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Abstract1

Genome studies of facultative sexual species, which can either repro-2

duce sexually or asexually, are providing insight into the evolutionary con-3

sequences of mixed reproductive modes. It is currently unclear to what4

extent the evolutionary history of facultative sexuals’ genomes can be ap-5

proximated by the standard coalescent, and if a coalescent effective popula-6

tion size Ne exists. Here, I determine if and when these approximations can7

be made. When sex is frequent (occurring at a frequency much greater than8

1/N per reproduction per generation, for N the actual population size),9

the underlying genealogy can be approximated by the standard coalescent,10

with a coalescent Ne ≈ N . When sex is very rare (at frequency much11

lower than 1/N), approximations for the pairwise coalescent time can be12

obtained, which is strongly influenced by the frequencies of sex and mitotic13

gene conversion, rather than N . However, these terms do not translate into a14

coalescent Ne. These results are used to discuss the best sampling strategies15

for investigating the evolutionary history of facultative sexual species.16
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Introduction17

Facultative sex, where individuals can either reproduce sexually or asexually, is18

pervasive in nature (Hartfield 2016). By switching reproduction, it is assumed19

that these organisms can reap the benefits of both modes (e.g., through shuffling20

genotypes and increasing fecundity, respectively). Genome sequence data from21

these organisms are being studied to determine the evolutionary consequences22

of mixed reproductive modes (Hartfield 2016; Nieuwenhuis and James 2016; Ho23

et al. 2019). However, difficulties arise when analysing genomes from facultative24

sexuals as the majority of theoretical and computational genomic methods assume25

obligate sex. Analyses of genome data from facultative sexuals will be aided if it26

is determined when general population genetic models can be used to investigate27

the evolutionary history of these species.28

The determinants of genetic diversity in facultative sexual organisms has been29

analysed using coalescent theory (Kingman 1982; Wakeley 2009). In the earliest30

models (Brookfield 1992; Burt et al. 1996; Bengtsson 2003; Ceplitis 2003), offspring31

were either produced via parthenogenesis or sexual reproduction. Parthenogenesis32

limits the extent that haplotypes segregate among individual lineages. Under rare33

sex (occurring with frequency at most on the order of 1/N per reproduction per34

generation, for N the population size, hereafter denoted O(1/N)), the mean coa-35

lescent time for two alleles taken from the same locus within the same individual is36

longer than that for two alleles taken from different individuals. Elevated within–37

individual coalescent times leads to “allelic sequence divergence” that raises het-38

erozygosity (Mark Welch and Meselson 2000; Butlin 2002). Hartfield et al. (2016)39

subsequently introduced mitotic gene conversion into the model, which increases40
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the frequency of within–individual coalescence, reducing the within–individual co-41

alescent time (and resulting diversity) to lower than that in equivalent obligate42

sexuals. Given how pervasive gene conversion is during mitotic recombination43

(LaFave and Sekelsky 2009; Lee et al. 2009), then it can be a potent force in44

removing diversity in facultative sexuals.45

Less attention has been given to determining if and when genealogies under46

facultative sex can be captured by the standard coalescent (Kingman 1982). If47

these approximations are available, they are attractive because the myriad models48

developed using the standard coalescent can then be applied to facultative sexuals.49

These approximations usually arise after specifying an appropriate effective popu-50

lation size Ne. Initially defined by Wright (1931), Ne is defined as the population51

size needed for the effects of genetic drift to match that in a corresponding Wright–52

Fisher model of the same size. Ne influences many aspects of genetic evolution,53

including both the rate at which neutral alleles are lost by genetic drift (Fisher54

1930; Wright 1931) and new alleles are introduced by mutation (Watterson 1975).55

In addition, for an allele with selection coefficient s, the efficacy of natural selection56

acting on it is determined by Nes (Kimura 1971).57

The Ne of a population has been defined in several ways. Previous definitions58

include those based on the maximum non–unit eigenvalue of the model’s transition59

matrix (the ‘eigenvalue’ Ne); the probability that two alleles are identical by de-60

scent (the ‘inbreeding’ Ne); or the variance in allele frequencies (the ‘variance’ Ne)61

(Whitlock and Barton 1997; Ewens 2004; Charlesworth and Charlesworth 2010).62

A more recent definition that has gained interest is the ‘coalescent effective pop-63

ulation size’ (Whitlock and Barton 1997; Laporte and Charlesworth 2002; Sjödin64

et al. 2005). For a neutral Wright–Fisher model of size aN (where a = 1 for65
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haploids and a = 2 for hermaphrodite diploids), the genealogy of a sample of n66

alleles converges to the standard coalescent if time is rescaled by aN . For non–67

standard coalescent models, if the genealogy converges to the standard coalescent68

after rescaling time by aN , but the coalescent time is scaled by a factor c, then the69

coalescent Ne = N/c (Sjödin et al. 2005). The coalescent Ne has the advantage70

of being relatable to the genome data being analysed, as the underlying geneal-71

ogy shapes observed genetic diversity (Sjödin et al. 2005). Coalescent Ne values72

have been obtained in the cases of self–fertilisation (Nordborg and Donnelly 1997;73

Nordborg and Krone 2002), seed banks (Kaj et al. 2001), autotetraploids (Arnold74

et al. 2012), fluctuating population sizes (Sjödin et al. 2005), unequal sex–ratios75

(Wakeley 2009), and various models of population structure (Wakeley 2004; Sjödin76

et al. 2005; Wakeley 2009). If a coalescent Ne can be defined, then existing tools77

for genome inference based on the coalescent can be applied to genome data from78

facultative sexuals. In some cases, the coalescent Ne depends on the size of specific79

parameters. For example, the coalescent Ne with a fluctuating population size de-80

pends on how fast fluctuations occur compared to coalescent times (Sjödin et al.81

2005).82

Previous research has elucidated the neutral forces affecting Ne under faculta-83

tive sex. Orive (1993) determined that the prevalence of multiple asexual stages84

before the onset of sexual reproduction tended to reduce Ne (similar results were85

obtained by Berg and Lascoux (2000)). Conversely, Balloux et al. (2003) demon-86

strated that low occurrences of sex inflate Ne as measured among different alleles,87

but decrease Ne as measured over genotypes. Increased variance in asexual and88

sexual reproductive output can further raise some measures of Ne (Yonezawa et al.89

2004). However, it is unclear how mitotic gene conversion affects Ne, or whether90
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these previously–defined Ne values constitute a coalescent Ne.91

Hartfield et al. (2016) used a separation–of–timescale argument to show how92

sex and mitotic gene conversion affect coalescent times, if they acted on the same93

timescale as coalescent events. As these effects would shape diversity both between94

and within individuals on the same timescale, then the population’s genetic history95

cannot be captured by a single coalescent Ne. However, this argument only covers a96

special case of the coalescent process. Here, I extend these separation–of–timescale97

arguments to show that a coalescent Ne can be defined if sex is very frequent98

(acting with probability much greater than 1/N). If sex is very rare (acting with99

probability much less than 1/N), it is possible to define an average pairwise time100

to the common ancestor that can be related to the standard coalescent, but a101

coalescent Ne cannot be defined. I will subsequently describe how the coalescent102

process with very rare sex can be approximated with an arbitrary number of alleles.103

Methods104

Using Möhle’s theorem to determine coalescent Ne105

The standard coalescent assumes that alleles are exchangeable (Cannings 1974;106

Kingman 1982), where ‘allele’ denotes a contiguous stretch of DNA sequence with107

negligible recombination (Nordborg and Donnelly 1997). The exchangeability as-108

sumption implies that it does not matter whether alleles are sampled from the109

same or different individuals. After rescaling time by the total effective number110

of alleles in the population aNe, each pair of alleles in a sample of size n coalesces111

independently, so the total rate of coalescence is
(
n
2

)
(Table 1 outlines notation112
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used in this analysis). Hence the time between coalescent events is exponentially113

distributed with rate
(
n
2

)
, which equals 1 for n = 2. Under facultative sex, the114

exchangeability assumption breaks down and the coalescent is instead modelled115

using a Markov chain (Hartfield et al. 2016). In particular, the genealogical history116

of two alleles differ if they are sampled from distinct individuals (hereafter ‘un-117

paired’ alleles), or if two different alleles are sampled from the same locus within118

the same individual (hereafter ‘paired’ alleles). However, over longer timescales,119

it may be the case that alleles coalesce at a steady rate. In this case, a coalescent120

Ne can be inferred by rescaling time so that coalescent events occur at the same121

rate as in the standard coalescent (see Nordborg and Krone (2002); Sjödin et al.122

(2005) for more formal definitions).123

Möhle’s theorem (Möhle 1998) is often used to separate events over short and124

long timescales, to determine whether a coalescent Ne exists. Let T represent125

the discrete–time transition matrix of a structured coalescent process over one126

generation. Further assume that T can be decomposed into the sum T = A +127

B/N + o(1/N), where N is the total population size. This decomposition assumes128

that matrices A and B exist as the population size becomes large (technically, as129

N →∞). o(1/N) are terms that approach zero faster than 1/N (Wakeley 2009).130

Möhle (1998) proved that, if T can be written in this manner, then the coales-131

cent process may be described by a continuous–time rate matrix Π(τ) = Pe−τG,132

where P = lim
r→∞

Ar and G = PBP. P represents ‘short–term’ events that occur133

on timescales much shorter than N generations, which describe an initial adjust-134

ment to alleles in the recent past. G represents ‘long–term’ events that occur on135

O(N) generations. Time can then be rescaled so that coalescence events occur at136

the same long–term rate as in the standard model; coalescent Ne is subsequently137
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Symbol Usage
a Ploidy level of the population

(a = 1 for haploids, a = 2 for hermaphrodite diploids)
N Actual population size (with 2N haplotypes for a = 2)
Ne Effective population size
n Number of sampled alleles in the coalescent process
σ Proportion of offspring that are produced from sexual reproduction
γ Probability of within–individual coalescence via mitotic gene conversion
F Inbreeding coefficient
T Transition matrix over one generation
A Events in T that are O(1)
B Events in T that are O(ε) for ε� 1
P ‘Short–term’ outcomes that act over O(1) generations
G ‘Long–term’ outcomes that act over O(1/ε) generations
Ω Scaled rate of sex, 2Nσ
Γ Scaled rate of mitotic gene conversion, 2Nγ
λ Probability of either sex or gene conversion occurring, λ = σ + γ
φ Ratio of sex to gene conversion, φ = σ/γ
Λ Scaled total probability of an event, Λ = N2λ

E[Tb], E[Tw] Expected between (within) individual coalescent time for two alleles
E[τb], E[τw] Expected coalescent times on the coalescent timescale

(scaled by 2N generations)

Table 1. Glossary of Notation.
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inferred from this rescaling.138

Möhle’s theorem can also be invoked for any scaling parameter ε � 1 by139

writing T = A + εB + o(ε). G then represents events that occur at timescales140

on O(1/ε). Most application of Möhle’s theorem take ε = c/N for some constant141

c, which is used in the ‘frequent sex’ regime below. However, ε can also depend142

on other parameters; for example, Wakeley (2004) applied Möhle’s theorem to an143

island model, providing examples where the migration rate was low, or the number144

of demes were large (so the scaling parameter was the inverse of the number of145

demes). This variant of Möhle’s theorem is used in the ‘very rare sex’ regime146

below, where it will be assumed that the probabilities of sex and gene conversion147

are both small.148

The facultative sex coalescent149

The facultative sex coalescent acts in a diploid population of size N (i.e., there150

are 2N total alleles). Alleles are sampled from individuals, and their genealogical151

history is traced backwards in time. Each sampled individual can reproduce both152

sexually and asexually; sexual reproduction occurs with probability σ, and asex-153

ually (parthenogenetically) with probability 1 − σ. If sex occurs then each allele154

in an individual is inherited from two random parents sampled with replacement,155

so a single individual can act as both parents. Otherwise, both alleles are inher-156

ited in state from the same parent. Self–fertilisation can also be included in the157

model (Hartfield et al. 2016), but is not considered here. Mitotic gene conversion158

(hereafter ‘gene conversion’) acts with probability γ, which causes two alleles that159

reside within the same individual to coalesce. Note that the usage here indicates160
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the probability of gene conversion acting per individual; it is twice the probability161

of gene conversion affecting a single site, as there are two possible donor strands162

where it can initiate (Hartfield et al. 2018).163

Two sampled alleles can lie in one of three states: (i) they lie in different indi-164

viduals, (ii) they lie in the same individual, but have not coalesced, (iii) they have165

coalesced. The coalescent history can be determined by the following transition166

matrix (Hartfield et al. 2016, Eq. 10 without self–fertilisation):167

T =


1− 1

N
1−γ
2N

1+γ
2N

σ(1− 1
N

) (1− γ)(1− σ) + σ(1−γ)
2N

σ(1+γ)
2N + (1− σ)γ

0 0 1

 (1)

Figure 1 illustrates how the transition probabilities are determined. Row 1168

describes transitions from the state where alleles reside in different individuals.169

Going back one generation, two alleles coalesce (entry 3 of row 1) if they are170

either descended from the same allele, or if gene conversion acted in the parent.171

Otherwise, if they are descended from different alleles from the same parent, then172

they remain distinct if gene conversion does not act (entry 2 of row 1). The173

frequency of sex σ does not affect the terms in row 1, as the probabilities of174

identity by descent from a single parent are the same under both sexual and175

asexual reproduction, if we assume that unpaired alleles are equally likely to be176

sampled from one of the two allele copies. These probabilities could change if177

there was biased sampling of alleles when sex is rare; I will discuss this point when178

analysing the ‘very rare sex’ regime.179

If the two alleles are taken from different genetic backgrounds within an in-180
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dividual, they coalesce (entry 3 of row 2) if there is either sexual reproduction181

followed by inheritance from the same parent, or gene conversion in the absence182

of sex. They can also be descended from distinct alleles in separate individuals if183

the offspring was created by sex involving two distinct parents (entry 1 of row 2).184

The diagonal entries are one minus the other entries in each row. Hartfield et al.185

(2016) contains further details on how the transition probabilities are formed.186

Between 

Individual

Transitions

Within-individual

with probability      
1-

2N

Coalescence

with probability      
1+

2N

Within

Individual

Transitions

Between-individual

with probability                 (1 – 1/N) Coalescence

with probability

2N
(1+ ) + (1– )

Figure 1. Schematic of the transition probabilities in the facultative
sex coalescent. Sampled alleles are shown as solid lines, while dashed lines are
alternate alleles that are not sampled. Figure is originally from Hartfield et al.
(2016) and is reprinted with permission from the Genetics Society of America.

Simulations187

Analytical results for pairwise coalescent times will be compared to stochastic188

simulations written in C, which are based on those used in Agrawal and Hartfield189
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(2016). The simulation tracks a single neutral bi–allelic locus in a facultative sex-190

ual population forwards in time. Each generation, a proportion σ of reproductions191

are sexual, with offspring genotypes generated according to Hardy–Weinburg equi-192

librium frequencies. The remaining fraction 1− σ of reproductions are as asexual193

clones. Mitotic gene conversion acts with probability γ, which converts heterozy-194

gotes to homozygotes with equal probability (i.e., gene conversion is unbiased).195

Using these deterministic expectations, the number of genotypes among N in-196

dividuals is drawn from a multinomial distribution to implement random drift.197

Neutral mutations are sequentially introduced, each time from a single copy. The198

pairwise diversity x(1 − x) (for x the derived allele frequency) is summed over199

the neutral allele trajectory, until the mutation is either fixed or lost. Ten million200

neutral alleles are introduced and their summed pairwise diversity values calcu-201

lated; the mean over all introductions equals the coalescent time, scaled to that202

expected for the standard coalescent (Charlesworth et al. 1993; Nordborg et al.203

1996). Confidence intervals are calculated from 1,000 bootstraps.204

Results205

Approximate coalescent times for two alleles206

I will first look at two–allele results to determine the long–term pairwise coalescent207

time, then subsequently determine if a coalescent Ne can be defined in each case.208

I will also relate two–allele results to F−statistics (Wright 1951) under each sce-209

nario. Results can be summarised by three phases, which depend on the relative210

frequencies of sex and gene conversion compared to the actual population size, as211
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shown in Figure 2):212

11
2 N

1

N

1

0.5

Frequency of Sex, �

Frequent Sex

(� ≫ 1/N):

Coalescent N    Ne

Structured

Coalescent

(� ~ 1/N):

No coalescent N e

Very Rare Sex

(� ≪ 1/N):

No coalescent N

Approximate coalescent 
times independent of N

With gene conversion

(� > 0)

Without gene conversion

(� = 0)

Coalescent times 
approach N/2 under high 

gene conversion

Scaled

Coalescent

Time

e

Figure 2. Outline of scaled coalescent times for two alleles under
facultative sex. Note that the results given at the top of the figure assume that
gene conversion γ acts on the same order as sexual reproduction. If gene
conversion is much more frequent, then coalescent times tend to N/2 as shown
by the dotted–dashed line.

1. The ‘frequent sex’ regime (σ � 1/N).213

(a) If gene conversion is rare (γ � 1), then due to the high occurrence214

of genetic segregation the resulting coalescent process is similar to the215

standard coalescent, and the coalescent Ne ≈ N .216
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(b) If gene conversion is high (γ → 1), coalescent Ne = N/2 as heterozy-217

gosity is removed.218

2. The ‘structured coalescent’ regime (σ ∼ 1/N).219

(a) If gene conversion also acts with probability ∼1/N , state transitions220

(i.e., whether the two alleles lie in the same or different individuals)221

and coalescent events occur at the same relative frequencies. Hence,222

population history cannot be captured by a coalescent Ne.223

(b) If gene conversion is high (γ � 1/N), coalescent Ne = N/2, similar to224

the ‘frequent sex’ regime.225

3. The ‘very rare sex’ regime (σ � 1/N).226

(a) If gene conversion is also very weak (γ � 1/N) then Möhle’s theorem227

can be used to derive approximate two–allele coalescent times, which228

only depend on the frequency of sex and gene conversion and are inde-229

pendent of N . These times do not translate into a coalescent Ne.230

(b) If gene conversion is much more frequent than sex (γ � 1/N), then231

either no coalescent Ne exists (if γ ∼ 1/N) or Ne = N/2 (if γ � 1/N).232

Simulations suggest that the scaled coalescent time is halved in most233

cases.234

The ‘structured coalescent’ regime was previously outlined in Hartfield et al.235

(2016) so will not be discussed here. I will instead elucidate the coalescent Ne236

when sex is frequent, and introduce results for the ‘very rare sex’ regime.237
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The ‘frequent sex’ regime238

As a first example of how Möhle’s theorem provides insight into how the facultative239

sex coalescent can be approximated, I partition T with respect to the scaling240

factor ε = 1/2N to determine the fast and slow–rate events. Since I do not make241

any further assumptions on the frequencies of sex and gene conversion, then the242

ensuing result applies when both these events are frequent (more precisely, when σ,243

γ � 1/N). The two–allele results were previously presented in the supplementary244

matierial of Hartfield et al. (2016); here I show how they can be used to define a245

coalescent Ne for a genealogy of any size. More details on all matrix calculations246

are available in Supplementary File S1.247

T can be written as A + B/2N , with the sub–matrices defined as:248

A =


1 0 0

σ (1− γ)(1− σ) (1− σ)γ

0 0 1

 B =


−2 1− γ 1 + γ

−2σ (1− γ)σ (1 + γ)σ

0 0 0

 (2)

Using Möhle’s theorem, the short–term matrix P and long–term matrix G249

equal:250

P =


1 0 0
σ

σ+γ(1−σ) 0 γ(1−σ)
σ+γ(1−σ)

0 0 1

 G =


−
(
1 + γ

σ+γ(1−σ)

)
0 1 + γ

σ+γ(1−σ)

−
(
σ(γ(2−σ)+σ)
(σ+γ(1−σ))2

)
0 σ(γ(2−σ)+σ)

(σ+γ(1−σ))2

0 0 0


(3)

A potential coalescent effective population size Ne is inferred by inspecting P251
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and G. P shows that over short timescales (much less than 2N generations in252

the past), alleles will either segregate into different individuals with probability253

σ
σ+γ(1−σ) or coalesce with probability γ(1−σ)

σ+γ(1−σ) . G implies that, if alleles have not254

coalesced, they do so over the long term with an increased rate of
(
1 + γ

σ+γ(1−σ)

)
255

per 2N generations. For a Wright–Fisher population, the coalescent timescale is256

obtained in the standard model by scaling time by 2N , so any two alleles coa-257

lesce at rate 1 per coalescent generation. Under this approximation, the standard258

coalescence rate is obtained by rescaling time by 2N/(1 + γ
σ+γ(1−σ)).259

To determine if this rescaling does indeed constitute a coalescent Ne, it needs260

to be shown that it causes a genealogy of any size to converge to the standard261

coalescent. The short–term matrix P (Equation 3) shows that each pair of alleles262

from the same individual will quickly segregate out into different individuals, or263

coalesce (the latter being unlikely in the biologically realistic case of γ � σ).264

Let there be n alleles remaining in different individuals after this readjustment.265

The transition matrix of the subsequent coalescent process is modelled using three266

states: (1) n alleles are present in n distinct individuals; (2) n alleles are present267

in n − 1 distinct individuals; (3) there is a coalescent event. Because sex is so268

frequent, I further assume that it is unlikely that n alleles will be present in269

less than n − 1 individuals in a single generation. The model only considers the270

genealogical history up to the first coalescent event. The transition matrix is the271

same as for the two–allele case (Equation 1) except that the first row now equals:272

Trow 1 =
(

1−
(
n
2

)
1
N

(
n
2

)
1−γ
2N

(
n
2

)
1+γ
2N

)
(4)
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Applying Möhle’s theorem with the long–term matrix scaled by 1/2N gives the273

same P (Equation 3), but G is multiplied by a factor
(
n
2

)
. Hence after rescaling274

time by 2N/(1 + γ
σ+γ(1−σ)), the coalescent rate equals

(
n
2

)
as with the standard275

coalescent. Hence, a coalescent Ne can be defined and is equal to N/(1+ γ
σ+γ(1−σ)).276

This result is a similar form to the general reduction in Ne = N/(1 + F )277

obtained under various forms of inbreeding (Caballero and Hill 1992), with F equal278

to γ
σ+γ(1−σ) . If the probability of gene conversion is low relative to the frequency279

of sex (i.e., γ � 1) then F ≈ γ/σ � 1, so Ne ≈ N . F increases with γ up280

to its maximum value of 1 when γ = 1. It therefore follows that the coalescent281

Ne = N/2 under this scenario, due to immediate within–individual coalescence.282

In practice, such a drastic reduction in Ne is unlikely given the low probability of283

gene conversion affecting a single site. For example, Sharp and Agrawal (2016)284

estimated a mitotic gene conversion frequency of∼10−6 per basepair per generation285

in Drosophila melanogaster.286

The ‘very rare sex’ regime287

Möhle’s theorem can also be applied when the frequency of sex is extremely low288

relative to the population size (σ � 1/N). Here, the slow–rate matrix is scaled by a289

parameter different from the population size. I will assume both rare sex and gene290

conversion (i.e., σ, γ � 1/N) and use λ = σ+γ to determine the slow–rate matrix.291

It is also convenient to make the substitution φ = σ/γ, which determines whether292

diploid genotypes experience allelic sequence divergence (φ > 1) or convergence293

due to gene conversion (φ < 1) (Hartfield et al. 2016).294

After transforming σ, γ into their new variables and removing terms of O(λ2),295
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the transition matrix T can be written as A + λB + o(λ2), with the sub–matrices296

equal to:297

A =


1− 1

N
1

2N
1

2N

0 1 0

0 0 1

 B =


0 − 1

2N(1+φ)
1

2N(1+φ)

(1− 1
N

)( φ
1+φ) φ

2N(1+φ) − 1 (1 + φ
2N )( 1

1+φ)

0 0 0


(5)

Applying Möhle’s theorem to obtain P, G:298

P =


0 1

2
1
2

0 1 0

0 0 1

 G =


0 − 2+φ

4(1+φ)
2+φ

4(1+φ)

0 − 2+φ
2(1+φ)

2+φ
2(1+φ)

0 0 0

 (6)

Here, the short–term matrix P shows that two alleles in different individuals299

will either segregate into the same individual to become a set of paired alleles,300

or coalesce. Either event is equally likely to occur. Two alleles from the same301

individual will remain as such, so it is the only remaining state. The long–term302

matrix G further shows that a set of paired alleles will coalesce at rate 2+φ
2(1+φ)303

per 1/λ generations. Hence, if discrete time is scaled by 1
λ
/ 2+φ

2(1+φ) then a within–304

individual allele pair will coalesce at rate 1 per rescaled time unit. Restoring back305

the σ, γ terms gives the expected within–individual coalescent time:306

E[Tw] ≈ 2
σ + 2γ (7)

The key result here is that under very rare frequencies of sex, the two–allele307

approximate coalescent time is independent of the actual population size N . The308
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exact coalescent time is affected by N (Hartfield et al. 2016), but in this regime co-309

alescent times are most strongly influenced by the rare occurrences of sex and gene310

conversion, which reduces the probability that two alleles will meet their common311

ancestor. It is possible to re–write Equation 7 using the compound parameters312

Ω = 2Nσ, Γ = 2Nγ to derive E[τw], the mean coalescent time on the coalescent313

timescale (that is, time is scaled by 2N):314

E[τw] ≈ 2
Ω + 2Γ (8)

E[τb] is simply half of E[τw]. This is because if two alleles are sampled from315

different individuals, then the long–term state will only be entered with probability316

1/2 (see P in Equation 6), otherwise the two alleles will coalesce ‘instantaneously’317

(more specifically, on a timescale much less than O(λ)). Note that E[τw], E[τb]318

as given here are equivalent to Equation 11 in Hartfield et al. (2016) but if only319

retaining the second fraction term that is of O(λ), as rare sex and gene conversion320

most strongly influence the expected coalescent time.321

Here too, the scaled coalescent time can be related to the inbreeding coefficient322

F . Recall that F ranges between −1 and 1; negative values denote an excess of323

heterozygosity, while positive values indicate a heterozygote deficit (Wright 1951).324

By comparing the within–individual coalescent time E[τw] to the general term325

1/(1 + F ), the two equate if F = (2Γ + Ω− 2)/2 (Figure 3). If Ω < 2(1− Γ) then326

F is negative, as sex is sufficiently rare to cause some degree of allelic sequence327

divergence, increasing heterozygosity. F reaches its minimum of −1 when both328

Ω, Γ are zero. Otherwise, F is positive as gene conversion removes heterozygous329

sites, with a maximum of F = 1 attained when Γ = (4 − Ω)/2. As F cannot330
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exceed one, then this bound implies an upper limit to Ω, Γ at which the rare–sex331

approximations are valid.332

Figure 3. Inbreeding coefficient F under rare sex, based on the
within–individual coalescent time. Plot of F = (2Γ + Ω− 2)/2 as a function
of Ω = 2Nσ. Different lines represent different Γ = 2Nγ values as shown in the
legend.

Although an approximate coalescent time for two alleles can be obtained, can333

it be defined as a coalescent Ne? The answer is no, as the baseline pairwise coales-334

cence rate is altered as more alleles are introduced. To provide a counterexample,335

I outline a transition matrix for the case of two sets of alleles from two individuals,336

so there are four alleles in total. There are five states representing all different337

partitions of these alleles among individuals (i.e., two paired alleles; one paired338

and two unpaired alleles; four unpaired alleles), and possible coalescent events (ei-339

ther one or two alleles coalesce in a generation). This model only determines the340

process until the first coalescence event.341
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The transition matrix under this scenario is outlined in Appendix A. As before,342

Möhle’s theorem is applied with λ = σ + γ determining long–term events. The343

short–term matrix P becomes:344

P =



0 0 0 0 1

0 0 0 5
6

1
6

0 0 0 11
12

1
12

0 0 0 1 0

0 0 0 0 1


(9)

and G = 0. Hence, there will be at least one coalescent event over short timescales345

(states 4 and 5 represent single and double coalescent events, respectively). In346

particular, if there are initially two sets of paired alleles then they will coalesce into347

a single pair by the end of the initial phase (as given in row 1). Unlike the standard348

coalescent, these coalescent events do not occur at regular times proportional to349 (
n
2

)
, but much more frequently. Heuristically, this property arises since individuals350

(and hence pairs of alleles) coalesce with probability O(1/N), but the final two351

alleles coalesce with probabilityO(λ) ∼ O(1/N2). This process creates a genealogy352

with very short terminal branches and two long internal branches representing353

divergence of the two remaining alleles (see Figure 5 of Hartfield et al. (2016)).354

Thus, unlike the frequent–sex case, a coalescent Ne cannot be defined.355

Further analysis of the n > 2 case is desirable to determine how the coalescent356

process transitions from the ‘fast’ state, where events occur overO(N) generations,357

to the ‘slow’ state when two alleles remain and coalesce over O(N2) generations.358

To do so, I approximate the transition matrix to only focus on O(1/N) events in359

the fast state (i.e., coalescent events that do not involve sex or gene conversion).360

21



Let there be n = 2x + y alleles, of which x are paired alleles that are sampled361

from the same individual, and y are unpaired alleles. The maximum number of362

paired alleles xm equals the largest whole number that is less than or equal to n/2363

(i.e., bn/2c in mathematical notation). It is possible to define a square transition364

matrix Tn with xm+3 rows and columns. The first xm+1 rows denote states where365

there are xm, xm − 1 . . . 1, 0 set of paired alleles; row xm + 2 the absorbing state366

caused by a single coalescent event, and row xm + 3 the absorbing state caused by367

a double coalescent event. The entries of Tn are given in Appendix B.368

The transition to the slow state depends on the order of single to double coales-369

cent events before two alleles remain. Tn can be written in the canonical form for370

Markov chains (Grinstead and Snell 1997) to determine how much time is spent371

in the fast state, depending on how alleles were initially sampled:372

Tn =

Q R

0 I

 (10)

Q is a (xm + 1)× (xm + 1) matrix of non-coalescent states, R is a (xm + 1)× 2373

matrix denoting transition to coalescent states, and I a 2×2 identity matrix. From374

this form, we can subsequently derive N = (I−Q)−1 which denotes the expected375

time spent in each non–coalescent state before a coalescent event occurs. NR is376

the probability of ending up in each coalescent state.377

Appendix B provides example calculations when there are three or four alle-378

les in the tree. In summary, the fast–state is shortest with three alleles if they379

are all sampled from different individuals, while with four alleles the fast–state is380

shortest when two sets of paired alleles are sampled. This latter results arises be-381

cause coalescence is more likely with just paired alleles (occurring with probability382
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O(1/N), rather than O(1/2N) with unpaired alleles). Sampling just paired alleles383

will more efficiently capture the effects of polymorphism as shaped by rare sex and384

gene conversion, and minimise the confounding influence of recent mutation.385

Note that these results are based on the assumption that unpaired alleles are386

randomly sampled from one of the two possible alleles in diploids. The results387

would differ if biased sampling were to occur. If phased genome data were avail-388

able, then it would be possible to instead sample one of the two diverged alleles per389

individual. If sex and gene conversion were negligible in the recent past, then these390

unpaired alleles will follow a standard coalescent process with coalescent probabil-391

ity proportional to 1/N [as opposed to 1/2N under the previous assumptions; see392

also Ceplitis (2003)], hence the coalescent Ne = N/2. This sampling procedure393

can inform on mutations appearing O(N) generations ago, but not on how ancient394

sex and gene conversion events shape within–individual polymorphism.395

Simulation Comparisons of Möhle’s approximations396

Figure 4 plots the two–allele scaled coalescent time (specifically, the between–397

individual time E[τb] for the frequent sex and very rare sex cases) as compared to398

simulations. Results are provided for different values of σ, the frequency of sexual399

reproduction, and Γ = 2Nγ, the population–scaled gene conversion rate. Ana-400

lytical results are generally accurate for low gene conversion rates (Γ ≤ 0.5), but401

become underestimates as Γ approaches 0.5 (Figure 4a). Analytical solutions also402

underestimate the scaled coalescent time if σ ∼ 10−5 (equivalent to Ω = 2Nσ ∼ 1403

for the population size used in simulations), as the ‘structured coalescent’ regime is404

entered. These results exemplify how rare sex can substantially inflate coalescent405
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times. For example, if Ω = 0.001 then the scaled coalescent time is 1,000–fold406

larger than in the standard coalescent, in the absence of gene conversion. As Ω407

exceeds 1 then coalescent times approximate to those in the standard coalescent.408

Figure 4. Simulation comparisons of scaled between–individual mean
coalescent time. Plots of the scaled coalescent time as a function of the
frequency of sex σ. Colours represent different rates of gene conversion, as shown
in each subplot legend. Simulations assume a diploid population of size N =
50,000. Points are simulation results, with bars representing 95% confidence
intervals for the mean value (if they cannot be seen, they completely lie within
the point). (a) Results for low rates of gene conversion (Γ ≤ 0.5). Solid lines are
analytical approximations (1 for Ω > 1, corresponding to σ > 10−5, as shown by
the vertical dashed line; 1/(Ω + 2Γ) for Ω < 1). Horizontal dashed line denote a
scaled time of 1. (b) Results for high frequencies of gene conversion (Γ > 0.5).
Horizontal dashed lines show scaled times of 0.5 and 1; vertical dashed line
denotes σ = 10−5. Note the different y−axis scales in each subplot. Simulation
results are also available in Supplementary File S1.
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For very high frequencies of gene conversion (Γ > 0.5; Figure 4b) coalescent409

times are generally on the same order as the standard coalescent. As Γ increases410

then the coalescent times are half that in the standard coalescent, due to gene con-411

version causing rapid within–individual coalescence (biologically, this mechanism412

manifests itself through reduced heterozygosity). The amount of gene conversion413

needed for this halving to occur depends on the frequency of sex. For example,414

coalescent times are nearly halved if Γ = 10 for Ω = 0.001, but an extremely large415

value of Γ = 100, 000 is required in obligate sexual populations.416

Discussion417

Here, I have outlined calculations to determine how to approximate the coalescent418

under facultative sex, with an emphasis on determining when it converges to the419

standard coalescent. I first determined approximate pairwise coalescent times420

using Möhle theorem, for cases where sex is frequent or very rare (Figures 2, 4).421

I then further determined if a coalescent Ne can be subsequently defined. If sex422

is frequent (σ � 1/N), then a coalescent Ne exists and approximates N . For423

very rare sex (σ � 1/N), pairwise coalescent times can be inflated due to allelic424

sequence divergence, the extent of which is effectively independent of the actual425

population size. However, a coalescent Ne does not exist due to coalescence acting426

on a much faster timescale when there are more than two alleles. I subsequently427

analysed the coalescent process with more than two alleles, to determine how the428

initial allele sample would affect the transitions from this ‘fast’ state, to the ‘slow’429

state when only two alleles remain in the tree.430

The reasons why a coalescent Ne does not exist under very rare sex is exempli-431
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fied by how the use of Möhle’s theorem differs from that in most previous studies.432

In other cases where Möhle’s theorem is used to approximate coalescent mod-433

els (e.g., population structure or self–fertilisation), there is first rapid coalescence434

within a group [e.g., within a subpopulation under an island model with weak435

migration (Wakeley 2004), or within individuals under self–fertilisation (Nordborg436

and Donnelly 1997; Nordborg and Krone 2002)]. Coalescence then occurs under a437

rescaled standard coalescent among remaining alleles between groups. Under very438

rare sex with weak gene conversion, the opposite behaviour arises; there is first439

a coalescence of alleles from different individuals, followed by extended coalescent440

times for a pair of alleles within individuals.441

How can genome data from facultative sexuals be best analysed? If sex is442

frequent then the coalescent process is similar to the standard coalescent, with a443

slightly adjusted Ne. It has also been previously shown that the degree to which444

linkage disequilibrium is broken down by meiotic recombination also scales with445

the frequency of sex, if it is not rare (Hartfield et al. 2018). Together, these results446

suggest that for species with facultative but frequent sex, using models based on447

the standard coalescent would well approximate their gene genealogies following448

appropriate rescaling of recombination rates. However, once sex becomes rare and449

individuals start exhibiting allelic divergence [as proposed for, e.g., the human450

pathogen Trypanosoma brucei gambiense (Weir et al. 2016)], then a coalescent451

Ne cannot be defined. In this scenario, analysing different combinations of alleles452

will inform on either the historical or more recent forces shaping diversity. When453

four alleles are sampled (Appendix B), the fast–state is minimised in a tree with454

two sets of paired alleles, which will provide most information on how rare sex455

and gene conversion have shaped within–individual allele divergence. Conversely,456
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analysing a tree composed of the same type of diverge allele but taken from different457

individuals will provide information on recent mutations (‘recent’ meaning arising458

approximately N generations ago). Methods using the distribution of coalescent459

times from a small number of alleles (e.g., the generating–function method of Lohse460

et al. (2011)) could be particularly useful to determine how historical frequencies461

of sex and gene conversion have shaped genetic diversity. However, these results462

chiefly apply when sex is sufficiently infrequent so that allele divergence could463

occur; these results break down if gene conversion was common, or if the facultative464

sexual species was recently–derived from an obligate sexual ancestor. For more465

complex scenarios, it may be necessary to use bespoke coalescent models and466

simulation software that explicitly consider facultative sex (Hartfield et al. 2016,467

2018).468

The results presented here only consider the effect of neutral processes on Ne469

and coalescent histories, and can change in the presence of selection. For example,470

background selection reduces local Ne (and hence local diversity) (Charlesworth471

et al. 1993; Hudson 1994); its effects can be amplified in facultative sexuals due to472

both a lack of both recombination and segregation (Agrawal and Hartfield 2016).473

These calculations also do not include population or life–stage structure (Orive474

1993). However, the effects of population structure can be easily incorporated into475

the transition matrix (Hartfield et al. 2016), and coalescent approximations can476

also be determined under different cases of the island model (Wakeley 2004).477

Overall, these calculations clarify how facultative sex affects the genealogical478

history of a population, and when it can be approximated by the standard coales-479

cent. They can also be used in future modelling work of evolution under facultative480

sex, to determine both how neutral genetic diversity is affected, and how to best481
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analyse and interpret genome data in other scenarios.482
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Appendix A Very rare sex with four alleles492

Here, I outline the exact coalescent process for four alleles. The underlying tran-493

sition matrix has five states: (1) two sets of paired alleles; (2) one set of paired494

alleles, and two unpaired alleles; (3) four unpaired alleles; (4) the number of alleles495

is reduced by one due to a single coalescent event; (5) the number of alleles is496

reduced by two due to two paired alleles coalescing (i.e., both pairs are descended497

from the same individual).498

The transition probabilities for each state are as follows. Note that each prob-499

ability is considered up to O(1/N3).500

From state 1:501

• To state 2: occurs due to sex with probability 2σ (note the factor of two due502

to two sets of paired alleles).503

• To state 3: requires multiple sex events of order σ2 = O(1/N4).504

• To state 4: occurs due to gene conversion within one of the paired alleles,505

with probability 2γ.506

• To state 5: requires the two individuals to coalesce with probability 1
N

.507

From state 2:508

• To state 1: Requires that (i) the two unpaired alleles to descend from different509

alleles within the same individual, and (ii) the paired allele descends from a510

different individual. The probability is 1
2N (1− 1

N
).511

• To state 3: Requires the paired allele to segregate by sex, with probability512

σ.513
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• To state 4: Requires either (i) the two unpaired alleles to coalesce, and514

the paired allele to descend from a different individual, with probability515

1
2N (1 − 1

N
); (ii) 1 unpaired allele coalescing with the paired individual with516

probability 2
N

(1− 1
N

); (iii) the paired allele experiences gene conversion with517

probability γ. The total probability is 1
2N (1− 1

N
) + 2

N
(1− 1

N
) + γ.518

• To state 5: Requires all three individuals to be descended from the same519

parent with probability 1/N2.520

From state 3:521

• To state 1: Requires all four alleles to place themselves in two different522

individuals, with each allele having a unique descendant. There are 3 possible523

set of two pairs. The overall probability is 3 · 1
2N (1− 1

N
) 1

2N = 3
4N2 +O(1/N3).524

• To state 2: Requires two alleles to descend from the same parent, and other525

two from different parents. The total probability is 6 · 1
2N (1− 1

N
)(1− 2

N
) =526

3
N

(1− 3
N

) +O(1/N3).527

• To state 4: Requires two alleles to coalesce, and the other two to descend from528

different alleles with probability 6· 1
2N (1− 1

2N )(1− 2
2N ) = 3

N
(1− 3

2N )+O(1/N3).529

• To state 5: Requires two individual coalescent events with probability 7
4N2530

[there are seven ways in which two alleles can coalesce from four alleles; see531

Wakeley (2009, Equation 3.12)].532

States 4 and 5 absorbing.533
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Hence the transition matrix T = A + λB with:534

A =



1− 1
N

0 0 0 1
N

1
2N 1− 3

N
0 5

2N 0

0 3
N

1− 6
N

3
N

0

0 0 0 1 0

0 0 0 0 1


B =



−2 2φ
1+φ 0 2

1+φ 0

− 1
2Λ

2
Λ − 1 φ

1+φ −
5

2Λ + 1
1+φ

1
Λ

3
4Λ − 9

Λ
31
2Λ − 9

2Λ
7

4Λ

0 0 0 0 0

0 0 0 0 0


(A1)

where Λ = N2λ. Applying Möhle’s theorem gives P as given in Equation 9.535

Appendix B Approximation of the very rare sex536

regime537

General approach for n alleles538

The fast–state transition matrix Tn contains the following O(1/N) transition prob-539

abilities (see also Table 1 of Hartfield et al. (2016)), with Ti,jn denoting the entry540

in row i and column j:541

• Ti,i−1
n =

(
y
2

)
1

2N is the probability that two unpaired alleles form a paired542

sample.543

• Ti,xm+2
n =

(
y
2

)
1

2N + xy
N

is the probability that a single coalescent event occurs.544

• Ti,xm+3
n =

(
x
2

)
1
N

is the probability that two paired alleles will coalesce.545

• Ti,in = 1 minus the sum of the probabilities listed above.546
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Example with three and four alleles547

We can demonstrate the utility of the above method by analysing results with three548

and four alleles, and combining results to determine how the resulting coalescent549

tree differs depending on how alleles were sampled.550

With three alleles, there are only three states: (i) one paired sample and one551

unpaired sample, (ii) three unpaired samples, (iii) single coalescence event. Note552

there is only one coalescent state; a double coalescence is not possible as there can553

only be one set of paired alleles. The transitions matrix is:554

T3 =


1− 1

N
0 1

N

3
2N 1− 3

N
3

2N

0 0 1

 (B1)

Using the canonical form of Tn in Equation 10, we can find the matrix N of555

mean time spent in each state before coalescence (with each result scaled by 2N556

to be on the coalescent timescale):557

N3 =

1
2 0
1
4

1
6

 (B2)

If N is multiplied by (1, 1)T where T denotes a transpose, then we obtain558

the mean time until coalescence for each initial state (Slatkin 1991), which equals559

(1/2, 5/12). Hence, the time to reach the slow state is shorter when three unpaired560

alleles are taken.561

For four alleles, I approximate the exact transition matrix by focussing on562

O(1/N) events, which gives A in Equation A1. By putting this matrix into the563

canonical form of Equation 10, it is possible to obtain the mean coalescent times for564
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each starting configuration, which are (1/2, 1/4, 5/24). The product NR denoting565

the probability of ending up in each coalescent state is:566

NR =


0 1
5
6

1
6

11
12

1
12

 (B3)

Note that this matrix is equal to the 3× 2 top–right corner of the fast–matrix567

P (Equation 9).568

We can combine results from the three–allele and four–allele matrix to deter-569

mine the structure of coalescent trees depending on how alleles are sampled.570

• With two paired alleles, they will undergo a double coalescent event after an571

average of 1/2 coalescent generations (equivalent to N discrete generations),572

at which point the process will enter the slow state.573

• With one set of paired alleles and two unpaired alleles, a coalescent event574

arises after an average of 1/4 generations. Equation B3 states that with prob-575

ability 1/6, this will be a double coalescent event, whereas with probability576

5/6 there will only be a single coalescent event. If so then the three–allele577

process will then start, with a configuration of one set of paired alleles and578

one unpaired allele. There will then be an additional 1/2 generations on av-579

erage before another coalescent event, starting the slow state. Hence, there580

will be an average of 1/4 + 5/6 · 1/2 = 2/3 coalescent generations in the fast581

state.582

• With four unpaired alleles, a coalescent event occurs after an average of 5/24583

generations. A double coalescent event occurs with probability 1/12 instantly584
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triggering the slow state, otherwise the three–allele process starts with one585

set of paired alleles and one unpaired allele. It then takes an average of 5/12586

generations to enter the slow phase. Hence the mean time of the fast phase587

is 5/24 + 11/12 · 5/12 = 85/144 ≈ 0.59 generations.588
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