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 25 

Abstract – Do tropical trees close to death have a distinct change to their leaf spectral signature? 26 

Tree mortality rates have been increasing in tropical forests globally, reducing the global carbon 27 

sink.  Upcoming hyperspectral satellites could be used to predict regions close to experiencing 28 

extensive tree mortality during periods of stress, such as drought.  Here we show, for a tropical 29 

rainforest in Borneo, how imminent tropical tree mortality impacts leaf physiological traits and 30 

reflectance.  We measured leaf reflectance (400-2500 nm), light saturated photosynthesis (Asat), 31 

leaf dark respiration (Rdark), leaf mass area (LMA) and % leaf water across five campaigns in a 32 

six-month period during which there were two causes of tree mortality: a major natural drought 33 

and a co-incident tree stem girdling treatment.  We find that prior to mortality, there were 34 

significant (P<0.05) leaf spectral changes in the red (650-700 nm), the NIR (1000 -1400 nm) and 35 

SWIR bands (2000-2400 nm) and significant reductions in the potential carbon balance of the 36 

leaves (increased Rdark and reduced Asat).  We show that the partial least squares regression 37 

technique can predict mortality in tropical trees across different species and functional groups 38 

with medium precision but low accuracy (r2 of 0.65 and RMSE/mean of 0.58).   However, most 39 

tree death in our study was due to girdling, which is not a natural form of death. More research is 40 

needed to determine if this spectroscopy technique can be applied to tropical forests in general. 41 

 42 

Keywords – Tropical forests, spectroscopy, girdling, tree mortality, traits, drought, el Niño 43 

  44 
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 45 

Introduction 46 

Can future tropical forest tree mortality be predicted with aircraft or satellite remote 47 

sensing?  This question is of interest because tropical tree mortality is increasing, reducing the 48 

global carbon sink (Brienen et al., 2015; Hubau et al., 2020).  Increased tree mortality may be 49 

driven by recent increases in extreme weather events caused by climate change, including 50 

increased drought frequency/severity (Doughty et al., 2015; Rifai et al., 2018, 2019; Rowland et 51 

al., 2015) or elevated air temperatures (Clark, 2004; Doughty & Goulden, 2009a). Other causes 52 

of mortality include altered disturbance regimes due to land management practices or biological 53 

invasions (e.g. grass/fire cycles) and the negative environmental impacts arising from forest 54 

degradation (e.g. physical damage to trees from logging or small-scale slash-and-burn 55 

agriculture; environmental stress from enhanced edges effects) (Malhi et al., 2014).  56 

Experimental drought manipulations in the Amazon (da Costa et al., 2010; Meir et al., 2015; 57 

Nepstad et al., 2007) show that larger trees are more susceptible to drought-related mortality for 58 

specific high-abundance taxa (Bittencourt et al., 2020).  59 

Could changes to leaf properties in these large trees indicate risk of imminent future 60 

mortality?  Death of these large individuals has the greatest impact on tropical forest vegetation 61 

and carbon dynamics (Phillips et al., 2009).   “Environmental surveillance” techniques that 62 

enable us to identify individuals at risk of mortality or to predict future patterns of senescence 63 

would enable us not only to model forest vegetation and carbon dynamics more accurately, but 64 

could possibly enable us to manage the spread of forest pathogens and understand environmental 65 

stress gradients related to disturbance. Given that these large trees are also the most visible to 66 

aircraft and satellites, remote sensing techniques that enable us to identify dying trees hold 67 
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tremendous potential for detecting and understanding the causes of tree mortality at large spatial 68 

scales. 69 

Leaf traits, such as leaf chemical composition, photosynthetic capacity or leaf mass per 70 

area (LMA), are important indicators of a tree’s life history strategy and overall vitality (Poorter 71 

et al., 2008; Wright et al., 2004; Wright et al., 2010).  Remote sensing of these traits is thus one 72 

approach that could enable us to detect individuals or taxa at elevated risk of death from stress. 73 

For instance, light-demanding species with rapid growth and high mortality rates are predicted to 74 

have lower seed mass, leaf mass per area (LMA), wood density, and tree height (Wright et al., 75 

2010). Variation in LMA in part expresses a trade-off between the energetic cost of leaf 76 

construction and the light captured per area that may be reflective of the strategy of the broader 77 

tree itself (Díaz et al., 2016; Poorter et al., 2009). Drought tolerance is also reflected in structural 78 

traits such as LMA, leaf thickness, leaf toughness and wood density, although further studies are 79 

required to better establish the limitations of these metrics and identify other potential indices 80 

(Bartlett et al., 2012; Fyllas et al., 2012; Niinemets, 2001; Zanne et al., 2010).   81 

Much recent literature has discussed the roles of carbon starvation, hydraulic failure, or a 82 

combination of the two on tree death as well as the traits associated with these processes. To 83 

predict tree death with remote sensing we must first understand the characteristics that drive tree 84 

death. A recent meta-analysis suggests that metrics of hydraulic failure more consistently 85 

predicted mortality than carbon starvation as determined by tissue concentrations of non-86 

structural carbohydrates (NSC) (Adams et al., 2017).  Another study similarly found hydraulic 87 

traits were better at predicting the response of ecosystem fluxes (CO2 and water vapor) to 88 

drought than traits like LMA or wood density (Anderegg et al., 2018).  Tree mortality during 89 

droughts is highest for species that have a small hydraulic safety margin (the difference between 90 
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typical minimum xylem water potential experienced and xylem vulnerability to embolism) 91 

(Anderegg et al., 2016).  Turgor loss point - the leaf water potential that induces wilting - may be 92 

a key trait predicting  drought tolerance and species distributions relative to water supply 93 

(Bartlett et al., 2012).  In tropical forests, turgor loss point varied widely across species and was 94 

weakly positively correlated with leaf toughness and thickness (Maréchaux et al., 2015).  Some 95 

literature suggests that both hydraulic failure and carbon depletion are associated with mortality 96 

in large part through their effect on leaf water content and turgor (Sapes et al., 2019; Sevanto et 97 

al., 2014).  Leaf water content can be accurately remotely sensed at the leaf and aircraft scale 98 

(Asner et al., 2016; Asner & Martin, 2008). 99 

Leaf traits can be sensed remotely by aircraft or from space.  Foliar traits such as nitrogen 100 

(N) content, chlorophyll content, carotenoids, lignin, cellulose, LMA, soluble carbon, and water 101 

can be remotely estimated with leaf spectral reflectance signatures (400-2500nm in 1 nm 102 

bandwidths) in many different plants and ecosystems (Ustin et al., 2009), including tropical 103 

forests (Asner & Martin, 2008).  This is because certain traits are associated with reflectance 104 

characteristics within specific spectral regions.  For instance, the visible part of the spectrum 105 

(400–700 nm) is associated with pigments (mostly chlorophyll), and the near infrared (NIR; 106 

700–1,300 nm) is associated with structures such as palisade cell density.  LMA and leaf 107 

chemistry have been accurately measured and modelled at both the leaf (Asner & Martin, 2008; 108 

Curran, 1989; Jacquemoud et al., 2009), canopy and landscape scales (Asner et al., 2016). Other 109 

elements not directly expressed in the spectrum, such as phosphorus (P), have been accurately 110 

predicted with spectroscopy, possibly through stoichiometric relationships with other chemical 111 

species (Ustin et al., 2006, 2009) or correlations with leaf morphological traits via the leaf 112 

economics spectrum (Wright et al 2004).  Other tropical tree traits not directly associated with 113 
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leaf spectra, such as photosynthetic capacity (Doughty et al., 2011), and branch wood density, 114 

have been predicted with spectroscopy in tropical forests (Doughty et al., 2017).  Traits not 115 

directly associated with spectral regions can still be predicted through correlations between leaf 116 

traits and a tree’s life history strategy (Doughty et al., 2017). 117 

There is evidence that drought changes tropical forest reflectance at the continental scale, 118 

due to changes in leaf traits or increased tree mortality.  For instance, Enhanced Vegetation 119 

Index (EVI), a greenness index measured with Moderate Resolution Imaging Spectroradiometer 120 

(MODIS), increased in the Amazon during the 2005 drought, indicating possible positive 121 

impacts of drought on forests due to increased irradiance (Saleska et al., 2007). However, others 122 

have challenged the original interpretation of the EVI data (Morton et al., 2014; Samanta et al., 123 

2010), highlighting the challenge of remote sensing at a continental scale.  More recently, during 124 

a major El Niño drought in Borneo, NDVI initially increased as the drought was strengthening, 125 

but decreased at its peak (Nunes et al., 2019).  Interpretation of changing NDVI and/or EVI at 126 

larger spatial scales is generally complicated in many ecosystems as changes at the leaf level 127 

may be compensated for or masked by canopy scale process.  For example, leaf senescence and 128 

leaf fall may reduce the canopy scale NIR signal.  However, remotely sensed LAI signal 129 

saturates in tropical forests and LAI variation can be relatively small even following strong 130 

climate extremes such as drought.  For instance, Meir et al. (2018) found a 12-20% change in 131 

LAI during an extreme drought manipulation experiment with a non-droughted natural LAI of 132 

~5.5 m2 m-2, which is within the saturation range.  Therefore, changes in tropical forest canopy 133 

spectral characteristics at larger spatial scales may be more linked to changes in leaf level 134 

spectra, than in other ecosystems with lower LAI (Doughty & Goulden, 2009b; Wu et al., 2018).    135 
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The 2016 El Niño caused a significant drought in Borneo, both in terms of increased 136 

maximum temperatures and reduced precipitation (Figure 1)(Rifai et al., 2019)(Rifai et al., 137 

2018).  This El Niño had unusually high temperatures, which have been attributed to climate 138 

change (Thirumalai et al., 2017).  Recent work in Borneo, near our study site, found the El Niño 139 

event was associated with a decrease in chlorophyll and carotenoid concentrations by 35%.  140 

They also noted a decrease in NDVI with a change in the shortwave infrared region of leaf 141 

spectral signatures (Nunes et al., 2019). The authors hypothesized that trees produced new leaves 142 

with higher pigment concentrations at the start of the El Niño event, and then dropped their 143 

leaves at its peak.   144 

In this study, we focus on tree mortality at a 1 ha long-term study site close to the Nunes 145 

et al (2019) study site in Sabah, northern Borneo.  We attempt to understand the relationship 146 

between leaf traits, spectroscopy and mortality in two different ways: natural death during El 147 

Niño and forced mortality induced by girdling.  Before, during and after the 2016 El Niño 148 

drought (over 5 field campaigns), we measured canopy-top leaf spectra (400-2500 nm), net light 149 

saturated photosynthesis, dark respiration and LMA in a representative cross section of the 393 150 

monitored trees.  We further tried to explore mechanisms of mortality with a girdling campaign 151 

(the removal of the phloem in a 10 cm ring around the tree stem) in one half (0.5 ha, 210 stems) 152 

of the plot.  Here, we test the following hypotheses: 153 

H1 – Leaf traits that are correlated with leaf spectroscopy signals, such as light saturated 154 

photosynthesis, dark respiration, and LMA, undergo significant change months prior to tree 155 

mortality. 156 

H2 - Tropical tree mortality can be predicted with hyperspectral information (400-2500 at 1 nm 157 

bandwidth leaf reflectance).   158 

159 
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Methods 160 

Study sites 161 

Our study plots are in Kalabakan Forest Reserve in Sabah, Malaysian Borneo (Tower SAF‐05 162 

4.716°, 117.609°) within the Stability of Altered Forest Ecosystems (SAFE) Project study site 163 

(Ewers et al., 2011; Riutta et al., 2018). A schematic of the study site is shown in figure 1C.  164 

Mean annual temperature is approximately 26.7°C and mean annual precipitation is 2,600–165 

2,700 mm with no distinct dry season but, on average, ~12% of months with precipitation below 166 

100 mm month-1 (Walsh & Newbery, 1999).  The plot has been selectively logged four times 167 

since the 1970s, which represents a high logging intensity for this region.  The soils are orthic 168 

Acrisols or Ultisols on undulating clay soil. The tree basal area is 13.9 m2/ha.  Total NPP and 169 

autotrophic respiration have been measured at this plot since 2011 and there is an eddy 170 

covariance tower nearby (Riutta et al., 2018).  The plot is split in half by a small stream.  All the 171 

trees on one side of the stream were girdled in late January 2016 by removing the phloem tissue 172 

in a 10 cm band, as described below (note: the plot was in the process of conversion to oil palm 173 

agriculture production). This part of the study site is hereafter referred to as the “girdled plot.”  174 

The trees on the other side of the stream were not girdled and represent the treatment control. 175 

This part of the study site is hereafter referred to as the “drought plot”.  Although all trees 176 

experienced drought, the “drought” plot only experienced drought and not the effects of girdling.  177 

We collected data during five field campaigns that took place from January to June 2016.  178 

Campaigns began on the following days and generally took several days: Campaign 1=21 Jan-179 

16, Campaign 2=10 Feb-16, Campaign 3=01 Mar-16, Campaign 4=29 Mar-16, Campaign 5 08 180 

Jun-16. The first field campaign (C1) was conducted before girdling occurred to determine pre-181 

girdling conditions and process rates. 182 
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 183 

Girdling experiment – In late Jan 2016, after the first field campaign, we further explored the 184 

causes of tree mortality by conducting a girdling experiment. Girdling involved removing a 10 185 

cm strip of the periderm and phloem in a ring around the tree stem at ~1.2 m height (with 186 

exceptions for trees with buttresses, which were girdled above the buttress) above the soil 187 

(Figure 1a) in a plot that was scheduled for conversion to a palm oil plantation.  This technique 188 

prevents carbohydrate transport to the roots but maintains hydraulic connectivity because xylem 189 

tissues are not severed.  Tree death was determined visually, based on the absence of visible 190 

canopy, with regular (average 18-day period) visits to the plots for both the drought and the 191 

girdled plots.  We give the species measured in both plots in Table 1.   192 

 193 

Leaf sampling strategy –In each plot, 20-25 trees were chosen during each campaign, and tree 194 

climbers with extendable tree pruners removed one branch per tree that was growing in full 195 

sunlight (Asner & Martin, 2008).  These branches were quickly recut underwater and taken to 196 

the laboratory for further measurements. On each of these branches, five fully expanded non-197 

senescent leaves in randomly selected locations were chosen for measurements of:  leaf-gas 198 

exchange leaf spectral properties (measured within 1 hour of being cut) and LMA. Leaf area was 199 

determined immediately after collection using a digital 476 scanner (Canon LiDE 110). Leaves 200 

were then oven dried at 72 °C until constant mass was reached.  We subtracted wet weight from 201 

dry weight to calculate % leaf water and used dry weight and leaf area in order to calculate 202 

LMA.  203 

 204 
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Leaf-level gas exchange – We used a portable gas exchange system (LI 6400, Li-Cor 205 

Biosciences, Lincoln, NE, USA) to measure leaf-level gas exchange. After returning to the 206 

laboratory, leaf dark respiration (Rdark) was measured by covering branches with an opaque bag 207 

for at least 20 minutes prior to measurement at a cuvette temperature of 30° C (Rowland et al., 208 

2017). After this, branches were exposed to sunlight and light-saturated leaf photosynthesis was 209 

measured (Asat; 1200 µmol m-2 s-1 PPFD, 400 ppm CO2, at 30° C).  We chose a light level of 210 

1200 µmol m-2 s-1  for Asat because we tested photosynthetic capacity and found it generally 211 

saturated below light levels of ~1200 µmol m-2 s-1 PPFD, similar to other tropical studies (Both 212 

et al., 2019; Gvozdevaite et al., 2018; Doughty & Goulden, 2009b).  We waited for gas exchange 213 

values to stabilize before starting a measurement, recorded data every two seconds and averaged 214 

the results after eliminating the first 20 measurements.    We excluded photosynthesis 215 

measurements less than 0 µmol m-2 s-1 as this was indicative of a failure to maintain hydraulic 216 

connectivity in the sampled branch resulting in stomatal closure.  We also excluded dark 217 

respiration measurements more negative than -1.5 µmol m-2 s-1 as this was considered indicative 218 

of a failure to truly represent Rd, or in some cases operator error. Most physiological 219 

measurements were collected between 07:00 and 14:00 local time and branches were cut from 220 

trees between 06:00 and 13:00 local time.  An online supplement includes our averaged ± sd data 221 

for each leaf measured for transpiration rate (mmol H2O m-2 s-1), vapor pressure deficit based on 222 

leaf temperature (kPa), intercellular CO2 concentration (µmol CO2 mol-1), conductance to H2O 223 

(mol H2O m-2 s-1), and  photosynthetic rate (µmol CO2 m
-2 s-1). 224 

Leaf spectroscopy – We randomly selected five leaves within an hour of each branch being cut, 225 

and measured hemispherical reflectance near the mid-point between the main vein and the leaf 226 

edge (Asner & Martin, 2008). We used an ASD Fieldspec 4 with a fibre optic cable, contact 227 
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probe and a leaf clip (Analytical Spectral Devices, Boulder, Colorado, USA).  The spectrometer 228 

records 2175 bands spanning the 325–2500 nm wavelength region. We corrected for small 229 

discontinuities between spectral bands (~950 and ~1750 nm), where the instrument transitions 230 

from one sensor to another.  Measurements were collected with 136-ms integration time per 231 

spectrum (Asner & Martin, 2008; Doughty, Asner, et al., 2011). To ensure measurement quality, 232 

the spectrometer was calibrated for dark current and stray light, and white-referenced to a 233 

calibration panel (Spectralon, Labsphere, Durham, New Hampshire, USA) after each 234 

branch(Asner & Martin, 2008; Doughty, Field, et al., 2011).  The spectrometer was optimized 235 

after every branch so the light levels did not saturate. For each measurement, 25 spectra were 236 

averaged together to increase the signal-to-noise ratio of the data. 237 

 238 

Data analysis - We used the Partial Least Squares Regression (PLSR) modelling approach to 239 

predict leaf traits with spectral information (Geladi & Kowalski, 1986).  PLSR incorporates all 240 

the spectral information within each leaf reflectance measurement, eventually reducing all 241 

spectral data (400-2500 nm) down to a relatively few, uncorrelated latent factors. This approach 242 

has been used successfully to predict plant traits across a wide range of ecosystems, including 243 

tropical forests (Asner & Martin, 2008; Serbin et al., 2014).  We used the PLSregress command 244 

in Matlab (Matlab, MathWorks Inc., Natick, MA, USA) to establish predictive models for LMA, 245 

Asat, wood density (estimated with tree species and a lookup table (Chave et al., 2009)) and tree 246 

mortality (Doughty, Asner, et al., 2011).  To avoid over-fitting the number of latent factors we 247 

minimized the mean square error with K-fold cross validation (set as an upper bound as 30).  To 248 

avoid issues of pseudo replication, we emphasize that the unit of analysis in these analyses is the 249 

leaf.  To create a completely independent testing dataset, we used the above method on 70% of 250 



12 
 

our data to calibrate our model and then the remaining 30% to test the accuracy of our model.  251 

We evaluated the accuracy of our modelled estimates using two main metrics: r2 and root mean 252 

square error (RMSE)/mean.  We graded our results as high precision and accuracy (r2 > 0.70; 253 

%RMSE < 15%), medium precision and accuracy (r2 > 0.50%; % RMSE < 30%), low precision 254 

and accuracy (r2 > 0.50; % RMSE > 30%).  We also calculated NDVI for our five study periods 255 

as NDVI = (NIR-red)/(NIR+red) where we use 1000 nm for NIR and 650 nm for red. 256 

Statistical tests – For our leaf spectral measurements, for each 1 nm bandwidth, we determined 257 

statistical significance (P<0.05) between trees within 50 days of mortality and prior to this with a 258 

paired t-test (Matlab, Mathworks).  To understand significant differences between % water, 259 

LMA, Rdark, and Asat, we used a t-test.  To understand the impact of the girdling between % 260 

water, LMA, Rdark, and Asat over time, we used a repeated measures ANOVA.  261 
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 262 

Results 263 

The field campaigns overlapped with the 2016 El Niño in Borneo (Figure 1b).    264 

Campaign 1 (C1- Jan-21) took place before the period of peak drought and temperature, C3 265 

(March -16) was conducted during the peak of the drought and high temperatures, and by C5 266 

(June-16) the rains had returned.  After C1, all the trees in the girdled plot had their phloem 267 

tissue removed in a 10 cm band.  Given the downward flux of sugars from the canopy, we might 268 

expect an initial build-up of sugars above the girdle followed by eventual tree death as carbon 269 

starvation below the girdle impacted tree function, particularly in the roots.  Companion papers 270 

explore the causes of tree death and the impacts on plant hydraulics and soil respiration. 271 

There was little change in leaf reflectance (400-2500 nm) between C1 and C2 (Figure 2) 272 

in both the drought and girdled plots.  We expected few spectral changes during this short 273 

interval between C1 and C2 (Jan-21 to Feb-10) for the natural drought plots, but we were 274 

surprised there were also few changes for the girdled plots since these trees experienced a 275 

significant trauma.   In the later campaigns (C3 to C5 01-Mar to 08-Jun), there were large (~0.03 276 

reflectance units) increases in NIR reflectance (750-1500 nm) in both the girdled and natural 277 

drought plots (Figure 2 a and b).  Reflectance in the visible wavelengths was lower during peak 278 

drought (C3) compared to when the rains returned (C4 and C5).  The girdled plots showed a 279 

consistent increase in visible reflectance.  Spectral reflectance increased in the SWIR bands over 280 

time during the drought and there were few changes in the girdled plot except for the final 281 

campaign where there was a decrease.  Figure 2 displays all spectral data taken during each 282 

campaign and therefore, changes in spectral properties in the girdled plot might also have 283 

resulted from species changes because certain tree species died sooner than others, changing the 284 
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species composition as the experiment continued.  To address this, in figure 5, we compare 285 

spectroscopy for only trees that died. 286 

 Our average Asat values across the campaigns for the girdled plot (3.7 µmol CO2 m
-2 s-1) 287 

and the drought plot (4.7 µmol CO2 m
-2 s-1) were slightly lower, but within 95% confidence 288 

intervals of values from a nearby campaign in Borneo (old growth plots - 4.1 µmol CO2 m
-2 s-1 289 

(2.7–5.5 = 95% confidence interval) and selectively logged plots - 7.0 µmol CO2 m
-2 s-1 (5.7–290 

8.4)) (Both et al., 2019). Our average Rdark values across the campaigns for the girdled plot (-0.82 291 

µmol CO2 m
-2 s-1) and the drought plot (-0.83 µmol CO2 m

-2 s-1) were likewise slightly less 292 

negative than the values from Both et al 2019 of –1.0 µmol CO2 m
-2 s-1 (–0.9 to –1.2) for the old 293 

growth plots and –1.3 µmol CO2 m
-2 s-1 (–1.1 to –1.4) for the selectively logged plots. Light 294 

saturated leaf photosynthesis and Rdark varied between the wet and dry seasons in both plots over 295 

the measurement period (Figure 3).  Following the return of the rains, Asat increased in both the 296 

drought and girdled plots in C5.  Surprisingly, the surviving girdled trees had the highest 297 

photosynthetic rates of all the campaigns in C5 despite the damaged phloem.  Dark respiration 298 

was at its lowest in C3 and 4 during the peak of the drought. In both groups, changes in Rdark 299 

mirrored those of Asat.  The ratio Rdark/ Asat also varied between the wet and dry seasons, with the 300 

exception of C4, where the drought plot was less efficient with greater carbon loss per carbon 301 

gain.   Leaf water content (% leaf water) was also at its lowest in C3 and 4 during the peak of the 302 

drought but recovered by C5 (Figure 3e), but we did not find significant effects over time. NDVI 303 

was lowest in C3 for both the girdle and drought plots but increased in C4 and C5 (Figure 3f).  A 304 

repeated measures ANOVA showed no significant differences between Asat, Rd, and LMA over 305 

time between the girdled and drought plots across the four campaigns (C1 was prior to the girdle) 306 

suggesting the girdling had little overall impact of on leaf physiology.           307 
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To understand how the drought and girdling impacted leaf spectral properties in different 308 

ways and how these link to functional traits, we binned our results into groups of trees with 309 

either high (>0.5 g cm3 N= 359 leaves/Campaign) or low wood density (<0.5 g cm3 N= 830 310 

leaves/Campaign) (Figure 4). During the drought, tree species with lower density showed an 311 

increase in leaf reflectance compared to species with higher density wood. For example, during 312 

the drought, tree species with lower wood density increased leaf reflectance by ~0.05 in the NIR 313 

and ~0.01 SWIR more than tree species with higher density wood, with fewer significant 314 

changes (P<0.05) in the visible bands.  In contrast, the high wood density tree species show a 315 

stronger reaction to the girdling than the low wood density species, again with large increases in 316 

reflectance in the NIR and SWIR bands.   317 

 We then compared near death leaf reflectance (within 50 days of dying) to leaf 318 

reflectance from the same trees, during an earlier period, not near to death (Figure 5).  By C5, 38 319 

trees or 18% percent of all girdled trees had died.  There were large (0.03-0.05 reflectance units) 320 

and significant decreases (P<0.05) in leaf reflectance in the visible bands and the red edge as tree 321 

death approached.  Close to mortality, there were also large (0.02) and significant increases 322 

(P<0.05) in leaf reflectance in NIR and SWIR bands.  Next, we investigated how drought 323 

conditions, caused by the ENSO event, affected leaf spectral properties in trees which died 324 

naturally in the non-girdled control plot.  In the control plot, only one tree died from drought that 325 

was intensively sampled for functional traits.  We observed similar significant changes along the 326 

same pre-death timeline, in leaf reflectance in this tree as observed in the trees that died 327 

following the girdling treatment: reductions in reflectance occurred in the red, the NIR and 328 

SWIR bands.  However, there was a significant peak in the red edge in the opposite direction 329 



16 
 

compared to the girdling study.  The wavelengths that show similarities for both types of death 330 

were: red (650-700nm), the NIR (1000 -1400nm) and SWIR bands (2000-2400nm). 331 

For both the girdled and non-girdled trees, there were highly significant changes 332 

(P<0.0001) to the potential carbon balance (Rdark /Asat – Figure 6e and f) of the leaves just prior 333 

to death (i.e. within 50 days). In both the drought and the girdled plots, there were significant 334 

increases in Rdark and significant decreases in Asat (Figure 6). This combination of increased 335 

respiration and decreased photosynthesis should reduce the carbon available to the tree (again 336 

dependent on stomatal conductance changes). There was no significant change in LMA among 337 

the girdled trees. In contrast, in the tree that died from drought in the non-girdled plot, the leaves 338 

had significantly higher LMA and lower % water near to death.  We do not know if this was a 339 

result of a changing cohort of leaves present on the sampled branch (i.e. leaves with lower LMA 340 

senesced sooner) or if all leaves changed their LMA via altered density prior to death (less likely 341 

as structural carbon is fixed). 342 

Finally, we used PLSR to predict changes in physiology and time to death with 343 

spectroscopy (Figure 7).  We used the primary weighting (right side of figure 7) to understand 344 

which spectral regions are most important (deviations from 0).  Spectroscopy predicted % water 345 

and LMA well with an r2 of 0.72 and 0.74 respectively and RMSE/mean of 0.07 and 0.14 346 

(similar to many other studies with high precision and high accuracy (Asner and Martin 2008, 347 

Doughty et al 2011) (RMSE = 0.04 and 14.5, RMSE/std = 0.57 and 0.61, # of PLS weights = 348 

30)).  The primary weighting is in the NIR and SWIR bands which is typical of traits relating to 349 

structure. Spectroscopy predicted maximum photosynthetic rate (Asat) with an r2 of 0.66 and 350 

RMSE/mean of 0.69 (medium precision but low accuracy) (RMSE = 3.3, RMSE/std = 0.74, # of 351 

PLS weights = 25/30) and wood density with an r2 of 0.41 and RMSE/mean of 0.24 (low 352 
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precision but medium accuracy) (RMSE = 0.12, RMSE/std = 0.94, # of PLS weights = 15). The 353 

primary weighting of Asat was in the visible bands (likely related to chlorophyll content) and for 354 

wood density in NIR and SWIR >1000 nm (likely related to variations in LMA and leaf 355 

structure). Finally, we predicted time to death with spectroscopy and the PLSR technique with an 356 

r2 of 0.68 and RMSE/mean of 0.55 (medium precision and low accuracy) (RMSE = 82, 357 

RMSE/std = 0.81, # of PLS weights = 30).  The primary weighting shows similarity with Figure 358 

5 with important spectral regions in the visible (related to photosynthetic characteristics), the 359 

NIR (related to structure) and SWIR bands (related to water bands).   360 

 361 

  362 
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Discussion 363 

Leaf spectroscopy - Identification of tropical trees susceptible to mortality through 364 

hyperspectral imagery could provide a powerful tool in examining recently reported increases in 365 

tree mortality rates across the tropics(Brienen et al., 2015; Hubau et al., 2020).  By contributing 366 

to “environmental surveillance,” the use of hyperspectral data would have a wide range of 367 

applications from the prediction of tree death from heat stress, pests, pathogens or illegal 368 

logging.  Moreover, this technique could enable us to identify potential tipping points in tropical 369 

forests, with wider ramifications for the development of adaptive forest management strategies in 370 

the future.   371 

Based on these results, future mortality is potentially predictable using hyperspectral data 372 

for up to 50 days in advance of tree death (Figure 7).  We also observed a tree that died naturally 373 

from drought, and saw that there were regions of spectral overlap with the signal from trees 374 

killed by girdling in terms of the wavelengths that changed prior to tree death; e.g. red (650-375 

700nm), the NIR (1000 -1400nm) and SWIR bands (2000-2400nm) (blue circles in Figure 5), 376 

but it is difficult to draw conclusions from just one tree.  Another venue of remotely sensing 377 

stress would be through predicting changes in leaf water content which declined in leaves during 378 

the drought (drought and gridled trees) and <50 days prior to death (only the drought tree) 379 

(Figures 3 and 6), and is highly predictable, with high precision and accuracy (Figure 7).  This 380 

gives us some confidence that the spectral changes may be general to mortality and not specific 381 

to girdling-induced mortality.  We demonstrate only changes in leaf reflectance and not overall 382 

canopy reflectance. It is important to differentiate between leaf versus canopy reflectance (as 383 

seen from aircraft or space) because the latter also incorporates forest structural changes (such as 384 

variations in LAI, branch architecture, stem density), which were not measured.   Leaf spectral 385 
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properties strongly influence canopy spectral properties especially in certain wavelengths (Asner 386 

and Martin 2008), but changes in other properties, like LAI, would complicate the signal. Leaf-387 

level analyses may also suffer from survivorship bias where the leaves that fare the worst under 388 

drought drop first.  Large shifts in the spectral regions shown in Fig 5 may be indicative of tree 389 

mortality and should be tested with hyperspectral aircraft data in the region for confirmation 390 

(Swinfield et al., 2019).  A previous study using Hyperion hyperspectral satellite data over an 391 

Amazonian drought experiment showed similar declines in magnitude in the NIR and VIS 392 

regions as our study (Fig 5) (Asner et al., 2004).  393 

Surprisingly, leaf spectral properties did not vary greatly during the period immediately 394 

following tree girdling (~1 week).  Previous studies have quantified changes in non-395 

photosynthetic vegetation to estimate regional selective logging impacts (Asner et al., 2005). 396 

Here we show that significant trauma to the trunk (i.e. the girdling treatment) did not 397 

immediately result in changes to leaf spectral properties, but that leaf spectral properties did 398 

change significantly within 50 days of tree death.  We hypothesize that > 7 days is the time 399 

needed to change the biochemistry,  physiology and metabolism of leaves to respond to 400 

substantive environmental stress because we saw little change between C1 and C2.   This 401 

indicates that >7 days but <50 are necessary for leaf spectral changes to occur (Figure 5), which 402 

could constrain timing for a potential new technique to identify damage to trees from selective 403 

logging.   404 

Do we succeed in predicting mortality because there are changes in short-term 405 

physiological status (e.g. reduced relative % water content in leaves) or because certain trees are 406 

just more likely to die than others due to their constitutive traits (e.g. lower LMA linked to a 407 

different life history strategy)?  In the girdled study, LMA and % water did not change 408 
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significantly prior to death, but leaf gas exchange metrics did (Asat and Rdark), shown in the large 409 

and significant changes in the visible and red edge bands (Fig 5).  However, the drought-410 

associated tree death event was accompanied by a significant change in LMA and % water 411 

content, and the spectral analysis showed a further correlation with significant changes in the 412 

NIR and water bands (Fig 5).  Therefore, it seems a combination of changes in leaf structure, 413 

physiological status and associated reflectance traits combine to enable mortality to be 414 

predictable. 415 

It should be noted that prior to this study our plots had been extensively logged  (i.e. four 416 

times since the 1970’s,), with 46 to 54 Mg C ha−1  cumulative extracted biomass in the area 417 

(Riutta et al., 2018).  Logging has been shown with hyperspectral imagery in Borneo to lower 418 

canopy foliar nutrient concentrations and to decrease nutrient availability (Swinfield et al., 419 

2019).  Our results are therefore biased towards logged/low foliar nutrient forests, although our 420 

dataset does include late-successional species as well.  However, most forests (72%) in the study 421 

region have been selectively logged, and our results should be valid for these forests (Bryan et 422 

al., 2013).   423 

Leaf physiology - Leaf dark respiration, Rdark, was at its lowest during the peak of the drought, 424 

in campaigns C3 and C4.  This stands in contrast to some other tropical rainforest leaf respiration 425 

studies during natural and artificial drought that have seen increases in leaf respiration rates 426 

(Miranda et al., 2005; Rowland et al., 2015), although recent intensive survey results suggest that 427 

the response to experimental drought was taxon-specific rather than observed across a wide 428 

range of species (Rowland et al in review).  Leaf Rdark also did not increase in the leaves of 429 

girdled trees despite potential increases in leaf NSC content (as they could not be transported 430 

towards the roots following the girdling).  Other studies have shown a decrease in overall tree 431 
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respiration during drought periods as compared to before a drought (Doughty et al., 2015), and 432 

this is a similar pattern shown at our plots (Riutta et al 2020).   433 

We also observed both increased Rdark and decreased Asat 50 days prior to tree death (Fig  434 

6), which in combination, are very likely to reduce the carbon available in leaf tissue (although 435 

net carbon balance is also dependent on changes in stomatal conductance and light availability).  436 

This decreased carbon balance, in turn, could increase the likelihood of carbon starvation 437 

(McDowell et al., 2018) and reduce the availability of carbon (or more accurately non-structural 438 

carbohydrates) for possible embolism repair in the water conducting xylem tissue (Sala et al., 439 

2012).  It is also interesting to note that the highest average photosynthetic capacity (Asat) for the 440 

girdled experiment were observed when the rains returned. We speculate that might be due to a 441 

growth or sink driven response where, after the return of available water there was increased 442 

growth (e.g. leaf flushing, xylem regrowth) to replace senesced tissue.  We hypothesize that the 443 

increased growth results in a higher carbon sink leading to a higher demand for NSC with a 444 

consequent increase in Asat.   Overall, this is strong evidence that photosynthesis remains robust 445 

to perturbations, and that growth may be maintained preceding a mortality event as the plant 446 

attempts to recover damaged xylem capacity (Rowland et al., 2015; Meir et al., 2018). 447 

Conclusion 448 

 Our key finding is that remote sensing using spectral imagery shows potential to identify 449 

trees at imminent risk of death (approximately 50 days prior) with significant (P<0.05) leaf 450 

spectral changes in the red (650-700 nm), the NIR (1000 -1400 nm) and SWIR bands (2000-451 

2400 nm).   This technique has widespread relevance and applicability for 452 

ecological/management surveillance, prediction of future vegetation and forest carbon dynamics. 453 

We suggest aircraft campaigns search for a large shift in visible, red edge, and NIR reflectance 454 
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and compare this to later observed tree mortality or possibly use past data to “hindcast” this 455 

technique for validity.  For instance, we hypothesize that comparing hyperspectral aircraft flights 456 

before and after the 2016 drought might show large shifts in reflectance properties prior to tree 457 

mortality(Davies et al., 2019; Swinfield et al., 2019).  This could also be of use for hyperspectral 458 

satellites like DESIS to predict changes in long term carbon fluxes associated with tree mortality 459 

(Krutz et al., 2019).  The large significant changes in leaf reflectance observed here that were 460 

shared by both girdling- and drought-killed trees at the same timescale prior to mortality indicate 461 

that there could be a spectral indication of tropical tree mortality that has regional or wider 462 

application. 463 

 464 

  465 
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Tables 466 

Table 1 – Tree species measured intensively in the drought and girdled plot aligned to show 467 

which species were measured in both plots. 468 

Girdled Plot Drought Plot 

Adinandra borneensis, 

Brownlowia peltata,  

 

 

 

Dryobalanops lanceolate, 

Duabanga moluccana, 

 

Hydnocarpus anomalus, 

Leea aculeate,  

Lithocarpus blumeanus, 

Litsea  garciae, 

Lophopetalum sp., 

Macaranga hypoleuca, 

Macaranga pearsonii,  

 

 

Neolamarckia cadamba, 

Nephelium rambutan, 

Parashorea malaanonan,  

 

 

 

Shorea johorensis,  

Shorea parvifolia. 

Adinandra borneensis,  

 

Cariumna odontophyllum, 

Diplodiscus paniculatus, 

Dipterocarpus caudiferus, 

Dryobalanops lanceolate, 

Duabanga moluccana, 

Endospermum peltatum,  

 

 

Lithocarpus blumeanus,  

 

 

 

Macaranga pearsonii, 

Mallotus leucodermis, 

Nauclea officinalis, 

Neolamarckia cadamba,  

 

Parashorea malaanonan, 

Pleiocarpidia sandakanica, 

Pterospermum elongatum, 

Shorea gibbosa,  

Shorea johorensis,  

 

Syzygium sp.,  

Trema orientalis 

 

  469 
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 470 

Figures 471 

 472 

Figure 1. (A) An example tree that was girdled by stripping 10 cm of phloem in a ring around the tree.  473 
(B) Monthly volumetric soil moisture content at 20 cm depth (top) and air temperature (bottom) records at 474 
the study site. The horizontal continuous line denotes the long-term mean and the dashed lines denote 1 475 
and 2 standard deviations.  The grey region is the period of our measurements.  (C) A schematic of the 476 
plot layout with the non-girdled trees in the section labelled West (the other section was girdled). The 477 
total area of the plot is 1 ha, with the two sections separated by approximately 200 m.  The middle black 478 
line represents the river.  Each individual square represents a 20 m ×20 m subplot.  Red lines are trails 479 
and blue lines are small temporary streams. 480 

 481 

  482 
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 483 

Figure 2. Leaf spectral properties (400-2500nm) for the drought (A) and girdled (B) plots for the 5 484 
campaigns (Jan-June 2015).  (bottom) The difference (C1-CX, where X=2-5) in leaf spectral properties 485 
for the drought (C) and the girdled (D) plots.  In each campaign, we sampled the same trees unless the 486 
trees died. Reflectance factor is reflected incident light between 0-1. 487 

 488 

  489 
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 490 

 491 

Figure 3. Average ± se (Asat) photosynthetic capacity (A), (Rdark) leaf dark respiration (B), Asat / Rdark  (C) 492 
(LMA) leaf mass area (D),  % leaf water (E) and NDVI (F) for the 5 campaigns for the control site (red) 493 
and the girdled site (blue).  Asat and Rd were collected at a standard temperature (30 °C) during all 494 
campaigns.  We subtracted the initial difference (2 µmol m-2 sec-1) in the top panel between the average 495 
C1 values to better highlight the impact of the girdling.  Peak drought was C3 and the rains returned in 496 
C5. 497 

  498 
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 499 

Figure 4. The change in leaf spectral properties (400-2500 nm) between campaigns comparing drought 500 
plots for species with high wood density (density>0.5 g cm-3 - A), low wood density (density <0.5 g cm-3, 501 
B), and the difference (C) through the 5 campaigns.  The girdled plots for species with high wood density 502 
(density>0.5 g cm-3 - D), low wood density (density <0.5 g cm-3, E), and the difference (F).  For the 503 
difference plots, only significant (P<0.05) spectral regions are shown.   504 

 505 

  506 



28 
 

 507 

 508 

 509 

Figure 5 –The change (negative is a reduction in reflectance close to death) in leaf spectral 510 

properties from healthy leaves (>50 days from death) minus close to death leaves (<50 days from 511 

death) on a tree  that  died of natural drought (red, N=14 leaves) and  trees  that died during the 512 

girdling experiment (black, N=122 leaves).  Dots show regions of significant change (P<0.05) 513 

using a paired t-test.   Blue circled areas are key areas of spectral overlap. 514 

 515 

  516 
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 517 

Figure 6 – Comparison of the intensively monitored tree that died during the drought (left) and 518 

the girdling experiment (right) for Asat (A,B), Rdark (C,D), Rdark/ Asat (E, F), LMA (G, H) and % 519 

water (I, J) between initial values and values within 50 days of death.  The P value listed is the 520 

level of significance to three digits for a student’s t-test.  P=0 is a P value less than 0.0001. 521 

 522 

  523 
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 524 

Figure 7. On the left is predictive power (measured vs predicted) for the PLSR analysis with the r2 and 525 
RMSE/mean calculated from the full dataset for various traits including % water (A, r2=0.72, RMSE = 526 
0.07), LMA (C, r2=0.74, RMSE/mean = 0.14), Asat (E, r2=0.66, RMSE/mean = 0.69), wood density (G, 527 
r2=0.41, RMSE/mean = 0.24), and time to tree death (I, r2=0.68, RMSE/mean = 0.55). Red dots are the 528 
data to train the model (70%) and the blue dots are the independent dataset (30%).  Sample sizes to train 529 
the models are as follows: % water – N=1035, LMA-N=1028, Asat- N=846, wood density – N= 841, tree 530 
death – N=543.  On the right is the primary weighting, which is the PLS weight that explains the most 531 
variance in the data, multiplied by variance explained for % water (B), LMA (D), Asat (F), wood density 532 
(H), and time to tree death (J).   533 
  534 
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