Component Analysis to combine all SES variables into a single indicator. We 

generated the correlation matrix and then calculated eigenvectors and eigenvalues. After that, we 

followed Kaiser-Guttman rule and chose one principal component with the largest eigenvalue, 

which accounted for 86 % of variance explained. The neighbourhood SES index ranged from 

0.280 to 9.826. Higher scores mean higher levels of neighbourhood SES. In order to explore the 

nonlinear relationship between neighbourhood SES and greenness index, we treated 

neighbourhood SES index as quartile variable. 

 

 

2.7. Covariates 

We also controlled for a series of demographic and built environment variables. First, the 

proportion of residents aged 0-18, the proportion of residents aged above 65 and the proportion of 

married residents were controlled. Kabisch and Haase (2014) pointed out that age structure of the 

neighbourhood may have an influence on greenspace provision. Adolescents and elders have 

lower mobility than young adults, so they are more likely to benefit more from greenspace within 

neighbourhood which may be considered in the policy of local greenspace provision (Barbosa et 

al., 2007). Also, residents aged 0-18 are unemployed and residents aged above 65 are retired, so 

tend to spend a greater proportion of their day in their local neighbourhood may also influence 

neighbourhood SES. Second, population density is associated with supply of public facilities and 

dense neighbourhood may have lower SES since poorer residents are more likely to reside in 

higher density areas (Liu and Wu, 2006), so we controlled for the average score of this variable for 

each neighbourhood. Last, the proportion of residents living in houses built before 1979 was 

included. Old neighbourhoods in China have lower Floor Area Ratio which indicates they have 

more open space for greenspace (Xiao et al., 2017a). In China, residents living in house built 

before 1979 usually work in the state sectors which also influence their SES (He et al., 2010; Wu, 

2007).  

 

Table 1  

Summary statistics for all variables. 

Variables (number of neighbourhood=1677) Mean (Standard Deviation) 

Dependent variable  

NDVI 0.105(0.050) 

SVG-quantity 0.201(0.089) 

SVG-quality 5.560(0.572) 

Independent variable  

Neighbourhoods SES quartile (Q1)  0.986(0.210) 

Neighbourhoods SES quartile 2 (Q2)  1.416(0.088) 

Neighbourhoods SES quartile 3 (Q3)  1.767(0.127) 

Neighbourhoods SES quartile 4 (Q4)  2.482(0.577) 

Covariates  

Population density (person/km2)   30704.401(31974.252) 

The proportion of residents aged 0-18 0.147(0.046) 
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The proportion of residents aged above 65 0.082(0.051) 

The proportion of residents living in houses built before 1979 0.011(0.014) 

 

 

 

2.8.  Analysis 

2.8.1 Global Moran’s I 

In order to identify the spatial distribution of greenspace characteristics, we examine the spatial 

autocorrelation of neighbourhood greenspace quantity and quality . Global Moran’s I (Moran, 

1950) was used to reflect the overall level of spatial autocorrelation of neighbourhood greenspace 

quantity and quality.   

 

It was calculated as follow: 
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In the equation, ix 、 jx are the level of greenspace quantity or quality in neighbourhood i 、 j , 

ijw is the spatial weight matrix (queen contiguity)，n is the number of neighbourhood in study 

area. The higher absolute value of Global Moran’s I indicates higher level of spatial 

autocorrelation of neighbourhood greenspace. If Global Moran’s I is positive, neighbourhoods 

with higher level of greenspace cluster with each other and neighbourhoods with lower level of 

greenspace also cluster with each other. However, if Global Moran’s I is negative, neighbourhoods 

with higher level of greenspace cluster with neighbourhoods with lower level of greenspace while 

lower level of greenspace cluster with neighbourhoods with higher level of greenspace. 

 

 

2.8.2 Local Moran’s I 

Global Moran’s I only reflects the overall level of spatial autocorrelation of neighbourhood 

greenspace, but further we need to identify the spatial autocorrelation level of greenspace for each 

neighbourhood, so that we can map it and examine the regions where spatial autocorrelation of 

greenspace is significant for most of the neighbourhoods. We used Local Moran’s I (Anselin, 

1995) to reflect the spatial relevance of greenspace quantity or quality in each neighbourhood to 

its neighbors. Local Moran’s I reveals the degree of spatial difference and significance between 

the greenspace quantity or quality of each neighbourhood and its surrounding neighbourhood. It 

was calculated as follow: 

        
i i ij j

i

I z W z 
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In the equation: iz and jz are the standardized value of greenspace quantity or quality in 

neighbourhood  i  and j ; ijW is the spatial weight matrix( 1 ijjW ). If iI > 0 and iz  >0, 

then neighbourhood will be defined as high-high (H-H) region (significant cluster of high values); 

If iI < 0 and iz < 0，then neighbourhood will be defined as low-low (L-L) region (significant 

cluster of low values)；If iI < 0 but iz > 0，then neighbourhood will be defined as high-low (H-L) 

region (significant cluster of outliers in which a high value is surrounded primarily by low 

values)；If iI > 0 but iz < 0，then neighbourhood will be defined as low-high (L-H) region 

(significant cluster of outliers in which a low value is surrounded primarily by high values). 

 

2.8.3 Spatial regression model 

In order to link greenspace quantity and quality to neighbourhood socioeconomic conditions 

spatial regression model was used. It includes spatial lag model (SLM) and spatial error model 

(SEM) (Cliff and Ord, 1972). If spatial dependence of greenspace exists, OLS (ordinary least 

squares) models may cause bias. SLM. SLM has nested spatial dependence in dependent variables 

and the parameter estimation of independent variables while SEM has the parameter estimation of 

independent variables and error terms, so besides OLS we also adopted SLM and SEM to estimate 

the relationship between neighbourhood-level socioeconomic and demographic variables on 

neighbourhood greenspace quantity or quality. It was calculated as follow: 

iij

n

j iji xywy    1
                        (3) 

i

n

j ijii wxy   


1
                          (4) 

In the equation: iy is the level of greenspace quantity or quality in neighbourhood i ; jy is the level 

of greenspace quantity or quality in neighbourhood j ;  is the spatial autocorrelation 

coefficient; ijw is the spatial weight matrix;  is the coefficient of independent variables. itx is the 

value of independent variables in neighbourhood i ； is the coefficient of spatial lag explanatory 

variable, i is the error term. n is the number of neighbourhood in study area.  

 

3. Results 

3.1. The distribution of greenspace quantity and quality 

 

Fig. 3 shows the spatial distribution of the aggregated greenspace metrics at the neighbourhood 

level using NDVI (Fig. 3a), street view greenness quantity (Fig. 3b) and street view greenness 

quality (Fig. 3c), respectively. Compared with aggregated street view greenness, aggregated NDVI 
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was relatively low in inner-city neighbourhoods. Fig. 4 shows the details of three greenery 

measurements in study area. In Fig. 4a, the sampled neighbourhoods were low in NDVI, but high 

in street view greenness. This is likely because neighbourhoods in the inner-city have a large 

number of street greenery which can be viewed by pedestrians but which are difficult to identify 

remotely overhead. Also, although street view greenness quantity and quality were both high in 

inner-city neighbourhoods, there was still a spatial mismatch between them. For example, in Fig. 

4b, the sampled neighbourhoods were low in street view greenness quality, but high in street view 

greenness quantity. In such neighbourhoods, although street greenery was adequate, the green 

space in the surrounding environment tended to be of low quality. Hence, in Fig. 4c, the sampled 

neighbourhoods were low in street view greenness quantity, but high in street view greenness 

quality. Such neighbourhoods are usually in suburb or wealthy downtown area where people can 

afford villa (larger housing). In such neighbourhoods, street greenery is usually less common but 

well maintained.  

 

 

(a)                       (b)                        (c) 

Fig 3. The distribution of the aggregated green view index values at the neighbourhood level 

(Natural Breaks): (a)NDVI; (B)Street view greenness quantity; (C)Street view greenness quality 

 

 

 

 

(a)                       (b)                        (c) 

Fig 4. Comparing three greenery measurements (A) Low level of NDVI and high level of street 

view greenness; (B) Low level of street view greenness quality and high level of street view 

greenness quantity; (C) High level of street view greenness quality and low level of street view 

greenness quantity. 
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Global Moran's I for distribution of the three aggregated green view index values at the 

neighbourhood level were all positive and significant at 5% significance level which indicates that 

distribution of the three aggregated green view index values had positive spatial dependence and 

space gathering. Figs. 5 displays local Moran's I values in relation to the three types of aggregated 

green view index values at the neighbourhood level. We only focused on HH and LL clusters, 

since HL and LH clusters only make up only a small part. Fig. 5a shows that similar to the spatial 

distribution of the aggregated of NDVI, HH clusters of NDVI were in suburb while LL clusters 

were in inner-city. Fig. 5b shows that HH, LL clusters of street view greenness quantity all could 

be observed in inner-city while HH clusters could also be observed in suburb. Fig. 5c shows that 

similar to street view greenness quantity, HH, LL clusters of street view greenness quality could 

also be observed in inner-city while HH clusters could be observed in suburb. However, unlike 

street view greenness quantity, local Moran's I values in relation to the street view greenness 

quality in inner-city showed spatial characteristic that HH clusters were in the west of inner-city 

while LL clusters were in the east. 

 

 

(a)                       (b)                        (c) 

Fig 5 LISA (Local Indicators of Spatial Association) cluster map of distribution of the aggregated 

green view index values at the neighbourhood level: (a)NDVI; (B)Street view greenness quantity; 

(C)Street view greenness quality 

 

3.2. The relationship between three types of aggregated green view index values and 

neighbourhoods’ socioeconomic conditions. 

 

Table 2 shows the Spearman coefficients among three types of aggregated green view index 

values. The Spearman coefficients of street view greenness quantity versus street view greenness 

quality and the NDVI showed associations of 0.25 (p<0.1) and 0.31 (p>0.1). The Spearman 

coefficients of street view greenness quantity and quality showed associations of 0.78 (p<0.1). 

None of the Spearman coefficients among three types of aggregated green view index values was 

significant at 5% significance level which suggests they measure different aspects of urban 
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greenness. 

 

Table 2 

Results of correlation test for different greenspace measures. 

 NDVI Street view greenness quantity Street view greenness quality 

NDVI 1   

Street view greenness quantity 0.25* 1  

Street view greenness quality 0.31 0.78* 1 

*p < 0.10, **p < 0.05, ***p < 0.01. 

 

Table 3, 4 and 5 show the relationship between three types of aggregated green view index values 

and neighbourhoods’ socioeconomic conditions using OLS, SLM and SEM. Compared with OLS, 

SLM and SEM had higher Adjusted R2. Also, robust LMLAG values were all significant for three 

aggregated green view index at 5% significance level while robust LMERR values were not, so 

we only focused on SLM in Table 3, 4 and 5. SLM in Table 3 showed that neighbourhood SES 

was not associated with aggregated NDVI values while population density and the proportion of 

residents aged above 65 were negatively associated with aggregated NDVI values. The 

significance of Lag Coeff(Rho) indicated that the distribution of aggregated NDVI had positive 

spatial dependence. 

 

SLM in Table 4 showed that neighbourhood in Q4 SES status had higher aggregated street view 

greenness quantity values than those in Q1. Also, population density was positively associated 

with aggregated street view greenness quantity values. The significance of Lag Coeff(Rho) 

indicated that the distribution of aggregated street view greenness quantity had positive spatial 

dependence. 

 

SLM in Table 5 showed that neighbourhood in Q2, Q3 and Q4 SES status had higher aggregated 

street view greenness quality values than those in Q1. Also, population density was positively 

associated with aggregated street view greenness quality values. The significance of Lag 

Coeff(Rho) indicated that the distribution of aggregated street view greenness quality had positive 

spatial dependence. 
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Table 3 

Regression models of NDVI for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   -0.040***(0.002)  -0.017***(0.001)  -0.026***(0.002) 

The proportion of residents aged 0-18  0.063*(0.036)  0.024(0.020)  0.039*(0.020) 

The proportion of residents aged above 65  -0.076***(0.025)  -0.052***(0.019)  -0.087***(0.021) 

The proportion of residents living in house built before 1979  -0.101(0.086)  0.099(0.066)  0.101(0.073) 

SES status (referenced: Q1)       

Q2 0.002*(0.001) 0.006*(0.003) 0.002(0.002) 0.003(0.002) 0.002(0.002) 0.002(0.002) 

Q3 0.008(0.005) 0.011(0.013) 0.004(0.003) 0.008(0.012) 0.007(0.005) 0.007(0.013) 

Q4 0.002(0.003) 0.005(0.003) 0.003(0.003) 0.005(0.003) 0.005(0.003) 0.005(0.003) 

Constant 0.099***(0.002) 0.288***(0.009) 0.022***(0.002) 0.119***(0.008) 0.096***(0.003) 0.217***(0.010) 

Lag Coeff(Rho)   0.754***(0.016) 0.633***(0.019)   

Lag Coeff(Lambda)     0.757***(0.015) 0.680***(0.019) 

R2  0.017 0.363 0.602 0.623 0.602 0.622 

AIC -5297.35 -6011.8 -6508.71 -6700.35 -6508.69 -6660.33 

Robust LMLAG   15.327*** 75.726***   

Robust LMERR     0.386 11.122*** 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 4 

Regression models of street view greenness quantity for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   0.017***(0.003)  0.009***(0.003)  0.010**(0.004) 

The proportion of residents aged 0-18  0.038(0.057)  0.040(0.051)  0.053(0.052) 

The proportion of residents aged above 65  0.046(0.055)  0.034(0.049)  0.032(0.053) 

The proportion of residents living in house built before 1979  0.090(0.189)  0.093(0.169)  0.043(0.184) 

SES status (referenced: Q1)       

Q2 0.008(0.006) 0.009(0.006) 0.004(0.005) 0.004(0.006) 0.001(0.005) 0.001(0.006) 

Q3 0.016(0.016) 0.016(0.011) 0.015(0.015) 0.014(0.016) 0.017(0.017) 0.016(0.017) 

Q4 0.027***(0.006) 0.022***(0.008) 0.021***(0.005) 0.018***(0.007) 0.023***(0.006) 0.020***(0.007) 

Constant 0.188***(0.004) 0.260***(0.020) 0.093***(0.006) 0.131***(0.019) 0.1905***(0.005) 0.233***(0.022) 

Lag Coeff(Rho)   0.484***(0.025) 0.475***(0.026)   

Lag Coeff(Lambda)     0.488***(0.031) 0.479***(0.026) 

R2  0.010 0.022 0.217 0.219 0.219 0.221 

AIC -3349.14 -3365.47 -3635.91 -3635.75 -3640.43 -3637.73 

Robust LMLAG   3.691** 3.593**   

Robust LMERR     0.044 0.068 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 5 

Regression models of street view greenness quality for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   0.274***(0.020)  0.130***(0.018)  0.176***(0.026) 

The proportion of residents aged 0-18  0.592*(0.347)  0.336(0.289)  0.383(0.297) 

The proportion of residents aged above 65  0.145(0.331)  0.150(0.276)  -0.037(0.305) 

The proportion of residents living in house built before 1979  0.540(1.149)  0.534(0.959)  0.342(1.055) 

SES status (referenced: Q1)       

Q2 0.052**(0.024) 0.061**(0.029) 0.026**(0.011) 0.030**(0.012) 0.035**(0.016) 0.031**(0.012) 

Q3 0.074**(0.036) 0.056**(0.022) 0.073**(0.031) 0.064***(0.025) 0.101***(0.033) 0.088**(0.037) 

Q4 0.226***(0.039) 0.106**(0.047) 0.169***(0.031) 0.116***(0.039) 0.204***(0.035) 0.166***(0.043) 

Constant 5.472***(0.027) 6.547***(0.119) 2.111***(0.119) 2.887***(0.177) 5.473***(0.035) 6.227***(0.134) 

Lag Coeff(Rho)   0.608***(0.021) 0.558***(0.023)   

Lag Coeff(Lambda)     0.614***(0.021) 0.575***(0.023) 

R2  0.019 0.122 0.379 0.388 0.383 0.39 

AIC 2861.71 2680.54 2273.17 2225.79 2263.29 2228.21 

Robust LMLAG   8.979*** 21.663***   

Robust LMERR     0.195 1.065 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 
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4. Discussion 

This study extends previous research on the distribution of different aspects of greenspace 

and the association between greenspace and neighbourhood socioeconomic conditions in several 

respects. First, it develops a new method assessing greenspace quality based on street view data 

and machine learning approach. Compared with traditional measures for assessing greenspace 

quality, the proposed method is less labor-intensive and more efficient, so it could offer a major 

step forward in terms of understanding the role of greenspace quality for public health which is 

important for large scale epidemiological studies. Second, it compares the distribution of 

greenspace quantity and quality in Guangzhou, China using both street view images (street view 

greenness) and remote sensing data (NDVI). Results show that there is a difference between the 

distribution of greenspace quantity and quality. Third, it further investigates the association 

between greenspace quantity, quality and neighbourhoods’ socioeconomic conditions. Compared 

with NDVI, street view greenness shows greater inequities associated with neighbourhoods’ 

socioeconomic conditions. 

 

4.1. The spatial mismatch between greenspace quantity and quality  

 

We found that NDVI was relatively more abundant in the suburbs, but less abundant in the 

inner-city. Similar to the spatial distribution of the aggregated of NDVI, LISA cluster map shows 

that HH clusters of NDVI were in suburb while LL clusters were in inner-city. These findings are 

consistent with previous studies in the USA (Li et al., 2016; Li et al., 2015a; Li et al., 2015b) and 

Singapore (Ye et al., 2018). This may be because inner-city areas of Chinese cities tend to be 

dominated by commercial and residential amenities with few large green facilities. Also, NDVI is 

more accurate in measuring large green facilities such as park which are more common in the 

suburbs. As for street view greenness quantity and quality, they are both abundant in the suburb 

and inner-city. Also, HH, LL, HL and LH clusters of street view greenness all could be observed 

in inner-city while HH clusters could also be observed in suburb. Ye et al. (2018) and Li et al. 

(2015, 2016) drew similar conclusions for street view greenness quantity in developed countries. 

This may be because there is also a demand for greenspace for residents living in inner-city, but 

since there is little space there, greenspace in inner-city may be more likely to be street plants 

which can be perceived by pedestrians (Ye et al., 2018). However, street view greenness quality in 

inner-city shows spatial characteristic that HH clusters were in the west of inner-city while LL 

clusters were in the east in Guangzhou. A possible explanation is that the west of inner-city in 

Guangzhou is mainly old town while the east is new town. Residents living in old town in 

Guangzhou are more likely to own their house while residents living in new town in Guangzhou 

are more likely to rent (Chen, 2016), and it has been showed by previous studies that owners tend 

to spend more on maintaining greenspace amenities than renters (Heynen et al. 2006; Perkins et 

al., 2004).   

 

This study also shows the details of difference among three greenery measurements in inner-city  

sampled neighbourhoods (Fig. 4). First, inner-city sampled neighbourhoods which are low in 
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NDVI, but high in street view greenness usually distribute in inner-city which is consistent with 

the finding in Singapore (Ye et al., 2018). This is due to the high density of street plants and low 

density of large green facilities in inner-city area. Second, inner-city sampled neighbourhoods 

which are low in street view greenness quality, but high in street view greenness quantity also 

usually distribute in inner-city. In such neighbourhoods, street greenery is not well maintained and 

perceived to be low quality. Third, inner-city sampled neighbourhoods which are low in street 

view greenness quantity, but high in street view greenness quality usually distribute in both 

inner-city and suburb. A possible explanation is that these two areas both have villa districts where 

street plants are not flourish but maintained well. Thus, the spatial mismatch between eye-level 

and over-head view greenspace as well as between greenspace quantity and quality, indicates that 

it is important to precisely identify which aspect of greenspace should be measured. 

 

4.2. The association between aggregated green view index values and 

neighbourhood socioeconomic conditions 

 

Consistent with previous studies (Helbich et al., 2019; Wang et al., 2019a), there was no evidence 

to suggest that NDVI was associated with street view greenness. Nor was there evidence that 

street view greenness quantity was associated with street view greenness quality. These results 

indicated that three types of aggregated greenspace index values measure different aspects of 

greenspace. NDVI measures top-down greenspace, so it does not reflect the cover of street plants 

(Helbich et al., 2019; Ye et al., 2018). Also, it is a global measurement and covers areas further 

away from roads, which are less likely to be green. Another explanation is that the resolution of 

the NDVI data is too coarse to reflect actual top-down greenspace. Therefore, it is important to 

acknowledge that this study cannot provide definitive evidence that SES disparities are evident, 

but rather emphasise that NDVI and street view measures identify different components of 

greenspace. While street view greenness quantity measures human-scale greenspace, it mainly 

measures eye-level street plants (Helbich et al., 2019; Ye et al., 2018). Compared with greenspace 

quantity, greenspace quality is more subjective which reflects people’s evaluation of greenspace 

(Brindley et al., 2019). Although few studies have examined the association between greenspace 

quantity and greenspace quality, a limited number of studies have found that they may not be 

significantly correlated with each other, so they may measure different aspects of greenness (Lu, 

2018; Van Dillen et al., 2012). Therefore, the above three measures capture slightly different 

aspects of greenspace and the 'best' measure would depend on the question being posed.  

 

Regression results show that the proportion of residents aged above 65 and the proportion of 

married residents are negatively associated with the aggregated NDVI index values. However, 

none of the demographic variables are associated with aggregated street view greenness index 

values. For built environment variables, only population density is associated with three 

aggregated greenness index values. Population density is negatively associated with aggregated 

NDVI index values while it is positively associated with aggregated street view greenness index 

values. This may be because NDVI is more abundant in the suburbs than the inner-city where 
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population density is higher, while street view greenness is more abundant in the inner-city, but 

less abundant in suburbs where population density is lower. Most importantly, there was no 

evidence to suggest SES status has association with the aggregated NDVI index values. However, 

neighbourhood with higher SES had signifificantly street view greenness quantity values (i.e., 4th 

quartile) and quality values (i.e., 2nd, 3rd and 4th quartile). These findings indicate that 

neighbourhoods with higher SES are more likely to have more street view greenspace which is 

consistent with previous studies (Li et al., 2016; Li et al., 2015a; Li et al., 2015b). This may be 

because people living in neighbourhood with higher SES are more likely to be able to afford the 

costs associated with maintaining greenspace (Heynen et al., 2006; Perkins et al., 2004).  

 

In terms of three measurements of greenery, street view greenness quality is more sensitive to the 

change of SES status (2nd, 3rd and 4th quartile) than quantity (only 4th quartile). On the contrary, 

NDVI is not associated with SES status. This further indicates the environmental inequity for 

street view greenness especially street view greenness quality can be explained by neighbourhood 

SES inequity. A possible explanation is that NDVI can measure large green facilities such as park 

and their distribution can be planed more equally through urban planning process in China (Xiao 

et al., 2016; Xiao et al., 2017a). However, street view greenness captures street plants which are 

more likely to be influenced by local residents who pay the cost of maintaining neighbourhood 

greenspace (Xiao et al., 2017b). Also, compared with greenspace quantity, environmental inequity 

for greenspace quality is more associated with neighbourhood SES inequity. This may be because 

compared with greenspace quantity, maintaining greenspace quality may be more expensive since 

greenspace quality is associated with surrounding environments (Van Dillen et al., 2012).  

 

4.3. Strengths and limitations 

This study has several strengths. First, it is the first attempt to combine street view data with a 

machine learning approach for assessing greenspace quality in a large scale. Second, we not only 

compared greenspace quality with quantity, but also compared street view-based greenspace with 

remote sensing-based greenspace. This allows an examination of greenspace measurement from 

different perspectives. Third, we also focused on greenspace exposure disparities in terms of urban 

greenspace quantity and quality in relation to the neighbourhood socioeconomic status. This helps 

us in further understanding greenspace exposure disparities in the Chinese context. 

 

Our study also had some limitations. First, the boundary of neighbourhood is defined using 

administrative boundaries and the findings may be affected by the Modifiable Areal Unit Problem 

(MAUP) (Fotheringham and Wong, 1991). Second, our training sample size was based on 2000 

images and it may still be too small. Third, we only focused on greenspace in urban areas in 

Guangzhou which may not be generalizable to other parts of China, including rural areas. Fourth, 

aggregated green view indexes were derived in 2016 while neighbourhood socioeconomic 

conditions variables were derived in 2010, so socioeconomic changes within local areas is not 

captured. Fifth, since images were collected on a specific date, they may not be sufficiently 

representative to reflect dynamic changes of greenspace through time. This may be a concern as 

Guangzhou has a subtropical climate, so most of its vegetation stays green all year round. Still, the 

static and time specific street view images fail to capture seasonal fluctuation greeneryand may 
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lead to potential bias. Sixth, we only include images from horizontal angle (vertical angle=0), 

which may not be enough to reflect actual visible greenery. Seventh, local attributes of greenspace 

quality are usually captured using data collected within urban parks, whereas information 

collected outside of park boundaries provides indicators that are more closely related to 

neighbourhood street quality rather than greenspace per se. Therefore, no single measure of 

greenspace quality fully captures the breadth of greenspace quality; further research could usefully 

assess the appropriateness of various quality measures in different contexts. Eighth, our approach 

may not be able to identify all kinds of greenness, since greenness is heterogeneous and there are 

substantial differences within various kinds of greenness. Ninth, the variation in image quality (i.e. 

saturation, tint and clarity) may cause potential bias. Last, there are some gated communities in 

our study area where street view images may not be collected. 

 

4.4. Policy implication and issues for further research 

Since greenspace quality may be more relevant to residents’ health, policy makers should pay 

attention to the attributes for greenspace quality such as the accessibility, variation and safety of 

greenspace instead of only considering greenspace quantity. For example, it may be beneficial to 

enhance the diversity of street vegetation sin order to promote variation and naturalness. Second, 

greenspace exposure disparities should also attract more attention, since people living in lower 

SES areas are less likely to be exposed to greenspace and can only enjoy lower quality 

greenspaces, so as public facilities, more government investment in greenspace facilities to 

enhance the quality of these resources should be considered, particularly in ow SES 

neighbourhoods.. Last, relevant evaluation indicator of greenspace quality should be incorporated 

into urban planning policies and regulations in China. 

 

 

Future research should pay attention to the following aspects: 1) There is value in attempting  to 

enlarge the training sample size; online scoring system can be used for collecting people’s 

perceived greenspace quality from across national contexts, so that researchers can further identify 

whether cultural background and other characters may have impact on assessment of greenspace 

quality. 2) Previous epidemiological studies mainly focus on the effect of greenspace quantity and 

future research should also consider greenspace quality using our new methods. 3) Since 

greenspace quantity and quality may reflect different aspects of greenspace, future research should 

examine whether the pathways through which greenspace quantity and quality have influence on 

health vary. 

 

5. Conclusion 

This study is the first to develop a new method to assess greenspace quality based on street 

view data and machine learning method. Further, it focuses on greenspace exposure disparities 

regarding how urban greenspace quantity and quality are linked to the neighbourhood 

socioeconomic status in the Chinese context. Results show that the distribution of aggregated 

NDVI, street view greenness quantity and quality index value shows significant differences that 

NDVI is relatively more abundant in the suburb, but less abundant in inner-city, while street view 
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greenness is both abundant in the suburb and inner-city. Hence, the correlation analysis shows that 

no evidence can support three aggregated greenness indexes are significantly associated with each 

other which indicates that they measure different aspects of greenspace. In terms of three 

measurements of greenery, environmental inequity for street view greenness is more associated 

with neighbourhood SES inequity than NDVI. Also, street view greenness quality is more 

sensitive to the change of neighbourhood SES than quantity. To achieve the goal of promoting 

urban greening and health through urban planning and design in Chinese urban settings, 

policymakers and planners are advised to pay more attention to greenspace quality and greenspace 

exposure disparities in urban area.  
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ABSTRACT 

Awareness is mounting that urban greenspace is beneficial for residents’ health. While a plethora 

of studies have focused on greenspace quantity, scant attention has been paid to greenspace quality. 

Existing methods for assessing greenspace quality is either highly labor-intensive and/or 

prohibitively time-consuming. This study develops a new machine learning method to assess 

greenspace quality based on street view images collected from Guangzhou, China. It also 

examines whether greenspace exposure disparities are linked to the neighbourhood socioeconomic 

status (SES). The validation process indicated that our scoring system achieved high accuracy for 

predicting street view-based greenspace quality outside the training data. Results also show that 

there were marked differences in spatial distribution between aggregated NDVI (Normalized 

Difference Vegetation Index), street view greenness quantity and quality. Regression models show 

that neighbourhood SES is not associated with NDVI. Although neighbourhood SES is associated 

with both street view greenness quantity and quality index value, street view greenness quality is 

more sensitive to the change of neighbourhood SES. Our work suggests that policymakers and 

planners are advised to pay more attention to greenspace quality and greenspace exposure 

disparities in urban area. 

 

 

 

Keywords 

Greenspace; Socioeconomic conditions; Street view; Machine learning; Environmental disparity; 

China 

 

 

1. Introduction 

Awareness is mounting that urban greenspace is beneficial for residents’ health (Gascon et al., 

2015; Hartig et al., 2014; Markevych et al., 2017; Nieuwenhuijseng et al.,, 2017; Wu et al., 2020). 

Several meta-reviews identify three main potential pathways through which greenness exposure 

promotes health (Gascon et al., 2015; Markevych et al., 2017). First, greenspace can reduce 

people’s exposure to environmental stressors such as air pollution, noise and heat waves (Dadvand 

et al., 2015; Dzhambov et al.,, 2018a; Dzhambov et al., 2018b). Second, greenspace can restore 

people’s capacities. Attention restoration theory (ART) (Kaplan, 1995) and stress reduction theory 

(SRT) (Ulrich et al., 1991) suggest that greenspace can restore people’s attention by reducing 

stress and pressure. Last, greenspace can build people’s capacities such as encouraging more 

physical activity and facilitating social cohesion (Su et al., 2016; Wang et al., 2019a; Yang et al., 

2019; Yang et al., 2020).  

 

Previous studies have reported environmental inequities in terms of urban greenery exposure in 

developed countries (Li et al., 2016; Xu et al., 2018; Zhou and Kim, 2013). Since greenspace can 

Revised Manuscript without Changes Marked (without Author
Details)
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 2 

have potential health benefits, environmental disparities for greenspace such as unequal access or 

exposure to greenspace may result in disproportionate health benefits for different social groups 

(Jensen et al., 2004; Li et al., 2016). This kind of environmental disparities is also often associated 

with neighbourhood socioeconomic conditions (Apparicio et al., 2012, 2017; Barbosa et al., 2007; 

Jensen et al., 2004; Li et al., 2016; Landry and Chakraborty, 2009). Normally, neighbourhoods of 

high SES (socioeconomic status) often have greater financial resources, cultural and social capital, 

and political influence to maintain and enhance greenspace (Li et al., 2016; Li et al., 2015a), and 

potentially have more demand for greenspace quality (Jim and Shan, 2013). As a result, residents 

in high socioeconomic status neighbourhoods have better access to greenspace both in terms of 

quantity and quality. For example, Li et al. (2016) found that neighbourhoods in Hartford, 

Connecticut, USA with higher income have more street greenery than those with lower income. 

Similarly, in a study of six cities in Illinois, USA. However, Mears et al. (2020) found that 

although deprived areas in England had better access to greenspace, the greenspace was usually  

smaller in size, and worse in quality. Due to higher population density, deprived areas were 

disadvantaged with lower per capita greenspace. Therefore, the association between greenspace 

exposure and SES is complex and not always consistent. In China, although most of the 

greenspace is public greenspace and is provided by the government, it still distributes unequally 

across different neighbourhoods in terms of SES (Sun et al., 2019; You, 2016). First, local 

government finance usually is associated with neighbourhood socioeconomic conditions (e.g. 

taxes from property management fees or rents), so neighbourhoods with higher SES are more 

likely to support its local government to provide sufficient and better greenspace. Also, since 

greenspace may increase the land value in China, so local governments may follow land-based 

development process and are keen to provide more greenspace in neighbourhoods with higher 

SES (Chen and Hu, 2015). Second, neighbourhoods with more greenspace have higher housing 

price or rent in China, so  disadvantaged social groups are less likely to afford  the properties 

there (Xiao et al., 2017a). For example, You (2016) found inequalities in greenspace provision are 

associated with neighbourhood-level SES in Shenzhen while Shen et al. (2017) pointed out that 

disparities of greenspace provision exist for neighbourhoods with different levels of SES in 

Shanghai. 

 

Despite the growing awareness of the importance greenspace quantity for population health, the 

role of greenspace quality has received less attention (Brindley et al., 2019). Compared with 

greenspace quantity which is an objective characteristic, greenspace quality reflects more about 

people’s subjective attitudes towards surrounding greenness (Brindley et al., 2019). van Dillen et 

al. (2012) indicates that quality tends to be a marker for local people’s eagerness to use the 

greenspace and the affordances they gain from this utilization. Furthermore, a high aesthetical 

value is likely to improve the restorative experience which leads to reduction of stress. Previous 

epidemiological studies mainly focus on the effect of greenspace availability, access or quantity on 

health (Gascon et al., 2015; Markevych et al., 2017), so many scholars argued that future research 

on neighborhood greenspace and health should focus more on its quality rather quantity (Van 

Dillen et al., 2012). A limited number of studies have compared the health benefit of both quantity 

and quality of greenspace and found that the quality of greenspace is more relevant to residents’ 

health outcomes (Astell-Burt et al., 2014; Francis et al., 2012; Van Dillen et al., 2012). For 

example, Francis et al. (2012) found that residents living in neighbourhoods with high quality 
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greenspace had lower odds of psychological distress, but this association was insignificant with 

greenspace quantity. The reason may be that quality reflects people’s perception of the greenspace 

which directly influences the actual use of greenspace. However, Mears et al. (2020) found that 

whilst some quantity and quality indicators were not prominently associated with health outcomes, 

which highlights an urgent need for research including different measures of greenspace exposure. 

The omission of quality in research is not only due to the vagueness in definition but also due to 

methodological issues in operationalisation. (Brindley et al., 2019). Existing studies normally used 

one of two methods to evaluate greenspace quality including questionnaires and SSO (systematic 

social observation) (de Vries et al., 2013; Feng and Astell-Burt, 2017; Van Dillen et al., 2012). 

Both methods have obvious limits including being labor-intensive, time-consuming and difficult 

to apply across a large study area (Lu, 2018). 

 

Given the challenges of collecting information about green space quality at large scale for 

epidemiological analyses, recently there has been interest in developing new methods for 

auto-extracting spatial data that provide indicators of quality. Most notably, the recent 

development of machine learning approaches combined with online mapping data has enabled the 

automated extraction of sentiments from social media text such as Flickr and Twitter data 

(Brindley et al., 2019), and ground objects (i.e., trees and grasses) from interactive panoramas 

such as street view images (Helbich et al., 2019; Labib et al., 2020; Larkin and Hystad, 2019; Li et 

al., 2018; Lu, 2018; Toikka et al., 2020; Wang et al., 2019a). For example, Brindley et al. (2019) 

used social media text to extract people’s sentiments towards greenspace in order to better capture 

an indicator of urban greenspace quality. Hence, street view images have already been used for 

assessing eye-level greenspace quantity (Helbich et al., 2019; Labib et al., 2020; Larkin and 

Hystad, 2019; Li et al., 2018; Lu, 2018; Toikka et al., 2020; Wang et al., 2019a). For example, 

Larkin and Hystad (2019) used different exposure measures of visible greenspace and found weak 

relationships between street view quantity and other greenspace measures. Helbich et al.(2019) 

used both NDVI (Normalized Difference Vegetation Index) and street view images to assess 

greenspace quantity and found only greenspace evaluated by street view images is associated with 

mental health. Street view images have proven to be useful for field observation, since people can 

evaluate the local environment based on ground objects in street view images (Wang et al., 2019b; 

Wang et al., 2019c; Yao et al., 2019), an approach known as virtual systematic social observation 

(Plascak et al., 2020). For example, Ye et al. (2019) used street view data and machine learning 

methods to assess street quality, while Zhang et al. (2018) applied the similar approach in 

identifying different urban perceptions. People’s perception of greenspace quality is also based on 

different ground objects (e.g. the absence of trash cans), so besides assessing greenspace quantity, 

street view images can also be applied for quality assessment. Lu (2019) used Google street view 

images to assess greenspace quality and used field observation to validate the results. Their 

findings showed that the results from street view images is highly correlated with the results from 

field observation and therefore may be a potentially more efficient way for assessing greenspaace 

quality. 

 

This study addresses some of these research needs and develops a new method to assess 

greenspace quality based on street view images collected from Guangzhou, China and a machine 

learning approach. It also focuses on greenspace exposure disparities in terms of urban greenspace 
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quantity and quality that are linked to the neighbourhood socioeconomic status, which enables us 

to examine whether socioeconomic disadvantaged populations are exposed to poorer quantity and 

quality of greenspace. This study extends previous research in several respects. First, instead of 

only focusing on greenspace quantity, it develops a new method to assess greenspace quality 

based on street view data which is important for epidemiological studies. Second, although 

previous studies have tried to use street view images to assess greenspace quality, they still 

evaluate manually based on comparatively few images, which means their methods cannot be 

applied readily in large scale studies and may lead to bias. Our new approach relies on machine 

learning approach which can assess millions of images over a large scale. Third, it further 

compares greenspace exposure disparities in terms of neighbourhood socioeconomic status 

between quantity and quality.  

 

 

2. Method 

2.1. Study area 

Our analysis was conducted in Guangzhou which is located at the Pearl River in mainland China,  

part of a metropolitan area with a population of more than 13 million people. Our study area was 

restricted to seven old districts in the Guangzhou city (Liwan, Yuexiu, Haizhu, Tianhe, Baiyun, 

Panyu and Huangpu District) (Fig. 1) for two reasons. First, new districts (Huadu, Conghua, 

Zengcheng and Nansha District) are included in Guangzhou only recently due to administrative 

order, so they are economically and socially separated from seven districts in main urban zone. 

Second, new districts tend to have substantially lower population/housing density and have fewer 

built-up areas, and therefore much less street view data were collected there. The focus of this 

study is on neighbourhood-level (primary administrative unit) and there are 1677 residential 

neighbourhoods (juweihui) in our study area (average neighborhood size= 1 km2; average 

population= 5660 persons). A neighbourhood (juwei) usually consists of several gated 

communities (xiaoqu) and non-gated communities (xiaoqu), but a community is often too small 

and residents' daily activity space is not limited by the boundary of community. , so 

neighborhoods (juwei) should be the better analytical unit. Hence, using community  with a small 

area of greenspace may lead to,  underestimation of  residents’ greenspace exposure. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 5 

 

Fig. 1 Locations of the sampled districts in Guangzhou, China 

 

 

2.2. Data collection 

Street view images were collected from Tencent Online Map (downloaded through the Tencent 

Online Map API), the most comprehensive street view image database in China 

[https://map.qq.com/] (Helbich et al., 2019). Sampling points were created along each segment of 

the street network (obtained from OpenStreetMap (Haklay & Weber, 2008)) at 100m intervals 

following previous studies (Li et al., 2018). Street view images usually have a visual range of 

more than 50 meters, so 100m intervals can ensure that the street view images cover all the ground 
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objects between any two sampling points. Following previous studies (Helbich et al., 2019; Wang 

et al., 2019a), we collected four images from four headings (i.e., 0, 90, 180, 270 degree) for each 

sampling point. In total, we defined 71,286 sampling points which led to 285,144 street view 

images. A calibration of image brightness was conduct to avoid side effects. In order to obtain a 

measure of over-head view greenspace, remote-sensing based greenspace was assessed in this 

study. The data were derived from the Landsat 8 Operational Land Imager and the Thermal 

Infrared Sensor at a spatial resolution of 30 meters in 2016 (USGS EarthExplorer: 

https://earthexplorer.usgs.gov/). Last, neighbourhood socioeconomic condition indicators was 

collected from the sixth census of Guangzhou in 2010, which is part of 2010 China’s 10% 

population sample survey. 

 

2.3. Machine-learning based image segmentation 

In order to calculate an eye-level greenspace exposure, following previous studies (Helbich et al., 

2019; Wang et al., 2019a), we extracted greenspace objects (e.g., grasses, trees) with a fully 

convolutional neural network for semantic image segmentation (FCN-8s) (Long et al., 2015) 

based on the ADE20K dataset of annotated images for training purposes (Zhou et al., 2017; Zhou 

et al., 2019). The accuracy of the FCN-8s was with 0.814 for the training data and 0.811 for the 

test data in this study.  

 

2.4. Street view greenspace quantity and quality 

Quantity 

Following previous studies (Helbich et al., 2019; Wang et al., 2019a), street view greenspace 

quantity per sampling point was determined as the ratio of the number of greenspace pixels per 

image summed over the four cardinal directions to the total number of pixels per image summed 

over the four cardinal directions.  

 

Quality 

 

Fig 2 summarizes the workflow of assessing the street view greenspace quality. First, we 

constructed our training dataset. Specifically, 2000 images were randomly selected. Then, these 

images were scored (0 to 10) based on greenspace quality attributes by ten trained investigators 

who have resided in the research area for at least 3 years. As mentioned in literature review, there 

are various aspects of greenspace quality, so there are also many different operational items for 

assessing it. In order to get a robust greenspace quality indicator, we  included a wide range of 

attributes of greenspace quality. The attributes (Cronbach’s alpha=0.85) included accessibility 

(very bad-very good), maintenance (very bad-very good), variation (very monotonous-very 

varied), naturalness (very unnatural-very natural), colourfulness (very uncolourful-very colourful), 

clear arrangement (very unsurveyable-very surveyable), shelter (very enclosed-very open), 

absence of litter (very little trash-very much trash), safety (very unsafe-very safe) and general 

impression (very negative-very positive) (Lu, 2018; Van Dillen et al., 2012). This provided 10 

attributes scores for 2000 images. In the next step, since people evaluate the neighbourhood 

environment based on ground objects, ground object elements within each street view images can 
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 7 

be used to predict residents’ perception of the local environment (Wang et al., 2019b; Wang et al., 

2019c; Yao et al., 2019). Greenspace quality as one of people’s perception of the local 

environment can also be evaluated through this way. After the image segmentation and the 

attributes scores of 2000 images, we calculated the proportion of each ground object elements. 

The random forest model (Breiman, 2001) for automatic rating was trained by fitting the inputted 

rating scores with the proportion of 151 elements 

(https://groups.csail.mit.edu/vision/datasets/ADE20K/) in the image segmentations. In this way, 

151 ground elements within each image were automatically weighted based on the ten attributes 

scores. For example, with fewer trash can elements within an image, the absence of litter score 

would be higher for this image, and the trash can elements are given a weight based on ten 

attributes scores accordingly. Last, we used this automated scoring system to score all images in 

study area on these ten attributes. 

 

Fig 2 Workflow for assessing greenspace quality. 

 

 

We took two steps to validate our results. First, one hundred Tencent view images were  

randomly selected, and attributes of greenspace quality of those images were again assessed 

manually. The scores from the automated scoring system were highly correlated with attributes of 

greenness quality of those manually assessed images: accessibility (r=0.82, p<0.05), maintenance 

(r=0.87, p<0.05), variation (r=0.81, p<0.05), naturalness (r=0.95, p<0.05), colourfulness (r=0.92, 

p<0.05), clear arrangement (r=0.93, p<0.05), shelter (r=0.89, p<0.05), absence of litter (r=0.86, 

p<0.05), safety (r=0.98, p<0.05) and general impression (r=0.91, p<0.05). This process indicates 

that our scoring system can achieve high accuracy for predicting ten attributes scores outside the 

training data. 
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Second, 26 residential neighbourhoods were randomly selected using a multi-stage stratified 

probability proportionate to population size (PPS) sampling technique and physically visited by 

three observers and audited with the same audit tool. The results showed reasonable inter-rater 

reliability (Pearson correlation r > 0.90; percentage agreement > 85%). We averaged the score 

from three observers and calculated the score based on our scoring system for these 26 residential 

neighbourhood using all the images within the neighbourhood. The correlation between the score 

from the field audit and scoring system was as follows: accessibility (r=0.71, p<0.05), 

maintenance (r=0.73, p<0.05), variation (r=0.69, p<0.05), naturalness (r=0.72, p<0.05), 

colourfulness (r=0.68, p<0.05), clear arrangement (r=0.63, p<0.05), shelter (r=0.72, p<0.05), 

absence of litter (r=0.66, p<0.05), safety (r=0.88, p<0.05) and general impression (r=0.81, p<0.05). 

This process indicates further that the score from our automatic scoring system was correlated 

with the results from field audit. 

 

The above validation process suggested that our proposed method was suitable for measuring 

greenspace quality, so we collected scores of attributes of greenspace quality of those images for 

all images through the proposed automatic scoring system for all sampled neighbourhoods (1677 

residential neighbourhoods). Ten attributes for all images achieved excellent internal consistency 

(Cronbach’s alpha=0.88). Following previous studies (Lu, 2018; Van Dillen et al., 2012), the 

quality of greenspace in each image is the mean value of all 10 attributes. Thus, street view 

greenspace quality per sampling point was determined as the average greenspace quality score of 

four image from different cardinal directions. For each neighbourhood, the street view greenspace 

quality was calculated by the average score of all sampling point within the neighbourhood 

boundary. 

 

 

2.5. Remote sensing greenspace quantity 

Remote sensing greenspace quantity was assessed by NDVI (Normalized Difference Vegetation 

Index) (Tucker, 1979). We collected cloud-free images in the greenest season (i.e., June-August) 

to avoid assessment bias. The value of NDVI was calculated from the following formula: (NIR − 

VIS)/(NIR + VIS), where NIR stood for reflectance in the near-infrared band and VIS stood for 

reflectance in the visible region. We aggregated the value of each pixel within the neighbourhood. 

The value of NDVI varies between −1 and 1and more positive values refer to greener vegetation 

within the neighbourhood. 

 

2.6. Neighbourhood-level socioeconomic indicators 

Following previous studies (Li et al., 2016; Li et al., 2015a; Li et al., 2015b), five socio-economic 

variables at the neighbourhood-level were selected to represent area-level SES from the 2010 

population census data in Guangzhou. These include the proportion of residents with local hukou 

(registered permanent resident vs registered temporary resident), the proportion of residents with 

education attainment above high school, unemployment rate and the proportion of residents 
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working in low status occupation, and per capita housing area. Due to the multicollinearity, we 

used Principal Component Analysis to combine all SES variables into a single indicator. We 

generated the correlation matrix and then calculated eigenvectors and eigenvalues. After that, we 

followed Kaiser-Guttman rule and chose one principal component with the largest eigenvalue, 

which accounted for 86 % of variance explained. The neighbourhood SES index ranged from 

0.280 to 9.826. Higher scores mean higher levels of neighbourhood SES. In order to explore the 

nonlinear relationship between neighbourhood SES and greenness index, we treated 

neighbourhood SES index as quartile variable. 

 

 

2.7. Covariates 

We also controlled for a series of demographic and built environment variables. First, the 

proportion of residents aged 0-18, the proportion of residents aged above 65 and the proportion of 

married residents were controlled. Kabisch and Haase (2014) pointed out that age structure of the 

neighbourhood may have an influence on greenspace provision. Adolescents and elders have 

lower mobility than young adults, so they are more likely to benefit more from greenspace within 

neighbourhood which may be considered in the policy of local greenspace provision (Barbosa et 

al., 2007). Also, residents aged 0-18 are unemployed and residents aged above 65 are retired, so 

tend to spend a greater proportion of their day in their local neighbourhood may also influence 

neighbourhood SES. Second, population density is associated with supply of public facilities and 

dense neighbourhood may have lower SES since poorer residents are more likely to reside in 

higher density areas (Liu and Wu, 2006), so we controlled for the average score of this variable for 

each neighbourhood. Last, the proportion of residents living in houses built before 1979 was 

included. Old neighbourhoods in China have lower Floor Area Ratio which indicates they have 

more open space for greenspace (Xiao et al., 2017a). In China, residents living in house built 

before 1979 usually work in the state sectors which also influence their SES (He et al., 2010; Wu, 

2007).  

 

Table 1  

Summary statistics for all variables. 

Variables (number of neighbourhood=1677) Mean (Standard Deviation) 

Dependent variable  

NDVI 0.105(0.050) 

SVG-quantity 0.201(0.089) 

SVG-quality 5.560(0.572) 

Independent variable  

Neighbourhoods SES quartile (Q1)  0.986(0.210) 

Neighbourhoods SES quartile 2 (Q2)  1.416(0.088) 

Neighbourhoods SES quartile 3 (Q3)  1.767(0.127) 

Neighbourhoods SES quartile 4 (Q4)  2.482(0.577) 

Covariates  

Population density (person/km2)   30704.401(31974.252) 

The proportion of residents aged 0-18 0.147(0.046) 
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The proportion of residents aged above 65 0.082(0.051) 

The proportion of residents living in houses built before 1979 0.011(0.014) 

 

 

 

2.8.  Analysis 

2.8.1 Global Moran’s I 

In order to identify the spatial distribution of greenspace characteristics, we examine the spatial 

autocorrelation of neighbourhood greenspace quantity and quality . Global Moran’s I (Moran, 

1950) was used to reflect the overall level of spatial autocorrelation of neighbourhood greenspace 

quantity and quality.   

 

It was calculated as follow: 

 



  

 






n

i

n

j

n

i

iij

n

i

n

j

jiij

xxw

xxxxwn

I

1 1 1

2

1 1

)(

))((

                      (1)

 

In the equation, ix 、 jx are the level of greenspace quantity or quality in neighbourhood i 、 j , 

ijw is the spatial weight matrix (queen contiguity)，n is the number of neighbourhood in study 

area. The higher absolute value of Global Moran’s I indicates higher level of spatial 

autocorrelation of neighbourhood greenspace. If Global Moran’s I is positive, neighbourhoods 

with higher level of greenspace cluster with each other and neighbourhoods with lower level of 

greenspace also cluster with each other. However, if Global Moran’s I is negative, neighbourhoods 

with higher level of greenspace cluster with neighbourhoods with lower level of greenspace while 

lower level of greenspace cluster with neighbourhoods with higher level of greenspace. 

 

 

2.8.2 Local Moran’s I 

Global Moran’s I only reflects the overall level of spatial autocorrelation of neighbourhood 

greenspace, but further we need to identify the spatial autocorrelation level of greenspace for each 

neighbourhood, so that we can map it and examine the regions where spatial autocorrelation of 

greenspace is significant for most of the neighbourhoods. We used Local Moran’s I (Anselin, 

1995) to reflect the spatial relevance of greenspace quantity or quality in each neighbourhood to 

its neighbors. Local Moran’s I reveals the degree of spatial difference and significance between 

the greenspace quantity or quality of each neighbourhood and its surrounding neighbourhood. It 

was calculated as follow: 

        
i i ij j

i

I z W z 
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In the equation: iz and jz are the standardized value of greenspace quantity or quality in 

neighbourhood  i  and j ; ijW is the spatial weight matrix( 1 ijjW ). If iI > 0 and iz  >0, 

then neighbourhood will be defined as high-high (H-H) region (significant cluster of high values); 

If iI < 0 and iz < 0，then neighbourhood will be defined as low-low (L-L) region (significant 

cluster of low values)；If iI < 0 but iz > 0，then neighbourhood will be defined as high-low (H-L) 

region (significant cluster of outliers in which a high value is surrounded primarily by low 

values)；If iI > 0 but iz < 0，then neighbourhood will be defined as low-high (L-H) region 

(significant cluster of outliers in which a low value is surrounded primarily by high values). 

 

2.8.3 Spatial regression model 

In order to link greenspace quantity and quality to neighbourhood socioeconomic conditions 

spatial regression model was used. It includes spatial lag model (SLM) and spatial error model 

(SEM) (Cliff and Ord, 1972). If spatial dependence of greenspace exists, OLS (ordinary least 

squares) models may cause bias. SLM. SLM has nested spatial dependence in dependent variables 

and the parameter estimation of independent variables while SEM has the parameter estimation of 

independent variables and error terms, so besides OLS we also adopted SLM and SEM to estimate 

the relationship between neighbourhood-level socioeconomic and demographic variables on 

neighbourhood greenspace quantity or quality. It was calculated as follow: 

iij

n

j iji xywy    1
                        (3) 

i

n

j ijii wxy   


1
                          (4) 

In the equation: iy is the level of greenspace quantity or quality in neighbourhood i ; jy is the level 

of greenspace quantity or quality in neighbourhood j ;  is the spatial autocorrelation 

coefficient; ijw is the spatial weight matrix;  is the coefficient of independent variables. itx is the 

value of independent variables in neighbourhood i ； is the coefficient of spatial lag explanatory 

variable, i is the error term. n is the number of neighbourhood in study area.  

 

3. Results 

3.1. The distribution of greenspace quantity and quality 

 

Fig. 3 shows the spatial distribution of the aggregated greenspace metrics at the neighbourhood 

level using NDVI (Fig. 3a), street view greenness quantity (Fig. 3b) and street view greenness 

quality (Fig. 3c), respectively. Compared with aggregated street view greenness, aggregated NDVI 
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was relatively low in inner-city neighbourhoods. Fig. 4 shows the details of three greenery 

measurements in study area. In Fig. 4a, the sampled neighbourhoods were low in NDVI, but high 

in street view greenness. This is likely because neighbourhoods in the inner-city have a large 

number of street greenery which can be viewed by pedestrians but which are difficult to identify 

remotely overhead. Also, although street view greenness quantity and quality were both high in 

inner-city neighbourhoods, there was still a spatial mismatch between them. For example, in Fig. 

4b, the sampled neighbourhoods were low in street view greenness quality, but high in street view 

greenness quantity. In such neighbourhoods, although street greenery was adequate, the green 

space in the surrounding environment tended to be of low quality. Hence, in Fig. 4c, the sampled 

neighbourhoods were low in street view greenness quantity, but high in street view greenness 

quality. Such neighbourhoods are usually in suburb or wealthy downtown area where people can 

afford villa (larger housing). In such neighbourhoods, street greenery is usually less common but 

well maintained.  

 

 

(a)                       (b)                        (c) 

Fig 3. The distribution of the aggregated green view index values at the neighbourhood level 

(Natural Breaks): (a)NDVI; (B)Street view greenness quantity; (C)Street view greenness quality 

 

 

 

 

(a)                       (b)                        (c) 

Fig 4. Comparing three greenery measurements (A) Low level of NDVI and high level of street 

view greenness; (B) Low level of street view greenness quality and high level of street view 

greenness quantity; (C) High level of street view greenness quality and low level of street view 

greenness quantity. 
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Global Moran's I for distribution of the three aggregated green view index values at the 

neighbourhood level were all positive and significant at 5% significance level which indicates that 

distribution of the three aggregated green view index values had positive spatial dependence and 

space gathering. Figs. 5 displays local Moran's I values in relation to the three types of aggregated 

green view index values at the neighbourhood level. We only focused on HH and LL clusters, 

since HL and LH clusters only make up only a small part. Fig. 5a shows that similar to the spatial 

distribution of the aggregated of NDVI, HH clusters of NDVI were in suburb while LL clusters 

were in inner-city. Fig. 5b shows that HH, LL clusters of street view greenness quantity all could 

be observed in inner-city while HH clusters could also be observed in suburb. Fig. 5c shows that 

similar to street view greenness quantity, HH, LL clusters of street view greenness quality could 

also be observed in inner-city while HH clusters could be observed in suburb. However, unlike 

street view greenness quantity, local Moran's I values in relation to the street view greenness 

quality in inner-city showed spatial characteristic that HH clusters were in the west of inner-city 

while LL clusters were in the east. 

 

 

(a)                       (b)                        (c) 

Fig 5 LISA (Local Indicators of Spatial Association) cluster map of distribution of the aggregated 

green view index values at the neighbourhood level: (a)NDVI; (B)Street view greenness quantity; 

(C)Street view greenness quality 

 

3.2. The relationship between three types of aggregated green view index values and 

neighbourhoods’ socioeconomic conditions. 

 

Table 2 shows the Spearman coefficients among three types of aggregated green view index 

values. The Spearman coefficients of street view greenness quantity versus street view greenness 

quality and the NDVI showed associations of 0.25 (p<0.1) and 0.31 (p>0.1). The Spearman 

coefficients of street view greenness quantity and quality showed associations of 0.78 (p<0.1). 

None of the Spearman coefficients among three types of aggregated green view index values was 

significant at 5% significance level which suggests they measure different aspects of urban 
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greenness. 

 

Table 2 

Results of correlation test for different greenspace measures. 

 NDVI Street view greenness quantity Street view greenness quality 

NDVI 1   

Street view greenness quantity 0.25* 1  

Street view greenness quality 0.31 0.78* 1 

*p < 0.10, **p < 0.05, ***p < 0.01. 

 

Table 3, 4 and 5 show the relationship between three types of aggregated green view index values 

and neighbourhoods’ socioeconomic conditions using OLS, SLM and SEM. Compared with OLS, 

SLM and SEM had higher Adjusted R2. Also, robust LMLAG values were all significant for three 

aggregated green view index at 5% significance level while robust LMERR values were not, so 

we only focused on SLM in Table 3, 4 and 5. SLM in Table 3 showed that neighbourhood SES 

was not associated with aggregated NDVI values while population density and the proportion of 

residents aged above 65 were negatively associated with aggregated NDVI values. The 

significance of Lag Coeff(Rho) indicated that the distribution of aggregated NDVI had positive 

spatial dependence. 

 

SLM in Table 4 showed that neighbourhood in Q4 SES status had higher aggregated street view 

greenness quantity values than those in Q1. Also, population density was positively associated 

with aggregated street view greenness quantity values. The significance of Lag Coeff(Rho) 

indicated that the distribution of aggregated street view greenness quantity had positive spatial 

dependence. 

 

SLM in Table 5 showed that neighbourhood in Q2, Q3 and Q4 SES status had higher aggregated 

street view greenness quality values than those in Q1. Also, population density was positively 

associated with aggregated street view greenness quality values. The significance of Lag 

Coeff(Rho) indicated that the distribution of aggregated street view greenness quality had positive 

spatial dependence. 
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Table 3 

Regression models of NDVI for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   -0.040***(0.002)  -0.017***(0.001)  -0.026***(0.002) 

The proportion of residents aged 0-18  0.063*(0.036)  0.024(0.020)  0.039*(0.020) 

The proportion of residents aged above 65  -0.076***(0.025)  -0.052***(0.019)  -0.087***(0.021) 

The proportion of residents living in house built before 1979  -0.101(0.086)  0.099(0.066)  0.101(0.073) 

SES status (referenced: Q1)       

Q2 0.002*(0.001) 0.006*(0.003) 0.002(0.002) 0.003(0.002) 0.002(0.002) 0.002(0.002) 

Q3 0.008(0.005) 0.011(0.013) 0.004(0.003) 0.008(0.012) 0.007(0.005) 0.007(0.013) 

Q4 0.002(0.003) 0.005(0.003) 0.003(0.003) 0.005(0.003) 0.005(0.003) 0.005(0.003) 

Constant 0.099***(0.002) 0.288***(0.009) 0.022***(0.002) 0.119***(0.008) 0.096***(0.003) 0.217***(0.010) 

Lag Coeff(Rho)   0.754***(0.016) 0.633***(0.019)   

Lag Coeff(Lambda)     0.757***(0.015) 0.680***(0.019) 

R2  0.017 0.363 0.602 0.623 0.602 0.622 

AIC -5297.35 -6011.8 -6508.71 -6700.35 -6508.69 -6660.33 

Robust LMLAG   15.327*** 75.726***   

Robust LMERR     0.386 11.122*** 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 4 

Regression models of street view greenness quantity for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   0.017***(0.003)  0.009***(0.003)  0.010**(0.004) 

The proportion of residents aged 0-18  0.038(0.057)  0.040(0.051)  0.053(0.052) 

The proportion of residents aged above 65  0.046(0.055)  0.034(0.049)  0.032(0.053) 

The proportion of residents living in house built before 1979  0.090(0.189)  0.093(0.169)  0.043(0.184) 

SES status (referenced: Q1)       

Q2 0.008(0.006) 0.009(0.006) 0.004(0.005) 0.004(0.006) 0.001(0.005) 0.001(0.006) 

Q3 0.016(0.016) 0.016(0.011) 0.015(0.015) 0.014(0.016) 0.017(0.017) 0.016(0.017) 

Q4 0.027***(0.006) 0.022***(0.008) 0.021***(0.005) 0.018***(0.007) 0.023***(0.006) 0.020***(0.007) 

Constant 0.188***(0.004) 0.260***(0.020) 0.093***(0.006) 0.131***(0.019) 0.1905***(0.005) 0.233***(0.022) 

Lag Coeff(Rho)   0.484***(0.025) 0.475***(0.026)   

Lag Coeff(Lambda)     0.488***(0.031) 0.479***(0.026) 

R2  0.010 0.022 0.217 0.219 0.219 0.221 

AIC -3349.14 -3365.47 -3635.91 -3635.75 -3640.43 -3637.73 

Robust LMLAG   3.691** 3.593**   

Robust LMERR     0.044 0.068 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 5 

Regression models of street view greenness quality for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   0.274***(0.020)  0.130***(0.018)  0.176***(0.026) 

The proportion of residents aged 0-18  0.592*(0.347)  0.336(0.289)  0.383(0.297) 

The proportion of residents aged above 65  0.145(0.331)  0.150(0.276)  -0.037(0.305) 

The proportion of residents living in house built before 1979  0.540(1.149)  0.534(0.959)  0.342(1.055) 

SES status (referenced: Q1)       

Q2 0.052**(0.024) 0.061**(0.029) 0.026**(0.011) 0.030**(0.012) 0.035**(0.016) 0.031**(0.012) 

Q3 0.074**(0.036) 0.056**(0.022) 0.073**(0.031) 0.064***(0.025) 0.101***(0.033) 0.088**(0.037) 

Q4 0.226***(0.039) 0.106**(0.047) 0.169***(0.031) 0.116***(0.039) 0.204***(0.035) 0.166***(0.043) 

Constant 5.472***(0.027) 6.547***(0.119) 2.111***(0.119) 2.887***(0.177) 5.473***(0.035) 6.227***(0.134) 

Lag Coeff(Rho)   0.608***(0.021) 0.558***(0.023)   

Lag Coeff(Lambda)     0.614***(0.021) 0.575***(0.023) 

R2  0.019 0.122 0.379 0.388 0.383 0.39 

AIC 2861.71 2680.54 2273.17 2225.79 2263.29 2228.21 

Robust LMLAG   8.979*** 21.663***   

Robust LMERR     0.195 1.065 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 
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4. Discussion 

This study extends previous research on the distribution of different aspects of greenspace 

and the association between greenspace and neighbourhood socioeconomic conditions in several 

respects. First, it develops a new method assessing greenspace quality based on street view data 

and machine learning approach. Compared with traditional measures for assessing greenspace 

quality, the proposed method is less labor-intensive and more efficient, so it could offer a major 

step forward in terms of understanding the role of greenspace quality for public health which is 

important for large scale epidemiological studies. Second, it compares the distribution of 

greenspace quantity and quality in Guangzhou, China using both street view images (street view 

greenness) and remote sensing data (NDVI). Results show that there is a difference between the 

distribution of greenspace quantity and quality. Third, it further investigates the association 

between greenspace quantity, quality and neighbourhoods’ socioeconomic conditions. Compared 

with NDVI, street view greenness shows greater inequities associated with neighbourhoods’ 

socioeconomic conditions. 

 

4.1. The spatial mismatch between greenspace quantity and quality  

 

We found that NDVI was relatively more abundant in the suburbs, but less abundant in the 

inner-city. Similar to the spatial distribution of the aggregated of NDVI, LISA cluster map shows 

that HH clusters of NDVI were in suburb while LL clusters were in inner-city. These findings are 

consistent with previous studies in the USA (Li et al., 2016; Li et al., 2015a; Li et al., 2015b) and 

Singapore (Ye et al., 2018). This may be because inner-city areas of Chinese cities tend to be 

dominated by commercial and residential amenities with few large green facilities. Also, NDVI is 

more accurate in measuring large green facilities such as park which are more common in the 

suburbs. As for street view greenness quantity and quality, they are both abundant in the suburb 

and inner-city. Also, HH, LL, HL and LH clusters of street view greenness all could be observed 

in inner-city while HH clusters could also be observed in suburb. Ye et al. (2018) and Li et al. 

(2015, 2016) drew similar conclusions for street view greenness quantity in developed countries. 

This may be because there is also a demand for greenspace for residents living in inner-city, but 

since there is little space there, greenspace in inner-city may be more likely to be street plants 

which can be perceived by pedestrians (Ye et al., 2018). However, street view greenness quality in 

inner-city shows spatial characteristic that HH clusters were in the west of inner-city while LL 

clusters were in the east in Guangzhou. A possible explanation is that the west of inner-city in 

Guangzhou is mainly old town while the east is new town. Residents living in old town in 

Guangzhou are more likely to own their house while residents living in new town in Guangzhou 

are more likely to rent (Chen, 2016), and it has been showed by previous studies that owners tend 

to spend more on maintaining greenspace amenities than renters (Heynen et al. 2006; Perkins et 

al., 2004).   

 

This study also shows the details of difference among three greenery measurements in inner-city  

sampled neighbourhoods (Fig. 4). First, inner-city sampled neighbourhoods which are low in 
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NDVI, but high in street view greenness usually distribute in inner-city which is consistent with 

the finding in Singapore (Ye et al., 2018). This is due to the high density of street plants and low 

density of large green facilities in inner-city area. Second, inner-city sampled neighbourhoods 

which are low in street view greenness quality, but high in street view greenness quantity also 

usually distribute in inner-city. In such neighbourhoods, street greenery is not well maintained and 

perceived to be low quality. Third, inner-city sampled neighbourhoods which are low in street 

view greenness quantity, but high in street view greenness quality usually distribute in both 

inner-city and suburb. A possible explanation is that these two areas both have villa districts where 

street plants are not flourish but maintained well. Thus, the spatial mismatch between eye-level 

and over-head view greenspace as well as between greenspace quantity and quality, indicates that 

it is important to precisely identify which aspect of greenspace should be measured. 

 

4.2. The association between aggregated green view index values and 

neighbourhood socioeconomic conditions 

 

Consistent with previous studies (Helbich et al., 2019; Wang et al., 2019a), there was no evidence 

to suggest that NDVI was associated with street view greenness. Nor was there evidence that 

street view greenness quantity was associated with street view greenness quality. These results 

indicated that three types of aggregated greenspace index values measure different aspects of 

greenspace. NDVI measures top-down greenspace, so it does not reflect the cover of street plants 

(Helbich et al., 2019; Ye et al., 2018). Also, it is a global measurement and covers areas further 

away from roads, which are less likely to be green. Another explanation is that the resolution of 

the NDVI data is too coarse to reflect actual top-down greenspace. Therefore, it is important to 

acknowledge that this study cannot provide definitive evidence that SES disparities are evident, 

but rather emphasise that NDVI and street view measures identify different components of 

greenspace. While street view greenness quantity measures human-scale greenspace, it mainly 

measures eye-level street plants (Helbich et al., 2019; Ye et al., 2018). Compared with greenspace 

quantity, greenspace quality is more subjective which reflects people’s evaluation of greenspace 

(Brindley et al., 2019). Although few studies have examined the association between greenspace 

quantity and greenspace quality, a limited number of studies have found that they may not be 

significantly correlated with each other, so they may measure different aspects of greenness (Lu, 

2018; Van Dillen et al., 2012). Therefore, the above three measures capture slightly different 

aspects of greenspace and the 'best' measure would depend on the question being posed.  

 

Regression results show that the proportion of residents aged above 65 and the proportion of 

married residents are negatively associated with the aggregated NDVI index values. However, 

none of the demographic variables are associated with aggregated street view greenness index 

values. For built environment variables, only population density is associated with three 

aggregated greenness index values. Population density is negatively associated with aggregated 

NDVI index values while it is positively associated with aggregated street view greenness index 

values. This may be because NDVI is more abundant in the suburbs than the inner-city where 
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population density is higher, while street view greenness is more abundant in the inner-city, but 

less abundant in suburbs where population density is lower. Most importantly, there was no 

evidence to suggest SES status has association with the aggregated NDVI index values. However, 

neighbourhood with higher SES had signifificantly street view greenness quantity values (i.e., 4th 

quartile) and quality values (i.e., 2nd, 3rd and 4th quartile). These findings indicate that 

neighbourhoods with higher SES are more likely to have more street view greenspace which is 

consistent with previous studies (Li et al., 2016; Li et al., 2015a; Li et al., 2015b). This may be 

because people living in neighbourhood with higher SES are more likely to be able to afford the 

costs associated with maintaining greenspace (Heynen et al., 2006; Perkins et al., 2004).  

 

In terms of three measurements of greenery, street view greenness quality is more sensitive to the 

change of SES status (2nd, 3rd and 4th quartile) than quantity (only 4th quartile). On the contrary, 

NDVI is not associated with SES status. This further indicates the environmental inequity for 

street view greenness especially street view greenness quality can be explained by neighbourhood 

SES inequity. A possible explanation is that NDVI can measure large green facilities such as park 

and their distribution can be planed more equally through urban planning process in China (Xiao 

et al., 2016; Xiao et al., 2017a). However, street view greenness captures street plants which are 

more likely to be influenced by local residents who pay the cost of maintaining neighbourhood 

greenspace (Xiao et al., 2017b). Also, compared with greenspace quantity, environmental inequity 

for greenspace quality is more associated with neighbourhood SES inequity. This may be because 

compared with greenspace quantity, maintaining greenspace quality may be more expensive since 

greenspace quality is associated with surrounding environments (Van Dillen et al., 2012).  

 

4.3. Strengths and limitations 

This study has several strengths. First, it is the first attempt to combine street view data with a 

machine learning approach for assessing greenspace quality in a large scale. Second, we not only 

compared greenspace quality with quantity, but also compared street view-based greenspace with 

remote sensing-based greenspace. This allows an examination of greenspace measurement from 

different perspectives. Third, we also focused on greenspace exposure disparities in terms of urban 

greenspace quantity and quality in relation to the neighbourhood socioeconomic status. This helps 

us in further understanding greenspace exposure disparities in the Chinese context. 

 

Our study also had some limitations. First, the boundary of neighbourhood is defined using 

administrative boundaries and the findings may be affected by the Modifiable Areal Unit Problem 

(MAUP) (Fotheringham and Wong, 1991). Second, our training sample size was based on 2000 

images and it may still be too small. Third, we only focused on greenspace in urban areas in 

Guangzhou which may not be generalizable to other parts of China, including rural areas. Fourth, 

aggregated green view indexes were derived in 2016 while neighbourhood socioeconomic 

conditions variables were derived in 2010, so socioeconomic changes within local areas is not 

captured. Fifth, since images were collected on a specific date, they may not be sufficiently 

representative to reflect dynamic changes of greenspace through time. This may be a concern as 

Guangzhou has a subtropical climate, so most of its vegetation stays green all year round. Still, the 

static and time specific street view images fail to capture seasonal fluctuation greeneryand may 
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lead to potential bias. Sixth, we only include images from horizontal angle (vertical angle=0), 

which may not be enough to reflect actual visible greenery. Seventh, local attributes of greenspace 

quality are usually captured using data collected within urban parks, whereas information 

collected outside of park boundaries provides indicators that are more closely related to 

neighbourhood street quality rather than greenspace per se. Therefore, no single measure of 

greenspace quality fully captures the breadth of greenspace quality; further research could usefully 

assess the appropriateness of various quality measures in different contexts. Eighth, our approach 

may not be able to identify all kinds of greenness, since greenness is heterogeneous and there are 

substantial differences within various kinds of greenness. Ninth, the variation in image quality (i.e. 

saturation, tint and clarity) may cause potential bias. Last, there are some gated communities in 

our study area where street view images may not be collected. 

 

4.4. Policy implication and issues for further research 

Since greenspace quality may be more relevant to residents’ health, policy makers should pay 

attention to the attributes for greenspace quality such as the accessibility, variation and safety of 

greenspace instead of only considering greenspace quantity. For example, it may be beneficial to 

enhance the diversity of street vegetation sin order to promote variation and naturalness. Second, 

greenspace exposure disparities should also attract more attention, since people living in lower 

SES areas are less likely to be exposed to greenspace and can only enjoy lower quality 

greenspaces, so as public facilities, more government investment in greenspace facilities to 

enhance the quality of these resources should be considered, particularly in ow SES 

neighbourhoods.. Last, relevant evaluation indicator of greenspace quality should be incorporated 

into urban planning policies and regulations in China. 

 

 

Future research should pay attention to the following aspects: 1) There is value in attempting  to 

enlarge the training sample size; online scoring system can be used for collecting people’s 

perceived greenspace quality from across national contexts, so that researchers can further identify 

whether cultural background and other characters may have impact on assessment of greenspace 

quality. 2) Previous epidemiological studies mainly focus on the effect of greenspace quantity and 

future research should also consider greenspace quality using our new methods. 3) Since 

greenspace quantity and quality may reflect different aspects of greenspace, future research should 

examine whether the pathways through which greenspace quantity and quality have influence on 

health vary. 

 

5. Conclusion 

This study is the first to develop a new method to assess greenspace quality based on street 

view data and machine learning method. Further, it focuses on greenspace exposure disparities 

regarding how urban greenspace quantity and quality are linked to the neighbourhood 

socioeconomic status in the Chinese context. Results show that the distribution of aggregated 

NDVI, street view greenness quantity and quality index value shows significant differences that 

NDVI is relatively more abundant in the suburb, but less abundant in inner-city, while street view 
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greenness is both abundant in the suburb and inner-city. Hence, the correlation analysis shows that 

no evidence can support three aggregated greenness indexes are significantly associated with each 

other which indicates that they measure different aspects of greenspace. In terms of three 

measurements of greenery, environmental inequity for street view greenness is more associated 

with neighbourhood SES inequity than NDVI. Also, street view greenness quality is more 

sensitive to the change of neighbourhood SES than quantity. To achieve the goal of promoting 

urban greening and health through urban planning and design in Chinese urban settings, 

policymakers and planners are advised to pay more attention to greenspace quality and greenspace 

exposure disparities in urban area.  
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Fig. 1 Locations of the sampled districts in Guangzhou, China 
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Fig 2 Workflow for assessing greenspace quality. 

 

 

 

 

(a)                       (b)                        (c) 

Fig 3. The distribution of the aggregated green view index values at the neighbourhood level 

(Natural Breaks): (a)NDVI; (B)Street view greenness quantity; (C)Street view greenness quality 

 

 

 

 



 

 

(a)                       (b)                        (c) 

Fig 4. Comparing three greenery measurements (A) Low level of NDVI and high level of street 

view greenness; (B) Low level of street view greenness quality and high level of street view 

greenness quantity; (C) High level of street view greenness quality and low level of street view 

greenness quantity. 

 

 

(a)                       (b)                        (c) 

Fig 5 LISA (Local Indicators of Spatial Association) cluster map of distribution of the aggregated 

green view index values at the neighbourhood level: (a)NDVI; (B)Street view greenness quantity; 

(C)Street view greenness quality 

 



Table 1  

Summary statistics for all variables. 

Variables (number of neighbourhood=1677) Mean (Standard Deviation) 

Dependent variable  

NDVI 0.105(0.050) 

SVG-quantity 0.201(0.089) 

SVG-quality 5.560(0.572) 

Independent variable  

Neighbourhoods SES quartile (Q1)  0.986(0.210) 

Neighbourhoods SES quartile 2 (Q2)  1.416(0.088) 

Neighbourhoods SES quartile 3 (Q3)  1.767(0.127) 

Neighbourhoods SES quartile 4 (Q4)  2.482(0.577) 

Covariates  

Population density (person/km2)   30704.401(31974.252) 

The proportion of residents aged 0-18 0.147(0.046) 

The proportion of residents aged above 65 0.082(0.051) 

The proportion of residents living in houses built before 1979 0.011(0.014) 

 

Table 2 

Results of correlation test for different greenspace measures. 

 NDVI Street view greenness quantity Street view greenness quality 

NDVI 1   

Street view greenness quantity 0.25* 1  

Street view greenness quality 0.31 0.78* 1 

*p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 3 

Regression models of NDVI for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   -0.040***(0.002)  -0.017***(0.001)  -0.026***(0.002) 

The proportion of residents aged 0-18  0.063*(0.036)  0.024(0.020)  0.039*(0.020) 

The proportion of residents aged above 65  -0.076***(0.025)  -0.052***(0.019)  -0.087***(0.021) 

The proportion of residents living in house built before 1979  -0.101(0.086)  0.099(0.066)  0.101(0.073) 

SES status (referenced: Q1)       

Q2 0.002*(0.001) 0.006*(0.003) 0.002(0.002) 0.003(0.002) 0.002(0.002) 0.002(0.002) 

Q3 0.008(0.005) 0.011(0.013) 0.004(0.003) 0.008(0.012) 0.007(0.005) 0.007(0.013) 

Q4 0.002(0.003) 0.005(0.003) 0.003(0.003) 0.005(0.003) 0.005(0.003) 0.005(0.003) 

Constant 0.099***(0.002) 0.288***(0.009) 0.022***(0.002) 0.119***(0.008) 0.096***(0.003) 0.217***(0.010) 

Lag Coeff(Rho)   0.754***(0.016) 0.633***(0.019)   

Lag Coeff(Lambda)     0.757***(0.015) 0.680***(0.019) 

R2  0.017 0.363 0.602 0.623 0.602 0.622 

AIC -5297.35 -6011.8 -6508.71 -6700.35 -6508.69 -6660.33 

Robust LMLAG   15.327*** 75.726***   

Robust LMERR     0.386 11.122*** 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

 



 

Table 4 

Regression models of street view greenness quantity for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   0.017***(0.003)  0.009***(0.003)  0.010**(0.004) 

The proportion of residents aged 0-18  0.038(0.057)  0.040(0.051)  0.053(0.052) 

The proportion of residents aged above 65  0.046(0.055)  0.034(0.049)  0.032(0.053) 

The proportion of residents living in house built before 1979  0.090(0.189)  0.093(0.169)  0.043(0.184) 

SES status (referenced: Q1)       

Q2 0.008(0.006) 0.009(0.006) 0.004(0.005) 0.004(0.006) 0.001(0.005) 0.001(0.006) 

Q3 0.016(0.016) 0.016(0.011) 0.015(0.015) 0.014(0.016) 0.017(0.017) 0.016(0.017) 

Q4 0.027***(0.006) 0.022***(0.008) 0.021***(0.005) 0.018***(0.007) 0.023***(0.006) 0.020***(0.007) 

Constant 0.188***(0.004) 0.260***(0.020) 0.093***(0.006) 0.131***(0.019) 0.1905***(0.005) 0.233***(0.022) 

Lag Coeff(Rho)   0.484***(0.025) 0.475***(0.026)   

Lag Coeff(Lambda)     0.488***(0.031) 0.479***(0.026) 

R2  0.010 0.022 0.217 0.219 0.219 0.221 

AIC -3349.14 -3365.47 -3635.91 -3635.75 -3640.43 -3637.73 

Robust LMLAG   3.691** 3.593**   

Robust LMERR     0.044 0.068 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

 



Table 5 

Regression models of street view greenness quality for neighbourhoods in inner-city area, Guangzhou, China. 

 OLS SLM SEM 

 Coef.(SE) Coef.(SE) Coef.(SE) 

 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Population density   0.274***(0.020)  0.130***(0.018)  0.176***(0.026) 

The proportion of residents aged 0-18  0.592*(0.347)  0.336(0.289)  0.383(0.297) 

The proportion of residents aged above 65  0.145(0.331)  0.150(0.276)  -0.037(0.305) 

The proportion of residents living in house built before 1979  0.540(1.149)  0.534(0.959)  0.342(1.055) 

SES status (referenced: Q1)       

Q2 0.052**(0.024) 0.061**(0.029) 0.026**(0.011) 0.030**(0.012) 0.035**(0.016) 0.031**(0.012) 

Q3 0.074**(0.036) 0.056**(0.022) 0.073**(0.031) 0.064***(0.025) 0.101***(0.033) 0.088**(0.037) 

Q4 0.226***(0.039) 0.106**(0.047) 0.169***(0.031) 0.116***(0.039) 0.204***(0.035) 0.166***(0.043) 

Constant 5.472***(0.027) 6.547***(0.119) 2.111***(0.119) 2.887***(0.177) 5.473***(0.035) 6.227***(0.134) 

Lag Coeff(Rho)   0.608***(0.021) 0.558***(0.023)   

Lag Coeff(Lambda)     0.614***(0.021) 0.575***(0.023) 

R2  0.019 0.122 0.379 0.388 0.383 0.39 

AIC 2861.71 2680.54 2273.17 2225.79 2263.29 2228.21 

Robust LMLAG   8.979*** 21.663***   

Robust LMERR     0.195 1.065 

 

Coeff. = coefficient; SE = standard error. *p < 0.10, **p < 0.05, ***p < 0.01. 
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