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ABSTRACT

Fractures are a common occurrence in poroelastic materials: They are created to aid in un-
derground resource recovery, or are unwanted during failure and collapse of materials. One
of the main challenges for simulating these fractures is their small opening height compared
to their length, making direct simulation of the interior of the fracture computationally ex-
pensive. In this thesis, models which reduce the two-dimensional fluid flow in the interior
of the fracture to the in and outflow at a one-dimensional discontinuity are extended to in-
clude the complex fluid rheology of non-Newtonian power-law and Carreau fluids. One of
the main advantages of the obtained sub-grid models is their ability to reconstruct the fluid
behaviour through post-processing the obtained results, allowing a detailed description of
the fluid within the fracture to be re-obtained. In addition, these sub-grid models are also
applied to multiphase flows, allowing the interactions between the fluid phases within the
fracture to be included. Finally, a numerical two-scale model is presented, coupling numer-
ically resolved velocity profiles within the fracture to the mass balance at the discontinuity.
This allows for velocity profiles for which an analytic solution is not available to be included,
such as fluids displaying inertial effects.

These sub-grid models are implemented using finite element methods based on stan-
dard Lagrangian elements, non-uniform rational basis splines, and T-splines. While the
Lagrangian elements are convenient and commonly used, it is shown that the increased
inter-element continuity of Non-Uniform Rational B-Splines (NURBS) and T-splines is re-
quired to obtain continuous fracture outflows. It is furthermore shown that this increased
continuity is beneficial for the convergence rate of the non-linear solver. The benefits of
using lumped integration for the fracture inflow term are demonstrated, suppressing fluid
velocity oscillations, and a special fracture tip integration scheme is presented which pre-
vents non-physical fracture inflows for NURBS. Finally, a method to generate unequal order
T-spline meshes is presented, allowing for interface elements to solely be inserted for frac-
tured elements, and making mesh refinement near the discontinuity possible.

The fracture scale models and discretisation methods are used to investigate the in-
teractions between the fluid and fracture propagation. It is shown that including a non-
Newtonian fluid rheology can significantly alter the propagation velocity of the fracture,
and the velocity of the fluid within the fracture. For multiphase flows, the fracture scale
models show the importance of including inter-phase interactions within the fracture, pro-
viding significantly different results depending on the assumed flow model, either bubbly
flow or separated flow. By comparing the fracture flow model to results obtained through
direct simulation of the fracture flow the validity and accuracy of the fracture scale models
are confirmed. Finally, simulations including inertial effects in the porous material show the
interstitial fluid is capable of causing "stick-slip" like behaviour, and simulations using a nu-
merical two-scale approach give an indication of the possible pressure oscillations resulting
from stepwise propagation.
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1
INTRODUCTION

Fluid flow in porous media is a common phenomenon in many problems of engineering
interest, for instance underground oil flow and recovery [11, 18, 26, 49, 240], and spreading
of pollutants[26, 126]. Other applications include blood flow inside the human body [189,
215, 224], underground geothermal energy storage [249], and failure in porous materials [19,
110, 141]. In most of these applications, not only the fluid flow but also the deformation of
the porous media caused by the fluid plays an important role. Due to these deformations,
pre-existing fractures may open [125, 237, 249], or new fractures can be created [43, 49, 67,
142, 165].

The fluid flows slowly through the porous media while flowing faster through opened
fractures. This creates additional challenges for simulating fluid flow through these mate-
rials [49, 67]: Whereas the fluid in the porous media reacts slowly to changes, the fluid in-
side the fracture reacts almost instantly, resulting in different timescales for the flow in the
porous media and the fracture. Furthermore, these fractures are long, at least in the order
of meters but they can stretch several kilometres for geological simulations [71, 150, 230],
while the opening is at most a few millimetres. This creates a large difference between the
relevant length scales of the problem, requiring the simulation of large domains to contain
the complete fracture while being dominated by the fluid flow in the interior of the fracture
which flows through a very small opening.

The combined fracture flow and poroelastic medium flow can be directly simulated as
a combination of Darcy flow in the porous material and Stokes flow inside the fracture [13,
14, 25]. Alternatively, both these domains can be described using a single set of equations
using Brinkman flow [50, 133, 159]. The main advantage of these methods is that they allow
the fluid flow within fractures to be treated in the same manner as other voids that might
be present, for instance boreholes [25] or tunnels [50]. While these methods allow for the
flow inside the fracture to be accurately resolved, they require very fine meshes to properly
discretise the fracture height. Furthermore, the mesh needs to adapt to changes in frac-
ture opening, and propagate with the fracture. This makes directly simulating the fluid flow
inside the fracture computationally costly and impractical.

1.1. FRACTURE FLOW SUB-GRID MODELS
A more efficient method to include the flow within the fracture is to reduce the dimension of
the fracture, approximating a fracture in a two-dimensional domain as a one-dimensional
discontinuity line. This approach was first taken by Boone and Ingraffea [32] to simulate
the interior of the fracture using a one-dimensional finite difference scheme, coupled to
a two-dimensional finite element method for the porous material. For the interior of the
fracture, inertial effects were neglected and the fluid flow was described through Poiseuille
flow, resulting in a relation between the pressure gradient and fracture opening height, and
the total fluid transport within the fracture. This simple relation is referred to as the "cubic
law" [27, 238].

The cubic law can be cast into an effective permeability term, allowing similar equa-
tions to be used for the porous domain and the fracture itself [113, 207]. Due to the ease
of use of this formulation, it has been successfully applied to a large range of applications,
for instance impermeable natural fractures [95] and pressurised fractures [43, 54, 84]. An-
other method to include the fracture flow based on the cubic law is to distribute the fluid
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2 1. INTRODUCTION

transport inside the fracture over the element in which it is contained, removing the need to
separately simulate the fracture [12, 79, 91, 142].

While using the cubic law allows fluid flows inside fractures to be included in a straight-
forward manner, it does not allow for an in-depth look at the fluid behaviour inside the
fracture. In contrast, the continuous pressure model [39, 187] does allow the velocity profile
inside the fracture to be obtained through post-processing. This model relates the pres-
sure gradient and opening height to an analytically obtained expression for the fluid flux,
with this expression based on the velocity profile inside the fracture. This velocity profile
can then be reconstructed afterwards through post-processing of the interstitial fluid pres-
sure and displacements, allowing the fracture fluid flow to be included in a sub-grid model
while still retaining the information from within the fracture. This sub-grid model can be ex-
tended to use a discontinuous pressure along the fracture [41, 185], allowing the inclusion
of an entry resistance to the fluid flow. This interface permeability is also used to include
boundary layers between a pressurised fracture and the porous material, without explicitly
resolving these boundary layers [185].

1.2. DISCRETISATION METHODS
Independent of the used sub-grid model, most poroelastic simulations are discretised using
finite element methods, with the fractures included through either interface elements [42,
49, 162, 173], the extended finite element method [41, 90, 145, 154, 155, 187], or phase field
methods [70, 75, 120, 123]. Mixed approaches are also sometimes utilised, with the intersti-
tial fluid pressure discretised using a finite element scheme, while the solid displacements
are modelled using central force/lattice [46, 147, 148] or peridynamics methods [163, 166].
However, the disadvantage of all these methods is that they use Lagrangian polynomials as
interpolants, and thereby only obtain a C 0 inter-element continuity. This results in contin-
uous but non-smooth pressures and displacements, and discontinuous stresses and fluid
fluxes at the element boundaries [100].

An increased inter-element continuity can be obtained using non-uniform rational ba-
sis splines (NURBS) [33, 63, 97, 174] or T-splines [21, 203, 204]. While originally aimed at
using the same mesh for modelling and simulating objects (referred to as "isogeometric
analysis", IGA) [97], the higher-order continuity obtained through the spline-based inter-
polants is advantageous for simulations. Using these interpolants not only results in con-
tinuous fluid fluxes in the porous material but also increases the accuracy of the simulation
results with a reduced number of control points [100]. An added advantage of IGA is its
ability to create unequal-order meshes [232]. These unequal order meshes, with the solid
displacements discretised with interpolants one order higher than the interstitial fluid pres-
sure, fulfil the inf-sup condition [53] and thereby prevent non-physical pressure oscillations
[24, 223].

1.3. RELEVANT PHYSICS
Even though some important fluids relevant for fluid flow in porous media are non-
Newtonian, for instance crude oil [9, 11], the above-described sub-grid models have so far
focused on Newtonian fluids. However, the limited number of results available for non-
Newtonian fluids inside fractures indicate the importance of including realistic fluid rhe-
ology, with shear-thinning fluids flowing faster in fractures compared to Newtonian fluids
[58, 118, 192]. Similar behaviour is also observed in the porous material itself, with shear-
thinning fluids flowing faster through the porous medium [191].

Another important area is multiphase flows, for instance water/air in unsaturated ma-
terials or water/oil in underground reservoirs. Currently, these fluid flows within fractures
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are often modelled through empirical correction factors for the cubic law [44, 153, 155, 196,
241, 246]. Another option is to describe the fluid flow inside the fracture as a single-phase
flow, while still considering the porous material to contain multiple phases [17, 96, 137].
These models allow for easy integration of fractures into the description of the porous ma-
terial, and extending them to include more phenomena like heat transfer is straightforward
[111, 226]. However, since they are based on an empirical correction factor for the cubic law,
no insight is provided into the actual fluid behaviour in the fracture. Some attempts have
been made to cast this multiphase cubic law formulation into a continuous pressure sub-
grid model [188], but they still retained the dependence on the empirical factor and did not
gain the additional insight into the fluid velocity profiles usually associated with sub-grid
models.

Finally, there is the interaction between the fluid inside the fracture and the fracture
propagation itself. While the effects of a pressurised fluid on fracture propagation are well
studied, both through analytic solutions [76, 86] and simulations, it has been recently ar-
gued that fractures in a porous material propagate stepwise instead of in a continuous fash-
ion [45, 172]. Experimentally, this stepwise propagation has been observed as pressure os-
cillations at the inlet of pressurised fractures [82, 127]. However, most continuum models
such as the finite element method have been unable to reproduce these pressure oscilla-
tions, and have only obtained stepwise propagation due to the limited size of the elements
used [155, 173, 184]. The exception to these results is the results from Cao et al. [45, 46], who
by separating time steps (in which the fluid inside the fracture is allowed to flow) and frac-
ture propagation steps (no fluid flow allowed) were able to obtain stepwise propagation and
the suggested accompanying pressure oscillations. However, due to their combination of
mesh and time step size, their discontinuity propagates in every propagation step, suggest-
ing that the claimed step wise propagation is artificially induced by the distinction between
time and propagation steps. Methods not based on a continuum approach, such as the lat-
tice method [171] or an approach based on peridynamics [163], have been able to obtain
some stepwise propagation. However, no convincing explanation has been given on the
source of this propagation behaviour, and why it should create large pressure oscillations
inside the fracture.

1.4. AIMS

The main aims of this research were as follows:

• Extend the sub-grid formulation for fluid flows in fractured porous materials to in-
clude additional physically relevant behaviour, such as non-Newtonian fluid rheolo-
gies, inertial effects, and multiphase flows, while still retaining the ability to reproduce
the velocity profiles within the fracture through post-processing.

• Analyse the effect of using standard Lagrangian finite elements compared to spline-
based elements when simulating fractured porous materials, mainly focusing on the
flows inside the fracture. This involves both how the obtained results are improved
through the higher order continuity from spline-based elements, as well as analysing
any improvements in the convergence rate of the non-linear solver.

• Investigate the effects of using a more physically correct representation for the fluid
in the porous material and fracture, with the main focus on the interaction of these
added physics with the fracture propagation.



4 1. INTRODUCTION

1.5. THESIS STRUCTURE
The introduction of this chapter summarised the importance and current developments for
the simulation of fluid flows in porous materials. To further supplement this with in-depth
and relevant literature, each chapter will start of with a more detailed description of the
literature relevant to that chapter.

Chapter 2 will focus on non-Newtonian fluid flows: Detailing the equations for fluid
flow in porous materials, and extending these to include a non-Newtonian rheology using
a power-law fluid. This chapter will focus on non-propagating fractures and will use a con-
tinuous pressure model to approximate the fluid transport inside the fracture. It will show
the effect of including this non-linear fluid behaviour on the fluid transported through the
porous material, and inside the fracture. A standard Lagrangian finite element discretisa-
tion will be compared with a discretisation using splines, and the results will be compared
to demonstrate the advantages of the spline-based elements.

In Chapter 3, the convergence rate of the non-linear solver used in the scheme of chapter
2 will be analysed. The main focus of this analysis is on the terms added by the fracture
flow, adding these terms one-by-one to preserve a constant and symmetric system matrix as
long as possible. The effect of omitting some terms will be shown, both for Newtonian and
non-Newtonian fluids. Furthermore, the effect on the convergence of either discretising the
domain using standard Lagrangian elements or using spline based elements is investigated.

Next, the continuous pressure fracture flow model will be applied to two fluid phases in
Chapter 4. An explanation on how to couple the fluid velocity profiles inside the fracture
with the surrounding porous material will be given, and applied to well-mixed bubbly flow
and separated flow types. These flow types will be compared to the commonly used cubic
law by simulating a simplified problem and two cases more representative of actual appli-
cations. This will show the ability of the sub-grid models to include complicated physical
interactions within the fracture, without a need to actually simulate the interior of these
fractures.

The non-Newtonian fracture flow model is extended to allow pressurised fractures in
Chapter 5. Special integration schemes will be detailed to prevent non-physical and oscilla-
tory fracture inflows. Furthermore, a comparison between Newtonian and non-Newtonian
fluids and their effect on the propagation velocity will be undertaken.

One of the main issues arising from Chapter 5 is the need of a separate integration
scheme around the fracture tip. A discretisation based on T-splines able to circumvent this
issue will be detailed in Chapter 6. Mesh generation of unequal order T-spline meshes will
be explained, and simulations using these meshes will be compared to results from the pre-
vious chapter.

These T-splines will be used in Chapter 7 to simulate propagating fractures using a dis-
continuous pressure model, and using directly simulated Stokes flow inside the fracture.
This will confirm the accuracy of the discontinuous pressure model, and provide a compar-
ison between the velocity profiles within the fracture.

Chapter 8 combines the previously detailed discontinuous pressure fracture flow model
with more complex behaviour of the solid. This chapter will combine plastic deformation
of the porous materials, with acceleration driven fluid flows and shear-based fracture prop-
agation. This will result in a formulation more representative of real-world application, for
instance earthquake-like processes. Attention will be given to the effects of including accel-
eration driven fluid flows and fluid inertia, and the effect of simulating the fluid flow itself
instead of assuming no fluid flow on the propagation will be investigated.

Finally, Chapter 9 details a subgrid scheme which uses a numerically obtained velocity
profile within the discontinuous pressure model. This will allow for inertial effects inside the
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fracture to be included, as well as making previously derived subgrid models applicable to
fluids for which an analytic velocity profile is no longer obtainable, such as non-Newtonian
Carreau fluids.

The thesis will conclude with a conclusions chapter, highlighting and reflecting on the
main advances and findings obtained during the previous chapters.





2
NON-NEWTONIAN FLUIDS USING THE

CONTINUOUS PRESSURE MODEL

Several models exist to describe non-Newtonian fluids. One of the simplest and most com-
monly used models to describe the shear-dependent viscosity of these non-Newtonian flu-
ids is the power-law model. This simplicity allows the derivation of an explicit expres-
sion for the fluid flow inside the porous material for one-dimensional cases [59, 78, 169],
with this expression able to be extended to yield-stress fluids. Simulations using the pore-
scale network method [216] and direct simulation of the fluid inside the pores [157] have
shown the accuracy of the power-law fluid term. However, these simulations also indicated
the inability of these simple one dimensional formulations to properly capture the yield-
stress dependence due to the pore-size distribution allowing for flow in the smaller pores,
whereas macro scale formulations do not include this gradual increase in fluid flow. The
one-dimensional formulation for power-law fluids has been extended to multi-dimensional
flows [212] and successfully used in simulations of non-deformable porous materials [68],
although this resulted in an implicit expression for the fluid flux.

Fractures filled with non-Newtonian power-law fluids have been simulated using the
finite volume method [118, 119]. These simulations showed that shear-thinning power
law fluids flow faster through the fractures compared to Newtonian fluids, but that shear-
thickening fluids flow considerably slower. However, this method only used the pressure
gradient normal to the cell faces, thereby not including the coupling between the flow di-
rections present for power-law fluids. Semi-analytical solutions for a simplified one dimen-
sional fracture produced similar findings, with shear-thinning fluids flowing faster than
Newtonian fluids [144, 219]. The combination of a non-deformable porous material with
fractures with a pre-determined opening height have been simulated using a MATLAB reser-
voir engineering toolbox [18, 131], removing the need to discretise the used equations, but
also obfuscating the actual implementational aspects of the described method.

This chapter first describes the governing equations for Newtonian and power-law flu-
ids inside the porous material. The continuous pressure model will be used to derive the
fluid flow inside the fracture for these fluids. Next, in Section 2.2, the finite element dis-
cretisation methods using Lagrangian polynomials and splines are explained, after which
the governing equations are discretised. These discretised equations are used in Section 2.3
to show the effects of including the non-Newtonian rheology compared to linearising the
non-Newtonian fluids to a Newtonian fluid. Finally, the spline based and Lagrangian based
discretisations will be compared in Section 2.4. All the results and methods presented in
this chapter have been previously published in [4].

2.1. NON-NEWTONIAN POROELASTICITY
The fractured porous material is represented by the domain Ω, shown in Figure 2.1. On
the outside of this domain, interstitial fluid pressures and displacements are prescribed on
Γp and Γu respectively, while tractions and fluid fluxes are prescribed on Γt and Γq . The
domain is split by the discontinuity Γd which represents both the fracture and the still intact
material in the extend of the fracture. The fracture itself is described using its opening height
h normal to Γd , and uses a local (xd , yd ) coordinate system.

7
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Figure 2.1: Schematic overview of the considered domain, including local coordinate system for the
fracture.

2.1.1. INTERIOR

MOMENTUM BALANCE

In the model described here, no mass transfer between the solid and fluid phase is pre-
sumed, and no reactions between the fluid and solid phase occur. By furthermore neglect-
ing the momentum transfer due to convection, the momentum balance of the fluid and
solid phases π= s, f is given by [38, 247]:

∇∇∇·σπ+Tπ−ρπüπ = 0 (2.1)

with σπ the stress tensor, ρπ the apparent density, and üπ the acceleration of phase π. The
interaction between the phases is represented by Tπ, the transfer of momentum between
the phase π and the other phase. Since the only transfer of momentum due to this interac-
tion is between the phases, Ts =−T f .

Summing the momentum balance of the two phases results in:

∇∇∇·σ− (
n f ρ f ü f + (1−n f )ρs üs

)= 0 (2.2)

with n f the porosity, and the total stress σ related to the stresses in the solid σs and the
interstitial fluid pressure p through:

σ=σs −αp I (2.3)

with I the identity tensor, and α the Biot coefficient [28]. This Biot coefficient is related
to the bulk modulus of the solid material, Ks , and the bulk modulus of the total skeleton
(porous solid material without fluid), Kt , by:

α= 1− Kt

Ks
(2.4)

The bulk modulus of the solid is often large compared to that of the skeleton, and in these
cases the Biot coefficient is usually taken as α= 1. This corresponds to the case of a nearly
incompressible solid material, while the porous material is still deformable.

One final simplification is made by assuming the solid and fluid accelerations to be
equal, üs = ü f . This is an often made assumption, both for problems in which dynami-
cal effects are negligible [110, 152, 171, 199], as well as for problems which are dominated
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by acceleration effects, e.g. earthquake dynamics [66, 245, 247]. This allows Eq. 2.2 to be
simplified to:

∇∇∇·σ−ρü = 0 (2.5)

with ρ = n f ρ f + (1−n f )ρs the volume-averaged density of the poroelastic medium. The
second term, ρü can be neglected if the system is assumed to be quasi-static, with the fluid
flow being time-dependent, whereas the solid is assumed to always be in equilibrium. This
is often the case in poroelastic problems, and will also be assumed here.

MASS BALANCE

The mass balance for each phase is given by:

∂ρπ

∂t
+∇∇∇· (ρπu̇π) = 0 (2.6)

Assuming negligible effects of phase density gradients and a constant porosity, summing
the mass balances of the two phases results in:

1

ρ f

∂ρ f

∂t
+ 1

ρs

∂ρs

∂t
+∇∇∇· u̇s +n f ∇∇∇· (u̇ f − u̇s

)= 0 (2.7)

Finally, the relative fluid velocity is replaced by the Darcy fluid flux q = n f (u̇ f − u̇s), the Biot
coefficient is used to rewrite the solid density derivative as ρ̇s/ρs = (α−1)∇∇∇· u̇, and the fluid
density derivative is rewritten by using the Biot modulus ρ̇ f /ρ f = 1/M ṗ, resulting in:

1

M
ṗ +α∇∇∇· u̇ +∇∇∇·q = 0 (2.8)

The Biot modulus is related to the bulk moduli of the solid and fluid, and the porosity of the
porous material, n f , by:

1

M
= α−n f

Ks
+ n f

K f
(2.9)

If the fluid modelled is a Newtonian fluid, Darcy’s law is used to relate the fluid flux q to
the pressure gradient by:

q =−k

µ
∇∇∇p (2.10)

with k the intrinsic permeability and µ the dynamic viscosity of the fluid.

NON-NEWTONIAN FLUIDS

The non-Newtonian fluid is represented through the power-law fluid model. For these flu-
ids, the shear-stress τ inside the fluid is related to the velocity shear rate d v/d y through:

τ=µ0

∣∣∣∣d v

d y

∣∣∣∣n−1 d v

d y
(2.11)

with µ0 the consistency factor or base viscosity, and n the power-law index. A power-law
index n < 1 represents shear-thinning fluids, such as oils [11] and suspensions of large
molecules [29, 132]. An index n > 1 represents shear-thickening fluids, which is sometimes
used to describe dense particle suspensions [124]. If n = 1, Eq. 2.11 reduces to the expres-
sion for a Newtonian fluid.

A one-dimensional expression for power-law fluids inside a porous material is given by
[59, 78, 169]:

q =−k∗
f

(
∆p

∆L

) 1
n

(2.12)
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This expression relates the fluid flux q flowing through the porous material to the pressure
gradient ∆p/∆L. It assumes the flow is solely driven by this pressure gradient, and effects of
inertia are negligible. The effective permeability k∗

f is defined as:

k∗
f = n

3n +1

(
50

3
k

) 1+n
2n (

2Cµ0
)− 1

n n
n−1
2n

f (2.13)

with k the intrinsic permeability and C a constant, normally taken as 50
24 to correspond to

a Newtonian fluid for n = 1. Since k∗
f only depends on material properties, it is a constant

throughout the porous medium as long as the porosity and permeability are uniform. An
implicit form, able to be used for multidimensional cases, has been formulated and used in
[68, 157, 212]:

∇∇∇p =−µ0

k∗
∣∣q

∣∣n−1 q (2.14)

with the constant k∗ given by:

k∗ = 1

2C

(
50k

3n f

) n+1
2

(
n n f

3n +1

)n

(2.15)

This equation can be cast into an explicit form by continuously substituting the definition
of q :

q =− ∣∣q
∣∣1−n k∗

µ0
∇∇∇p f

=− ∣∣q
∣∣(1−n)2 ∣∣∇∇∇p f

∣∣1−n
(

k∗

µ0

)1+(1−n)

∇∇∇p f

=− ∣∣q
∣∣(1−n)3 ∣∣∇∇∇p f

∣∣(1−n)+(1−n)2
(

k∗

µ0

)1+(1−n)+(1−n)2

∇∇∇p f

= .....

resulting in:

q =−k∗
f

∣∣∇∇∇p
∣∣∑∞

i=1(1−n)i ∇∇∇p (2.16)

with the definition of the effective permeability corresponding to the expression from the
one-dimensional case, Eq. 2.13. The infinite series of Eq. 2.16 converges if n is between zero
and two [236]. Since most power-law fluids of interest have fluid indices between zero and
two, Eq. 2.16 can be simplified to:

q =−k∗
f

∣∣∇∇∇p
∣∣ 1

n −1∇∇∇p (2.17)

which can be used in combination with the conservation of mass, Eq. 2.8, to fully describe
the pressure changes for a poroelastic material for power-law fluids as:

1

M
ṗ +α∇∇∇· u̇ −k∗

f ∇∇∇·
(∣∣∇∇∇p

∣∣ 1
n −1∇∇∇p

)
= 0 (2.18)

2.1.2. FRACTURE

The fracture is represented by part of the discontinuity Γd , with the other part of the dis-
continuity representing still intact material. The displacement across the fracture has a C−1

continuity, to allow for jumps in normal and tangential displacements across the fracture.
For the continuity of the pressure, several different models exist. Using a C−1 pressure conti-
nuity results in a jump in pressures across the fracture, thereby representing a discontinuous
pressure model [173, 185]. In contrast, when a C 0 pressure continuity is used, the pressures
are continuous across the discontinuity, but the fluid fluxes are discontinuous. This corre-
sponds to the continuous pressure model [39, 187], which will be used in this chapter.
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INTERFACIAL STRESSES

Similar to the stresses in the interior of the domain, the traction at the discontinuity, τΓd , is
decomposed in contributions due to the solid deformations and the fluid pressure within
the fracture:

τΓd =τd −pnd (2.19)

with nd the normal vector to the fracture (see Fig. 2.1), and p the pressure within the frac-
ture, equal to the interstitial fluid pressure inside the porous material. By imposing this
fluid pressure on the fracture walls, the interstitial fluid pressure just inside the porous ma-
terial is counteracted, and the fracture is able to open. The solid traction τd represents
the tractions caused by the behaviour of the solid material, including phenomena such as
traction-separation behaviour or dummy stiffness terms to enforce a continuous material.

For the intact part of the discontinuity, the solid part of the traction is given by:

τd = D∗
d �u� (2.20)

with �u� the jump in displacement across the interface, and D∗
d the dummy stiffness matrix

in the global coordinate system. This dummy stiffness matrix is obtained from the local
dummy stiffness matrix Dd by using the rotation matrix R :

D∗
d = RT Dd R (2.21)

The local dummy stiffness matrix is used to prevent non-physical compliance for the non-
fractured part of the discontinuity by using a high dummy stiffness kn , ks , defining the local
dummy stiffness matrix as:

Dd =
[

kn 0
0 ks

]
(2.22)

For the part of the discontinuity representing the fracture, the solid traction can be de-
fined through a cohesive zone model [242]. These cohesive zone models are used to more
accurately represent the small-scale plastic deformations occurring close to the fracture
tips, and remove stress singularities near the fracture tips. Since the fractures in this chapter
are not allowed to propagate, no cohesive zone models are included for the fractured parts
of the discontinuity and therefore τd = 0 for the cracked part of the discontinuity.

FRACTURE FLUID FLOW

The fluid flow within the fracture is simulated using a continuous pressure fracture inflow
model [38, 39, 185]. These models implicitly include the fluid flow within the fracture by
determining the fluid flowing into the fracture due to changes in flow profile within the
fracture. The main advantage of this method is that the fluid velocity within the fracture can
be included without needing to discretise the interior of the fracture.

The velocity of the fluid within the fracture is described in the local (xd , yd ) coordinate
system using the Stokes equation:

0 =− ∂p

∂xd
+ ∂τ

∂yd
(2.23)

which combined with the constitutive relation for power-law fluids, Eq. 2.11, yields:

0 =− ∂p

∂xd
+ ∂

∂yd

(
µ0

(
∂v

∂yd

)n)
(2.24)

This assumes that inside the fracture the tangential fluid velocity is large compared to the
normal fluid velocity. Furthermore, effects of inertia and density changes inside the fracture
are neglected.
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The tangential fluid velocity within the fracture should correspond to the fluid velocity
inside the porous material at the fracture wall, thus v(h/2) = v(−h/2) = v f with the fluid
wall velocity just inside the porous material approximated by:

v f =−
k∗

f

n f

∣∣∣∣ ∂p

∂xd

∣∣∣∣ 1
n −1 ∂p

∂xd
+ u̇s (2.25)

Using this wall velocity boundary condition, an explicit expression for the fluid flow profile
within the fracture is derived from Eq. 2.24:

v(yd ) = n

n +1
µ
− 1

n
0

∣∣∣∣ ∂p

∂xd

∣∣∣∣ 1
n −1 ∂p

∂xd

(∣∣yd
∣∣ 1

n +1 −
(

h

2

) 1
n +1

)
+ v f for − h

2
≤ yd ≤ h

2
(2.26)

The conservation of mass equation for the interior of the fracture is:

∂ρ f

∂t
+∇∇∇·ρ f v = 0 (2.27)

For the interior of the fracture, it is assumed that the effects of the velocity are large com-
pared to the density changes. This reduces the mass conservation to:

∂v

∂xd
+ ∂w

∂yd
= 0 (2.28)

Integrating over the fracture height then results in the jump in fracture outflow:

�w� f = w

(
h

2

)
−w

(
−h

2

)
=−

∫ h/2

−h/2

∂v

∂xd
dyd (2.29)

Using the velocity profile inside the fracture for a power-law fluid, Eq. 2.26, in Eq. 2.29
results in:

�w� f =
2

2n +1

(
h

2

) 1
n +2

µ
− 1

n
0

∣∣∣∣ ∂p

∂xd

∣∣∣∣ 1
n −1 ∂2p

∂x2
d

+
(

h

2

) 1
n +1

µ
− 1

n
0

∣∣∣∣ ∂p

∂xd

∣∣∣∣ 1
n −1 ∂h

∂xd

∂p

∂xd
−h

∂v f

∂xd
(2.30)

In order to link the expression for the fracture outflow to that of the fluid flow inside
the porous medium, the definition of the fluid flux jump from the viewpoint of the porous
medium is used:

�nΓd ·q�por ous = n f �w f −ws�por ous (2.31)

The velocity jumps inside the porous medium are related to the velocity jumps inside the
fracture through:

�w f �por ous = 1

n f
�w f � f r actur e (2.32)

�ws�por ous = 1

n f
�ws� f r actur e (2.33)

Substituting these definitions in Eq. 2.31 results in the total fracture outflow:

�nΓd ·q� = �w� f −�w�s (2.34)

with the fracture outflow due to changes in fluid velocity profile given by Eq. 2.30, and the
fracture inflow due to changes in fracture height given by:

�w�s = ∂h

∂t
= nΓd · �u̇� (2.35)

Eq. 2.34 can be used to include the effects of the fracture on the fluid pressure without
explicitly simulating the fluid within the fracture. Due to the continuous pressure model, no
additional degrees of freedom are added by using this fracture outflow model. Aditionally,
the fluid velocity profile inside the fracture, Eq. 2.26, can be re-obtained by post processing
the interstitial pressure and displacements of the porous medium at the discontinuity.
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Figure 2.2: Example of quadratic Lagrangian basis functions for four elements.

2.2. DISCRETISATION
The weak form of the momentum balance is obtained by multiplying Eq. 2.5 (neglecting
the inertia term) with the test function η for the displacements and using the divergence
theorem. This results in:∫

Ω
∇∇∇η : (σs −αp I ) dΩ−

∫
Γd

η · (τd −pnd
)

dΓd =
∫
Γt

η ·τ dΓt (2.36)

Similarly, Eq. 2.18 is transformed into a weak format by multiplying with the test function
for the pressure, ζ, and performing integration by parts for the interstitial fluid flux term:∫
Ω
αζ∇∇∇·u̇ dΩ+

∫
Ω

k∗
f

∣∣∇∇∇p
∣∣1/n−1∇∇∇ζ·∇∇∇p dΩ+

∫
Ω

1

M
ζṗ dΩ+

∫
Γd

ζ
(�w� f −�w�s

)
dΓd =−

∫
Γq

ζq dΓq

(2.37)

2.2.1. INTERPOLATION FUNCTIONS

LAGRANGE POLYNOMIALS

To perform the spatial discretisation of Eq. 2.36 and 2.37 interpolation functions are needed
to represent the interstitial fluid pressure and the solid displacements. Traditional finite ele-
ment methods use Lagrangian polynomials to perform this discretisation. The main advan-
tage of these Lagrangian polynomials, shown in Figure 2.2, is that they are only non-zero
in the element in which their control point is located. This allows the internal force vec-
tor and tangential stiffness matrix required for finite element analyses to be constructed in
an element-wise manner by summing the contributions of each individual element. Other
advantages include the Lagrangian polynomials being the same for each element, and the
values in the control-points corresponding to the values of the function at those points.

The main disadvantage of Lagrangian polynomials, however, is their lack of higher or-
der inter-element continuity [63]. While increasing the order of the Lagrangian functions
increases the continuity inside the elements, at their element boundaries the continuity is
always C 0. This C 0 inter-element continuity is independent of the order of the functions
used, and results in discontinuous gradients between elements, as shown in Figure 2.3.

The governing equations derived in Section 2.1 show that the stresses inside the porous
material depend on the displacement gradients, and therefore are discontinuous when La-
grangian polynomials are used to discretise the displacements. Similarly, the fluid flux in-
side the porous medium depends on interstitial pressure gradients, and is therefore also
discontinuous between elements [100]. While this discontinuous fluid flux at the element
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Figure 2.3: Example of gradients of quadratic interpolants resulting from the functions shown in 2.2b
and 2.4b.
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ers as control points

Figure 2.4: Example of quadratic B-spline basis functions for four elements, using knot vector
[0 0 0 1 2 3 4 4 4].

boundaries does not result in issues with global mass conservation, the resulting fluxes at
the element boundaries are not locally mass-conserving.

The fracture outflow, Eq. 2.30, also depends on first derivatives of the displacements,
and first and second derivatives of the interstitial fluid pressure. However, since this fracture
outflow is directly based on changes in velocity profile, and does not explicitly keep track of
the fluid entering and leaving the fracture, the discontinuous gradients between elements
results in the fracture outflow term being slightly non-mass-conserving. Furthermore, post-
processing to regain the fracture inflow and fluid velocity profiles within the fracture will
result in discontinuous velocities.

NON-UNIFORM RATIONAL B-SPLINES

One way to obtain an increased inter-element continuity is by using Non-Uniform Ratio-
nal Basis Splines (NURBS) [174]. Instead of defining elements, as is done for Lagrangian
interpolants, NURBS are defined by using a knot vector which describes the splines in the
complete domain, as shown in Figure 2.4. By using interpolation functions that span multi-
ple elements, NURBS of order p are able to obtain an inter-element continuity of C p−1. This
inter-element continuity can be further altered by inserting additional knots at pre-existing
knots, reducing the continuity to C p−k at the location of the knot with multiplicity k. This
knot insertion can be used to locally reduce the continuity to represent sharp changes in
mesh direction, or discontinuities such as fractures [227, 234].
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Figure 2.5: Example of Bézier extraction of the dotted B-spline into Bernstein polynomials.

NURBS are commonly used in isogeometric analysis (IGA), which aims to represent the
geometry of the problem, and the finite element mesh using the same shape functions and
discretisation [63, 97]. While this allows for an exact representation of the geometry, and
results in smooth solutions without reduced continuity at the location of the knots, one of
the main advantages of the Lagrangian interpolants is lost: NURBS are not only non-zero
in the element their corresponding control-point is located in, but also in the neighbour-
ing elements. Furthermore, the NURBS basis functions differ between elements, requiring
different shape functions to be calculated for each element.

To negate these disadvantages, the NURBS can be written in terms of Bernstein polyno-
mials through a process called Bézier extraction [33, 204]. This decomposes the non-zero
NURBS N e (ξ,η) at the parametric coordinates (ξ,η) into Bernstein polynomials B(ξ,η) as:

N e (ξ,η) =W eC eB(ξ,η)
(
W e (ξ,η)

)−1 (2.38)

with the weight functions being either one in the case of uniform weights, such as with
simple rectangular domains, or in the case of non-uniform weights w e defined through:

W e (ξ,η) = (
w e)T C eB(ξ,η)

W e = IC e w e
(2.39)

While the Bézier extraction operator C e differs per elements, it only needs to be calculated
once and can then be used throughout the simulation. An example of this Bézier extraction
process is shown in Figure 2.5, where the yellow spline from Figure 2.4a is decomposed using
the Bézier extraction operators (bold numbers relate to the shown decomposition):

C e1 =
1 0 0

0 1 0.5
0 0 0.5

 C e2 =
0.5 0 0

0.5 1 0.5
0 0 0.5

 C e3 =
0.5 0 0

0.5 1 0.5
0 0 0.5


Using Bézier extraction, the interpolants can be evaluated on a per-element basis. This

allows the forces and tangential stiffness matrices to be evaluated in a similar manner as in
traditional finite element methods.

INTERPOLATION FUNCTION ORDER

The stresses in the solid material from the weak form of the momentum balance, Eq. 2.36,
depend on first derivatives of the displacement. Therefore, at least linear functions are
needed to evaluate this term, and the use of quadratic NURBS will ensure continuous
stresses are obtained. Similarly for the fluid flux term in the mass balance, Eq. 2.37, which
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(a) Quartic for deformations, cubic for pressure (b) Cubic for deformations and pressure

Figure 2.6: Example of pressure oscillations due to interpolation function order, using the case from
Section 2.3 and n = 0.25 (results shown after the first time-step).

depends on pressure gradients, and therefore also requires linear interpolants to be evalu-
ated or quadratic NURBS to obtain a continuous fluid flux. Finally, the fracture outflow term
depends on both first and second derivatives of the pressure, and first derivatives of the
fracture opening height. To evaluate all the terms in the fracture outflow, Eq. 2.34, quadratic
polynomials are needed for the interstitial fluid pressure, while cubic polynomials will result
in a continuous fracture outflow velocity.

Another criterion for coupled systems to determine which order of interpolants to use is
the inf-sup (or Ladyzhenskaya–Babuška–Brezzi) condition [53]. This criterion describes the
requirement between the discretisation spaces in multi-field systems to retain a well-posed
system of governing equations. It comes into effect for poroelasticity problems due to the
interaction between the fluid pressure and displacement gradient in the momentum bal-
ance, and the solid velocity gradient and fluid pressure changes in the mass balance. One
manner which is often considered to fulfil this condition is to use interpolation functions
for the solid displacements which are one order higher compared to the fluid pressure [24,
100]. Using these unequal order discretisations will prevent spurious pressure oscillations
from occurring. While it is not always the case, and dependent on problem specific parame-
ters [190], the spurious oscillations that might occur when not fulfilling this condition often
dominate the solution [117]. An example of these oscillations is shown in Figure 2.6 for the
case described in Section 2.3 using a non-Newtonian fluid and 20×20 Bézier extracted ele-
ments.

When NURBS are used, unequal order meshes can be generated through p-refinement
[97, 232]. First, the low order mesh is generated with the knots at the correct locations
to obtain the required amount of elements. Next, this polynomial order of this mesh is
increased by inserting an extra knot at the location of all knots of the original mesh, for
example going from the quadratic knot vector [0 0 0 1 2 3 4 4 4] to the cubic knot vector
[0 0 0 0 1 1 2 2 3 3 4 4 4 4]. By repeating every knot, the elements of the low order and high
order meshes represent the exact same geometry, including the same inter-element conti-
nuity at the element boundaries.

To obtain a continuous fracture inflow velocity, it was chosen to use cubic NURBS to
discretise the interstitial fluid pressure for the IGA simulations. To also fulfil the inf-sup
condition, quartic NURBS are used for the solid displacement. When traditional finite ele-
ments are used, no continuous fracture inflow can be obtained independently of the used
polynomial order, and therefore quadratic Lagrangian polynomials are used for the intersti-
tial pressure and displacements for the FEM simulations. While these FEM simulations do
not fulfil the inf-sup condition, no oscillations occurred.
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2.2.2. SPATIAL AND TEMPORAL DISCRETISATION

As described in the previous section, the spatial discretisation is performed using La-
grangian finite elements, and NURBS isogeometric elements. Using the interpolants for the
solid displacement Ns and the interstitial fluid pressure N f , the pressure and displacement
are discretised through a sum over all elements as:

u =
nel∑

el=1
N el

s uel (2.40)

p =
nel∑

el=1
N el

f pel (2.41)

with uel and pel the values of the control points relevant to the element. Interface elements
are used for the fractured and non-fractured parts of the discontinuity. Similar to the dis-
cretisation of the interior domain, both Lagrangian interpolants [200, 207] and NURBS [99,
234] were used for these interface elements. This allows the jump in displacement across
the interface to be discretised as:

�u�el = Nd uel (2.42)

Since a continuous pressure model is used, the discontinuity only contains a single degree
of freedom for the pressure. Therefore, the pressure at the discontinuity is discretised using
the same discretisation as the interstitial pressure.

The matrix B is defined to perform the mapping from displacements to strains as:

εel = B el uel B el =


∂Ns1
∂x 0 ∂Ns2

∂x 0 ...

0 ∂Ns1
∂y 0 ∂Ns2

∂y ...
∂Ns1
∂y

∂Ns1
∂x

∂Ns2
∂y

∂Ns2
∂x ...

 (2.43)

and a vector m is introduced to map these strains to the divergence of the displacement:

∇∇∇·u = mT Bu m = [
1 1 0

]T
(2.44)

The temporal discretisation is performed using a backward Euler scheme, with the first
time derivative given through:

�̇= �t+∆t −�t

∆t
(2.45)

and requiring all internal forces and fluxes to be evaluated at time t +∆t .
Using the spatial discretisation from Eq. 2.40, the weak form for the momentum bal-

ance, Eq. 2.36 is discretised as:
fext − fi nt − fd = 0 (2.46)

with the external force fext defined in a standard manner as:

fext =
∫
Γt

N T
s τ dΓt (2.47)

The forces resulting from the interior of the porous media are given by:

fi nt =
∫
Ω

B T Del Bu t+∆t dΩ−
∫
Ω
αB T mN f p t+∆t dΩ (2.48)

using the linear-elastic stiffness matrix Del . Finally, the internal forces related to the discon-
tinuity are determined using interface discretisation of Eq. 2.42, and given by:

fd =
∫
Γd

N T
d RTτt+∆t

d dΓd −
∫
Γd

N T
d nΓd N f p t+∆t dΓd (2.49)
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Since no propagating fractures are simulated, no cohesive zone model has been included.
The tractions along the discontinuity are therefore given by:

τt+∆
d = Dd R Nd u t+∆t (2.50)

with the dummy stiffness matrix Dd containing large values for the intact part of the dis-
continuity, and being zero for the interface elements representing the fracture.

In a similar manner, the weak form of the mass conservation from Eq. 2.37 is discretised
as:

qext −qi nt −qdh −qd p = 0 (2.51)

with the external fluid flux given by:

qext =−∆t
∫
Γq

N T
f q dΓq (2.52)

and the internal fluid flux given by:

qi nt =−
∫
Ω
αN T

f mT B
(
u t+∆t −u t ) dΩ−

∫
Ω

1

M
N T

f N f
(
p t+∆t −p t ) dΩ

−∆t
∫
Ω

k∗
f ∇∇∇N T

f

∣∣∇∇∇N f p t+∆t
∣∣ 1

n −1∇∇∇N f p t+∆t dΩ (2.53)

The L2 norm of the pressure gradient is given in a discrete format as:

∣∣∇∇∇N f p t+∆t
∣∣= ((∇∇∇1N f p t+∆t )2 + (∇∇∇2N f p t+∆t )2

) 1
2

(2.54)

with ∇∇∇1 and ∇∇∇2 the gradient operators in the Cartesian directions.
The fluid flux due to the discontinuity has been split into two contributions. The contri-

bution related to the fracture inflow due to changes in opening height reads:

qdh =−
∫
Γd

N T
f nT

Γd
Nd

(
u t+∆t −u t ) dΓd (2.55)

The second contribution accounting for the inflow due to changes in velocity profile caused
by pressure and height gradients is given by:

qd p =∆t
∫
Γd

N T
f

( 2

2n +1
µ
− 1

n
0

(
1

2
nT
Γd

Nd u t+∆t
) 1

n +2 ∣∣∇∇∇N f p t+∆t
∣∣ 1

n −1∇∇∇2N f p t+∆t

+µ− 1
n

0

(
1

2
nT
Γd

Nd u t+∆t
) 1

n +1 ∣∣∇∇∇N f p t+∆t
∣∣ 1

n −1
nT
Γd
∇∇∇Nd u t+∆t∇∇∇N f p t+∆t

)
dΓd (2.56)

All the terms are integrated using a Gauss integration scheme. This allows the integrals
over the domain to be substituted by sums over all elements and integration points:

∫
Ω
� dΩ=

nel∑
el=1

ni p∑
i p=1

wel ,i p� (2.57)

with the values of the shape functions determined in the integration points, and wel ,i p the
integration weight related to that integration point and element.
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2.2.3. NON-LINEAR NEWTON-RAPHSON SOLVER

While most terms of Eq. 2.46 and 2.51 are linear, the terms related to the non-Newtonian
fluid flux, Eq. 2.53, and the fracture inflow due to changes in flow profile, Eq. 2.56, are
non-linear and depend on values at the new time. To solve this system of equations in a
monolithic manner, a Newton-Raphson iterative algorithm is used. The solution is therefore
obtained in an iterative manner as:

(Ki nt +Kd )

[
du
dp

]
j+1

=
[

fext

qext

]
−

[
fi nt + fd

qi nt +qd p +qdh

]
j

(2.58)

with the tangential stiffness matrices Ki nt and Kd based on the values at the start of the
iteration. The number of iterations required to obtain a converged solution depends on
how well these tangential stiffness matrices approximate the Jacobian of the system.

The tangential stiffness matrix related to the internal forces and fluxes is given by:

Ki nt =
[

K Q
QT C +H

]
(2.59)

The submatrix related to the stresses caused by the displacement of the solid material is
given by:

K = ∂ fi nt

∂u
=

∫
Ω

B T Del B dΩ (2.60)

The submatrix coupling the solid and fluid, including the interstitial pressure acting on the
porous material and the compression of the porous material changing the pressure, is given
by:

Q = ∂ fi nt

∂p
=

(
∂qi nt

∂u

)T

=−
∫
Ω
αB T mN f dΩ (2.61)

The submatrix related to the pressure capacity term is given by:

C = ∂qc,i nt

∂p
=−

∫
Ω

1

M
N T

f N f dΩ (2.62)

The final term related to the fluid diffusion in the interior is given by:

H = ∂qdi f f ,i nt

∂p
=−∆t

∫
Ω

k∗
f

∣∣∇∇∇N f p
∣∣ 1

n −1 (∇∇∇N f
)T ∇∇∇N f dΩ

−∆t
∫
Ω

k∗
f

(
1

n
−1

)∣∣∇∇∇N f p
∣∣ 1

n −3 (∇∇∇N f
)T (∇∇∇N f p

)((∇∇∇1N f p
)∇∇∇1N f +

(∇∇∇2N f p
)∇∇∇2N f

)
dΩ

(2.63)

which, in the case of a Newtonian fluid (n = 1) reduces to:

H =−∆t
∫
Ω

k∗
f

(∇∇∇N f
)T ∇∇∇N f dΩ (2.64)

For the tangential stiffness matrix related to the discontinuity, only the term related to
the dummy stiffness is included:

Kd =
[
∂ fd

∂u 0
0 0

]
(2.65)

with:
∂ fd

∂u
=

∫
Γd

N T
d RT Dd R Nd dΓd (2.66)
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Figure 2.7: Overview of the geometry and boundary conditions

This follows the approach of [187, 232], and results in a symmetric matrix being retained.
Furthermore, if a Newtonian fluid is simulated, the complete stiffness matrix will be con-
stant, allowing for pre-conditioners or a LU-factorisation to only be calculated once. A more
detailed look at the effects of neglecting the other terms will be taken in Chapter 3.

The convergence of the Newton-Raphson algorithm is checked based on an energy
based criterion, with the error after step j +1 defined as:

ε j+1 =
[

fi nt + fd

qi nt +qdh +qd p

]
j+1

·
[

du
dp

]
j+1

(2.67)

which is normalised with the error of the first iteration:

er r or j+1 =
ε j+1

ε1
(2.68)

This energy based convergence criterion has been chosen to give equal weight to the in-
terstitial fluid pressure and the solid displacement. While the interstitial fluid pressure is
in the order of MPa (O (106)) and the deformations in the order of mm (O (10−3)), they get
multiplied by the fluid flux times time step (mm, O (10−3)) and internal forces (MPa, O (106))
respectively.

The discretised equations have been implemented in a C++ code using the JEM/JIVE
finite element software library [73]. The code has been verified by comparing its results to
solutions from literature. A full overview of the verifications performed is given in Appendix
A.1 for Newtonian fluids, and A.2 for non-Newtonian fluids.

2.3. NON-NEWTONIAN FRACTURE FLOW
To show the effect of including the non-Newtonian fluid rheology, a typical boundary value
problem has been used. The problem [232] consists of a square 10m×10m plate, of which
the middle 4 m is fractured at a 30◦ angle as shown in Figure 2.7. This fracture is stationary
and not allowed to propagate. A constant pressure of p = 0.5MPa is imposed on the bottom,
and a pressure of p = 0MPa is imposed at the top of the domain. The displacement is con-
strained in horizontal direction on the left and right edges, and in vertical direction on the
bottom edge.

The porous material uses Young’s modulus E = 9.0 GPa, Poisson ratio ν= 0.4, Biot mod-
ulus M = 1012 GPa, Biot coefficient α = 1.0 and porosity n f = 0.3. A dummy stiffness of
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k [m2] n [−] µ0 [mPa sn]

0.6 34.7096
0.7 14.2732
0.8 5.8782
0.9 2.4235

1 ·10−8 1.0 1.0
1.1 0.4129
1.2 0.1706
1.3 0.0705
1.4 0.0291

k [m2] n [−] µ0 [mPa sn]

0.6 20.3925
0.7 9.5782
0.8 4.5056
0.9 2.1218

7 ·10−10 1.0 1.0
1.1 0.4716
1.2 0.2225
1.3 0.1050
1.4 0.0496

k [m2] n [−] µ0 [mPa sn]

0.6 5.5011
0.7 3.5853
0.8 2.3402
0.9 1.5291

1 ·10−12 1.0 1.0
1.1 0.6544
1.2 0.4284
1.3 0.2806
1.4 0.1838

Table 2.1: Permeability, non-Newtonian fluid index, and base viscosity

kn = ks = 102 GPa has been used to prevent the non-fractured interface elements from open-
ing.

Simulations were performed using permeability values of k = 1.0 · 10−12 m2, k = 7.0 ·
10−10 m2, and k = 1.0 · 10−8 m2. The viscosity for the Newtonian cases was taken as µ =
1.0mPas. This combination of viscosity and permeabilities results in fluid fluxes through
the porous domain of 0.05 mm/s, 35 mm/s, and 0.5 m/s for the low, medium and high per-
meability cases, respectively (assuming no influence of the fracture).

The power-law index n was varied between 0.6 and 1.4 for the non-Newtonian fluids.
The base viscosity µ0 corresponding to these power-law indices was chosen such that the
fluid flux through the porous material in the absence of the fracture remained constant.
This results in the ratio between non-Newtonian base viscosity and the Newtonian viscosity
being given by:

µ
1
n
0

µ
= n

3n +1

(
50

3

) 1+n
2n

k
1−n
2n (2C )−

1
n n

n−1
2n

f

(
∆p

H

) 1
n −1

(2.69)

with ∆p the pressure difference of 0.5 MPa being applied over the domain height H =
10 m. By using this base viscosity, the Newtonian fluid is the linearised equivalent of all
the non-Newtonian fluids when the linearisation is solely performed based on the porous
material (neglecting the influence of the fracture). The resulting base viscosities are given
in Table 2.1.

In this section, the simulations used a mesh composed of 80×40 Bézier extracted ele-
ments, using quartic NURBS for the solid displacement, and cubic NURBS for the intersti-
tial fluid pressure. A time-step size of ∆t = 1s was used for 50 time-steps, after which all
simulations reached a steady-state. All results presented here are given at this steady state
(t = 50s).

The direction and magnitude of the fluid flux for the k = 1 · 10−12 case using a shear
thinning fluid with n = 0.6 and a shear-thickening fluid with n = 1.4 are shown in Figure
2.8. To highlight the effect of the fracture, the fluid flux relative to the non-Fractured case is
given in Figure 2.9. While the magnitude of the flux difference differs between the cases, the
overall effect of the fracture is similar. The fracture increases the fluid flow from the bottom
left corner towards the bottom fracture tip, and from the top fracture tip to the top right
corner. Due to the fracture transporting fluid, less fluid is transported inside the porous
material tangential to the fracture.

The fracture opening height for the k = 10−8 case is shown in Figure 2.10. Due to the
constant pressure boundary conditions used, the opening height is independent of the fluid
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0.5 mm/s50 mm/s

(a) Shear-thinning n = 0.6

0.5 mm/s50 mm/s

(b) Shear-thickening n = 1.4

Figure 2.8: Fluid flux for the low permeability case. Black arrows represent the fluid flux inside the
porous media and red arrows represent the fluid velocity in the centre of the fracture.

0.1 mm/s50 mm/s

(a) Shear-thinning n = 0.6

0.025 mm/s50 mm/s

(b) Shear-thickening n = 1.4

Figure 2.9: Difference in fluid flux relative to the non-fractured case for the low permeability case.
Black arrows represent the fluid flux inside the porous media and red arrows represent the fluid ve-
locity in the centre of the fracture.

index. The same fracture opening height was also obtained for the cases using the other
permeabilities.

The fluid velocity for the high permeability case (Figure 2.11a) shows the shear-
thickening fluids obtaining a higher velocity compared to the Newtonian fluid, and the
shear-thinning fluids obtaining a lower velocity. Figure 2.11b, the fracture outflow velocity,
also reflects this, with more fluid entering and leaving the fracture for the shear-thickening
fluids. While the fluid velocity in the centre of the fracture is comparable to the velocity in
the porous media (0.5m/s), the small fracture opening height results in only a small fracture
outflow. This fracture inflow is insufficient to alter the pressures in the surrounding porous
material.

In contrast, the results for a lower permeability, k = 7 ·10−10m2, show near to no influ-
ence of the fluid index in Figure 2.12. The shear-thinning fluids have slightly higher veloci-
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Figure 2.10: Fracture opening height for the k = 10−8 m2 case at steady state.
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(b) Fracture outflow velocity

Figure 2.11: Results for the k = 10−8 m2 case at steady state.

ties in the middle of the fracture, whereas the shear-thickening fluids obtain higher veloci-
ties near the fracture tips. This velocity difference, combined with the different velocity pro-
file shape, results in slight differences in the fracture outflow. Compared to the k = 10−8 m2

cases, the fracture outflow velocity is closer, although still small, relative to the fluid flux
inside the porous medium with qy = 35mm/s. This results in the fracture having a slight
influence on the pressure in the surrounding porous material, as shown in Figure 2.12c.

The low permeability cases, Figure 2.13, show the inverse behaviour compared to the
high permeability cases. The shear-thinning fluids now have a significantly higher velocity
compared to the Newtonian fluid, and the shear-thickening fluids obtain a lower velocity.
This is also reflected in the tangential velocity jump, with the shear-thinning fluids having
significantly higher inflow velocities. These fracture outflow velocities are comparable to
the velocity inside the porous material (qy = 0.05m/s), and therefore the fracture has a large
influence on the interstitial fluid pressure, as shown in Figure 2.13d.

By integrating the vertical fluid flux over the top and bottom boundaries, the total fluid
flux flowing through the complete domain is determined. This fluid flux is compared to
the fluid flux for the non-fractured case to determine the added fluid transport due to the
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(c) Pressure difference along the discontinuity relative to the non-fractured case.

Figure 2.12: Results for the k = 7 ·10−10 m2 case at steady state.

presence of the fracture:

qenh = q f r ac −q0

q0
·100% (2.70)

with q f r ac the total fluid flux for the fractured case and q0 the fluid flux for the non-fractured
case. The resulting influence of the fracture, normalised with the values for Newtonian flu-
ids, are shown in Figure 2.14. This increase in fluid flux corresponds to the previous results:
Dependent on the permeability of the porous material, either the shear-thinning or shear-
thickening cases have an enhanced fluid transport compared to the Newtonian cases. For
the low permeability cases, the difference between fluid indices is clearest, with the fracture
increasing the total fluid transport by up to 2.8% for shear thinning fluids, whereas it is only
increased by 0.3% for the shear-thickening n = 1.4 fluid.

It is finally noted that the fluid properties were chosen such that for a constant perme-
ability all shear-thinning and shear-thickening fluids linearise to the same Newtonian flu-
ids. The large differences between fluid velocities inside the fracture, and fracture outflow
velocities, for varying flow indices indicate the importance of including the non-Newtonian
rheology. Furthermore, these effects were mirrored for the low and high permeability cases,
whereas near to no difference was observed for the medium permeability case.
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(c) Pressure difference along the discontinuity relative to the non-fractured case.
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Figure 2.13: Results for the k = 10−12 m2 case at steady state.

2.4. FEM VS IGA

In this section, simulations using meshes ranging from 20×10 to 160×50 elements were per-
formed. After the 100×50 mesh, only the amount of horizontal (Bézier extracted) elements
was varied. All simulations used a permeability k = 10−12, and non-Newtonian fluid indices
n = 0.6 and n = 1.4. This permeability was chosen since it resulted in the largest influence
of the fracture on the interstitial fluid pressure.
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Figure 2.14: Relative increase in fluid transported through the complete domain relative to the New-
tonian fluid case, qenh,n=1 = 7.770·10−5% for k = 10−8 m2, qenh,n=1 = 1.139·10−3% for k = 7·10−10 m2
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Figure 2.15: Fracture opening heights for n = 0.6 using IGA.
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Figure 2.16: Difference in interstitial fluid pressure along the discontinuity compared to a non-
fractured case for n = 0.6 using IGA.

2.4.1. MESH SENSITIVITY IGA
The fracture opening height using NURBS is shown in Figure 2.15. The centre of the fracture
shows near to no difference between the coarsest meshes, whereas near the fracture tips
some difference is visible for the 20× 10 mesh. At the fracture tips, the results are more
dependent on the discretisation. This is caused by the quartic NURBS not being able to
represent a sharp fracture tip, and instead requiring approximately one element to represent
a non-fractured discontinuity. While this results in differences near the fracture tip, these
small differences do not seem to influence the centre of the fracture.

Similar to the opening height, the interstitial fluid pressure along the discontinuity, Fig-
ure 2.16, shows only minor differences between the coarsest meshes. Further refinement
past the 40× 20 mesh does not visibly alter the solution, indicating that a coarse mesh is
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Figure 2.17: Velocity in the centre of the fracture for n = 0.6 using IGA.
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Figure 2.18: Jump in normal velocity for n = 0.6 using IGA.
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Figure 2.19: Jump in normal velocity around the right fracture tip for n = 0.6 using IGA.

sufficient to accurately include the effect of the fracture on the pressure inside the porous
material.

The velocity in the centre of the fracture is shown in Figure 2.17. While the coarsest mesh
shows oscillations in this velocity in the centre of the fracture, all other meshes obtain cor-
rect results. Since the velocity depends non-linearly on the fracture opening height, slight
differences between the meshes are seen in the same locations as for the fracture opening
height. At the fracture tip, these differences are decreased due to the non-linear dependence
on the height, whereas closer to the middle of the fracture these differences become slightly
more pronounced.

The fracture outflow, Figure 2.18 and 2.19, show the largest influence of the mesh. The
20× 10 mesh shows large oscillations, even resulting in outflow velocities in the opposite
direction compared to the finer meshes. While these oscillations lessen for finer meshes,
they are still seen for the 160×50 mesh close to the fracture tips. These oscillations do not
occur for smaller fracture inflows, as shown by the n = 1.4 case in Figures 2.20 and 2.21, and
these results show smaller differences between the finest meshes.

From these results it can be concluded that a fairly coarse IGA based mesh is sufficient to
model the effect of the fracture on the interstitial pressures and displacements of the porous
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Figure 2.20: Jump in normal velocity for n = 1.4 using IGA.
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Figure 2.21: Jump in normal velocity around the right fracture tip for n = 1.4 using IGA.
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Figure 2.22: Fracture opening heights for n = 0.6 using the FEM.

material. When focussing on phenomena in or close to the fracture, however, finer meshes
are needed to obtain accurate velocities inside the fracture. Due to the dependence on sec-
ond derivatives, very fine meshes are needed to obtain accurate fracture outflow velocities,
especially close to the fracture tips.

2.4.2. MESH SENSITIVITY FEM
the fracture opening height using quadratic Lagrangian polynomials is shown in Figure 2.22.
In contrast to the IGA results, the opening height reaches zero at the fracture tips due to the
C 0 inter-element continuity allowing for sharp fracture tips. While slightly larger differences
are seen in the centre of the fracture for the FEM results compared to the IGA results, these
differences disappear with finer meshes.

The interstitial fluid pressure along the discontinuity, Figure 2.23, shows a larger influ-
ence of the mesh. Clear differences are visible up to the 100×50 mesh. This is in contrast
to the IGA results, for which coarse meshes sufficed to obtain accurate results, and corre-
sponds to earlier results that NURBS are able to obtain more accurate results (for Newtonian
fluids) compared to Lagrangian polynomials [99, 100].
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Figure 2.23: Difference in interstitial fluid pressure along the discontinuity compared to a non-
fractured case for n = 0.6 using the FEM.
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Figure 2.24: Velocity in the centre of the fracture for n = 0.6 using the FEM.
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Figure 2.25: Jump in normal velocity for n = 0.6 using the FEM.

The velocity in the centre of the fracture is shown in Figure 2.24. Due to the C 0 conti-
nuity of the Lagrangian elements, jumps in the velocity occur between the elements. These
jumps decrease with finer meshes, but still occur near the fracture tips for even the finest
meshes. Furthermore, since the formulation for the fracture outflow is based on the veloc-
ity profile, having a discontinuous velocity inside the fracture will result in a small amount
of fluid being lost between the elements, resulting in the fracture flow being slightly non-
mass-conserving in the case of Lagrangian polynomials.

The jump in fluid velocity normal to the fracture, Figure 2.25 and 2.26, also show the
effects of the C 0 inter-element continuity. For coarse meshes, large jumps occur through-
out the discontinuity. While refining the mesh results in smaller jumps near the middle of
the fracture, the jumps persist near the fracture tip. Furthermore, comparing the results
of the finer meshes, these jumps seem to increase in magnitude when the mesh is refined,
indicating that even using very fine meshes no accurate results can be obtained.



30 2. NON-NEWTONIAN FLUIDS USING THE CONTINUOUS PRESSURE MODEL

5.8 6 6.2 6.4 6.6 6.8 7 7.2

x [m]

0

0.02

0.04

0.06

0.08

0.1

[[
w

]]
 [
m

m
/s

]

20x10

40x20

60x30

80x40

100x50

120x50

140x50

160x50

Figure 2.26: Jump in normal velocity around the right fracture tip for n = 0.6 using the FEM.

2.5. CONCLUSION
In this chapter, a fracture-scale sub-grid model for non-Newtonian fluid flows within frac-
tures has been derived. This model, based on the continuous pressure model, allows the
influence of the fracture on the surrounding porous material to be included by imposing
the jump in velocity normal to the fracture. By post-processing the interstitial fluid pressure
and displacements, the model furthermore allows for re-obtaining the velocity inside the
fracture, without explicitly needing to simulate the interior of the fractures.

By simulating a typical boundary value problem, the influence of including the non-
Newtonian rheology was shown. While for some values for the permeability of the porous
material near to no effect of including the non-Newtonian behaviour was observed, re-
sults using a lower permeability showed significantly higher velocities inside the fracture
for shear-thinning fluids, whereas increasing the permeability resulted in higher velocities
for the shear-thickening fluids. These differences also resulted in differences in interstitial
fluid pressure, and influenced the total fluid transport through the porous domain.

Finally, mesh sensitivity studies were performed using NURBS and standard Lagrangian
finite elements. It was shown that a coarse mesh using NURBS was sufficient to obtain
accurate solutions for the interior of the domain, while a finer mesh was needed to obtain
accurate results for the fracture velocities. Using standard finite elements, correct results for
the interstitial fluid pressure and displacements could also be obtained in the interior of the
domain. However, standard finite elements were not able to obtain a continuous velocity
in the middle of the fracture, and even when using fine meshes obtained incorrect results
for the fracture inflow. This shows that while finite elements are sufficient to simulate the
overall behaviour of the fractured porous material, NURBS are needed when a more detailed
look into the velocities in and around the fracture is required.



3
CONVERGENCE OF THE CONTINUOUS PRESSURE

MODEL

In the previous chapter, a monolithic scheme was used to solve the deformations and pres-
sures inside the porous material at the same time as the fluid flow inside the fracture. While
this is a commonly used method [49, 113, 155, 207, 232], it requires repetitively solving a
large system of equations in which only a small part related to the discontinuity is non-
linear. Because of this small non-linear part, pre-conditioners used to solve the system have
to be recalculated every iteration, significantly increasing the computational cost to include
fractures in the porous material. This can be (partly) negated by using a partially consistent
stiffness matrix, for instance only including the linear and constant terms in the stiffness
matrix [187]. However, it is unclear how deviating from a consistent tangential matrix influ-
ences the convergence of a Newton-Raphson solver when solving poroelasticity problems.

A different approach is to solve the system in a staggered manner. This method is of-
ten used to resolve the mass balance and momentum balance iteratively, allowing for pre-
existing and optimized solvers to be used for each equation [114, 115, 209]. A similar ap-
proach is possible for hydraulic fractures, iterating between solving the linear poroelastic
material, and the non-linear fracture flow [90, 122, 123, 168]. This splits the system into two,
a constant part that only needs to be calculated (and possibly pre-conditioned) once, and
a non-linear part which requires updating each iteration. While this reduces the size of the
system matrices, and therefore the duration required to solve each iteration, convergence
issues often arise due to the coupling between the two systems.

In this chapter, the effects of including terms related to the fracture in the tangential stiff-
ness matrix will be analysed. While a monolithic scheme is used, it should be noted that in
the absence of fracture flow related terms no difference exists between staggered and mono-
lithic schemes. The terms required to obtain a consistent stiffness matrix will be detailed in
Section 3.1, a short description of the role of these terms will be given, and a comparison is
made with other pre-existing schemes (both monolithic and staggered). Next, a case con-
taining a single fracture is simulated and the convergence of this case is studied, focusing on
the effects of including the tangential stiffness terms, the order of the used interpolants, and
whether Lagrangian or NURBS based interpolants are used. In section 3.3 these results will
be extended to a case containing multiple fractures. Finally, in Section 3.4 a non-Newtonian
power-law fluid is used and the effect of the added non-linearities is discussed. The results
presented in this chapter have been previously published in [1].

3.1. CONSISTENT STIFFNESS MATRICES

The same model and discretisation as detailed in Section 2.1-2.2 are used in this chap-
ter. Next to using the quadratic Lagrangian finite elements (hereafter referred to as 2× 2
FEM) and NURBS using quartic polynomials for the displacement and cubic for the inter-
stitial pressure (4×3 IGA), simulations have also been performed using equal order NURBS
meshes, using cubic NURBS for the displacement and pressure (3× 3) IGA and quadratic
NURBS (2×2 IGA).

Also similar to the previous chapter, a Newton-Raphson iterative solver is used to ob-
tain a converged solution in a monolithic manner. Therefore, the discretised equations are

31
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solved iteratively through Eq. 2.58:

(Ki nt +Kd )

[
du
dp

]
j+1

=
[

fext

qext

]
−

[
fi nt + fd

qi nt +qd p +qdh

]
j

(3.1)

and the tangential stiffness matrix related to the interior given by Eq. 2.59.
In this chapter, the tangential stiffness terms related to the interface are added one-by-

one, to investigate the influence of including or omitting these terms. The stiffness matrix
related to the discontinuity is given by:

Kd =
[ ∂ fd

∂u
∂ fd

∂p
∂qdh

∂u + ∂qd p

∂u
qd p

∂p

]
(3.2)

The first term, included for all cases, is the contribution due to the interface stiffness,
given by Eq. 2.66:

∂ fd

∂u
=

∫
Γd

N T
d RT Dd R Nd dΓd (3.3)

This term has to be included to constrain the non-fractured elements from opening, thereby
preventing free-body motion in part of the domain. Not including this term would result in
an under-constrained system of equations, since no solid inertia terms have been included.
Since this is the only complete term that can be included without rendering the tangential
stiffness matrix non-symmetric, this was the only term included in earlier simulations using
the continuous pressure model [187, 232].

The second term relates the changes in pressure acting on the fracture walls to the forces
resulting from the discontinuity:

∂ fd

∂p
=−

∫
Γd

N T
d nΓd N f dΓd (3.4)

Since this term and the previous term are both linear, including both terms will result in
exact values for the displacement after each iteration, based on the updated pressure. This
corresponds to an iterative scheme in which the fracture outflow is calculated based on old
pressures and displacements, and then held constant while the updated displacements and
pressures are calculated. This is similar to the P →W /drained hydraulic fracture split which
is used for impermeable fractures [90, 168].

The third sub-matrix added is related to the fluid absorbed into the fracture due to
changes in the opening height of the fracture:

∂qdh

∂u
=−

∫
Γd

N T
f nT

Γd
Nd dΓd =

(
∂ fd

∂p

)T

(3.5)

By including both the submatrix from Eq. 3.4 and 3.5 a symmetric system is regained, which
can be beneficial for computational efficiency and storage. Furthermore, if a Newtonian
fluid is simulated all these terms and all terms relating to the interior of the porous medium
are constant. This allows for the system matrices to only be constructed once, and allows
more efficient use of preconditioners or direct LU solvers. Including all terms up to and in-
cluding this term results in a similar scheme as the undrained split scheme for impermeable
fractures, which has an improved convergence compared to the drained split [168].

The final two terms, related to changes in the fracture inflow due to changes in velocity
profile inside the fracture are:
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∂qd p

∂u
=

∫
Γd

∆t

n
µ
− 1

n
0

∣∣∇∇∇N f p
∣∣ 1

n −1∇∇∇2N f p
(

1

2
nT
Γd

Nd u
) 1

n +1

N T
f nT

Γd
Nd dΓd

+
∫
Γd

∆tµ
− 1

n
0

∣∣∇∇∇N f p
∣∣ 1

n −1∇∇∇N f p
(

1

2
nT
Γd

Nd u
) 1

n +1

N T
f nT

Γd
∇∇∇Nd dΓd

+
∫
Γd

∆t

2

(
1

n
+1

)
µ
− 1

n
0

∣∣∇∇∇N f p
∣∣ 1

n −1∇∇∇N f p
(

1

2
nT
Γd

Nd u
) 1

n (
nΓd∇∇∇Nd u

)
N T

f nT
Γd

Nd dΓd (3.7)

with sgn(·) the signum function. Including both these terms results in a consistent tangen-
tial stiffness matrix. However, since these two terms are dependent on the displacement and
pressure, they need to be re-calculated for each iteration. Furthermore, while the ∂qd p /∂p
term can be included without obtaining a non-symmetric matrix, adding the ∂qd p /∂u term
results in a non-symmetric matrix. For a Newtonian fluid, these last two sub-matrices are
simplified to:
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The order in which these terms are added has been chosen such that after adding the
first two terms, Eq. 2.66 and 3.4, the solid is resolved exactly. Adding the third term, 3.5
results in a symmetric matrix, and adding the fourth sub-matrix preserves this.

Another possible way in which the convergence rate can be increased is by using a linear
line search [64, 65]. By linearly interpolating between the internal forces and fluxes before
and after the latest iteration, the factor η is determined:

0 = (
1−η)[ fext − fi nt − fd

qext −qi nt −qdh −qd p

]
j

·
[

du
dp

]
j+1

+η
[

fext − fi nt − fd

qext −qi nt −qdh −qd p

]
j+1

·
[

du
dp

]
j+1

(3.10)
This factor η is limited such that 0.05 < η< 1.0. Once this factor is determined the increment
of the current iteration gets multiplied by η and added to the state vector.

3.2. SINGLE FRACTURE
The first case simulated uses the geometry and parameters described in Section 2.3. The
domain has been discretised using 40× 40 Bézier extracted elements, and a time-step of
∆t = 1s was used. As previously mentioned, the tangential stiffness sub-matrices related to
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Figure 3.1: Number of Newton-Raphson iterations per time-step for the single fracture case using
4×3 IGA.

the discontinuity are added one at a time, in the order they were introduced in the previous
section.

The number of iterations required to obtain a converged solution (er r or < 10−6) is
shown in Figure 3.1a. With only the ∂ fd /∂u term added, the simulation diverges during
the third timestep. Adding the ∂ fd /∂p term prevents this, and results in a converged solu-
tion while requiring 70-100 iterations. Adding the third term lowers this required amount of
iterations. However, while with only two terms added all timesteps converged, by adding the
third term the simulations diverge at the thirteenth timestep. Including the last two terms,
only three iterations are needed per timestep.

The convergence behaviour during the third time-step is shown in Figure 3.2. When
only the term related to the dummy stiffness is included, large oscillations occur. While the
minimum reached decreases up to the 23r d iteration, these oscillations eventually cause
the Newton-Raphson solver to diverge. While adding the second term does not increase
the convergence rate, it suppresses the oscillations and therefore prevents divergence. By
adding the third term, the convergence is further improved. However, the convergence rate
stagnates around the chosen convergence criteria. This stagnating convergence is also ob-
served in literature for the iterative undrained split [168], and causes the simulation to di-
verge during the thirteenth timestep. Adding the final two terms results in a quardatic con-
vergence rate. While for both cases only three iterations were required, including all terms
results in a significantly faster decrease in the error.

3.2.1. LINE-SEARCH

When a linear line-search was used, all simulations converged, as shown in Figure 3.1b.
With only the dummy stiffness term added, more than 100 iterations were needed to obtain
a converged solution, whereas without line-search the simulation diverged. For the cases
with two and three terms added, the use of line-search drastically reduces the required iter-
ations, and prevents the divergence that occured during the thirteenth timestep for the non
line-search case with three terms. For the cases with four and all terms added, the use of a
line-search provides less benefits, with at most requiring one less iteration.
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Figure 3.2: Convergence behaviour during the 3r d time-step without line-search using 4×3 IGA.
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Figure 3.3: Convergence behaviour during the 3r d time-step with line-search using 4×3 IGA.

The convergence behaviour, Figure 3.3, confirms these results. By comparing these re-
sults to the results without line-search, the improvements when only a partially complete
tangential stiffness matrix is used are clear. However, when four or all five of the terms are
included, the improvement in convergence is diminished, requiring one extra iteration to
obtain converged results. This indicates that the use of a line-search is most beneficial when
using a consistent tangential stiffness matrix is not feasible. Using a line-search is also ben-
eficial when retaining a constant and symmetric tangential stiffness matrix is preferred.

3.2.2. FUNCTION ORDER

A comparison between the convergence behaviour when using 4×3 and 2×2 IGA is shown
in Figure 3.4. Slight differences are seen between the high order and low order results when
only one and two terms are added, with for both cases the low order simulation displaying a
slightly faster convergence. In contrast, by adding the third term the high order simulation
converges whereas the low order simulation diverges. It should be noted, however, that a
similar divergence occurs for the high order results at a later time step, and presents itself
in a similar manner: Initially showing a non-oscillatory and steadily decreasing error, which
eventually stops decreasing and diverges. Negligible differences were seen between the two
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Figure 3.4: Comparison of the convergence behaviour between the 4×3 IGA and the 2×2 IGA during
the 3r d time-step without using line-search.
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Figure 3.5: Comparison of the convergence behaviour between the 2×2 IGA and the 2×2 FEM during
the 3r d time-step without using line-search.

simulations when all the terms were added, indicating that the order of the NURBS meshes
does not significantly alter the convergence. A similar conclusion was reached from the
results using a linear line-search (not shown).

3.2.3. FEM VS IGA
A comparison between NURBS and traditional Lagrangian polynomials is given in Figure
3.5. When only the terms related to fd are included, no significant difference in convergence
occurs. Adding the third term, related to the fracture absorbing fluid by opening, results in
divergence for both simulations. By adding the last two terms, a clear difference between the
IGA and the FEM results can be seen. While the IGA results obtain a quadratic convergence
rate, only a linear convergence is achieved for the Lagrangian polynomials. This is most
likely caused by these terms containing higher-order derivatives, and therefore only being
accurately evaluated when the C 1 inter-element continuity of the NURBS is used.

Similar results are obtained when using a linear line-search, as shown in Figure 3.6. Only
using the first two terms does not result in any difference between the IGA and FEM sim-
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Figure 3.6: Comparison of the convergence behaviour between the 2×2 IGA and the 2×2 FEM during
the 3r d time-step with line-search.
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Figure 3.7: Geometry used for the multiple fracture cases

ulations. By adding the third term the convergence of both simulations is vastly improved,
with the FEM simulations converging faster than the IGA simulations. By adding the last two
terms, the IGA simulations converge faster again, further confirming the benefits of NURBS
on the convergence behaviour.

3.3. MULTIPLE FRACTURE

Two additional fractures are added to investigate whether the conclusions from the previous
section hold for multiple fractures. The geometry is shown in Figure 3.7, with both fractures
being placed at a 15◦ angle. In order to allow for sharp changes in mesh line direction, a
vertical C 0 continuity line is inserted through the middle. Two pressure differences between
the top and bottom have been used, ∆p = 0.25 MPa and ∆p = 0.5 MPa. The remaining
properties correspond to the values used in the previous section.

The required number of iterations using 4×3 IGA and ∆p = 0.25 MPa is shown in Fig-
ure 3.8a for the cases without line-search, and in Figure 3.8b with line-search. Similar to
the single fracture case, only including the terms relating to fd results in a large amount of
iterations being required to obtain converged solutions, for some cases even reaching 100+
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Figure 3.8: Amount of iterations required per time-step using 4×3 IGA and ∆p = 0.25 MPa for the
three fracture case.
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Figure 3.9: Comparison of the convergence behaviour between the 2×2 IGA and the 2×2 FEM during
the 3r d time-step without line-search for the three fracture case using ∆p = 0.25 MPa

iterations. Adding the term related to qdh vastly improves the convergence, and adding the
final two terms results in only two to three iterations being required, similar to the single
fracture case.

The convergence behaviour during the third timestep, Figure 3.9, shows these issues
with the convergence when only the first term is included. Similar oscillations as obtained
for the single fracture case occur with only the first term included, whereas these disappear
when the second term is added (not shown). Also similar to the single fracture case, in-
cluding all terms results in a quadratic convergence rate for the IGA simulations, whereas at
most a linear convergence rate was obtained for the FEM simulations.

Results using a larger pressure difference, ∆p = 0.5 MPa are shown in Figure 3.10. The
IGA results show large oscillations when only a few terms are included,and the FEM sim-
ulations diverged before reaching the third time-step. Only by including the sub-matrices
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Figure 3.10: Comparison of the convergence behaviour between the 2× 2 IGA and the 2× 2 FEM
during the 3r d time-step without line-search for the three fracture case using ∆p = 0.5 MPa
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Figure 3.11: Convergence during the third time step for the non-Newtonian fluid cases without line-
search

related to qd p converged solutions could be obtained. Once these terms were included,
quadratic convergence was re-obtained for the IGA simulations, and only three iterations
were required to obtain converged solutions, similar to the case using the low pressure dif-
ference. This indicates that when the influence of the fracture is significant, using a con-
sistent tangential stiffness matrix is required to obtain converged solutions, and even ne-
glecting a few terms can result in a diverging Newton-Raphson algorithm for these cases.
Furthermore, when all terms are included, the convergence rate is independent on the im-
portance of the fracture, always obtaining a quadratic convergence rate.
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Figure 3.12: Convergence during the third time step for the non-Newtonian fluid cases with line-
search

3.4. NON-NEWTONIAN FLUIDS
The case from Section 3.3 is repeated using a shear-thinning fluid (n = 0.8) and a shear-
thickening fluid (n = 1.2) with the high pressure difference ∆p = 0.5 MPa. A base viscosity
µ0 = 1 mPa sn has been used for both these fluids. By using a non-Newtonian fluid, the
discretisation of not only the fractures but also the interior of the porous material becomes
non-linear. A consistent tangential stiffness matrix for this interior, Eq. 2.63, has been used
for all cases. Pressure oscillations were observed for the shear-thinning case when equal or-
der interpolants were used, and therefore this section will only present results using quartic
NURBS for the displacement and cubic NURBS for the interstitial fluid pressure.

The convergence behaviour during the third time step without line search is shown in
Figure 3.11. While the shear-thinning and the Newtonian fluid diverged before the third step
with only the first term added, the shear-thickening fluid only showed large oscillations. By
adding the ∂qdh/∂u term, all oscillations disappeared. However, similar to the cases pre-
sented in the previous sections, the convergence plateaued for the non-Newtonian fluids,
and diverged during this time step for the Newtonian fluid. Finally, adding the last two
terms resulted in a quadratic convergence rate, only requiring three iterations to converge
with little difference between the Newtonian and non-Newtonian fluids.

When a linear line search is used, Figure 3.12, simulations using only the first term also
converge. While a line search was sufficient to suppress oscillations when the ∂ fd /∂p was
included for Newtonian fluids, these oscillations still occur for the shear-thinning fluid. Fi-
nally, similar to all other cases, by including all terms the simulations converge within three
iterations again.

3.5. CONCLUSION
In this chapter, a consistent tangential stiffness matrix was derived for non-Newtonian fluid
flows in fractures. The terms related to the dummy stiffness of the non-fractured elements,
the pressure acting on the walls, fluid being absorbed due to the fracture opening, and due
to changes in velocity profile were added one-by-one. This allowed the effect of these terms
on the convergence of the Newton-Raphson algorithm to be analysed.

Including all terms, resulting in a consistent linearisation, resulted in a quadratic con-
vergence rate, but due to the dependence of these terms on the pressure and displacement



3.5. CONCLUSION 41

requires some terms to be recalculated for each iteration. In contrast, only including the
term for the non-fractured interface elements allows the tangential stiffness matrix to be
only calculated once, but results in diverging simulations.

When the influence of the fracture on the interstitial pressure is relatively small, it is suf-
ficient to include the terms related to the force vector and the fracture opening. This allows
the stiffness matrix to only be calculated once and used for the remainder of the simula-
tions, and results in a symmetric matrix. In contrast, when the influence of the fracture is
large, all terms need to be included and these benefits are removed. This requirement can
be relaxed by using a linear line search, allowing a constant and symmetric matrix to be used
even when the influence of the fracture is large.

A comparison between quartic NURBS for the displacement and cubic NURBS for the
interstitial pressure, and quadratic NURBS for both the pressure and displacement showed
near to no effect of the order of the shape function order on the convergence. In contrast,
simulations using quadratic NURBS and Lagrangian polynomials showed that the increased
inter-element continuity benefited the convergence of the simulations using NURBS, allow-
ing a quadratic convergence rate to be obtained when using NURBS but not when using
Lagrangian polynomials.

Finally, simulations were performed for non-Newtonian power-law fluids. It was shown
that including all terms resulted in a quadratic convergence, whereas neglecting most terms
resulted in diverging or ill-converging simulations. For non-Newtonian fluids, the discre-
tised mass balance for the interior is non-linear, and therefore the tangential stiffness matrix
needs to be recalculated for each iteration independent of the terms included. This allows
the inclusion of updated terms related to the interface at near to no extra computational
cost, and therefore it would be beneficial in all cases to include all terms when allowed by
the linear solver, or all but the ∂qd p /∂u term when a symmetric matrix is preferred.





4
MULTIPHASE FRACTURE FLOW MODELS

Inside porous materials, finite volume and finite element methods are often used to sim-
ulate multiphase fluid flows. When using finite volume methods, the focus is usually on
including phenomena relevant to the fluid phases, such as including buoyancy and capil-
lary forces, while not including the solid deformations and stresses [15, 128, 239]. Finite
volume methods have also been employed in multi-scale schemes, in which the flow is re-
solved on a small scale and upscaled to make simulation of large domains feasible [135].
In contrast, finite element methods allow for an easy integration of solid deformations with
the multiphase flow, either in a staggered [61, 101, 149] or monolithic scheme [110, 158, 201,
240]. These finite element methods have also included behaviour such as evaporation and
heat transport inside the porous material [111, 183]. Finally, there are the pore-scale net-
work methods which accurately capture the interactions between the fluid phases by direct
numerical simulation of the flow within the pores [30, 31, 178, 241]. While this only allows
small domains to be simulated, their results can be translated to relative permeability coef-
ficients for larger simulations [107, 179, 225].

Multiphase flows within fractures are often included by combining the cubic law with an
experimental correction factor, dependent on the saturation within the material surround-
ing the fracture [89, 108, 186, 198]. The fluid transport within the fracture has also been
included through a continuous pressure sub-grid model [188]. However, this model for the
fluid flow within the fracture was based on the cubic law, thereby retaining the dependence
on an empirical factor. This dependence limits the information provided about the fluid
flow within the fracture and does not allow the fluid phases to interact with each other ex-
cept through the saturation. Therefore, these models do not allow the pressure gradients
and velocities of the phases to impact the flow of the other phase. An alternative approach
occasionally taken is to model the fracture flow as a single phase [121], or to spread the fluid
transport over neighbouring elements through an effective permeability [102].

Experiments, however, have shown that the pressure gradient and velocity of one phase
do influence the velocity of the other phase within the fracture [182]. Dependent on the
velocity, the flow within the fracture ranges from a bubbly flow, in which both phases are well
mixed, to a flow in which the two phases are fully separated [180, 181, 221]. As a result, the
interactions between the two fluid phases also depend on the flow regime the fracture flow is
in [26, 88]. These interactions and flow regimes are not included in the relative permeability
used for the cubic law, and therefore the effect of the fluid phase interaction is not fully
simulated.

In this chapter, fracture flow sub-grid models for multiphase flows will be derived which
contain these interactions. This will result in a continuous pressure model for a well-mixed
bubbly flow type, and a fully separated flow type, both of which allow the interactions and
fluid distribution within the fracture to be simulated and viewed through post-processing.
For this, the governing equations inside the porous material and the sub-grid models for
the fracture will be derived in Section 4.1, and discretised in Section 4.2. A simplified case
containing a single fracture is presented in Section 4.3, which is used to study the effects of
the fracture flow models and compare these models to the cubic law. Finally, Section 4.4
presents two cases more representative of actual applications, showcasing the influence of
including the phase interactions. The methods and results presented in this chapter are
based on, and have been previously published in [6].

43
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Figure 4.1: Overview of the domain, boundaries, fracture flow models and the local coordinate sys-
tem used for the fracture.

4.1. GOVERNING EQUATIONS
Similar to the previous chapters, a domain Ω is considered, as shown in Figure 4.1. On this
domain, inflow boundary conditions for the wetting phase are imposed on Γqw and for the
non-wetting phase on Γqn . The interior of the domain is described by its displacement u,
the pressure of the wetting phase pw , and the pressure of the non-wetting phase pn .

At the micro-scale, when looking at the pores of the porous material, the two phases
are considered immiscible. While the pores can contain both phases, each connection be-
tween these pores is usually considered to only transport either the wetting phase or the
non-wetting phase [30, 225]. When this is up-scaled to the macro-scale, both fluids are al-
lowed to coexist in the same location. The volume fraction taken up by the wetting and
non-wetting phases are then described by the saturation:

Sw = Vw

n f Vtot al
= Vw

Vw +Vn
(4.1)

Sn = Vn

n f Vtot al
= 1−Sw (4.2)

with Sw and Sn the saturation of the wetting and non-wetting phases, Vπ the volume taken
up by phaseπ= w,n, and Vtot al the total volume taken up by both fluid phases and the solid
material.

Inside the interior of the porous material, these saturations are related to the capillary
pressure:

pc = pn −pw (4.3)

In this chapter, for the cases relating to an oil-water mixture, a saturation relation from [108]
will be used:

Sw = e−pc /B (4.4)

Sn = 1−e−pc /B (4.5)

with B an experimental constant taken as B = 0.1 MPa. For the cases relating to an air-water
mixture, only used in Section 4.4.2, the Van Genuchten relation is used [87, 141]:

Sw =
(

1−
(

pc

pr e f

) 1
1−m

)−m

(4.6)
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with the reference pressure pr e f = 18.6 MPa and the constant m = 0.4369.

4.1.1. INTERIOR

As was the case for the single phase flow from the previous chapters, it is assumed the solid
deformations occur fast compared to the fluid flows. This allows the momentum balance to
be described as:

∇∇∇· (σs −α
(
Sw pw +Sn pn

)
I
)= 0 (4.7)

For the mass balance of the wetting and non-wetting phases, several formulations are
used in literature [38, 108, 110, 153, 188]. However, these formulations differ and little to
none of the assumptions are given. Therefore, the mass balance has been derived in Ap-
pendix D, and a dimensional analysis has been performed to determine under which cir-
cumstances terms can be neglected. Assuming the wetting and non-wetting phases are
nearly incompressible, and therefore the density gradients can be neglected, the mass bal-
ances for the wetting and non-wetting phases are given by:

1

Mw w
ṗw + 1

Mwn
ṗn +αSw∇∇∇· u̇ +∇∇∇·qw = 0 (4.8)

1

Mnn
ṗn + 1

Mnw
ṗw +αSn∇∇∇· u̇ +∇∇∇·qn = 0 (4.9)

with the local pressure capacities given by:

1

Mw w
= Sw

α−n f

Ks

(
Sw +pc

∂Sw

∂pc

)
−n f

∂Sw

∂pc
+ n f Sw

Kw
(4.10a)

1

Mwn
= Sw

α−n f

Ks

(
Sn −pc

∂Sw

∂pc

)
+n f

∂Sw

∂pc
(4.10b)

1

Mnw
= Sn

α−n f

Ks

(
Sw +pc

∂Sw

∂pc

)
+n f

∂Sw

∂pc
(4.10c)

1

Mnn
= Sn

α−n f

Ks

(
Sn −pc

∂Sw

∂pc

)
−n f

∂Sw

∂pc
+ n f Sn

Kn
(4.10d)

The fluid fluxes in the interior of the porous material are given through Darcy’s law:

qw = Sw n f (vw − u̇) =−kw kr w∇∇∇pw (4.11)

qn = Snn f (vn − u̇) =−knkr n∇∇∇pn (4.12)

The relative permeabilities kr w and kr n are a function of the saturation. For the oil-water
cases, the relation from [108] was used:

kr w = S5
w (4.13a)

kr n = (1−Sw )5 (4.13b)

whereas for the air-water case the relations corresponding to the Van Genuchten model
were used [87, 141]:

kr w = S1/2
w

(
1−

(
1−S

1
m
w

)m)2

(4.14a)

kr n = (1−Sw )1/2
(
1−S

1
m
w

)2m

(4.14b)
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4.1.2. FRACTURES

Similar to the previous chapters, the fracture is represented using interface elements. These
elements were inserted for the fracture, and for the non-fractured elements along the re-
mainder of the meshline containing the fracture. The tractions along this discontinuity are
composed of the the volume-averaged pressures and the solid tractions:

τΓd =τd − (
Sw pw +Sn pn

)
nd (4.15)

with the solid traction equal to zero for the fractured elements (no cohesive zone model)
and given by Eq. 2.20 for the non-fractured elements.

The wetting phase fracture inflow is obtained from the conservation of mass for the wet-
ting phase:

∂vw

∂xd
+ ∂ww

∂yd
= 0 (4.16)

with vw the fluid velocity in xd direction and ww in yd direction. Integrating this equation
over the fracture height results in:

�w�w = ww

(
h

2

)
−ww

(
−h

2

)
=−∂qw

∂xd
(4.17)

with the total wetting phase flux inside the fracture defined by:

qw =
∫ h/2

−h/2
vw dyd (4.18)

In a similar manner as done for single phase fracture flows in Eq. 2.34, the fracture out-
flow is given by:

�nΓd ·q�w = �w�w −�w�w s (4.19)

with the inflow due to changes in fracture height and saturation given by:

�w�w s = ∂Sw h

∂t
(4.20)

Similarly, for the non-wetting phase:

�nΓd ·q�n = �w�n −�w�ns (4.21)

with:

�w�n = wn

(
h

2

)
−wn

(
−h

2

)
=−∂qn

∂xd
(4.22)

qn =
∫ h/2

−h/2
vn dyd (4.23)

�w�ns = ∂Snh

∂t
(4.24)

Eqs. 4.17 and 4.22 can be used with different definitions for the fluid velocity profile
in the fracture. Experiments using water and air in smooth, non-porous, channels indicate
that a bubbly flow model is appropriate for slow-moving fluids [88, 164]. However, separated
flow in fractures has been observed for gas/water and oil/water mixtures [26, 221], and has
been used for the simulation of non-porous fractures [210, 211]. In the remainder of this
section, velocity profiles for the bubbly flow and separated flow types will be derived. As a
reference case, the cubic law will also be cast into the same formulation. While the cubic
law does not provide any insight into the fluid velocity profiles within the fracture, it is an
often used model to describe the fluid flow within fractures.
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CUBIC LAW

The fluid flux inside the fracture is described by the cubic law as:

qπ =−kdπh3

12µπ

∂pπ
∂xd

(4.25)

with kdπ the relative permeability of the wetting and non-wetting phases inside the frac-
ture. The relative permeability is usually taken as a function of the saturation, for which the
relation from [108] will be used here:

kd w = S3
w (4.26a)

kdn = S3
n (4.26b)

Substituting the fluid flux of Eq. 4.25 in Eq. 4.17 and combining with the definitions for
the relative permeability with Eq. 4.19 and 4.20 results in the fracture outflow for the cubic
law fracture flow model:

�nΓd ·q�w = S3
w h3

12µw

∂2pw

∂x2
d

+ h2S3
w

4µw

∂pw

∂xd

∂h

∂xd
+ S2

w h3

4µw

∂Sw

∂pc

(
∂pn

∂xd
− ∂pw

∂xd

)
∂pw

∂xd
−Sw ḣ −hṠw

(4.27a)

�nΓd ·q�n = S3
nh3

12µn

∂2pn

∂x2
d

+ h2S3
n

4µn

∂pn

∂xd

∂h

∂xd
− S2

nh3

4µn

∂Sw

∂pc

(
∂pn

∂xd
− ∂pw

∂xd

)
∂pn

∂xd
−Sn ḣ −hṠn

(4.27b)

BUBBLY FLOW

For the bubbly flow model, it is assumed the two phases are well-mixed. This allows the
volume-averaged viscosity to be obtained as:

µ= Swµw +Snµn (4.28)

Based on this volume-averaged viscosity, the Stokes equation for the mixture is:

0 =−
(
Sw

∂pw

∂xd
+Sn

∂pn

∂xd

)
+ ∂

∂yd

(
µ
∂v

∂yd

)
(4.29)

with v the velocity of the two phases combined. This equation is combined with no slip
boundary conditions:

v(h/2) = v(−h/2) = 0 (4.30)

to obtain the velocity profile for the mixture. This profile is distributed based on the satura-
tion of the wetting and non-wetting phases, resulting in:

vw = Sw v = 1

2

Sw

Swµw +Snµn

(
Sw

∂pw

∂xd
+Sn

∂pn

∂xd

)(
y2

d −
(

h

2

)2)
for − h

2
< yd < h

2
(4.31a)

vn = Sn v = 1

2

Sn

Swµw +Snµn

(
Sw

∂pw

∂xd
+Sn

∂pn

∂xd

)(
y2

d −
(

h

2

)2)
for − h

2
< yd < h

2
(4.31b)

These velocity profiles are used with Eq. 4.18 to obtain the fluid fluxes within the fracture
as:

qw =− Sw h3

12
(
Swµw +Snµn

) (
Sw

∂pw

∂xd
+Sn

∂pn

∂xd

)
(4.32a)
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qn =− Snh3

12
(
Swµw +Snµn

) (
Sw

∂pw

∂xd
+Sn

∂pn

∂xd

)
(4.32b)

and combined with Eq. 4.19 to obtain the fracture inflow:

�nΓd ·q�w = Sw h3
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∂x2
d

+Sn
∂2pw

∂x2
d

+
(
∂pw

∂xd
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�nΓd ·q�n = Snh3

12
(
Swµw +Snµn

) (
Sw

∂2pw

∂x2
d

+Sn
∂2pw

∂x2
d

+
(
∂pw

∂xd
− ∂pn

∂xd

)
∂Sw

∂pc

(
∂pn

∂xd
− ∂pw

∂xd

))

+h3

12

(
Sw

∂pw

∂xd
+Sn

∂pn

∂xd

)(
−(

Swµw +Snµn
)−1 −Sn

(
Swµw +Snµn

)−2 (
µw −µn

)) ∂Sw

∂pc

(
∂pn

∂xd
− ∂pw

∂xd

)
+ Snh2

4
(
Swµw +Snµn

) (
Sw

∂pw

∂xd
+Sn

∂pn

∂xd

)
∂h

∂xd
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Comparing the expressions for the fluid flux inside the fracture, Eq. 4.32 for bubbly flow
and 4.25 for the cubic law, shows that in the case of bubbly flow this term not only depends
on the pressure gradient of the phase itself, but also on the pressure gradient of the other
phase. This allows for a high pressure gradient phase to drag the low gradient phase along,
increasing the fluid flux of the low gradient phase while decreasing the flux of the high gra-
dient phase.

If the non-wetting phase represents an easily flowing fluid, such as air, the pressure gra-
dient of the wetting phase will be much larger than the pressure gradient of the non-wetting
phase. This indicates that under these circumstances the velocity of the wetting phase and
the gas phase are determined by the pressure gradient of the wetting phase. This also al-
lows the wetting phase fracture flux for bubbly flow to be expressed in a similar manner as
the cubic law. By neglecting the pressure gradient of the non-wetting phase, the relative
permeability is given by:

kd w = S2
w · µw

Swµw +Snµn
(4.34)

For the case of an easily flowing gas, the non-wetting viscosity is small, reducing this expres-
sion to Sw , whereas if the non-wetting phase and wetting phase have similar viscosities, this
expression can be simplified to S2

w . Comparing this to the relative permeability used with
the cubic law, the similarities are clear: For both these cases, the relative permeability only
depends on the saturation, although the exponent differs. It is important to note that un-
der these assumptions it is not possible to obtain a similar expression for the non-wetting
phase, since the fluid flux for this phase depends on the wetting phase pressure gradient,
whereas for the cubic law this only depends on the non-wetting phase pressure gradient.

SEPARATED FLOW

The separated flow profile described here presumes a non-wetting layer of height Snh in
the centre of the fracture, surrounded on the top and bottom by layers of the wetting fluid,
each having a height of 1

2 Sw h, as shown in Figure 4.1. The separate layers are considered
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to consist only of a single phase. The velocity within these layers is described through the
Stokes’ equation for each individual phase:

0 =−∂pw

∂xd
+ ∂

∂yd

(
µw

∂vw

∂yd

)
for

Snh

2
< ∣∣yd

∣∣< h

2
(4.35a)

0 =−∂pn

∂xd
+ ∂

∂yd

(
µn

∂vn

∂yd

)
for − Snh

2
< yd < Snh

2
(4.35b)

These equations are subject to no-slip boundary conditions at the fracture walls, and con-
tinuous fluid velocity and stresses at the interface between the phases. Additionally, since
the boundary conditions and fluid layers are symmetric, the derivative of the non-wetting
fluid velocity in the centre of the fracture should be zero, enforcing continuous and sym-
metric velocity profiles. These boundary conditions are given by:

vw

(
−h

2

)
= vw

(
h

2

)
= 0 (4.36a)

vw
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2
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(4.36b)
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(4.36c)

∂vn

∂yd

∣∣∣∣
0
= 0 (4.36d)

Using Eq. 4.35a-4.36d the velocity profiles for both phases are obtained:
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(4.37a)
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Through Eq. 4.19 these velocity profiles then result in the fracture fluid transport:
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(4.38a)
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Finally, substituting Eq. (4.38a) in the definition for the fracture inflow velocity, Eq. (4.19),
results in:
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(4.39)
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and similarly for the non-wetting phase:
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Similar to the bubbly fracture flow model, the fluid flux inside the fracture, Eq. 4.38a,
depends on both the pressure gradient of the phase itself, and the pressure gradient of the
other phase. This allows the wetting phase to be dragged along with the non-wetting phase,
or be slowed down by it. Furthermore, due to the used separated flow model, one of the
phases could flow against its own pressure gradient, or could be both flowing along with the
pressure gradient in part of the fracture height, while flowing against it in the remainder of
its flow profile.

Neglecting the non-wetting phase pressure gradient, the separated flow model can also
be cast into the cubic law, resulting in a relative permeability for the wetting phase:

kd w = 1−3Sn +3S2
n −S3

n = S3
w (4.41)

which corresponds to the expression used for the cubic law. It should be noted that this as-
sumes negligible influence of the non-wetting phase pressure gradient, and therefore is only
valid if the non-wetting phase represents a gas in a fairly high permeable porous material.
Furthermore, the non-wetting phase can not be cast into an expression compatible with the
cubic law, since using the separated flow model the non-wetting fluid flux depends on the
wetting phase pressure gradient.

POST-PROCESSING

Eq. 4.27 for the cubic law flow type, Eq. 4.33 for bubbly flow, or Eq. 4.39-4.40 are used to
directly describe the effect of the fracture on the surrounding porous material in terms of the
degrees of freedom used to model the porous material. The main advantage is that this only
requires these inflows to be integrated over the discontinuity, without having to simulate the
fluid flow within the fracture. However, since the velocity profiles and fluid fluxes within the
fracture are also detailed solely in terms of the degrees of freedom of the surrounding porous
medium, these profiles can be re-obtained by post-processing the resulting pressures and
displacements. By re-obtaining these velocity profiles, a detailed look into the interactions
within the fracture is possible. This furthermore allows these models to be compared based
on the fluid flow within the fracture, even though the models only prescribe the in/outflow
on the discontinuity.

4.2. DISCRETISATION
In a similar manner as was done for the single phase flow in Section 2.2, the weak form of
the momentum balance is obtained by multiplying with the test function η:∫

Ω
∇∇∇η :

(
σs −αSw pw I −αSn pn I

)
dΩ−

∫
Γd

η · (τd −nd
(
Sw pw +Sn pn

))
dΓd =

∫
Γt

η ·τ dΓt

(4.42)
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The mass balances, Eqs (4.8) and (4.9), are multiplied with the test functions ζ and ξ. The
divergence theorem is used on the terms relating to the interior fluid flux and the fracture
inflow, resulting in:∫

Ω
ζ

1

Mw w
ṗw +ζ 1

Mwn
ṗn +αSwζ∇∇∇· u̇ +kw kr w∇∇∇ζ ·∇∇∇pw dΩ−
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∫
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∫
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∫
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ξQn d∂Γd (4.44)

The fracture fluid fluxes qw and qn are dependent on the chosen model, and Qw and Qn are
the fracture outflows imposed at the fracture tips, here assumed to be zero.

The fracture inflow for all models contain second spatial derivatives, similar to the single
phase fracture flow formulation. Therefore, corresponding to the previous chapters, quar-
tic NURBS are used to discretise the solid displacement and cubic NURBS are used for the
wetting and non-wetting pressures. This allows the displacements and pressures to be dis-
cretised as:

u =
nel∑

el=1
Ns uel (4.45)

pw =
nel∑

el=1
Nw pel

w (4.46)

pn =
nel∑

el=1
Nn pel

n (4.47)

which allows the momentum balance to be discretised and split according to Eq. 2.46, with
the external forces given by Eq. 2.47, the internal forces given by:

fi nt =
∫
Ω

B Tσt+∆t
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and the forces relating to the discontinuity by:

fd =
∫
Γd

N T
d RT Dd R Nd u t+∆t dΓd −

∫
Γd

Sw N T
d nΓd Nw p t+∆t

w dΓd −
∫
Γd

Sn N T
d nΓd Nn p t+∆t

n dΓd

(4.49)
The mass balances for the wetting and non-wetting phases are split into terms for the

internal, external and discontinuity related fluid fluxes:

qw,ext −qw,i nt −qw,d = 0 (4.50)

qn,ext −qn,i nt −qn,d = 0 (4.51)

The external fluid fluxes are defined in a similar manner as for the single phase flow:

qw,ext =∆t
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∫
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N T
n Qn d∂Γd (4.53)
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A backward Euler time discretisation scheme, see Eq. 2.45, is used to perform the temporal
discretisation, resulting in the internal fluxes:
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The fluid fluxes due to the discontinuity are split into two parts:

qπ,d = qπ,dh +qπ,d p (4.56)

The first term, qπ,dh , is related to the fluid absorbed due to changes in fracture height and
saturation. This term is the same for all fracture flow models, and given by:
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The second term describes the fluid transported by the fracture. This term depends on
the chosen fracture flow model. For the cases in which the cubic law is used to described
the fracture flow, Eq. 4.25 with the relative permeabilities from Eq. 4.26, the fracture fluid
flux is given by:
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For the bubbly flow model, Eq. 4.33, these terms become:
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and in the case of the separated flow model:
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Figure 4.2: Comparison between a standard Gauss integration scheme and the lumped pressure ca-
pacity scheme for the case described in Section 4.3 and Figure 4.3 (excluding the fracture). Lines
show results in 1000 s increments.
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The discretised equations have been solved using a Newton-Raphson scheme, similar
to the scheme employed in the previous chapters. Following on from the conclusions of
Chapter 3 a consistent tangential stiffness matrix was used, which resulted in a quadratic
convergence rate. The system matrices are given in Appendix C.1

4.2.1. STABILISATION

When simulating the oil-water cases, sharp changes in saturation occurred. Near these
phase interfaces, strong pressure oscillations were observed, as shown in Figure 4.2 for the
parameters and geometry (excluding the discontinuity) that will be given in detail in the
next section. Since the fracture inflow models depend on the first and second derivatives of
the pressure, and the first derivative of the saturation, these oscillations resulted in large os-
cillations in the fracture inflow velocity with these oscillations large compared to the actual
fracture inflow.

Several stabilisation schemes exist to prevent these oscillations. Multi-scale stabilisation
[98] has been shown to be able to suppress pressure oscillations throughout the interior of
the domain in non-deformable porous media [104, 105]. The Galerkin least squares method
has also been shown to suppress these oscillations [222], and has been used to circumvent
the inf-sup condition in deformable porous materials [233]. Another scheme also capable
of circumventing the inf-sup condition, and suppressing non-physical pressure oscillations,
was derived by [130] based on a pressure-projecting technique. In their paper, they derive
optimal stabilisation parameters for their scheme. One of their observations is that the opti-
mal stabilisation parameter reduces their scheme to only alter the pressure capacity matrix,
and corresponds to using a lumped pressure capacity matrix.
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Figure 4.3: Geometry and boundary conditions used for the single fracture case.

Using the lumped pressure capacity matrix as stabilisation method, the terms relating to
the pressure capacity in Eq. 4.54-4.55 are integrated through a sum over all control points:

∫
Ω

1

M w w
N T

w Nw
(
p t+∆t

w −p t
w

)
dΩ=

ncps∑
cp=1

Cw w

(
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w,cp −p t
w,cp

)
(4.65)

with the representative pressure capacities determined by integrating over the complete el-
ement , using a standard Gauss integration scheme:

Cw w =
∫
Ω

1

Mw w
Ncp dΩ (4.66)

with Mw w determined at the integration points and Ncp the interpolant corresponding to
the control point. It should be noted that if Lagrangian polynomials were used for the in-
terpolation functions, a Newton-Cotes integration scheme would result in a similar lumped
matrix [234]. This indicates that while using traditional finite elements the pressure oscil-
lations can be suppressed by locating the integration points to correspond with the control
points of the mesh, this does not suffice when isogeometric elements are used, thereby re-
quiring the described lumped integration scheme.

The effect of this stabilisation is shown in Figure 4.2, showing that the lumped inte-
gration suppresses all the non-physical pressure oscillations. Away from the interface, the
scheme does not significantly alter the obtained pressure.

The implementation of the multiphase fluid flow within the porous material, and the
cubic law for the fluid flow within the fracture have been verified by simulating a case from
[108], which is detailed in Appendix A.4.

4.3. COMPARISON OF FRACTURE FLOW MODELS
A boundary value problem containing a single fracture has been simulated to compare the
effects of the fracture flow model on the resulting pressures and saturation. This case, shown
in Figure 4.3, consists of a 1m×0.2m rectangular domain, with a 0.6 m horizontal fracture in
the centre. A wetting phase fluid inflow of q w = 10−5 m/s is imposed on the left boundary,
while a constant pressures of pw = 0 MPa and pn = 0.3 MPa are imposed on the right edge,
resulting in a constant saturation on the right boundary of Sw = 0.05. Displacements are
constrained in vertical direction on the bottom boundary, and in horizontal direction on
the left boundary. Initial pressures of pw = 0 MPa and pn = 0.3 MPa have been used at the
start of the simulation, resulting in an initial saturation Sw = 0.05.

For the wetting phase, a water like fluid has been used (µw = 1 mPa s, Kw = 2.15 GPa)
and for the non-wetting phase an oil-like fluid (µn = 0.45 mPa s, Kn = 1.5 GPa). The porous
material used a porosity n f = 0.2, Poisson ratio ν = 0.2, bulk modulus Ks = 36 GPa, Biot
coefficient α = 1.0, and intrinsic permeability k = 10−12 m2. Section 4.3.1 and 4.3.2 use a
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Figure 4.4: Effect of mesh refinement using the cubic law fracture flow model. Results shown for
t = 2.5 hours.
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Figure 4.5: Effect of mesh refinement using the bubbly fracture flow model. Results shown for t =
2.5 hours.

Young’s modulus E = 20 GPa, whereas the Young’s modulus is varied between E = 1 GPa and
E = 1000 GPa in Section 4.3.3.

The domain has been discretised using quartic NURBS for the solid displacement and
cubic NURBS for the wetting and non-wetting pressures. In Section 4.3.1 the number of
Bézier extracted elements is varied between 25×10 and 100×10, whereas for the remainder
of this case 100×10 are used. A constant time-step ∆t = 25 s has been used.

4.3.1. MESH REFINEMENT STUDY

A mesh refinement study has been performed to determine if the conclusions for single
phase flows, Section 2.4.1, also hold for the multiphase fracture flow models. The results are
shown in Figure 4.4 for the cubic law, Figure 4.5 for the bubbly flow, and Figure 4.6 for the
separated fracture flow. Looking at the degree of saturation, differences are seen between
the 25×10 mesh and the finer meshes. These differences are most notable near the sharp
drop in saturation, with the coarse meshes combined with the NURBS being unable to rep-
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Figure 4.6: Effect of mesh refinement using the separated fracture flow model. Results shown for
t = 2.5 hours.

resent sharp changes in pressure result in the coarse mesh being insufficient to accurately
represent the interface. Starting from the 50×10 mesh, the sharp drop in saturation is rep-
resented better, and the pressures near the fracture tips also become more accurate. This
results in near to no visible difference between the 50×10 and the 100×10 meshes.

The fracture outflow fluxes show similar oscillations as were seen for the single phase
cases for the coarse mesh. Refining the mesh reduces these oscillations in the centre of
the fracture, and limits the oscillations to near the fracture tips. Even though no difference
between the two finest meshes is seen in the centre of the fracture, at the fracture tips these
differences do still occur, and are most visible for the right fracture tip where the sharp drop
in saturation occurs together with the sharp changes in outflow.

Most of these results correspond to the single phase conclusions. A coarse mesh is suf-
ficient to represent the effect of the fracture on the pressure (and saturation) in the sur-
rounding porous medium, whereas a finer mesh is needed to suppress the oscillations in
fracture outflow. The main difference between the single phase and multiphase cases is
the sharp drop in saturation, which requires a finer mesh to accurately represent this inter-
face correctly. This results in a somewhat finer mesh being needed for the multiphase case
compared to the single phase cases if only the behaviour of the porous material is analysed,
while similar fine meshes are needed to obtain accurate results for the fracture, independent
of the simulations representing single phase or multiphase fluid flows.

4.3.2. FLUID FLOW WITHIN THE FRACTURE

The saturation resulting from the simulations using the separated flow model are shown in
Figure 4.7. The wetting phase flows from the left boundary into the fracture. From the frac-
ture it diffuses both to the outflow, and to the impermeable top and bottom of the domain,
pushing the non-wetting phase towards the outflow in the process. The small height of the
domain results in the fluid flow mostly flowing in horizontal direction, as shown in Figure
4.8.

The saturation along the discontinuity is given in Figure 4.9b for the different fracture
flow models. The bubbly and separated flow fracture flow models resulted in a higher satu-
ration near the left fracture tip, whereas the saturation is slightly higher near the right frac-
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Figure 4.7: Wetting phase saturation using the separated fracture flow model.
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Figure 4.8: Fluid flux inside the porous medium (black) and maximum fluid velocity inside the frac-
ture (red) at t = 2 hours using the separated fracture flow model.
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Figure 4.9: Wetting phase pressure and saturation along the discontinuity at t = 2.5 hours.
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Figure 4.10: Jump in fluid velocity normal to the fracture along the discontinuity at t = 2.5 hours.
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Figure 4.11: Fluid flux in tangential direction inside the fracture at t = 2.5 hours
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Figure 4.12: Velocity profiles inside the fracture at x = 0.5 m, t = 2.5 hours.

ture tip for the cubic law. The bubbly flow model also resulted in a slightly further penetra-
tion of the wetting phase. The wetting phase pressure, Figure 4.9a, shows similar results.

The jump in fluid flux normal to the fracture, the fracture outflow, after 2.5 hours is given
in Figure 4.10. Using the bubbly flow model, the wetting phase has higher in and outflows
near the fracture tips, whereas the separated flow model has higher inflows near the centre
of the fracture. However, the wetting phase fluid inflow is fairly similar between all models.
In contrast, the non-wetting phase shows large differences in fracture inflow depending on
the chosen model. These differences are caused by the non-wetting phase, which has a low
pressure gradient, being drag along by the higher pressure gradient of the wetting phase.
This causes a slight decrease in the wetting phase fracture outflow, due to the decreased ve-
locity of this phase, while increasing the non-wetting phase outflow. This is also confirmed
by looking at the fluid flux in tangential direction inside the fracture, Figure 4.11, showing a
significantly higher non-wetting fluid flux for the bubbly and separated flow models com-
pared to the cubic law, while slightly lower wetting phase fluid fluxes are obtained for these
models.

By post processing the saturations and pressures the velocity profiles inside the fracture
can be obtained. The velocity profiles in the middle of the fracture, at x = 0.5 m, are shown
in Figure 4.12. In this figure, the cubic law is shown as a constant velocity throughout the
fracture height, since the cubic law only describes the total fluid flux, and not the velocity
profiles. By looking at the profiles of the separated flow model, the interaction between the
phases is clearly visible. The wetting phase drags along the non-wetting phase, resulting in
a decreased velocity of the wetting phase near the interface, while significantly increasing
the velocity of the non-wetting phase near the phase interface compared to the centre of
the fracture. The bubbly flow also has the wetting phase dragging the non-wetting phase
along. Due to the volume averaging and the saturation the wetting phase obtains slightly
faster velocities compared to the non-wetting phase.

4.3.3. EFFECT OF MODEL CHOICE

The effect of the fracture and the chosen fracture flow model on the surrounding porous
medium has been investigated by varying the Young’s modulus, with variations in Young’s
modulus scaling approximately inverse linearly with the fracture opening height. These
changes in opening height result in changes in the fluid flux inside the fracture, allow-
ing the influence of the fracture to be varied between dominating the fluid flow for low
Young’s moduli to the fracture having near to no influence on the fluid flow inside the porous
medium for high Young’s moduli.

To compare the fluid flux within the fracture, the wetting and non-wetting fluid fluxes
are calculated in the vertices of the interface elements and summed, resulting in Figure 4.13.
When the Young’s modulus is increased, the fluid flux inside the fracture decreases until the



60 4. MULTIPHASE FRACTURE FLOW MODELS

10 0 10 1 10 2 10 3

E [GPa]

0

2

4

6

8
(|

q
w

|)
[m

2
/s

]

10 -5

cubic

bubbly

separated

(a) Wetting phase

10 0 10 1 10 2 10 3

E [GPa]

0

1

2

3

4

5

6

(|
q

n
|)

[m
2
/s

]]

10 -5

cubic

bubbly

separated

(b) Non-wetting phase

Figure 4.13: Sum of the fluid flux inside the fracture for varying Young’s moduli at t = 2.5 hours
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Figure 4.14: Relative difference in pressure along the discontinuity for varying Young’s moduli at
t = 2.5 hours.

fracture opening height is negligible and no fluid flows within the fracture. This limit is
approached in a similar manner for the cubic law and separated flow when looking at the
wetting fluid flux, whereas for the non-wetting phase the separated flow and cubic law ap-
proach in a similar manner. When the Young’s modulus is decreased, the fluid transported
inside the fracture increases, and the differences between the models become more pro-
nounced. While for the wetting fluid flux the difference between the cubic law and sepa-
rated flow model are small, large differences occur for the non-wetting fluid flux. For all low
Young’s moduli, the bubbly flow model results in significantly different fluid fluxes com-
pared to the other models.

The difference in pressure between the cubic law and the other models is shown in Fig-
ure 4.14. Due to the negligible difference in fluid flux between the cubic law and separated
flow model for low and high Young’s moduli, the difference in pressure approaches zero for
the separated flow model. The same behaviour is seen for the saturations, shown in Figure
4.15, with the maximum difference in saturation corresponding to E = 20 GPa, correspond-
ing to the differences shown in Figures 4.9-4.12.

For all Young’s moduli the difference between the cubic law and bubbly flow is larger
than between the cubic law and separated flow. Furthermore, while the difference disap-
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Figure 4.15: Relative difference in wetting phase saturation along the discontinuity at t = 2.5 hours.
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Figure 4.16: Geometry used for the complex multiphase flow cases. The dashed lines represent the
interface elements, and the dotted lines are C 0 continuity lines.

peared for low Young’s moduli for the separated flow model, this difference does not disap-
pear for the bubbly flow model. For higher values of the Young’s modulus, the difference
between the bubbly flow and separated flow becomes more similar, most notably for the
saturations and non-wetting fluid flux. This indicates that for both cases, the coupling has
a similar effect for high Young’s modulus cases: The wetting phase drags along the non-
wetting phase, resulting in a decrease in non-wetting phase pressure around the right frac-
ture tip (not shown here). Due to the volume averaging used for the bubbly flow, this effect
persists for high fracture opening heights, and therefore the differences between the cubic
law and the bubbly flow model do not reduce to zero in the low Young’s modulus limit.

4.4. COMPLEX CASES
To further illustrate the effect of including the interactions within the fracture in the fracture
flow model, two cases representative of more real-world applications were simulated: Oil
recovery by injecting water, and underground gas/CO2 storage.

The geometry used for both these cases is shown in Figure 4.16, and consists of a square
domain containing two fractures. Reduced continuity lines were inserted to allow for sharp
changes in mesh-line direction to accommodate the angles of the fracture. A constant time-
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Figure 4.17: Saturation for the complex oil-water case using the cubic law.
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Figure 4.18: Saturation for the complex oil-water case using the bubbly flow fracture model.

step ∆t = 1000 s was used for both cases, and similar to the previous sections, the fractures
were stationary and not allowed to propagate.

4.4.1. OIL-WATER

The first case uses the same properties as described in Section 4.3. A water inflow of Qi n =
10−5 m3/s is imposed on the top left corner, and a constant pressure of pw = 0 MPa and
pn = 0.3 MPa is applied to the bottom right corner. The initial pressures are set equal to the
prescribed pressure boundary condition, resulting in an initial water saturation of Sw = 0.05.

The saturation after t = 30 days and t = 40 days using are shown in Figure 4.17 using the
cubic law. The bottom fracture enhances the fluid transport from the top left to the bottom
right, but also result in a pocket of oil being isolated from the outlet in the bottom left corner.
The top fracture equalises the saturation near to itself, by transporting both oil and water.
This prevents the oil in the top right corner from being isolated from the outlet, as was the
case for the bottom left corner.

Using the volume averaged bubbly flow model results in the water in the bottom fracture
dragging the oil along, creating a local increase in saturation near the fracture tip as shown
in Figure 4.18. The saturation is higher near the bottom of the fracture compared to the
top due to the inlet pushing more oil towards the top of the fracture, thereby limiting the
saturation. The top-right fracture shows a similar effect as the cubic law case, equalising the
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Figure 4.19: Saturation for the complex oil-water case using the separated flow fracture model.
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Figure 4.20: Saturation for the air-water case after t = 15.5 hours.

saturation along its length. However, due to the volume averaging employed, slightly larger
saturation gradients persist along the fracture, compared to the cubic law.

The separated fracture flow model, Figure 4.19, shows a balance between the results of
the cubic law and bubbly flow models. The coupling between the fluid phases inside the
fracture still results in an increase in saturation at the fracture tip of the bottom fracture, but
this effect is less pronounced compared to the bubbly flow since the water and oil are still
allowed to flow in opposite directions depending on their respective pressure gradients. The
water flowing at the walls of the fracture is also less slowed down by the oil in the centre of
the fracture, resulting in a higher saturation near the bottom compared to the cubic fracture
flow model.

4.4.2. AIR-WATER

For the second case, the domain has an initial water saturation of Sw = 0.9 (pw =−0.9 MPa,
pn = 8.1 MPa). In the top left corner air (µn = 2 ·10−5 Pas, Kn = 0.1 MPa) is injected with an
inflow of Qi n = 5 ·10−2 m2/s. Similar to the previous case, constant pressures equal to the
initial pressure are imposed on the bottom right corner for it to function as an outlet. The
porous material is assumed to be sandstone like, using k = 10−13 m2 and all other properties
equal to those of the previous sections. To correctly model the air-water interactions in the
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Figure 4.21: Velocity profile in the bottom fracture at x = 10 m, t = 15.5 hours.

porous material the Van Genuchten relations were used, Eq. 4.6 for the saturation and Eq.
4.14 for the relative permeabilities.

For both the cubic law and the separated flow model, the fractures equalised the sat-
uration along the fracture, as shown in Figure 4.20a. Due to the large fluid velocity inside
the fracture compared to in the surrounding porous material, no visible difference between
these two cases occurred. In contrast, the volume averaged bubbly flow model, Figure 4.20b,
shows a large saturation gradient along the fracture. Due to the volume averaging and the
high water saturation, the effective viscosity of the mixture is much higher than the viscosity
of the air itself, resulting in a low air velocity inside the fracture.

The velocity profiles inside the fracture are obtained through post-processing the pres-
sures and saturation, and shown in Figure 4.21. The air velocity using the separated flow
model is very high, and manages to drag along water with it. This causes a pressure gradient
for the water phase, resulting in a water backflow near the fracture walls. The air dragging
along causes a large fluid flux for the separated flow compared to the bubbly flow, even
though the bubbly flow has a relatively lower effective viscosity.

4.5. CONCLUSION
In this chapter, fracture scale sub-grid models were derived for volume-averaged bubbly
flow and separated flow types. By using the continuous pressure assumption, these models
are able to describe the fluid flow and interactions between the phases inside the fracture,
without explicitly having to simulate the fluid flow in the interior of the fracture. By post-
processing the saturation and pressures, these models allow the velocity profiles within the
fracture to be re-obtained, allowing for a detailed look into the fluid flows within the fracture.

A boundary value problem containing a single fracture was simulated to show the effect
of using these flow models compared to the commonly used cubic law. Both the bubbly
flow model and the separated flow model allow the high pressure gradient phase to drag
along the low pressure gradient phase, increasing the fluid flux inside the fracture for one
phase while limiting the other phase its fluid flux. This effect is strongest for the bubbly flow,
while the separated flow provides results more similar to the cubic law. It should be noted,
however, that the choice of models should be motivated by the actual flow type predicted
to occur within the fracture, and this choice can significantly alter the results obtained de-
pending on the fracture opening height.

Finally, two cases more representative of real-world applications were simulated. These
simulations showed that the interactions within the fracture, and the fluid dragging the
other phase along, could result in local increases in saturation. Furthermore, large differ-
ences between the cubic law, and the fracture flow models derived in this chapter highlight
the importance of including the fluid flows and their interactions within the fracture. Results
for an air-water mixture also showed that a water backflow can occur inside the fracture due
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to high air velocities when using the separated flow model, whereas the use of volume aver-
aging in the bubbly flow model strongly limits the velocity of the low viscosity air phase.





5
PRESSURISED FRACTURES

The previous chapters have assumed that the fluid is easily able to flow into and out of the
fracture, and thereby retain a continuous pressure between the fracture and porous mate-
rial. However, this is not always the case. Small-scale plastic deformations resulting from
the high stresses near fracture tips and shear motion at the fracture walls can reduce the
permeability of the fracture walls, creating a resistance to the fluid flow [19, 207, 208]. This
resistance allows the fracture to sustain a different pressure compared to the surrounding
porous material, introducing a pressure jump at the fracture walls.

This pressure jump between the fracture and the porous material is included in the dis-
continuous pressure model [49, 185], introducing an interface permeability term which re-
stricts the fluid flow entering the fracture. A time-dependent interface permeability can be
used to represent small-scale boundary layers [185], whereas a constant value is more rep-
resentative of permanent changes in permeability close to the fracture due to the fracturing
process. Furthermore, by using a high interface permeability the pressure jump between
the fracture and porous material is reduced, approximating the continuous pressure model
[173]. While the discontinuous pressure model is commonly used to simulate propagating
fractures [162, 185], it can also be used for closed fractures to describe fluid-blocking barri-
ers [16, 41, 139].

This chapter will extend the previously derived relations for a non-Newtonian power-
law fluid to the discontinuous pressure model, allowing for pressurised fractures with an
entry resistance to be simulated. The governing equations and discretisation will be de-
tailed in Sections 5.1-5.2, with special attention paid to the integration scheme for the in-
terface permeability terms required to obtain a non-oscillatory solution and prevent non-
physical fracture inflows. The effects of this scheme are shown in Section 5.3. Finally, the ef-
fect of including a non-Newtonian rheology on propagating fractures will be demonstrated
through a typical fracture propagation case in Section 5.4. The results presented in this
chapter have been previously published in [7], and the code used for the fracture propaga-
tion and traction-separation law are derived from the Lagrangian finite element code from
[173].

5.1. DISCONTINUOUS PRESSURE MODEL

To simulate fractures containing a pressurised fluid, an additional pressure is introduced
representing the pressure inside the fracture pd . Similar to the continuous pressure models,
this pressure is assumed to only vary in tangential direction, and has a constant value for
the complete fracture height. Different from the continuous pressure model, the fluid flux
normal to the fracture is now described through [38]:

−nd ·q+
d = ki

(
pd −p+)

(5.1)

−nd ·q−
d = ki

(
pd −p−)

(5.2)

with p+ and p− the interstitial fluid pressures inside the porous material at the top and
bottom of the fracture. The interface permeability ki represents the resistance to the fluid
to leave the fracture.

67
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The velocity profile for the fluid flow inside the fracture, Eq. 2.26 for the continuous
pressure model, is now based on the discontinuity pressure:

v(yd ) = n
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and the mass conservation for the interior of the fracture, integrated over the fracture height
and combined with Eq. 5.1-5.2, now becomes:

ki
(
2pd −p+−p−)+ ∂h

∂t
=

∫ h
2

− h
2

∂v

∂xd
dyd (5.4)

Finally, substituting the velocity profile from Eq. 5.3 into this mass balance results in:

ki
(
2pd −p+−p−)+ ∂h

∂t
− ∂

∂xd

(
−2n

2n +1
µ

1
n −1
0

∣∣∣∣∂pd

∂xd

∣∣∣∣ 1
n −1 ∂pd

∂xd

(
h

2

) 1
n +2

)
= 0 (5.5)

In contrast to the continuous pressure model, this equation can not be directly imposed
as boundary conditions for the interstitial pressure and instead has to be resolved together
with the mass balance and momentum balance for the interior of the porous material, Eq.
2.5 and 2.18. The introduction of a separate pressure inside the discontinuity also intro-
duces two additional boundary conditions, a prescribed discontinuity pressure and a pre-
scribed inflow at the fracture tips:

pd = pd on x ∈ ∂Γpd (5.6)

qd =Qt i p on x ∈ ∂ΓQ (5.7)

The coupling between the fluid pressure inside the fracture and the interstitial pressure
is provided through the discontinuity fluid flux, Eq. 5.1-5.2, which are imposed as boundary
conditions on the mass balance of the porous material. The discontinuity pressure is also
included in the momentum balance, similar to Eq. 2.19 , through:

τΓd =τd −pd nd (5.8)

Since the fracture is allowed to propagate for the cases simulated, a cohesive zone model
is included for the fractured elements:

τd =
kd �u� for non− fractured elements

nd ft e

(
− ft

GI c
�u�n

)
for fractured elements

(5.9)

where �u�n is either the jump in normal displacement or the maximum jump in normal
displacement obtained during the simulation, whichever is the highest. The normal dis-
placement is calculated after each time-step is converged, and the maximum displacement
jump is updated based on these converged values.

5.2. DISCRETISATION
Replacing the tractions at the interface with Eq. 5.8 in Equation 2.36, the weak form of the
momentum balance becomes:∫

Ω
∇∇∇η : (σs −αp I ) dΩ−

∫
Γd

η · (τd −pd nd
)

dΓd =
∫
Γt

η ·τ dΓt (5.10)
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Interstitial pressure

Discontinuity pressure

Displacement

Figure 5.1: Interface element and the control points relevant to this element. The vertical height is
added for clarity, whereas for the actual interface elements the top and bottom are located at the
some location.

and by substituting Eq. 5.1-5.2, the mass balance for the porous material becomes:∫
Ω
αζ∇∇∇·u̇ dΩ+

∫
Ω

k∗
f
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∫
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(5.11)
Finally, the weak form for the mass balance inside the fracture is obtained by multiplying
Eq. 5.5 with the test function ξ, and using the divergence theorem on the fluid flow term:∫

Γd

kiξ
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=
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ξQd d∂Γd (5.12)

Similar to the discretisation used in the previous chapters, cubic NURBS are used to
discretise the interstitial fluid pressure, whereas quartic NURBS are used for the solid dis-
placement. Since the interstitial fluid pressure at the interface is now discontinuous, both
the displacement and the interstitial pressure have a C−1 continuity at the discontinuity.
The pressure inside the discontinuity is also discretised using cubic NURBS. It should be
noted that in contrast to the interstitial pressure, the discontinuity pressure is discretised
on a line at the discontinuity instead of on the complete mesh. The resulting locations of
the control points are shown in Figure 5.1, in which an interface element is shown with the
control points associated with that element.

Using the Bézier extracted NURBS, the displacement, interstitial pressure and disconti-
nuity pressure are discretised as:

u =
nel∑

el=1
N el

s uel (5.13)

p =
nel∑

el=1
N el

f pel (5.14)

pd =
neli∑

eli=1
N el

pd peli

d (5.15)

with the displacements and pressures determined by a sum over all elements el , whereas
the discontinuity pressure is determined by a sum over all interface elements eli .

5.2.1. DISCRETISED EQUATIONS

The momentum balance is discretised by:

fext − fi nt − fd = 0 (2.46)

with the internal forces given by Eq. 2.48 and the external forces by Eq. 2.47. The forces due
to the discontinuity are given by:

fd =
∫
Γd

N T
d RTτt+∆t

d dΓd −
∫
Γd

N T
d nΓd Npd p t+∆t

d dΓd (5.16)
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The discretised mass conservation for the porous material is:

qext −qi nt −qd = 0 (5.17)

with qext and qi nt given by Eq. 2.52 and 2.53. The fluid fluxes due to the discontinuity are
given by:

qd =
∫
Γ±d

kel
i ∆t N T

f

(
Npd p t+∆t

d −N f p t+∆t )dΓd (5.18)

with
∫
Γ±d

indicating that the integration is performed twice: Once for the top of the fracture

using p+ (the interstitial pressure at the top of the discontinuity) and pd , and once for the
bottom with p− and pd . The interface permeability of the element kel

i is taken as the in-
terface permeability ki for fractured elements, while a dummy permeability ki ,d is used for
non-fractured elements to enforce a continuous pressure over the non-fractured interface
elements.

The weak form for mass conservation inside the fracture, Eq 5.12, is discretised as:

qd ,ext −qd ,i nt −qd ,d = 0 (5.19)

with the external flux defined as:

qd ,ext =∆t
∫
∂ΓQ

N T
pdQt i p d∂Γd (5.20)

The internal fluid flux caused by the fluid flow within the fracture is:

qd ,i nt =−∆t
∫
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d dΓd

(5.21)
and the fluxes due to the coupling between the porous material and fracture are given by:

qd ,d =∆t
∫
Γd

kel
i N T

pd

(
N f p+ t+∆t +N f p− t+∆t −2Npd p t+∆t

d

)
dΓd

−
∫
Γd

N T
pd nT

Γd
Nd

(
u t+∆t −u t )dΓd (5.22)

These discretised equations have been implemented using a monolithic Newton-
Raphson scheme, similar to the previous chapters. A consistent tangential stiffness matrix
is used, and quadratic convergence was obtained. The tangential stiffness sub-matrices are
given in Appendix C.2, and a short verification for the correct implementation is given in
Appendix A.3.

5.2.2. FRACTURE INTEGRATION SCHEME

Oscillations were observed in the fracture inflow velocity near the fracture tips. These type of
oscillations are commonly seen for non-fractured interface elements when a dummy stiff-
ness is used [200]. For standard Lagrangian elements, these oscillations can be supressed by
using a standard Newton-Cotes integration scheme [200], while due to the higher continuity
of NURBS a special lumped integration scheme is needed [99, 234]. For the tractions at the
non-fractured interface elements, the integration using this lumped scheme is performed
as:

f non− f r ac
d =

∫
Γd

N T
d s RT Dd R Nd s uel dΓd =

ncp∑
cp=1

M T
l RT Dd R Ml ucp Acp (5.23)
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Figure 5.2: Fracture tip integration scheme for a fractured element at the fracture tip and a neigh-
bouring non-fractured element.

with ncp the number of control-point sets for the interface element, and ucp the displace-
ments of the control-point set. The lumped integration matrix Ml is used to construct the
jump in displacement of the control point set:

�u�cp =
[−1 1 0 0

0 0 −1 1

]
u−

x

u+
x

u−
y

u+
y

= Ml ucp (5.24)

The weighting factor Acp corresponding to the control-point set is obtained through inte-
grating the interpolation function over the domain using a Gauss integration scheme:

Acp =
∫
Γd

N cp
s dΓd (5.25)

A similar lumped integration scheme is employed to suppress oscillations in the fluid
flux normal to the fracture:

qd =
∫
Γ±d

kel
i ∆t N T

f

(
Npd p t+∆t

d −N f p t+∆t )dΓd =
ncp∑

cp=1
Acp,d kel

i N T
l

(
Nl pcp

d −Nl pcp
)

(5.26)

with Nl used to select the degrees of freedom corresponding to the control point set, and
the weighting factor for the fluid determined through:

Acp,d =
∫
Γd

N cp
f dΓd =

∫
Γd

N cp
pd dΓd (5.27)

Since a large interface permeability can be used for fractured elements to approximate the
continuous pressure model, this scheme is used for both the fractured and non-fractured
elements.

A side effect of using NURBS to discretise the pressure at the discontinuity is that the
interpolation functions are not limited to only fractured or non-fractured elements. This
results in control points both being linked to the interstitial pressure through the dummy
permeability, and being used for the fluid flow within the fracture. The fluid is allowed to
enter the fracture at the fracture tips without the resistance of the interface permeability,
and then transported within the fracture, resulting in extra and non-physical amounts of
fluid entering and leaving the fracture. To prevent this, a special integration scheme is used
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Figure 5.3: Fluid velocity and jump in fluid velocity at the discontinuity, zoomed on the left fracture
tip.
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Figure 5.4: Fluid velocity jump at the discontinuity

around the fracture tips to separate the control points in the interior of the discontinuity
from the dummy permeability. For the non-fractured elements, if a control point set in-
cludes a degree of freedom that is also integrated through a fractured element, the disconti-
nuity pressure is skipped and the fluid flux at the interface is integrated as:

qd =∓
∫
Γ±d

1

2
ki ,d∆t N T

f

(
N f p+−N f p−)

dΓd (5.28)

This fracture tip integration scheme is schematically shown in Figure 5.2. Control point sets
for the fractured elements, and control point sets for non-fractured elements away from the
fracture tip are integrated through the lumped integration scheme, Eq. 5.26. Only the con-
trol point sets for non-fractured elements that are located near the fracture tip are calculated
by Eq. 5.28.

5.3. EFFECT OF INTEGRATION SCHEMES
To demonstrate the effect of the lumped integration and the fracture tip integration scheme
a typical boundary value problem is simulated. This problem uses the geometry and param-
eters from Figure 2.7 and Section 2.3. A newtonian fluid (n = 1.0, µ = 1 mPa s) is used, and
the fracture has an interface permeability of ki = 10−10 m/Pa s. The non-fractured elements
used a dummy permeability ki ,d = 0.5 ·10−3 m/Pa s.

The fluid velocity normal to the discontinuity is shown in Figure 5.3a. With the Gauss in-
tegration scheme, large oscillations occur, and these oscillations do not cancel out with the
velocity at the top at the discontinuity (Figure 5.3b). These oscillations not cancelling out
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Figure 5.5: Discontinuity pressure along the discontinuity line at steady state for the single fracture
case.

indicates that fluid is disappearing around the discontinuity, and therefore the simulation
is not mass conserving. Using the lumped integration scheme these oscillations disappear,
both in the velocity at the individual top and bottom of the discontinuity, as well as in the
velocity jump.

Looking at the velocity jump around the fracture tip, Figure 5.3b, a jump in fluid ve-
locity is seen when the lumped integration without fracture tip integration scheme is used.
This peak in fracture inflow is significantly higher than the fracture inflow in the fractured
elements, and indicates that fluid flows into the fracture using the much higher dummy
permeability instead of the interface permeability. When the lumped integration and the
fracture tip scheme are both used, this high inflow around the fracture tips disappears.

The fracture outflow velocity for the complete discontinuity is shown in Figure 5.4.
While the large oscillations occur at the non-fractured elements with a Gauss integration
scheme, no such oscillations occur in the fractured part of the discontinuity due to the lower
interface permeability. Using lumped integration, the large peak in fracture outflow is vis-
ible near the fracture tips, having a peak around �w� ≈ ±100 ·10−3mm/s. The lumped and
fracture tip schemes their results have a higher fracture in and outflow in the fractured part
of the discontinuity. Looking at the pressure gradient in Figure 5.5, however, it can be seen
that the cases without tip integration scheme obtain a higher pressure gradient inside the
fracture. This indicates that even though the use of the fracture tip scheme results in a higher
inflow for the fractured elements, higher fluid velocities inside the fracture are obtained for
the cases without tip integration, and therefore more fluid is transported for these cases de-
spite the lower inflow in the fractured part of the domain. From this, it can be concluded
that the non-physical fracture inflow at the tips due to the dummy permeability can signifi-
cantly alter the obtained results, thereby confirming that the fracture tip integration scheme
is needed to obtain correct results when combining NURBS with the discontinuity pressure
fracture model.

5.4. HYDRAULIC FRACTURING WITH NON-NEWTONIAN FLUIDS

A typical fracture propagation problem has been simulated to show the influence of includ-
ing the non-Newtonian rheology. The case exists of a 0.25 × 0.25 m square domain with
an initial fracture of 5 mm at the left edge. A fluid inflow Qi n = 10−5 m2/s is imposed on
the left fracture tip (located at the domain boundary), and constant interstitial fluid pres-
sure boundary conditions are imposed on the top, right and bottom boundaries. The solid
displacement is also constrained in horizontal and vertical direction on these boundaries,
while the left edge is constrained only in horizontal direction. An overview of the geometry
and boundary conditions is given in Figure 5.6.
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Figure 5.6: Overview of the geometry and boundary conditions for the pressurised fracture case.
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Figure 5.7: Interstitial fluid pressure around the discontinuity at t = 0.25 s using k = 10−16 m2 (lower
parts of each figure) and k = 10−18 m2 (upper parts of each figure)

The simulations were performed using the following material properties: Young’s mod-
ulus E = 25.85 GPa, bulk modulus Ks = 13.46 GPa, Poisson ratio ν = 0.18, fluid bulk mod-
ulus K f = 0.2 GPa, Biot coefficient α = 1, tensile strength ft = 1.7 MPa, fracture energy
Gc = 0.2 kN/m, and porosity n f = 0.2. Non-Newtonian fluids using fluid indices from n = 0.8
up to n = 1.2 have been simulated, and a base viscosity of µ0 = 0.5 mPa sn has been used
for all fluids. The fracture used an interface permeability ki = 10−10 m/Pa s, and the non-
fractured interface elements used dummy permeability ki ,d = 10−3 m/Pa s and dummy stiff-
ness ks = kn = 5 ·103 GPa.

To vary the amount of fluid leaking from the fracture to the surrounding porous material
the permeability has been varied, using k = 10−16 m2, k = 10−17 m2, and k = 10−18 m2. It was
chosen to vary the leak-off by altering the permeability of the porous material instead of
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Figure 5.8: Fracture length for the pressurised fracture cases.

the interface permeability since a relation between the effective permeability and the non-
Newtonian fluid index was available for this bulk permeability, whereas no such relation
exists for the interface permeability.

The domain is discretised using 250×20 Bézier extracted elements. The horizontal el-
ement size is constant over the complete domain, using d x = 1 mm, while the vertical ele-
ment size is varied between d y = 3 mm close to the discontinuity up to d y = 55 mm near
the top and bottom of the domain. A constant time step∆t = 1 ms has been used, for a total
duration of the simulations of 0.5 s.

The interstitial fluid pressure for a shear-thinning and shear-thickening fluid is shown in
Figure 5.7. The differences in the pressure contours between the low and high permeability
cases are bigger for the shear-thinning fluid, indicating that changes in permeability alter
the leak-off from the fracture more for shear-thinning fluids. Furthermore, the pressure near
the fracture is higher for the shear-thickening fluid, resulting in a higher pressure within the
fracture compared to the shear-thinning fluid cases.

The fracture length for the high permeability case, k = 10−16 m2, is shown in Figure 5.8a.
The larger leak-off for shear-thinning fluids result in a significantly slower fracture propa-
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Figure 5.9: Results for the k = 10−16 m2 case, at t = 0.25 s.

gation compared to Newtonian and shear-thickening fluids. This large leak-off is also con-
firmed by Figure 5.9c, showing a higher fracture outflow velocity for shear-thinning fluids.
As a result of the lower leak-off from the fracture, the pressure inside the discontinuity (Fig-
ure 5.9b) is higher for shear-thickening fluids. This results in both a higher fracture open-
ing, Figure 5.9a, and a faster fracture propagation. Due to the still relatively small fracture
opening height, the shear-thinning fluid flows faster through the fracture compared to the
shear-thickening fluid. As a result, the discontinuity pressure is positive for the complete
fracture length for the shear-thinning fluids, whereas this pressure becomes negative near
the fracture tip.

For the cases using a permeability of k = 10−18 m2, the discontinuity pressure around
the fracture tip is negative for the shear-thickening fluids, and much lower compared to the
high permeability cases, as shown in Figure 5.11b. In contrast, the shear-thinning fluids
still retain a positive discontinuity pressure throughout the fracture. Similar to the higher
permeability case, the shear-thickening fluid has a lower leak-off from the fracture to the
surrounding porous material compared to the shear-thinning fluid, Figure 5.11c. Due to the
negative discontinuity pressure, the fluid flows from the surrounding porous material into
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Figure 5.10: Results for the k = 10−17 m2 case, at t = 0.25 s.

the fracture near to the fracture tip. Looking at the fracture propagation length, Figure 5.8c,
the effect of the negative pressure around the fracture, and negative discontinuity pressure
at the fracture tip for shear-thickening fluids is clear. While the fracture propagated faster for
the shear-thickening fluids for the high permeability case, it propagates slower compared to
the shear-thinning fluids for the lower permeability due to this negative pressure.

For the k = 10−17 m2 cases, the simulation using a Newtonian fluid appear to have the
fastest fracture propagation, as shown in Figure 5.8b. The shear-thickening cases suffer from
a more negative discontinuity pressure near to the fracture tip, shown in Figure 5.10b, result-
ing in a slower fracture propagation compared to the Newtonian case. The shear-thinning
fluids obtain a higher fracture outflow compared to the Newtonian fluid, and therefore also
obtain a slower fracture propagation. This indicates that both the higher leak-off associated
with the shear-thinning fluids, and the slower fluid flow and resulting negative pressure re-
sulting from shear-thickening fluids have an important influence on the fracture propaga-
tion speed.
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Figure 5.11: Results for the k = 10−18 m2 case, at t = 0.25 s.

5.5. CONCLUSION
In this chapter, the non-Newtonian fluid flow formulation was extended to pressurised frac-
tures. To prevent oscillations in the fracture inflow velocity, it was shown that a lumped
integration scheme was needed for these inflow velocities. Furthermore, to prevent non-
physical amount of fluid entering the fracture, a special fracture tip integration scheme was
detailed. By simulating a typical boundary value problem, the effects of these integration
schemes on the resulting discontinuity pressure and fracture inflow was shown.

To show the effect of including the non-Newtonian fluid rheology, a pressurised and
propagating fracture was simulated. Shear-thinning fluids were shown to have a higher
leak-off compared to Newtonian and shear-thickening fluids, while shear-thickening flu-
ids flowed through the fracture slower which resulted in a negative pressure at the fracture
tip. Both of these effects slowed the fracture propagation velocity, with the magnitude of
the slow-down depending on the properties of the problem. This indicates that including
the non-Newtonian fluid behaviour can lead to significantly different results compared to
approximating the fluid as a Newtonian fluid.
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UNEQUAL ORDER T-SPLINE MESHES

While the increased continuity of NURBS enables continuous fluid velocity profiles to be
obtained for the fracture, and is required to obtain accurate fracture inflow profiles, the use
of NURBS also has disadvantages. In the previous chapter it was shown that a special in-
tegration scheme is needed at the fracture tip to prevent non-physical fluid flow into the
fracture. Furthermore, since NURBS only allow a C−1 discontinuity to be inserted along a
line passing through the complete domain, creating fractured and non-fractured interface
elements, dummy stiffness and permeability values are needed. One final disadvantage of
NURBS is their inability to refine the mesh at some regions, while still maintaining a coarse
discretisation in other regions.

All these disadvantages can be removed by using T-splines [21, 204]. Similar to NURBS,
T-splines allow higher order inter-element continuity, and enable the continuity to be lo-
cally reduced when required. However, unlike NURBS, T-splines are not defined through
a domain-wide knot vector, instead using a T-mesh to define local knot vectors for each
control point individually. This allows a fine mesh to be used locally, while using coarser
elements in other parts of the domain, greatly reducing the number of control points re-
quired to discretise the complete domain [21, 140, 203]. Similar refined meshes can also be
achieved by using hierarchically refined NURBS [34, 57, 92, 116]. However, T-splines meshes
are simpler to generate, and allow more flexibility with inserting locally reduced continuity
lines compared to these hierarchically refined NURBS.

Using T-splines also allows for interface elements to only be inserted for fractured ele-
ments [56, 227]. By locally reducing the inter-element continuity to C−1 a fracture can be
represented, while still maintaining a higher order inter-element continuity in front of the
fracture tip. This removes the need for lumped integration schemes ahead of the fracture to
prevent oscillations resulting from the dummy stiffness.

T-splines have been shown able to simulate advection-diffusion and reaction-diffusion
problems [21]. By refining the T-spline meshes near strong gradients, accurate solutions
were obtained with fairly coarse meshes. Other cases that have demonstrated this ability
of T-splines to locally refine the mesh include contact problems [69], strongly refining the
mesh near the contact point, and fluid-structure interaction problem of a wind turbine [22],
refining the mesh near the tips of the rotor blades to obtain an increased accuracy. The
geometry of a large, geological domain has also been succesfully discretised (although not
simulated) with T-splines [244], showing the capabilities of T-splines to discretise domains
relevant to poroelasticity.

Propagating fractures have been successfully simulated using T-splines [55, 56]. By using
a re-meshing technique to reduce the inter-element continuity from C 1 to C−1, new inter-
face elements are inserted to propagate the fracture. This method can be further refined by
altering the locations of the control points to allow the fracture to propagate in an arbitrary
direction [56]. To obtain sharp fracture tips, C 0 continuity lines are commonly inserted tan-
gential to the fracture during this remeshing process. While this isolates the domain ahead
of the fracture from the influence of the fracture, this also leaves a trail of C 0 continuity lines
behind after each fracture propagation step. Since these papers only simulate linear-elastic
deformations, and therefore are solely interested in the stresses ahead of the fracture, this
does not pose any issues.

In this chapter, the generation of unequal-order T-spline meshes will be detailed. These
unequal order meshes are needed to fulfil the inf-sup condition, and prevent non-physical
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(a) Cubic mesh with reduced continuity lines at the fracture tip

(b) Cubic mesh with C 0 continuity line tangential to the fracture tip (not used anywhere else in this chapter)

Figure 6.1: Interface elements and elements around the interface for a cubic mesh in parametric (in-
ner coordinates) and index space (outer coordinates). Black lines represent the meshlines, red lines
the reduced continuity lines, blue squares the interior elements, and blue dotted lines the interface
elements.

pressure oscillations. Interface elements will be used to represent the fracture, and a
remeshing and fracture propagation scheme retaining the higher order inter-element con-
tinuity along the fracture will be presented. This scheme offers several possible meshes,
which will be described with their advantages. Finally, the T-spline meshes will be used
to simulate the pressurised fracture case from the previous chapter, and the results will be
compared to show the capabilities of T-splines to simulate fracture propagation in poroe-
lastic media.

6.1. MESH GENERATION

T-spline meshes are defined through a T-mesh, given in an index/parametric space [21]. On
this mesh, the anchors correspond to control points in the physical space. These anchors
each have their own local knot vector, which are defined through the meshlines. An exam-
ple of a T-mesh in index space is given in figure 6.1a. For instance, the anchor that is located
at (3,3) is defined through the knot vectors Ξx = [0 0 0.1 0.2 0.3] and Ξy = [0 0 0.25 0.5 0.5].
These knot vectors are based on the meshlines directly horizontal and vertical of the an-
chors, and differ for each anchor.

By having multiple meshlines in the index space correspond to the same value in the
parametric space, knots are repeated and the continuity is reduced at the location of the
repeated knots [227]. Since the meshlines for T-meshes are allowed to start and stop at
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each perpendicular meshline, C−1 continuity can be inserted to represent the fracture with-
out creating extra C−1 continuity elements that do not represent the fracture (in contrast to
NURBS).

The shape functions created through the knot vectors occupy a square spanned by these
knot vectors. This introduces a reduced continuity at the edge of the space occupied by the
shape function. For most cases, this reduced continuity collides with a meshline, which
were purposely inserted there to create this reduced continuity. However, when meshlines
are stopped, the shape functions using those meshlines will create additional reduced con-
tinuity lines, as shown in Figure 6.1a at the discontinuity, and in Figure 6.1b both at the
discontinuity and inside the domain itself.

To use T-splines in a similar manner as NURBS and standard Lagrangian finite elements,
elements are defined on the T-mesh. These elements are enclosed by the combination of
meshlines and reduced continuity lines, creating an element when a non-zero area is cov-
ered in the parametric space [203]. This results in the elements shown in Figure 6.1, where
the blue squares represent the elements that cover a non-zero area in the parametric space,
and will thus persist into the physical space. Due to the repeated meshlines around the
discontinuity, "zero-area elements" are present, which do not carry over into the physical
space, and are therefore not considered as elements. Similarly for interface and bound-
ary elements, which are created when a non-zero length is covered by either a meshline or
a reduced continuity line [227]. Once the elements are determined, the Bézier extraction
process can be used in the same manner as for NURBS to describe the T-splines as a com-
bination of Bernstein polynomials [204].

6.1.1. UNEQUAL ORDER T-SPLINE MESHES

Next to the cubic mesh for the interstitial fluid pressure, a quartic mesh for the solid dis-
placement is needed. This quartic mesh needs to represent the exact same geometry and
elements as the cubic mesh to enable the coupling between the solid and fluid to be eas-
ily included. Therefore, the quartic mesh requires the same inter-element continuity as the
cubic mesh, and thus requires additional every meshline and reduced continuity line to be
repeated once.

Since reduced continuity lines for both quartic and cubic meshes have the same length
in the index space, and every meshline is repeated for the quartic mesh, the reduced con-
tinuity lines have different lengths in the parametric (and therefore physical) space. Cubic
meshes obtain two additional interface elements due to these reduced continuity lines, as
shown in Figure 6.1a, whereas only a single additional interface element is created for the
quartic mesh, Figure 6.2a. This is resolved by inserting additional meshlines at the discon-
tinuity, resulting in equal discontinuity length for the quartic and cubic meshes.

Similar issues arise near mesh refinement steps, as seen by comparing Figure 6.8 with
Figure 6.9. Here, additional meshlines need to be inserted tangential with the refinement
layer to match the elements and inter-element continuity between the meshes. The re-
peated meshlines in parametric space offer a choice on this point, allowing for an extra
layer of anchors/meshlines to be inserted while still corresponding to the cubic mesh its
discretisation. It was chosen here to use the minimal required number of anchors instead
of using the additional layer, mainly to limit the number of degrees of freedom associated
with the solid displacement (which due to the repeated meshlines already has many more
anchors/control points).
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(a) Minimum amount of discontinuity lines

(b) Maximum amount of discontinuity lines

Figure 6.2: Interface elements and elements around the interface for a quartic mesh in parametric
and index space, corresponding to the cubic mesh from Figure 6.1a. Black lines represent the mesh-
lines, red lines the reduced continuity lines, blue squares the interior elements, and blue dotted lines
the interface elements.

6.1.2. INTERFACE ELEMENTS USING T-SPLINES FOR PRESSURISED FRACTURES

Interface elements are inserted at the C−1 discontinuity to represent the fluid filled fracture.
Similar to the mesh refinement steps, there are several options for how to insert the interface
elements. The approach taken by [55, 56, 227] is to isolate the fractured from the still-to-be
fractured part by inserting a C 0 continuity line perpendicular to the fracture, as shown in
Figure 6.1b. Interface elements only correspond to the meshlines, while the reduced con-
tinuity lines are contained by the C 0 continuity line. When the fracture is propagated, the
reduced continuity is left in place, resulting in a reduced continuity in between the interface
elements.

A different approach is to insert interface elements at the meshlines and reduced con-
tinuity lines, as shown in Figure 6.1a. This has as main advantage that the higher order
continuity is preserved, both around the fracture tip in the porous material and between
the interface elements at the fracture. However, this limits the number of shape functions
near the fracture tip, slightly limiting the interstitial pressure jumps that can be represented
close to the fracture tip. This is shown in Figure 6.3, comparing the actual pressure jump
obtained with the available interpolants when a −1,1 pressure jump is imposed on the con-
trol points. Since this disadvantage is diminished when finer meshes are used, whereas the
reduced continuity resulting from the first approach remains, this approach will be used
here.
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(a) C 0 continuity line perpendicular to the fracture tip.
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(b) Meshlines and reduced continuity lines as interface elements.

Figure 6.3: Interpolation functions corresponding to the discontinuity (coloured), and the interstitial
pressure by imposing a pressure jump between −1 and 1.
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Figure 6.4: Interpolation functions used for the discontinuity pressure (solid lines) and remaining
parts outside the interface elements not used (dotted lines).
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(b) Maximum amount of discontinuity lines

Figure 6.5: Interpolation functions corresponding to the discontinuity (coloured), and the interface
displacement by imposing a displacement jump between −1 and 1.

Degrees of freedom related to the pressure inside the discontinuity also need to be
added to the interface elements. If these degrees of freedom were solely added to the dis-
continuous control points, the pressure at the fracture tip would be forced to be equal to
zero. To allow the fracture pressure at the fracture tip to be non-zero, discontinuity pressure
degrees of freedom are added to all control points located at the bottom of the interface
elements, independent whether they are duplicated with a top node to create a C−1 dis-
continuity or are still C 0 continuous. The parts of the interpolation functions that are not
contained within any interface element are disregarded, and only get included when the
fracture propagates to create new interface elements covering their length. The resulting
interpolation functions, and the ignored parts of these functions, are shown in Figure 6.4.

As was the case for the mesh refinement for the quartic mesh, the discontinuity near the
fracture tip is allowed to contain an extra meshline, as shown in Figure 6.2. While this extra
meshline does not add an extra interface element due to the repeated knot, it does add an
extra control point near the quartic mesh. This introduces an extra interpolation function,
as shown in Figure 6.5, and allows for a sharper fracture tip. Both these meshes result in the
same mesh and interface elements in the physical space. In the next section, the effect of
this choice on the resulting fracture opening will be analysed.

6.1.3. FRACTURE PROPAGATION

The fracture is propagated by creating new interface elements through meshline insertion.
To limit the remeshing required, a C 0 continuity line is inserted at the future fracture path
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(a) Cubic mesh

(b) Quartic mesh

Figure 6.6: Meshline insertion to propagate the discontinuity one interface element length. Green
lines represent the inserted meshlines, green markers the inserted or altered anchors, and the green
dotted line the newly created interface element.

when the mesh is generated. This simplifies the meshline insertion, by only altering the
location of the anchors in the parametric space, while no control points change location in
physical space. Furthermore, the Bézier extraction operators for the interior elements are
not changed by propagating the fracture along the pre-inserted C 0 continuity line.

The discontinuity inside the cubic mesh is propagated by inserting a single meshline
one interface element behind the fracture tip, as shown in Figure 6.6a. This creates a new
anchor at the end of this meshline, and creates a new interface element to propagate the
fracture. The control point corresponding to this newly created anchor is initialised by set-
ting the displacements and interstitial fluid pressure equal to the pre-existing control point
at the same location now belonging to the bottom of the discontinuity. Similar for the cubic
meshes, which by inserting two meshlines and two anchors create a single new interface
element and two new control points, as shown in Figure 6.6b for the quartic mesh using the
maximum number of discontinuity lines.

Because the interface elements are only inserted for fractured elements, there is no need
for dummy stiffness and dummy permeability values. For the tractions on the fracture walls,
this removes the need for a lumped integration scheme, and these tractions are integrated
using a standard Gauss integration scheme. The terms containing the interface permeabil-
ity are still integrated using the interface permeability since this permeability can be high
enough to create oscillations for cases in which a continuous pressure model is approxi-
mated. However, the need for the fracture tip integration scheme described in the previous
chapter is removed, since no dummy permeability is needed.
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Figure 6.7: Mesh in physical space.

Figure 6.8: Cubic mesh in parametric/index space. Black lines represent the meshlines, red lines
the reduced continuity lines, blue squares the interior elements, and blue dotted lines the interface
elements.

6.2. COMPARISON T-SPLINES AND NURBS
To compare the effects of using T-splines with NURBS, and to investigate the influence of
using the minimum amount of discontinuity lines at the fracture tip, the case from the pre-
vious chapter (Section 5.4) is repeated using T-splines. The simulations were performed
using a Newtonian fluid (n = 1), and all properties correspond to those of the previous sim-
ulations (except that no dummy stiffness and permeability values were needed). Since T-
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Figure 6.9: Quartic mesh with the minimum amount of discontinuity lines at the fracture tip. Black
lines represent the meshlines, red lines the reduced continuity lines, blue squares the interior ele-
ments, and blue dotted lines the interface elements.

splines allow mesh refinement in parts of the domain, 248×6 small elements are used near
the interface, surrounded by a layer of 124×3 elements on each side, and the remainder of
the domain filled on the top and bottom by 62×9 elements. This mesh is shown in Figure
6.7 in the physical domain. To allow for an equal length of the initial fracture, the size of the
first 5 horizontal elements are slightly altered, such that the total length of these elements is
5 mm.

The cubic mesh used for the fluid is shown in the parametric space in Figure 6.8. As
mentioned before, a C 0 continuity is used in the path of the fracture, both to make the frac-
ture propagation along this line easier, and to keep the Bézier extraction matrices of the
interior elements constant, even when the fracture is propagated. The mesh refinement
near the interface is mainly caused by the reduced continuity lines extending from the con-
trol points, and not the mesh lines themselves. As a side effect, at least 3 elements for the
finest refinement layer are needed to prevent the coarser elements introducing additional
reduced continuity lines at the interface, and thereby introducing extra interface elements.

The two quartic meshes used for the displacement are shown in Figure 6.9 and 6.10. The
first mesh uses the minimum amount of meshlines and anchors to create the required in-
terface elements, whereas for the second mesh an extra control point is added to allow for
a sharper fracture opening near the fracture tip. The cubic mesh combined with either of
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Figure 6.10: Quartic mesh with the additional discontinuity line at the fracture tip. Black lines rep-
resent the meshlines, red lines the reduced continuity lines, blue squares the interior elements, and
blue dotted lines the interface elements.
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Figure 6.11: Comparison between the fracture length as obtained using NURBS and T-splines with
the minimal (T-splines 1) and maximum (T-splines 2) number of inserted discontinuity lines around
the fracture tip.
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Figure 6.12: Fracture opening height h at t = 0.25s using NURBS and T-splines with the minimal
(T-splines 1) and maximum (T-splines 2) number of inserted discontinuity lines around the fracture
tip.
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Figure 6.13: Fracture opening height h at t = 0.25s using NURBS and T-splines with the minimal (T-
splines 1) and maximum (T-splines 2) number of inserted discontinuity lines around the fracture tip,
zoomed in at the fracture tips. Black vertical lines indicate the total fractured length.

these meshes are hereafter referred to as "T-splines 1" (cubic with minimum discontinu-
ity line quartic) and "T-splines 2" (cubic with extra anchor quartic meshes). All results are
compared to the NURBS mesh from the previous chapter, which used 250×20 elements.

A comparison between fracture lengths using NURBS and T-splines is given in Figure
6.11. For the k = 10−16m2 results, no difference is seen between the different meshes. For
the k = 10−17m2 simulations, at most 2 element lengths difference between the NURBS and
T-splines occurs, with the NURBS propagating slightly faster. Similar results are seen for the
lowest permeability, with at most 3-4 elements difference.

The fracture opening height halfway through the simulation, Figure 6.12, also shows
fairly small differences between T-splines and NURBS. While the T-splines result in a dis-
crete fracture tip, the NURBS obtain a smoother fracture tip. This is clearly shown by zoom-
ing in on the fracture tip, Figure 6.13. The dummy stiffness used with the NURBS does not
enforce no fracture opening, but only applies a large force to limit the opening height as
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Figure 6.14: Pressure inside the discontinuity,pd , at t = 0.25s, using NURBS and T-splines with the
minimal (T-splines 1) and maximum (T-splines 2) number of inserted discontinuity lines around the
fracture tip.

much as possible. This results in a larger opening height, and a slightly non-zero opening
even at the fracture tip. In contrast, the T-splines obtain a fracture without opening height
at the fracture tip. The results with the additional anchor added to the "T-spline 2" mesh
allow for a slightly sharper fracture tip and a larger opening height, although the differences
between the two T-spline meshes disappears after 2 elements.

The differences in fracture opening height near the tip also influence the pressure in-
side the discontinuity, Figure 6.14. For NURBS, the discontinuity pressure is defined for the
complete discontinuity (both fractured and non-fractured), while for the T-splines the dis-
continuity pressure is limited to the fracture. Due to the lower opening height of T-splines,
less fluid flows near the fracture tip inside the fracture. This results in a lower pressure near
the fracture tip, explaining the slightly slower fracture propagation for T-splines compared
to NURBS. Since no difference in fracture height occurred away from the fracture tip, the
NURBS and T-spline simulations obtain the same discontinuity pressure.

6.3. CONCLUSION

In this chapter, the mesh generation for unequal order T-spline meshes has been detailed.
By combining a cubic mesh for the interstitial fluid pressure with a quartic mesh for the solid
displacement, the inf-sup condition can be fulfilled and non-physical pressure oscillations
are prevented. To retain higher order inter-element continuity for the interface elements,
these interface elements are created by a combination of meshlines and reduced continuity
lines. Finally, a fracture propagation scheme was detailed, propagating the discontinuity
along a C 0 continuity line by inserting meshlines in both the cubic and quartic meshes.

The unequal order meshes allow for several choices for the quartic mesh near the dis-
continuity: Either using a minimum amount of meshlines to match the discontinuity be-
tween the two meshes, or adding an extra meshline to increase the degrees of freedom near
the fracture tip. These two choices have been compared, showing near to no difference on
the overall results and only slight differences in the fracture opening height close to the frac-
ture tip.
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Comparing the T-spline meshes to a mesh generated with NURBS, the advantages of
T-splines are clear: The T-spline meshes allowed for smaller elements to be used near the
discontinuity, while using larger elements for the remainder of the domain. In contrast,
the NURBS mesh required mesh refinements to be performed for the complete domain.
Furthermore, T-spline meshes allow for only using interface elements for the fracture, which
removed the need for a lumped integration scheme for the tractions at the interface and the
fracture tip integration scheme for the pressure inside the discontinuity.

Finally, simulation results comparing NURBS to T-splines showed that T-splines ob-
tained a completely closed fracture at the fracture tip, whereas the dummy stiffness used
with NURBS allowed for a slightly opened fracture, even at the fracture tip. While this dif-
ference in fracture opening height altered the discontinuity pressure near the fracture tip, it
did not significantly change the fracture propagation velocity.





7
DIRECT SIMULATION OF FRACTURE FLOW

Using the cubic law to model the fluid transport within a fracture under continuous pres-
sure conditions has long been known to accurately represent the influence of the fluid filled
fracture on the surrounding porous material [238]. However, the accuracy of discontinuous
pressure models to represent fractures with an entry resistance has not been shown, with
most uses of the interface permeability term being solely numerical. Comparisons between
the discontinuous pressure model and continuous pressure model have shown its accuracy
in the near continuous pressure limit [173], and simulations using a variety of discretisation
methods have shown its independence of the used discretisation method [79].

Direct simulations of the Stokes flow in the interior of the fracture, coupled to the sur-
rounding porous material through an interface permeability term, have shown the feasibil-
ity of fully simulating the fluid inside the fracture [25]. This approach is commonly taken
when large voids are present [13, 14, 50], allowing for simulations which do not adhere to
the assumptions taken during the derivation of subgrid models: A small fracture opening
compared to its length. However, these simulations have been limited to non-propagating
fractures and pre-determined voids. An alternative approach is to assume the fracture to be
filled with highly permeable porous material, allowing both the fracture and the surround-
ing material to be described using the same set of equations [70, 133, 143]. A downside
of this approach is that it does not give velocity profiles within the fracture. Furthermore,
including entry resistance for the fluid is solely accomplished using a smeared approach,
approximating the pressure jump across the fracture wall as a steep pressure gradient.

In this chapter, a scheme for the simulation of Stokes flow within the fracture will be
described, allowing for fully simulating the fluid flow within propagating fractures coupled
to a poroelastic material. The porous material is discretised using T-splines, as described in
the previous chapter. To resolve both the fracture flow and poroelastic material, an iterative
approach will be adopted, alternating between solving the interior of the fracture and solv-
ing the porous domain. This allows the fluid inside the fracture to be fully simulated, with a
comparison between the direct simulation and subgrid model approaches given in Section
7.2. The methods and results presented in thic chapter have been previously published in
[3].

7.1. GOVERNING EQUATIONS
The interior of the fracture is described using the Stokes equations, given in the fracture-
local coordinate system for a Newtonian fluid as:
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= 0 (7.1)

−∂pd

∂yd
+µ

(
∂2w

∂x2
d

+ ∂2w

∂y2
d

)
= 0 (7.2)
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subject to no-slip boundary conditions at the top and bottom fracture wall:

td ·
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)
= 0 on Γ±d (7.4)
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(a) Input meshes: Two one-dimensional B-splines in the parametric domain

(b) Generated mesh in the parametric domain

x
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(c) Generated mesh mapped to physical domain

Figure 7.1: Mesh generation procedure for the interior of the fracture

and a mass conservation condition across the fracture walls:
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)
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2
ḣ +ki

(
pd −p

)= 0 on Γ±d (7.5)

using the velocity (v, w) in the interior of the fracture and the normal and tangential vectors
to the fracture walls, nd and td respectively. At the inlet of the fracture, a parabolic inflow
profile is used:

v =Qi n

(
3

2h
− 6y2

d

h3

)
on Γi n (7.6)

allowing a total fluid flux Qi n to be imposed at the fracture inlet. Finally, the tractions across
the interface are given in a similar manner as for the discontinuous pressure model as:

τΓd =τd (�u�)−pd nd on Γ±d (7.7)

It should be noted that the boundary conditions used here are those commonly used in
fracture flow models. It was chosen to use these boundary conditions for both the discon-
tinuous pressure model and the direct simulation of the flow inside the fracture for consis-
tency and to allow the results to be directly compared. However, the formulation for the di-
rect simulation of the fracture is formulated such that other boundary conditions can easily
be substituted, for instance the Beavers-Joseph-Saffman condition [23, 197] which is com-
monly used for Stokes flow over porous objects.
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7.1.1. DISCRETISATION

To discretise the interior of the fracture, a set of B-splines for the fracture height are defined
in a parametric space, as shown in Figure 7.1a. This set of B-splines is combined with the
pre-existing set of T-splines that define the discontinuity in the porous material, discretis-
ing the complete fracture in the parametric (ξ,η) space. Finally, this space is mapped to the
physical space through xd = ξ, yd = h/2 η for the horizontal fractures used in this chap-
ter. This mapping allows the discretisation of the fracture to automatically deform when
the opening height changes. To aid in the implementation of the boundary conditions be-
tween the porous and fracture domains, the velocity components are split in an interior and
boundary part, discretising the interior of the fracture as:

pd =∑(
N f ⊗N3

)
pd =∑

Npd pd (7.8)

v =∑
(Ns ⊗N4b) vb +

∑(
N 2+

s ⊗N4i
)

vi +
∑(

N 1
s ⊗N4i

)
vi n

=∑
Nvb vb +

∑
Nvi vi +

∑
Ni n vi n

(7.9)

w =∑
(Ns ⊗N4b) wb +

∑
(Ns ⊗N4i ) wi =

∑
Nwb wb +

∑
Nwi wi (7.10)

with N3 and N4i the sets of cubic and quartic splines used for the height discretisation of the
fracture, with N4i only including the splines that are zero at the fracture walls. N4b includes
the non-zero splines at the walls, which are used for the boundary conditions. N 1

s indicates
that only the first spline is used for the inlet velocity discretisation, and the other splines
N 2+

s for the interior discretisation. The set of splines N 2+
s directly implements the no flow

boundary condition at the fracture tip by using only the discontinuous splines, whereas Npp

and Ns use all splines along the discontinuity, thereby allowing for non-zero vertical veloc-
ities and pressures at the fracture tip. Since these discretisations are directly dependent on
the splines defining the discontinuity, they are easily adapted to a new fracture length upon
fracture propagation. Furthermore, by performing the construction of the force vectors in
a parametric space the fracture does not need to be remeshed when the fracture opening
height changes.

Using this discretisation, the momentum balances (Eq. 7.1 and 7.2) and mass balance
(Eq. 7.3) are discretised by integrating over the paramtric domainΩ f as:

∫
Ω f

µ

(
∂Nwi

∂xd

)T (
∂Nwi

∂xd
wi + ∂Nwb

∂xd
wb

)
+µ

(
∂Nwi

∂yd

)T (
∂Nwi

∂yd
wi + ∂Nwb

∂yd
wb

)
+N T

wi

∂Npd

∂yd
pd dΩ f = 0

(7.11)

∫
Ω f

µ

(
∂Nvi

∂xd

)T (
∂Nvi

∂xd
vi + ∂Nvb

∂xd
vb

)
+µ

(
∂Nvi

∂yd

)T (
∂Nvi

∂yd
vi + ∂Nvb

∂yd
vb

)
+N T

vi

∂Npd

∂yd
pd dΩ f =−

∫
Ω f

µ

(
∂Nvi

∂xd

)T ∂Ni n

∂xd
vi n +

(
∂Nvi

∂yd

)T ∂Ni n

∂yd
vi n dΩ f

(7.12)

∫
Ω f

N T
pd

(
∂Nvi

∂xd
vi + ∂Nvb

∂xd
vb

)
+N T

pd

(
∂Nwi

∂yd
wi + ∂Nwb

∂yd
wb

)
dΩ f =−

∫
Ω f

N T
pd

∂Ni n

∂xd
vi n dΩ f

(7.13)

with the fracture height h = nT
d Ns�u�t+∆t , and the spatial derivatives in physical space given

for the mapping xd = ξ, yd = ηh/2 as:

∂Npd

∂xd
= ∂N f

∂ξ
⊗N3 − η

nT Ns�u�t+∆t
nT ∂Ns

∂ξ
�u�t+∆t N f ⊗

∂N3

∂η
(7.14)
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∂Npd

∂yd
= 2

nT Ns�u�t+∆t
N f ⊗

∂N3

∂η
(7.15)

The boundary conditions from Eq. 7.4-7.5 are enforced through their weak forms as:∫
Γ±d

n1N T
wb Nvb vb +n2N T

wb Nwb wb +ki N T
wb Npd pd −ki N T

wb N f p

+ 1

2∆t
N T

wbnT Ns
(�u�t+∆t −�u�t ) dΓ± = 0

(7.16)

∫
Γ±d

t1N T
vb Nvb vb + t2N T

vb Nwb wb dΓ± = 0 (7.17)

using the normal vector n = [n1 n2] and tangential vector t = [t1 t2], taking into account
large deformations.

7.1.2. COUPLING

The coupling terms used in the momentum balance, Eq. 2.46, and the mass balance , Eq.
5.17, for the porous material are given by:

fd =
∫
Γ±d

N T
d

(
τt+∆t

d −nd Npd p t+∆t
d

)
dΓ±d (7.18)

qd =∆tki

∫
Γ±d

N T
f Npd p t+∆t

d −N T
f N f p t+∆t dΓ±d (7.19)

These Equations for the porous material and the set of equations for the fracture, Eqs. 7.11-
7.13 and 7.16-7.17, are solved in an iterative manner until both have achieved a converged
solution at t +∆t . An iteration of the Newton-Raphson solver for the poroelastic material
is performed first, after which the fluid flow inside the fracture is updated using the newly
obtained fracture opening heights and pressures. At this point, the error of the poroelas-
tic Newton-Raphson solver is checked (the fracture is exactly resolved since its system of
equations is linear) and if the convergence criteria are not reached, another iteration of first
solving the poroelastic domain and then the fracture fluid velocity is performed.

To aid in the convergence of this iterative scheme, an additional term is added to the
tangential stiffness matrix of the poroelastic material, estimating the influence of changes
in interstitial fluid pressure and opening height on the discontinuity pressure. This term is
based on Eq. 7.5, neglecting the changes n vertical fluid velocity to obtain:

∂p t+∆t
d =− 1

2ki∆t
∂ht+∆t + 1

2
∂p+

p + 1

2
∂p−

p (7.20)

This allows the stiffness terms related to the discontinuity to be estimated as:

∂ fd

∂p
=−γ

2

∫
Γ±s

N T
d nd N±

f dΓ±d (7.21)

∂ fd

∂u
=

∫
Γ±d

N T
d

∂τs

∂u
Nd dΓ±d + γ

2ki∆t

∫
Γ±d

N T
s nT

d nd Nd dΓ±d (7.22)

∂qd

∂p
=

∫
Γ±d

−∆tki N T
f N f dΓ±d − ∆tkiγ

2

∫
Γ±d

N T
f N±

f dΓ±d (7.23)

∂qd

∂u
=−γ

2

∫
Γ±d

N T
f nd Nd dΓ±d (7.24)

using a stabilising factor 0 < γ < 1. This factor is applied to the tangential terms relating to
the interior of the fracture, with γ= 0 corresponding to none of these terms being included
and γ= 1 fully including these terms. It was found that γ= 1/2 provided a reasonable con-
vergence speed, while maintaining a non-oscillatory and stable convergence.
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Figure 7.2: Overview of used geometry and boundary conditions

7.2. COMPARISON SUB-GRID AND STOKES FLOW MODELS

To compare the direct simulation of Stokes flow with a discontinuous pressure model, a
typical case consisting of a 10×4 m domain is simulated (Figure 7.2). A horizontal fracture
is present at the centre-left of this domain, with this fracture having a length L f r ac = 2 m
in Sections 7.2.1 and 7.2.3 (and not being allowed to propagate), and an initial length
L f r ac = 0.5 m in Section 7.2.2. A fluid inflow Qi n = 10−6 m2/s is imposed on the left frac-
ture inlet, the porous material is characterised by a Young’s modulus E = 20 GPa, Poisson
ratio ν= 0.2, porosity n f = 0.2, intrinsic permeability k = 10−16 m2, Biot coefficient α= 1.0,
and bulk modulus Ks = 10 GPa. The fluid uses viscosity µ = 10−3 Pa s and bulk modulus
K f = 1 GPa, and the discontinuity uses ki = 10−10 m/Pa s. For the propagating fracture case
from Section 7.2.2 an exponential traction-separation law is used, using ft = 1 MPa and
fracture energy Gc = 1 kN/m. The temporal discretisation uses time steps of∆t = 1 s and the
spatial discretisation uses 10 horizontal elements near the top and bottom boundary, with
additional refinement layers inserted near the interface as shown in Figure 7.3

7.2.1. NON-PROPAGATING FRACTURES

The fluid pressures resulting from the non-propagating fracture case are shown in Figure
7.3. Both models show similar interstitial fluid pressures inside the porous material, and
the Stokes flow model obtains a near to constant pressure over the fracture height. While
the discontinuous pressure model obtained a quadratic convergence rate due to the used
consistent stiffness matrix, the Stokes flow only obtained the linear rate shown in Figure
7.4. This reduced convergence is caused by the iterative coupling between the Stokes flow
and the poroelastic material, with only an approximation of the effects of the fracture in-
cluded in the poroelastic part, and no interaction with the poroelastic material included in
the Stokes flow part. As a result, the discontinuous pressure model requires less iterations to
obtain a converged solution, and solely requires a single system of equations to be solved,
making this method much faster compared to direct simulation of the Stokes flow within
the fracture.

The effect of inserting additional refinement layers on the fluid pressure in the centre of
the fracture is shown in Figure 7.5. While both methods obtain the same pressure when 5
mesh refinement layers are used, the discontinuous pressure model obtains slightly more
accurate results for coarser meshes. Similar results are observed for the fracture outflow in
Figure 7.6. In addtion to the discontinuous pressure model providing slightly more accurate
results for coarser meshes, the use of a lumped integration scheme also suppresses frac-
ture outflow oscillations. In contrast, no lumped integration scheme was possible for the
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Figure 7.3: Fluid pressure at t = 200 s for the non-propagating fracture case from Section 7.2.1. Verti-
cal displacements magnified by 104
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Figure 7.4: Energy based residual for the Stokes model at the selected time steps shown in the legend.

Stokes flow model due to the interface permeability matrix being non-square, resulting in
the oscillations seen for the three refinement layer mesh.

Finally, a comparison between the velocity profile inside the fracture resulting from the
Stokes flow and from post-processing the discontinuous pressure model are shown in Figure
7.7. These velocity profiles correspond to each other, and it can thus be included that both
models give the same results for the overall influence of the fracture as well as for the fluid
behaviour inside the fracture.

7.2.2. PROPAGATING FRACTURES

Results for the propagating fracture case are shown in Figure 7.8. Similar to the results from
the previous section, both the Stokes flow and discontinuous pressure model obtain the
same fracture propagation behaviour for finer meshes, while the discontinuous pressure
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Figure 7.5: Pressure in the centre of the discontinuity at t = 200 s.

0 0.5 1 1.5 2

x [m]

0

1

2

3

4

5

6

w
+

 [
m

m
/s

]

10 -4

1 refinement layers

2 refinement layers

3 refinement layers

4 refinement layers

5 refinement layers

(a) Discontinuous pressure model

0 0.5 1 1.5 2

x [m]

0

1

2

3

4

5

6

w
+

 [
m

m
/s

]

10 -4

1 refinement layers

2 refinement layers

3 refinement layers

4 refinement layers

5 refinement layers

(b) Stokes flow model

Figure 7.6: Fracture outflow at t = 200 s.

model provides slightly more accurate results for coarser meshes. However, the accuracy
for both these methods at coarser meshes is dominated by the element-wise fracture prop-
agation.

The velocity inside the propagating fracture is shown in Figure 7.9 for the Stokes flow
simulations. Due to the traction separation law used for the recently fractured elements, a
sudden change in fracture apperture occurs at x = 0.5 m. As a result, peaks in the vertical
velocity are observed. These peaks, however, are orders of magnitude lower than the hori-
zontal velocity, indicating that the assumptions made for the discontinuous pressure model
are justified.

7.2.3. ENHANCED OPENING HEIGHTS

The final case presented redefines the fracture opening height as h = h0(2− xd )+nT
d Ns�u�,

introducing an offset to the opening height h0. This offset allows fractures with an increased
opening height to be simulated, without this additional opening height needing to be rep-
resented by the solid displacement around the interface elements. This allows fractures
which are outside the assumptions of the discontinuous pressure model to be simulated. It
should be noted, however, that these opening heights used in this section are not realistic,
and merely serve to investigate the limits of the presented models.
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Figure 7.7: Fluid velocity profiles inside the fracture at t = 200 s. Red dashed line corresponds to the
discontinuous pressure model, and the blue solid line to the Stokes flow model.
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Figure 7.8: Fracture propagation length
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Figure 7.9: Fluid velocity inside the propagating fracture using the Stokes flow model with the five
refinement layer mesh at t = 20 min.
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Figure 7.10: Direction and magnitude of the fluid flow within the fracture at t = 10 s using h0 = 2 m.

The velocity magnitude and directions are shown in Figure 7.10 using h0 = 2 m. While
the discontinuous pressure model is only able to represent a unidirectional flow, the Stokes
flow model presents a two-dimensional flow in which both velocity components are com-
parable. Furthermore, the no-slip boundary condition for the Stokes flow allows for large
deformations and thus allows for a non-zero horizontal velocity component at the fracture
walls. This is also observed in Figure 7.11, where a clear difference in velocity profile is seen
for the h0 = 2 m case. In contrast, the simulations with smaller fracture apertures do not
display any difference between the two models.

An effect of the increased opening height is the reduced resistance to fluid flow inside
the fracture, resulting in a constant pressure within the complete fracture. Due to this con-
stant pressure the fluid flow into the poroelastic material is solely governed by the interface
permeability term, while the transport inside the fracture plays a negligible role. Therefore,
even though a clear two-dimensional flow profile is obtained for the Stokes flow simulations,
the resulting interstitial fluid pressure is the same between the two models. It can thus be
concluded that even if the "small opening height compared to fracture length" assumption
is not satisfied, the discontinuous pressure model is still able to accurately include the over-
all interactions between the pressurised fracture and the surrounding porous material.
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Figure 7.11: Fluid velocity profiles inside the fracture at t = 10 s and x = 0.25 m. Red dashed line
corresponds to the discontinuous pressure model, and the blue solid line to the Stokes flow model.

7.3. CONCLUSION
This chapter presented a method to directly simulate Stokes flow within a pressurised and
propagating fracture. This model allows both velocity components to be simulated, thereby
capturing a more detailed fluid behaviour inside the fracture compared to a discontinuous
pressure model. To aid with the mesh generation for the interior of the fracture, the ten-
sor product structure of NURBS was exploited, and the fracture mesh was generated in a
parametric space to allow it to automatically adapt to changes in fracture opening height.

Comparing the direct simulation of Stokes flow to a discontinuous pressure model has
demonstrated the accuracy and efficiency of the discontinuous pressure model. Both mod-
els obtained similar results for static and propagating fractures, with the discontinuous
pressure model being slightly more accurate for coarser meshes. Furthermore, the discon-
tinuous pressure model obtained a quadratic convergence rate compared to the linear rate
for the Stokes flow, and only requires a single system of equations to be solved, making it
significantly more efficient.

Finally, simulations outside of the assumptions of the discontinuous pressure model
have shown the still limited validity of using this model. While the results for the fluid ve-
locity inside the fracture become inaccurate once the fracture aperture is comparable to its
length, the influence of the fracture on the surrounding porous material is still accurately
represented.



8
SHEAR FRACTURES: INERTIA AND PLASTICITY

The presence of an interstitial fluid in porous media can have a strong effect on the stresses.
This, in turn, influences the propagation of fractures and the occurrence of plastic deforma-
tions. Seismic activity has been related to changes in interstitial pressure [52, 81, 150, 243],
and experiments have shown that increases in fluid pressure can trigger earthquakes [205]
and cause instabilities in underground formations [167].

Simulation of shear-based fracture propagation is often combined with both small scale
plasticity using a traction-separation law and large scale off-fault plasticity using plastic flow
rules. When fluids are included, this is mainly achieved by assuming the porous material to
behave as either a "drained" or "undrained" material [93, 94, 220, 231], simplifying the gov-
erning equations to solely depend on the solid displacement. These assumptions neglect
the fluid diffusion, whereas including this has been shown to influence the plastic strains
[47] and fracture propagation velocity [103].

Another often made simplification is to neglect the fluid acceleration term in Darcy’s
law [38], which is argued to not influence results in the low frequency response limit [247,
248]. Simulations which used the fluid velocity as a separate degree of freedom have shown
that including the fluid acceleration can alter the obtained solutions [156], and including
these fluid acceleration terms results in additional damping for pressure and shear stress
waves [20, 176, 177]. This additional damping can alter the crack propagation [134], and for
highly permeable materials result in large differences compared to when the fluid accelera-
tion terms are neglected [245].

Simulations using a non-associated plasticity model, as is commonly used for geo-
materials, often suffer a severe mesh dependence and when implicit time discretisation
schemes are used, have issues converging. While the issues with the convergence have been
argued to originate from the non-symmetric stiffness matrix [80, 218], they and the mesh-
dependence have been linked to the loss of ellipticity of the system when ideal plasticity
is simulated [194, 195]. Several methods have been proposed to resolve this loss of ellip-
ticity. One of these methods is to regularise the plasticity model by adding viscosity to the
formulation[72, 214, 235], introducing a timescale to the plastic deformations. Other than
regularising the system, this timescale and the resulting lengthscale have also been shown
to prevent spurious oscillations in implicit schemes [51] and increase the maximum allowed
time step in explicit schemes [60].

A different method to regularise a problem containing non-associated plasticity is to
use a Cosserat continuum [62]. By including the micro-rotation as a degree of freedom, a
length scale is introduced, restoring the well-posedness [193, 194, 195] and removing mesh-
dependence issues relating to the discretisation [35, 36, 37]. Since they prevent issues re-
lating to mesh dependency, Cosserat continua are often used when simulating shear bands
[74, 109, 112] and analysis failure and collapse of geomaterials [10, 138, 229]. The improve-
ments in well-posedness have also been linked to an improved convergence [161].

This chapter will focus on combining fluid flows inside porous materials with shear-
based fracture propagation and non-associated plasticity, resulting in a realistic represen-
tation of porous geo-materials. The governing equations will be derived neglecting as few
terms as possible, while still adhering to the standard displacement-pressure formulation.
The effect of including the often neglected fluid acceleration terms will be analysed through
simulations with and without these terms. The effects of including fluid flows inside the
porous material will be investigated, comparing the results to the drained and undrained
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limits. Finally, an in-depth look at the interaction between the interstitial fluid pressure and
the fracture propagation will be performed, aimed at investigating stepwise fracture propa-
gation.

The contents of this chapter is strongly based on results previously published in [5, 8].
Furthermore, the code used to represent the non-associated plasticity is based on the finite
element code from [195], which has been adapted to allow for isogeometric elements and
the possible inclusion of visco-plasticity.

8.1. GOVERNING EQUATIONS

8.1.1. COSSERAT CONTINUUM

Next to the linear displacements of the solid, ux and uy , a Cosserat continuum introduces a
Cosserat microrotationωz [62], which are combined in the displacement vector for the solid
u = [

ux uy ωz
]T [36]. Introducing the Cosserat length scale `c , the relation between these

displacements and the total strain, assuming plane-strain conditions, is given through:

ε= Lu =



∂
∂x 0 0
0 ∂

∂y 0

0 0 0
0 ∂

∂x −1
∂
∂y 0 1

0 0 `c
∂
∂x

0 0 `c
∂
∂y



ux

uy

ωz

 (8.1)

with the strain vector given by ε = [
εxx εy y εzz εx y εy x `cκxz `cκy z

]T . In con-
trast to standard continua, the stresses and strains are non-symmetric in a Cosserat con-
tinuum, σx y 6= σy x , and are therefore separately included in the stress and strain vectors:
σs = [σxx σy y σzz σx y σy x mxz /`c my z /`c ]T with σxx etc. the Cauchy stress ten-
sor components, and mxz and my z the couple-stresses. The stresses are assumed to be
linearly related to the elastic strain through:

σs = Delεel (8.2)

with the linear-elastic stiffness matrix for a Cosserat continuum under plane-strain condi-
tions given by [37]:

Del =



a(1−ν) aν aν 0 0 0 0
aν a(1−ν) aν 0 0 0 0
aν aν a(1−ν) 0 0 0 0
0 0 0 G +Gc G −Gc 0 0
0 0 0 G −Gc G +Gc 0 0
0 0 0 0 0 2G 0
0 0 0 0 0 0 2G


(8.3)

using a = E/((1+ν)(1−2ν)) and G = E/(2+2ν).
The momentum balance for the fluid and solid using a Cosserat continuum is given by:

LT (
σs −αpm

)−ρs
(
1−n f

)
ü −ρ f n f I T

c ü f −ρ f I T
c

(
q ·∇∇∇)

q = 0 (8.4)

with the matrix I T
c used to convert the linear displacements from the fluid, u f , to the com-

bined linear displacement and Cosserat rotation form of the solid displacement. This ma-
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trix, and the density matrices for the fluid and solid, are given by:

ρs =
ρs 0 0

0 ρs 0
0 0 Θ

 Ic =
[

1 0 0
0 1 0

]

ρ f =
ρ f 0 0

0 ρ f 0
0 0 0

 mT = [
1 1 1 0 0 0 0

] (8.5)

using the rotational inertiaΘ= 2ρs`
2
c /(1+ν) [35].

The mass balance, Eq. 2.8, is written in a form compatible with a Cosserat continuum
as:

1

M
ṗ −α∇∇∇· (Ic u̇)−∇∇∇·q = 0 (8.6)

and Darcy’s law combined with the momentum balance of a Newtonian fluid as:

q = n f
(
u̇ f − Ic u̇

)=−k

µ

(
∇∇∇p +ρ f ü f +

ρ f

n f

(
q ·∇∇∇)

q
)

(8.7)

8.1.2. ACCELERATION AND INERTIA TERMS

The convective momentum transport terms in Eq. 8.4 and Eq. 8.7, (q · ∇∇∇)q , require gra-
dients of the fluid flux. These gradients can only be obtained if the fluid flux uses its own
interpolation functions, requiring the fluid flux to be used as an additional degree of free-
dom. However, this convective momentum transport term is almost always negligibly small
compared to the pressure gradient driven fluid flow or the acceleration driven fluid flow
[247], and is therefore neglected here.

The fluid acceleration term in the momentum balance, Eq. 8.4, is replaced by the Darcy
fluid flux by its definition from Eq. 8.7, resulting in:

LT (
σs −αpm

)−ρü −ρ f I T
c q̇ = 0 (8.8)

with the volume-averaged density ρ = (1−n f )ρs +n f ρ f , using the density matrices from
Eq. 8.5. Similarly, substituting the definition of the fluid flux in Eq. 8.7 results in:

q =−k

µ

(
∇∇∇p +ρ f

(
Ic ü + 1

n f
q̇

))
(8.9)

The time derivative of the fluid flux is discretised at time t +∆t using a θ-scheme as:

q̇ t+∆t = 1

θ∆t

(
q t+∆t −q t )+(

1− 1

θ

)
q̇ t (8.10)

using the fluid flux q t and change in fluid flux q̇ t at the old time as history variables. Using
this time discretisation, Equation 8.9 is partially discretised at time t +∆t as:

q t+∆t =−k

µ

(
∇∇∇p t+∆t +ρ f

(
Ic ü t+∆t + 1

n f

(
1

θ∆t

(
q t+∆t −q t )+(

1− 1

θ

)
q̇ t

)))
(8.11)

q t+∆t =
(
1+ ρ f k

n f µθ∆t

)−1 (
−k

µ
∇∇∇p t+∆t − kρ f

µ
Ic ü t+∆t − kρ f

µn f

(
(1− 1

θ
)q̇ t − 1

θ∆t
q t

))
(8.12)

with the fluid flux q t+∆t only depending on the displacement and interstitial fluid pressure
at the new time step, and history variables related to the old time.
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Partial time-discretising Eq. 8.6 at time t +∆t , and substituting this expression for the
fluid flux results in:

1

M
ṗ t+∆t +α∇∇∇· (Ic u̇ t+∆t )

+
(
1+ ρ f k

n f µθ∆t

)−1

∇∇∇·
(
−k

µ
∇∇∇p t+∆t − kρ f

µ
Ic ü t+∆t − kρ f

µn f

(
(1− 1

θ
)q̇ t − 1

θ∆t
q t

))
= 0

(8.13)

Similar for the momentum balance, Eq. 8.8, discretising the fluid flux derivative q̇ using Eq.
8.10, and substituting the explicit expression for the fluid flux, Eq. 8.12, gives:

LT (
σt+∆t

s −αp t+∆t m
)− (

ρ− An f ρ f
)

ü t+∆t
s + An f I T

c ∇∇∇p t+∆t

+ρ f I T
c (1− A)

(
1

θ∆t
q t −

(
1− 1

θ

)
q̇ t

)
= 0

(8.14)

with the constant A defined as:

A =
ρ f

k
µ

n f θ∆t +ρ f
k
µ

(8.15)

Equations 8.13 and 8.14 are used to describe the saturated porous material in the standard
displacement-pressure formulation, while still including the fluid and solid acceleration
driven fluid flow and using separate inertia terms for the fluid and solid.

DRAINED AND UNDRAINED ASSUMPTIONS

The above equations are commonly simplified by assuming the porous material to either
behave as a "drained" or "undrained" material. The two assumptions are assumed to rep-
resent the limiting cases for a highly permeable and impermeable material.

Under the undrained assumption, the deformations of the porous material are assumed
to occur fast compared to any fluid flow, and the main interest in these solid deformations.
This allows the permeability to be assumed zero, removing all fluid flow. In contrast, the
drained assumption is used when the porous material has a high permeability, or a fluid
with a low viscosity is simulated. Under this assumption, the interstitial pressure in the
complete domain is set equal to a reference pressure, and kept constant. It is furthermore
assumed that the inertia of the fluid is negligible, and under the drained assumption the
momentum balance only includes a term for the solid inertia.

In the above equations, when the permeability approaches zero, the constant A and all
fluid flux terms also approach zero. This removes the separate inertia terms for the solid
and fluid, and results in Eq. 8.14 using a single inertia term with the volume averaged den-
sity. This low permeability limit corresponds to the assumptions made by the undrained
assumption.

In contrast, when a high permeability is used, the constant A approaches one. This re-
moves the contribution of the fluid density to the volume averaged mass matrix, instead
using a separate inertia term for the fluid solely depending on the pressure gradient. Inter-
estingly, it follows from the momentum balance that in this high permeability limit the fluid
inertia term solely depends on the current pressure gradient and not on the history variables
that were used to perform the time discretisation of the fluid flux time derivative. Looking at
the mass balance from Eq. 8.13, using a high permeability and neglecting any acceleration
related terms would result in a fluid flux capable of removing any pressure gradients. How-

ever, assuming a very high permeability (
ρ f k

n f µθ∆t >> 1) and retaining the acceleration driven
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fluid flow terms allows this equation to be rewritten to:

1

M
ṗ t+∆t+α∇∇∇·(Ic u̇ t+∆t )+∇∇∇·(−n f θ∆t

ρ f
∇∇∇p t+∆t −n f θ∆t Ic ü t+∆t −θ∆t

((
1− 1

θ

)
q̇ t − 1

θ∆t
q t

))
= 0

This equation shows that while the fluid flux scales with the permeability when neglecting
inertia related terms, this is no longer the case when including acceleration driven fluid
flows. For these cases, the fluid flux is still limited by the inertia of the fluid. Interestingly,
this equation and the momentum balance using A = 1 also show that for sufficiently high
permeabilities the mass and momentum balances no longer depend on the permeability of
the porous material. This indicates that there is an upper limit for the pressure changes and
fluid fluxes, even when acceleration terms are included. This upper limit, however, does not
correspond to the drained limit, indicating that large differences might occur between the
drained and high permeability limits.

8.1.3. PLASTICITY

The plastic deformations are modeled using a non-associated Drucker-Prager model. This
model is defined by the yield function:

f =
√

3J2 +αps −k (8.16)

and the plastic potential function:

g =
√

3J2 +βps (8.17)

using the solid pressure ps (positive for tension) and the second invariant of the deviatoric
stresses J2. The solid pressure for a Cosserat continuum is obtained through [37]:

ps =
[1

3
1
3

1
3 0 0 0 0

]
σs (8.18)

and the second invariant of the deviatoric stresses is given by [37]:

J2 = 1

2
σT Pσ= 1

2
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(8.19)

The constant used in Eq. 8.16 and 8.17 are related to the cohesion c, the dilatency angle ψ
and the angle of internal friction φ by:

α= 6sinφ

3− sinφ
β= 6sinψ

3− sinψ
k = c

6cosφ

3− sinφ

The stresses are bounded by the yield function through f ≤ 0, and the plastic strains are
obtained through:

ε̂p = λ̂m (8.20)

with the �̂ symbol indicating a path-dependent derivative. The direction of the plastic flow
is given by:

m = m∗

||m∗|| m∗ =
{
∂g
∂σ if ps ≤ k

(De )−1
(
σtr i al −σapex

)
if ps > k

(8.21)



108 8. SHEAR FRACTURES: INERTIA AND PLASTICITY

using the stresses at the apex of the Drucker-Prager plasticity cone σapex .
In a discretised form, and at integration point level, the stresses are first predicted as-

suming only elastic deformations to occur during the current time step:

σt+∆t
tr i al = Del

(
Bu t+∆t −εt+∆t

p

)
(8.22)

using the total plastic strain εt
p that occurred up to and including the previous time step.

These trial stresses are substituted into the yield function from Eq. 8.16, and if the yield
function exceeds the criterion f ≤ 0 plastic deformations occur at the integration point. In
this case, the two criteria that must be fulfilled are:

0 =σt+∆t
s −

(
σt+∆t

tr i al − ∆̂λDel m
)

(8.23a)

0 = f (σt+∆t
s ) (8.23b)

These equations are solved iteratively through a Newton-Raphson algorithm [40] :[
σt+∆t

s

∆̂λ

]
j+1

=
[
σt+∆t

s

∆̂λ

]
j

−C−1
e f f

[
σt+∆t

s −
(
σtr i al − ∆̂λDel m

)
f

]
j

(8.24)

with the effective compliance given by:

Ce f f =
[

I + ∆̂λ j Del
∂m
∂σ Del m(

∂ f
∂σ

)T
0

]
(8.25)

Upon reaching converged stresses, the effective compliance is also used to determine the
effective tangential stiffness matrix by first inverting the effective compliance, then select-

ing the upper-left 7×7 sub-matrix and multiplying with Del

(
I − ∆̂λDel

∂m
∂σtr i al

)
. If the solid

pressure exceeds the pressure at the apex, this results in an effective stiffness De f f = 0, since

∆̂λDel
∂m

∂σtr i al
= I in the absence of any rate-dependent plasticity.

8.1.4. DISCONTINUITY MODEL

The fracture uses the discontinuous pressure model presented in Chapter 5, which, in the
case of a closed fracture, reduces to:

0 = ki
(
p++p−−2pd

)
(8.26)

with the coupling terms for the flow imposed on the porous material given by Eq. 5.1 and
5.2 as:

nd ·q+
d = ki

(
p+−pd

)
(8.27)

nd ·q−
d = ki

(
p−−pd

)
(8.28)

The tractions at the discontinuity are given in a local coordinate system as:

τ±Γd
=

 τd s

τdn −pd

τω

 (8.29)

with the normal and couple tractions used to enforce a continuous Cosserat microrotation
and prevent negative fracture opening heights through:

τdn = kn�un� τω = `2kω�ωz� (8.30)
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using the dummy stiffness kn and kω. The tractions in tangential direction are given through
an exponential traction-separation law:

τd s = frτdn + ( fp − fr )τdne−2�dx�/Dc (8.31)

using the peak and residual coefficients of friction fp and fr , the weakening distance
Dc = 2Gc /( fpτdn − frτdn), and the fracture energy Gc . While for shear fractures it is more
common to use a linear degradation function [83, 85, 106, 220, 230], this exponential func-
tion is used to aid in the convergence of the non-linear solver by using a smooth function.
The history parameter �dx� is the maximum tangential displacement jump obtained during
the simulation, and is either equal to this maximum if obtained in a previous time step, or
the current displacement jump if this jump exceeds the previously obtained maximum.

8.1.5. BOUNDARY CONDITIONS

To prevent reflecting stress waves at the domain boundary, absorbing boundary conditions
are used. For these boundary conditions, it is presumed that the Cosserat rotation mainly
influences the stresses near the fracture and plastic deformation zones, and does not signif-
icantly alter the stresses at the domain boundary. This allows standard absorbing boundary
conditions to be used, describing the traction at the boundary by [103, 136, 151, 213] :

τ=C u̇ =ρ
cp 0 0

0 cs 0
0 0 0

 u̇ (8.32)

with the damping matrix C using the pressure and shear wave speeds cp and cs respectively.

8.2. DISCRETISATION
The time discretisation of the governing equations, Eq. 8.13 and 8.14, is performed using a
Newmark scheme for the solid displacement:

u̇ t+∆t = γ

β∆t

(
u t+∆t −u t )−(

γ

β
−1

)
u̇ t −

(
∆tγ

2β
−∆t

)
ü t (8.33a)

ü t+∆t = 1

β∆t 2

(
u t+∆t −u t )− 1

β∆t
u̇ t −

(
1

2β
−1

)
ü t (8.33b)

and, similar to the fluid flux, a θ-scheme for the interstitial fluid pressure:

ṗ t+∆t = 1

θ∆t

(
p t+∆t −p t )+(

1− 1

θ

)
ṗ t (8.34)

This discretisation introduces history variables in the control points for the interstitial
pressure, velocity, and acceleration at the old time. These history variables are updated once
the current time step is completed. The plasticity model introduces a history variable for the
plastic strain εt

p , which in contrast to the time dependent history variables, is dependent
on the loading path. To properly include this path dependence, the plastic strain history
variable is updated after each time step and during the current time step at the moment the
fracture propagates. This allows the plastic strain to capture the high stresses at the fracture
tip, and the decrease in stresses once the fracture is propagated.

The last history dependent parameter that requires updating is the mesh itself to allow
the fracture to propagate. While several different moments are suggested in literature for
this propagation, for instance introducing a zero duration propagation step [45, 46, 146] or
considering the fracture propagation to occur at the end of time steps [155, 173, 184, 206],
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it is chosen here to consider the fracture propagation as part of the time step and implicit
integration scheme. Therefore, once a converged solution is reached, the stresses ahead of
the fracture are checked and if these stresses exceed the fracture strength, σy x > fpσy y for a
horizontal shear fracture, this fracture is propagated a single element length. This results in
a fully implicit scheme, in which the mass and momentum balance are fulfilled at the end
of the time step even when the fracture propagates.

Corresponding to the previous chapter, the interstitial and discontinuity fluid pressures
are discretised using cubic Bézier extracted T-splines, and the linear displacements using
quartic T-splines, fulfilling the inf-sup condition. No requirement is placed on the Cosserat
microrotation through the inf-sup condition, since no direct coupling occurs between the
fluid pressure and the Cosserat rotation. Therefore, to limit the required amount of degrees
of freedom, cubic T-splines are used to discretise the Cosserat rotation. This results in a
standard finite element discretisation:

u =
nel∑

el=1
N el

s uel (8.35)

p =
nel∑

el=1
N el

f pel (8.36)

pd =
neli∑

eli=1
N eli

pd peli

d (8.37)

where the interpolants for the solid displacements are now split into separate components
for the linear displacements, Nx and Ny (using quartic T-splines), and the Cosserat rotation
Nω (using cubic T-splines):

Ns =
Nx 0 0

0 Ny 0
0 0 Nω

 (8.38)

This spatial and temporal discretisation allows the momentum balance, Eq. 8.14 to be
discretised as:

fext − fi nt − fd = 0 (8.39)

with the external force vector including contributions due to traction and absorbing bound-
ary conditions:

fext =
∫
Γt

N T
s τ+N T

s RT SR Ns

(
γ

β∆t

(
u t+∆t −ut

)−(
γ

β
−1

)
u̇ t −

(
∆tγ

2β
−∆t

)
ü t

)
dΓ (8.40)

The internal force vector is discretised as:

fi nt =
∫
Ω

B Tσt+∆t
s −αB T mN f p t+∆t dΩ

+
∫
Ω

N T
s

(
ρ− An f ρ f

)
Ns

(
1

β∆t 2

(
u t+∆t −u t )− 1

β∆t
u̇ t −

(
1

2β
−1

)
ü t

)
dΩ

−
∫
Ω

An f N T
s I T

c ∇∇∇N f p t+∆t + (1− A) N T
s ρ f I T

c

(
1

θ∆t
q t −

(
1− 1

θ

)
q̇ t

)
dΩ

(8.41)

and the forces related to the discontinuity are obtained from:

fd =
∫
Γd

N T
s RT (τΓd )t+∆t dΓd (8.42)

using the interface tractions defined in Eq. 8.29.
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Similarly, the mass conservation from Eq. (8.13) is discretised as:

qext −qi nt −qd = 0 (8.43)

with the external fluxes defined as:

qext =∆t
∫
Γq

N T
f q dΓq (8.44)

and the internal flux vector as:

qi nt =−
∫
Ω

1

M
N T

f N f

(
1

θ

(
p t+∆t −p t )+∆t

(
1− 1

θ

)
ṗ t

)
dΩ

−
∫
Ω
αN T

f Ic B
(
γ

β

(
u t+∆t −u t )−∆t

(
γ

β
−1

)
u̇ t −∆t 2

(
γ

2β
−1

)
ü t

)
dΩ

−k∆t

µ

(
1+ ρ f k

n f µθ∆t

)−1 ∫
Ω

(∇∇∇N f
)T ∇∇∇N f p t+∆t + ρ f

n f

(∇∇∇N f
)T

((
1− 1

θ

)
q̇ t − 1

θ∆t
q t

)
+ρ f

(∇∇∇N f
)T Ic Ns

(
1

β∆t 2

(
u t+∆t −u t )− 1

β∆t
u̇ t −

(
1

2β
−1

)
ü t

)
dΩ

(8.45)

The fluxes due to the fluid flow normal to the fracture are given by:

qd = ki∆t
∫
Γ±d

N T
f

(
Npd p t+∆t

d −N f p t+∆t )dΓd (8.46)

and the mass balance for the interior of the fracture, Eq. (8.26), is discretised as:

ki∆t
∫
Γd

N T
pd N f

(
p+ t+∆t +p− t+∆t

)
−2N T

pd Npd p t+∆t
d dΓd = 0 (8.47)

As was the case in the previous chapters, these equations are solved in a monolithic
manner using a Newton-Raphson scheme. The system matrices used for this scheme are
given in Appendix C.3. A quadratic convergence rate was obtained using these system ma-
trices, aided by the regularising effect of the Cosserat continuum.

8.3. RESULTS
A typical shear fracture case is simulated [220, 231], consisting of a 500 m × 250 m domain
with a 75 m long horizontal fracture in the centre, as shown in Figure 8.1. This fracture is
propagated along a pre-inserted C 0 continuity line, and is therefore only allowed to prop-
agate horizontally. Absorbing and traction boundary conditions are imposed at all bound-
aries, using τxx = 8.55 MPa, τy y = 10 MPa, and τx y = τy x = 1.8 MPa.

The porous material is characterised by a Young’s modulus E = 10 GPa, Poisson ratio
ν = 0.25, Cosserat shear modulus Gc = 4 GPa, Cosserat length scale `c = 1 cm, and density
ρs = 2500 kg/m3. A water-like fluid is used with µ = 1 mPa · s and ρ f = 1000 kg/m3. The
bulk modulus of the solid is Ks = 10 GPa, the fluid bulk modulus K f = 2 GPa, the Biot co-
efficient α = 1.0, a porosity n f = 0.3, and the interface permeability ki = 10−10 m/Pas. A
peak friction coefficient fp = 0.45, residual friction coefficient fr = 0.045, and fracture en-
ergy Gc = 17.4 kJ/m2 are used. A cohesionless, non-dilatant Drucker-Prager plasticity model
(c = 0,ψ= 0◦) is adopted, with an angle of internal friction φ= 31◦. The intrinsic permeabil-
ity of the porous material was varied between k = 10−10 m2 and k = 10−7 m2, and additional
simulations were performed using the undrained (k = 0 m2) and the drained (p = 0 Pa and
q = 0 m/s) assumptions.
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Figure 8.1: Overview of used geometry and traction boundary conditions

The spatial discretisation uses quartic T-splines for the horizontal and vertical displace-
ments, and cubic T-splines for the Cosserat rotation, interstitial fluid pressure, and discon-
tinuity pressure. Three different meshes were used to study the effects of mesh refinement:
The first mesh uses a layer of 320×10 elements at the discontinuity, with the discontinuity
and C 0 continuity line in the centre of this layer. This is encompassed by layers of 160×5
and 80×15 Bézier extracted elements, and this mesh will be hereafter referred to as 320×50.
The second mesh adds an extra refinement layer of 640×10 elements at the discontinuity,
resulting in the 640×60 mesh. The final mesh halves all elements horizontally and vertically,
resulting in 1280×120 elements.

The initial conditions of zero interstitial and discontinuity pressure and equilibrium
for the solid stresses are imposed by simulating the first t0 = 1 s using large time steps
∆t = 0.01 s while constraining the fluid pressure to p = 0 and not allowing any plastic defor-
mations or fracture propagation. After these initial conditions are achieved, the constraints
on the pressure, fracture propagation, and plasticity are removed, and the remainder of the
simulation is performed using∆t = 0.04 ms. This time step is small enough to have the frac-
ture only propagate twice (due to symmetry) every 5-10 time steps using the finest mesh.
The parameters used for the Newmark and θ-schemes were β= 0.4, γ= 0.75, and θ = 1.0 .

8.3.1. EFFECT OF INCLUDING ACCELERATION TERMS

To analyse the effect of including acceleration driven flow and using separate inertia terms,
these terms are added one-by-one. The first simulation uses only the pressure gradient
driven flow, the k

µ∇∇∇p term in Equation 8.9, and uses only a single inertia term in the mo-
mentum balance of Eq. 8.8, neglecting the acceleration of the fluid relative to the solid.

After this, the solid acceleration driven fluid flow,
kρ f

µ Ic ü, and the fluid acceleration driven

fluid flow,
kρ f

n f µ
q̇ , one-by-one. For the last simulation, two separate inertia terms are used by

including the ρ f I T
c q̇ term from Eq. 8.8. All these simulations have been carried out using

an intrinsic permeability k = 10−8 m2 and use the 640×60 mesh.
The resulting interstital fluid pressures are shown in Figure 8.2. When no acceleration

driven fluid flow is included, the only changes in pressure are caused by the slight compres-
sion of the solid and the therein contained fluid. This causes slight increases in pressure in
the compression sides of the fracture, the top right and bottom left quarters of the domain.
Due to the high permeability of the domain, these pressure regions are diffused over a large
area.
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(a) Single inertia term in the momentum balance and no acceleration terms in Darcy’s law
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(b) Single inertia term in the momentum balance and only solid acceleration terms in Darcy’s law
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(c) Single inertia term in the momentum balance and all acceleration terms in Darcy’s law
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(d) All terms in the momentum balance and in Darcy’s law

Figure 8.2: Interstitial fluid pressure at t − t0 = 52 ms when using different acceleration and inertia
terms.
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(a) Single inertia term in the momentum balance and no acceleration terms in Darcy’s law
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(b) Single inertia term in the momentum balance and only solid acceleration terms in Darcy’s law
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(c) Single inertia term in the momentum balance and all acceleration terms in Darcy’s law
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Figure 8.3: Shear stress σy x at t − t0 = 52 ms when using different acceleration and inertia terms.
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Including the solid acceleration driven fluid flow causes the interstitial fluid pressure to
react to stress waves, as shown in Figure 8.2b. For the compression sides of the fracture, this
causes fluid to flow away from the location of the pressure waves, resulting in low pressure
areas encapsulated by two high pressure areas. The opposite is seen on the extensional sides
of the fracture. However, the inclusion of the solid acceleration driven fluid flow also results
in severe pressure oscillations throughout the domain, caused by the coupling between the
fluid fluxes and the solid acceleration.

Figure 8.2c shows that adding the fluid acceleration removes these oscillations and adds
additional damping, limiting the distance the stress waves travel from the fracture tips. In-
cluding the fluid acceleration driven fluid flow also increases the pressure near the fracture
tips, resulting in higher pressures at the compression side and lower pressure at the exten-
sional sides compared to the case with only the solid acceleration included. Finally, adding
the inertia for the fluid acceleration relative to the solid to the momentum balance does not
visibly alter the interstitial fluid pressure, as shown in Figure 8.2d.

The shear stress is shown in Figure 8.3. Similar to the interstitial fluid pressure, slight os-
cillations are seen when only the solid acceleration driven fluid flow is included, and these
oscillations disappear once the fluid acceleration is added. The damping added through
the fluid acceleration also reduces the distance travelled by shear stress waves before disap-
pearing. Comparing the shear stress for the cases with and without separate inertia terms
shows slightly larger differences compared to those obtained for the pressure. However, the
differences are still fairly limited, and are not located near the fracture tips.

It can be concluded that the acceleration driven flow has a significant effect on both the
fluid pressure and solid stresses, and needs to be included in the formulation. However,
separate inertia terms in the mass balance have a much more limited effect, while resulting
in lengthy terms in the internal force vector. Therefore, the remainder of this chapter will
only include the acceleration driven fluid flow terms, and the separate inertia terms will not
be included.

8.3.2. MESH SENSITIVITY

The three meshes were used to simulate the cases using k = 10−8 m2 and k = 10−10 m2,
and assuming drained and undrained conditions. The result for the k = 10−10 m2 case, Fig-
ure 8.4b, shows only a small influence of the element size, as is the case for the undrained
and drained cases (not shown). The coarse mesh shows small jumps in the fracture length,
with these jumps corresponding to two element lengths due to the symmetry of the prob-
lem. Upon mesh refinement, these steps decrease in size. These steps originate from the
element-wise fracture propagation imposing a minimum propagation length. If the shear
stress is not sufficient to extend the discontinuity a complete element-length, no propaga-
tion takes place. Only when the stress at the furthest integration point away from the frac-
ture tip surpasses the fracture strength does the complete element become fractured and
the total discontinuity length is increased by one element-length.

It is important to note that this step-wise propagation is solely a numerical artefact, and
does not have any physical origin. As long as the time step size is chosen such that at most
a single element fractures per time step, this stepwise propagation will occur. In contrast,
when the time step size is increased such that at least one element fractures every step, this
stepwise propagation will not occur, and the fracture will show a more continuous propaga-
tion.

The results for the k = 10−8 m2 case are shown in Figure 8.4a. In contrast to the other
cases, there is a clear difference between the three meshes. Using the coarse mesh, the
fracture propagation pauses halfway through the simulation before continuing to prop-
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Figure 8.4: Effect of mesh refinement
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Figure 8.5: Effect of mesh refinement using k = 10−8 m2

agate shortly after. This "stick-slip" like behaviour becomes more common upon mesh
refinement, resulting in a significant difference between the meshes in the discontinuity
length. This behaviour is different from the element-size dependence previously observed,
as shown in Figure 8.5. The small steps still exist for all meshes, while the "stick-slip" like
behaviour introduces large plateaus for the finer meshes.

8.3.3. EFFECT OF PERMEABILITY

Results for the complete range of simulated permeabilities are shown in Figure 8.6 using the
1280×120 mesh. Stick-slip like behaviour is observed for the cases using a high permeability,
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Figure 8.6: Fracture length using several values for the intrinsic permeability

whereas a smooth fracture propagation is observed for cases with a lower permeability, and
the drained and undrained cases. Due to this lack of stepwise propagation, the k = 10−10 m2

simulation approaches the undrained case. In contrast, large differences are observed be-
tween the drained and high permeability cases, as was suggested based on the governing
equations in Section 8.1.2. However, only limited differences occur between the k = 10−7 m2

and k = 10−8 m2 cases, suggesting that these results approach a high-permeability limit.

The plastic strain around the right fracture tip is shown in Figure 8.7. The drained and
undrained cases show similar results as observed in [231], with the plasticity being limited
to the extensional side of the fracture, and plastic deformations occurring over a larger area
for the drained compared to the undrained case. While the k = 10−10 m2 results approach
the undrained case, the high permeability cases show significant differences compared to
the drained case. Large amounts of plastic deformation are seen at the locations where the
fracture propagation pauses, with a small drop in plastic strain directly after these pauses.
Overall, the area in which plastic strain occurs surpasses the drained case, again confirming
that these high permeability cases do not approach the drained assumption limit.

8.3.4. "STICK-SLIP" LIKE BEHAVIOUR

The stick-slip like behaviour is explained by looking at the k = 10−8 m2 results at the four
different times shown in Figure 8.8. The interstitial fluid pressure at these times is given in
Figure 8.9 and the shear stresses responsible for propagating the fracture in Figure 8.10.

At the moment the fracture propagation restarts, there is a low pressure region on the
compression side next to a small high pressure region just behind the fracture tip, and a
high pressure region next to a small low pressure region on the extensional side (subfig-
ures a). The large low pressure region (compression side) and high pressure region (exten-
sional side) detach during fracture propagation and diffuse away. The small high pressure
region (compression side) and low pressure region (extensional side) start increasing in size
while the fracture propagates (subfigures b). The inclusion of acceleration-driven fluid flows
causes fluid to move from the newly created low pressure region to the high pressure zone
near to the crack tip (for the compression side), further increasing the size and magnitude of
this high pressure zone. Once this high pressure zone grows to overtake the fracture tip, the
fracture propagation arrests (subfigures c), while due to the inclusion of acceleration driven
fluid flow the pressure region flows past the fracture tip. Only once the high pressure region
above the fracture and the low pressure region below the fracture have fully surpassed the
crack tip, fracture propagation is resumed again and a new high pressure region (on top) and
low pressure region (below the crack) start to build up again. This alternating build up and
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Figure 8.7: Plastic strain (ε2
xx +ε2

y y )0.5 at time t − t0 = 120 ms
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Figure 8.8: Locations of Figures 8.9 and 8.10 using k = 10−8
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(a) t − t0 = 112 ms

340 360 380 400 420

x [m]

100

110

120

130

140

150
y
 [
m

]

-1

-0.5

0

0.5

1
p [MPa]

(b) t − t0 = 116 ms
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(c) t − t0 = 128 ms
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Figure 8.9: Interstitial fluid pressure around the right crack tip using k = 10−8 m2 at the times shown
in Figure 8.8
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(a) t − t0 = 112 ms
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(b) t − t0 = 116 ms
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(c) t − t0 = 128 ms
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Figure 8.10: Shear stress σy x around the right crack tip using k = 10−8 m2 at the times shown in
Figure 8.8
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Figure 8.11: Interstitial fluid pressure and shear stress for k = 10−10 m2 at t − t0 = 120 ms
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Figure 8.12: Interstitial fluid pressure and shear stress for k = 10−8 m2 without acceleration terms in
Darcy’s law at t − t0 = 120 ms

shedding of high and low pressure regions keeps repeating, resulting in repeating pauses in
the fracture propagation.

The effect of this alternating build up of high and low pressure zones on the shear stress
is shown in Figure 8.10. While the shear stress starts of concentrated around the fracture tip,
the developing pressure zones diffuse this shear stress over a larger region as the fracture
propagates. Once the propagation arrests, the shear stress is distributed over a significantly
larger region compared to the beginning, as shown in subfigure c. During the propagation
pause, the shear stress becomes more concentrated around the fracture tip again due to
the fluid pressure diffusing away, and once the fracture propagation restarts, these shear
stresses are limited to a small region at the crack tips again.

Results from a case using a lower permeability, Figure 8.11, or when no acceleration
driven fluid flow is included, Figure 8.12, show that these opposite pressure regions do not
occur. For the low permeability case the acceleration driven fluid flow terms are too small
to significantly alter the pressure, and the only change in interstitial fluid pressure is due to
the compression caused by solid deformations. Both these cases also show the high shear
stress to be limited to a small region at the crack tips, and do not show the growing and
shrinking of this region observed for the high permeability case with acceleration driven
fluid flow. This indicates that the observed stick-slip like behaviour is solely caused by the
acceleration driven fluid flow, and therefore requires these terms to be included to obtain a
realistic representation of the fracture propagation.

8.3.5. SUPERCRITICAL FRACTURE PROPAGATION

A second case using a combination of external tractions to cause the propagation velocity to
exceed the shear wave speed is now considered. This case uses τxx = 19 MPa, τy y = 10 MPa,
τx y = τy x = 2.4 MPa, and all other properties corresponding to those previously described.
All simulations used the 1280×120 mesh.

The manner of fracture propagation is hown in Figure 8.13. In contrast to the previous
case, no stick-slip like behaviour occurs for simulations using a high permeability. Further-
more, even the simulations using a high permeability approximate the undrained fracture
propagation velocity, with the fracture for the drained case propagating slower. This can
be explained by looking at the interstitial fluid pressure near the fracture tip, Figure 8.14.
Comparing the interstitial pressures for the k = 10−8 m2, k = 10−10 m2, and undrained cases
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Figure 8.13: Fracture length using the supershear load case

shows that the pressures near the crack tip are similar, which explains the similar fracture
velocity obtained for these cases. The high pressure regions next to low pressure regions that
were observed in the previous case using k = 10−8 m2 do still occur for this case, but due to
the rapidly propagating fracture these pressure regions do not surpass the fracture and are
thus unable to cause the stick-slip behaviour described before. However, the acceleration
driven fluid flow still results in a pressure increase near the crack tip, compensating for the
increased fluid diffusion due to the higher permeability.

While no stick-slip behaviour was observed to originate from the interstitial fluid pres-
sure, small arrests in the propagation still occurred for all cases, as shown in Figure 8.13b.
These small pauses are independent of the used permeability, only occur up to t−t0 ≈ 40 ms
(corresponding to a fracture from x = 125 m-375 m), and do not occur after this initial pe-
riod where only the small element-sized steps are seen. These small pauses originate from
oscillations in the shear stress, as shown in Figure 8.15. Initially, the domain is in a static
equilibrium. Once the initial conditions are achieved, and propagation and plastic defor-
mations are allowed, the fracture propagates faster than the surrounding stresses can adapt.
This results in the fracture propagating through the stresses originating from the initial con-
ditions, causing small stress oscillations to occur. These stress oscillations disappear once
the fracture propagates out of area influenced by the initial fracture, thereby limiting these
small oscillations to only occur near the start of the simulations.
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(c) Undrained
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Figure 8.14: Interstitial fluid pressure using the supershear load case at t − t0 = 60 ms

8.4. CONCLUSION

In this chapter, the formulation for a poroelastic medium has been extended to include sep-
arate inertia terms for the fluid and solid, and to include acceleration driven fluid flows.
The derived formulation includes the fluid acceleration while still using a displacement-
pressure formulation, in contrast to other pre-existing formulations which either use a
displacement-pressure-fluid velocity to include these terms or neglect the fluid acceleration
terms to preserve the displacement pressure formulation. This formulation was combined
with a shear based traction-separation law and a discontinuous pressure model to include
fractures. Bézier extracted T-splines were used for the spatial discretisation, and special at-
tention was paid in the temporal discretisation to preserve the path or time dependence of
the "time" derivatives.

While the use of separate inertia terms for the solid and fluid had only a slight influence
on the obtained results, the effects of including acceleration-driven fluid flows were larger.
Including solid acceleration driven fluid flow allowed the interstitial fluid pressure to react
to stress waves, but resulted in severe oscillations throughout the domain. Adding the fluid
acceleration term resolved these oscillations, provided additional damping for stress waves,
and increased the interstitial fluid pressure near the fracture tips.

Through a mesh refinement study and simulations using a range of intrinsic permeabil-
ities three different manners of step-wise propagation were observed. The first type origi-
nates from the element-wise fracture propagation only allowing for complete elements to
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Figure 8.15: Shear stress σy x using the supershear load case with k = 10−8 m2
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fracture. When this is combined with a time step small enough to have either none or one
element fracture, it results in small jumps in the fracture propagation length. Since these
steps originate from the spatial discretisation used, they are solely of a numerical nature
and do not have any physical origin.

The second manner of stepwise propagation observed was a stick-slip like behaviour
caused by the acceleration driven fluid flow. This flow results in alternating high and low
pressure regions near the fracture tip, and once one of these regions grows past the fracture
tip, the propagation pauses until the fluid pressure is reduced again. Since this depends
on the acceleration driven fluid flows, this stick-slip like behaviour only occurs when the
porous material has a high permeability, and was shown to require a sufficiently fine mesh
to be visible during the simulations.

Finally, simulations in which the discontinuity propagation velocity was above the shear
wave speed showed that initial conditions are also able to cause small arrests. Since these
arrests are caused by the pre-existing stresses surrounding the discontinuity not adapting
fast enough to the new length of the fracture, this stepwise propagation disappears once the
discontinuity grows past the zone influenced by these initial conditions.





9
NUMERICAL SUB-GRID MODEL

In the previous chapter it was seen that inertial effects can greatly influence the obtained
results for shear-based fractures. Extending this to pressurised fractures, however, is not
possible using existing sub-grid models. The basis of all subgrid models is an analytically
derived velocity profile [39], which limits the types of fluid behaviour that can be included.
For instance, while a sub-grid model for a non-Newtonian power law fluid was derived in
Chapter 2, this can not be extended to more complicated fluid rheologies such as Carreau
fluids [48] since an analytic velocity profile does no longer exist. A similar issue occurs when
trying to include inertial effects: The time dependence can only be included for a limited
number of cases for which analytical solutions are available and therefore inertial effects
can not be included in standard sub-grid formulations.

In this chapter, a sub-grid model will be detailed which does not depend on an analyt-
ical solution, but instead numerically obtains a velocity profile within the fracture in each
integration point. This results in two distinct scales, the macro scale on which the mass and
momentum balance are solved, and the fracture scale on which the velocity profiles are ob-
tained. This scheme will be described for Newtonian fluids in Section 9.1, explaining how
the velocity profiles are resolved and how inertial effects within the fracture are included.
This formulation is extended to non-Newtonian Carreau fluids in Section 9.2, showcasing
the ability of the sub-grid model to include fluids for which no analytic velocity profile ex-
ists. Finally, simulations using the derived numerical sub-grid model are preformed to show
the abilities of the derived models, and highlight the effect of including inertial forces inside
the fracture. The contents of this chapter is strongly based on results previously published
in [2].

9.1. NEWTONIAN FLUIDS
The behaviour of the porous material saturated with a Newtonian fluid is described using
the equations from the previous chapter, including acceleration-driven fluid flow. While
the effects of plastic deformations will not be investigated in this chapter, a Cosserat con-
tinuum is used to make the equations described here compatible with plasticity. The mass
and momentum balance are given by a reordered version of Eqs. 8.13 and 8.14 as:

LT (
σt+∆t

s −αp t+∆t m
)−ρü t+∆t −ρ f I T

c

(
1

θ∆t

(
q t+∆t −q t )+(

1− 1

θ

)
q̇ t

)
= 0 (9.1)

1

M
ṗ t+∆t +α∇∇∇· (Ic u̇ t+∆t )+∇∇∇·q t+∆t = 0 (9.2)

with the fluid flux at t +∆t used in both these equations given by Eq. 8.12 as:

q t+∆t =
(
1+ ρ f k

n f µθ∆t

)−1 (
−k

µ
∇∇∇p t+∆t − kρ f

µ
Ic ü t+∆t − kρ f

µn f

(
(1− 1

θ
)q̇ t − 1

θ∆t
q t

))
(9.3)

The matrices used in these Equations are given in Eq. 8.5.
The mass conservation inside the fracture is given in the (xd , yd ) coordinate system of

Fig. 2.1 for a slightly compressible fluid as:

∂v

∂xd
+ ∂w

∂yd
+ 1

K f
ṗd = 0 (9.4)

127
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Figure 9.1: Example of fracture-scale discretisation

Integrating over the fracture height and substituting the definitions for the fluid flux at the
walls, Eqs. 5.1 and 5.2, results in:

ki

(
p+t+∆t +p−t+∆t −2p t+∆t

d

)
+ ∂

∂xd
qx + ḣt+∆t + h

K f
ṗ t+∆t

d = 0 (9.5)

with qx the fluid transport within the fracture and the fracture height h given by:

h = h0 +n · �u� (9.6)

The offset h0 is used to allow for an initial opening height, without his height needing to be
reflected in the discretisation and initial deformations. This allows for notched specimens to
be represented as part of the discontinuity, instead of the notch being represented through
the mesh. These notched domains are often used in experiments to localize the fracture
propagation to a set location [123, 127, 163, 175, 202].

9.1.1. FRACTURE SCALE MODEL

The fluid flux qx in Eq. 9.5 is determined at each integration point inside the fracture using
a separate model. This model gives the fluid flux as a function of the opening height and
discontinuity pressure gradient, and is fully integrated in the monolithic scheme used for
the macro scale through the derivatives of the fluid flux with regards to the pressure gradient
and opening height.

The starting point to obtain this fracture fluid flux is the momentum balance in xd di-
rection:

ρ f
∂v

∂t
+ρ f v

∂v

∂xd
+ρ f w

∂v

∂yd
=−∂pd

∂xd
+µ∂

2v

∂y2
d

(9.7)

where we assume the velocity gradient in tangential direction is negligible compared to the
gradient in normal direction. This equation is combined with no-slip boundary conditions:

v(h/2) = v(−h/2) = 0 (9.8)
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The convective momentum terms in Eq. 9.7 are neglected because these terms are assumed
to be small compared to the inertial and diffusive terms. Furthermore, the ∂v

∂xd
term re-

quires the tangential velocity gradient, which can not be obtained solely through informa-
tion within the integration point. Finally, the time derivative is discretised through a θ-
scheme, resulting in:

ρ f

(
1

θ∆t
(v t+∆t − v t )+ (1− 1

θ
)v̇ t

)
+ ∂pd

∂xd
−µ∂

2v

∂y2
d

= 0 (9.9)

This time-discretised equation not only depends on the current velocity v t+∆t , but also on
the history of the velocity at the old time step, v̇ t and v t . This makes it impossible to de-
scribe the velocity profile through an analytic solution, as is usually done for sub-grid mod-
els. Instead, the velocity profile within the integration points is discretised through a finite
element scheme:

v =
nel∑
el

N el
v (ξ)v el (9.10)

using the Bézier extracted NURBS Nv (ξ) to discretise the fracture height using the paramet-
ric coordinate ξ = 2

h yd . This allows the same NURBS discretisation to be used for all ve-
locity profiles inside all integration points, without needing to re-mesh the fracture height.
To enforce the no-slip boundary condition from Eq. 9.8 the spline basis functions that are
non-zero at the walls are removed, as shown in Figure 9.1. The discretisation from Eq. 9.10
is used for the new velocity v t+∆t , and the old and change in velocity which are updated at
the end of each converged time step.

Using this discretisation, the weak form of Eq. 9.9 is discretised as:

h

2

∫ 1

−1
ρ f N T

v

(
1

θ∆t
(Nv v t+∆t −Nv v t )+ (1− 1

θ
)Nv v̇ t

)
+N T

v
∂pd

∂xd
− 4µ

h2

(
∂Nv

∂ξ

)T ∂Nv

∂ξ
v t+∆t dξ= 0

(9.11)
which is rewritten to:

ρ f h2

4µ
C

(
1

θ∆t
v t+∆t − 1

θ∆t
v t + (1− 1

θ
)v̇ t

)
+ h2

4µ

∂pd

∂xd
w +D v t+∆t = 0 (9.12)

using the definitions:

C =
∫ 1

−1
N T

v Nv dξ (9.13)

D =
∫ 1

−1

(
∂Nv

∂ξ

)T ∂Nv

∂ξ
dξ (9.14)

w =
∫ 1

−1
N T

v dξ (9.15)

These two matrices and vector are solely dependent on the NURBS used for the discretisa-
tion, and do not depend on the fracture opening height. This allows these matrices to only
be calculated once, and thereafter be used to obtain the velocity profiles for all integration
points and time steps.

Using Eq. 9.12, the velocity profile is explicitly given as a function of the pressure gradi-
ent and fracture height in the integration point, and history variables as:

v t+∆t =Q−1

(
ρ f h2

4µ
C

(
1

θ∆t
v t − (1− 1

θ
)v̇ t

)
− h2

4µ

∂pd

∂xd
w

)
(9.16)
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Figure 9.2: Comparison between Newtonian and Carreau fluid models using the properties from
section 9.3 and a power-law model (µ0 = 1 mPa · sn , n = 0.6)

with:

Q = ρ f h2

4µθ∆t
C +D (9.17)

Finally, integrating the obtained velocity profile results in the fluid flux at the integration
point:

qx = h

2
w T v t+∆t = w T Q−1

(
ρ f h3

8µ
C

(
1

θ∆t
v t − (1− 1

θ
)v̇ t

)
− h3

8µ

∂pd

∂xd
w

)
(9.18)

which is used in Eq. 9.5 to include the fluid flow within the fracture. The derivatives re-
quired to fully integrate Eq. 9.18 into a single monolithic scheme and obtain a quadratic
convergence rate are given as:

∂qx

∂
∂pd

∂xd

=−h3

8µ
w T Q−1w (9.19)

and

∂qx

∂h
=w T Q−1

(
3ρ f h2
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ρ f h3
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1

θ∆t
v t − (1− 1

θ
)v̇ t

)
− h3

8µ

∂pd

∂xd
w

) (9.20)

If a single quadratic element, Figure 9.1b, is used to discretise the velocity profile,
this profile will be the shape of a fully developed Newtonian fluid their velocity profile (a
parabola). For this case, the matrices used in the discretisation become scalars: C = 4/15,
D = 2/3, and w T = 2/3. As a result, the fluid flux from Eq. 9.18 is given for a quadratic
velocity profile as:

qx =
(
ρ f h2

10µ∆t
+1

)−1 (
ρ f h3

30µ

(
1

θ∆t
v t − (1− 1

θ
)v̇ t

)
− h3

12µ

∂pd

∂xd

)

which, in the case of negligible inertia (ρ f h2 << 10µ∆t ) reduces to the cubic law, qx =
− h3

12µ
∂pd

∂xd
.
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9.2. EXTENSION TO CARREAU FLUIDS
The ability of the numerical sub-grid model to represent fluids for which no analytic veloc-
ity profile is available is demonstrated by extending the previously derived equations to a
Carreau fluid [48]. In contrast to power-law fluids, a Carreau fluid uses an upper limit µ0

and a lower limit µ∞ for the effective viscosity, and smoothly transitions between these two
extremes. The effective viscosity is given as a function of shear rate γ̇ as:

µe f f =µ∞+ (
µ0 −µ∞

)(
1+a2

c γ̇
2)(n−1)/2

(9.21)

using the same non-Newtonian fluid index as used for power-law fluids. The constant ac

indicates the required shear rate to transition from the viscosity limits. A comparison be-
tween these fluid models is shown in Figure 9.2. The shear rate inside the fracture is defined
as γ̇= ∂v/∂yd , and approximated in the porous material as γ̇= |q |/(c

p
k) [77, 160, 170]. The

coefficient c corrects for the influence of the small-scale geometry of the porous material on
the shear rate, fulfilling a similar function as k∗

f from Eq. 2.13. However, where a clear def-
inition of this factor is available for power-law fluids, no such definition exists for Carreau
fluids and this factor is usually determined experimentally.

9.2.1. POROUS MATERIAL

The mass and momentum balance from Eqs. 9.1 and 9.2 are both valid for a non-Newtonian
fluid, with the only change being the definition of the fluid flux from Eq. 9.3. This fluid flux
is now given by:

−∇∇∇p t+∆t −ρ f Ic ü t+∆t + ρ f

n f θ∆t
q t − ρ f

n f
(1− 1

θ
)q̇ t =µ0 −µ∞

k

(
1+ a2

c

c2k

(
q t+∆t )T

q t+∆t
) n−1

2

+ µ∞
k

+ ρ f

n f θ∆t

q t+∆t
(9.22)

In contrast to power-law fluids, this equation is not invertible. Therefore, the equation needs
to be solved through an iterative process for each integration point inside the porous ma-
terial to obtain the new fluid flux q t+∆t , which can then be used in Eqs. 9.1 and 9.2. This
iterative process is given, in discretised form, as:

∂RHS

∂q t+∆t
∆q t+∆t

j = LHS −RHS j (9.23)

using the definitions:
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(9.24)
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(9.26)
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with I2 the 2×2 identity matrix. Once a converged fluid flux is obtained, this flux is used in
Eqs.9.1 and 9.2, with the tangential matrix required to obtain a quadratic convergence rate
for the complete monolithic scheme defined as:

∂q t+∆t

∂p t+∆t
=

(
∂RHS

∂q t+∆t

)−1 (−∇∇∇N f
)

(9.27)

∂q t+∆t

∂u t+∆t
=

(
∂RHS

∂q t+∆t

)−1 (
− ρ f

β∆t 2 Ic Ns

)
(9.28)

using the new fluid flux in the integration points to obtain ∂RHS/∂q t+∆t from Eq. 9.26.

9.2.2. FRACTURE FLOW MODEL

The equivalent of Eq. 9.7, the momentum balance in xd direction inside the fracture be-
comes for a Carreau fluid:

ρ f

θ∆t

(
v t+∆t − v t )+ρ f

(
1− 1

θ

)
v̇ t+∂p t+∆t

d
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∂yd
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2

 ∂v t+∆t

∂yd

= 0

(9.29)
which is discretised in a form similar to Eq. (9.12):
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Dnn

)
v t+∆t = 0 (9.30)

with C , D , and w as in Eqs. (9.13)-(9.15). The non-linear term representing the behaviour
of the Carreau fluid is given by:
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Equation 9.30 is iteratively solved through:
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(9.32)
with the tangential matrix given by:

Qnn =
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with:
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(9.34)
The converged velocity profile is used in Eq. 9.18 to obtain the fluid flux inside the fracture,
and used in 9.5 to incorparate the fluid flow inside the fracture in the description of the
porous material. Finally, the matrices required to fully integrate the fracture scale model
with the monolithic solver are given by:

∂qx

∂
∂p t+∆t

d
∂xd

=− h3

8µ∞
w T Q−1

nn w (9.35)
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Figure 9.4: Discretisation used for the numerical subgrid cases
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with the derivative of the non-linear diffusion matrix with respect to the height:
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9.3. RESULTS
To show the capabilities of the numeric subgrid scale model, a typical fracture propagation
case is used [163, 206]. This case consists of a 80×160 m domain with a 0.5 m fracture in
the centre, as shown in Figure 9.3. This fracture is allowed to propagate along a horizon-
tal C 0 continuity line, and has an initial opening height h0 = 0.05 mm. An inflow of Qi n =
0.5 · 10−4 m2/s is imposed on the left fracture tip. The porous material is described using
Young’s modulus E = 15 GPa, Poisson ratio ν = 0.2, solid material density ρs = 2500 kg/m3,
bulk modulus Ks = 30 GPa, porosity n f = 0.2, intrinsic permeability k = 10−14 m2, Biot co-
efficient α= 1.0, Cosserat length scale `= 10 mm, and Cosserat shear modulus Gc = 4 GPa.
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Figure 9.5: Fracture propagation length resulting from the mesh refinement study using ∆t = 1 ms
and 5 quartic fracture-scale elements

The discontinuity is described using interface permeability ki = 10−10 m/Pas and an ex-
ponential traction-separation law with tensile strength ft = 0.1 MPa and fracture energy
Gc = 100 N/m. Two different fluids have been used for the simulations, a Newtonian water-
like fluid and a shear thinning fluid. Both these fluids use density ρ f = 103 kg/m3 and bulk
modulus K f = 1 GPa, and the Newtonian fluid uses viscosity µ = 10−3 Pa s, whereas the
viscosity of the shear-thinning Carreau fluid is described through the fluid index n = 0.6,
viscosity limits µ0 = 1 Pa s and µ∞ = 10−6 Pa s, and the constants c = 1, ac = 108 s. This
results in the shear-rate dependence shown in Figure 9.2.

The domain is discretised using quartic T-splines for the solid deformations, and cu-
bic T-splines for the Cosserat microrotation, and interstitial and discontinuity fluid pres-
sures. Since most of the relevant phenomena occur near the discontinuity, small elements
are used near the discontinuity while coarser elements are used near the top, right, and
bottom boundaries, resulting in distinct refinement layers as shown in Figure 9.4. The four
refinement layer mesh uses small elements with d x = d y = 0.125 m, with every additional
refinement layer halving the element size, resulting in the five layer mesh with element size
d x = d y = 62.5 mm, 6 layer mesh with element size d x = d y = 31.25 mm, and 7 layer mesh
with element size d x = d y = 15.625 mm near the discontinuity. The fracture scale discreti-
sation was performed using 20 quartic spline-based elements. The temporal discretisation
is performed using β= 0.4, γ= 0.75, θ = 1.0, and using time step size ∆t = 1 ms for the mesh
refinement study, whereas the timestep refinement study used ∆t = 100 ms, ∆t = 10 ms,
∆t = 1 ms, ∆t = 0.1 ms, ∆t = 0.01 ms. All simulations were performed for a total dura-
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Figure 9.6: Discontinuity pressure at the inlet resulting from the mesh refinement study using ∆t =
1 ms and 5 quartic fracture-scale elements

tion of 10 s, with the exception of the simulations using the 7 layer mesh or using the finest
timesteps 0.1 ms and 0.01 ms, which were terminated once they coincided with the results
from coarser meshes and timesteps.

9.3.1. MESH AND TIMESTEP REFINEMENT

The resulting fracture propagation lengths using the different mesh refinement levels are
shown in Figure 9.5. While the effect of the element-wise propagation associated with inter-
face elements is clearly visible for the coarser meshes, even these meshes obtain a correct
fracture propagation length. The discontinuity pressure at the inlet of the fracture is shown
in Figure 9.6. For a Newtonian fluid, the coarsest mesh shows a pressure oscillation at the
moment the first new element fractures, with this pressure peak disappearing upon mesh
refinement. Stronger oscillations occur for the Carreau fluid, with these oscillations again
coinciding with the fracture propagation steps. Upon mesh refinement, these oscillations
decrease in magnitude while increasing in frequency, confirming that they are an effect of
the element-wise propagation and the sudden increase in fracture volume caused by it.

The inlet discontinuity pressure resulting from the time step refinement study using the
six layer mesh are shown in Figure 9.7. The results for the Newtonian fluid are not depen-
dent on the time step size, with even the coarsest time step providing corrects results. For
the Carreau fluid, however, refining the time step results in larger and more frequent oscilla-
tions near the start of the simulation and the onset of the fracture propagation. These pres-
sure oscillations are also shown in Figure 9.8. The coarsest time step does not display these
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Figure 9.7: Discontinuity pressure at the inlet resulting from the timestep refinement study using the
six layer mesh and 5 quartic fracture-scale elements

oscillations, since their frequency is much higher than the timestep size. Using ∆t = 10 s
shows the initial oscillation, and using ∆t = 1 s shows some oscillations for both the start
of the simulation, and the moment of first fracture propagation. However, very small time
steps are needed to properly capture the magnitude of these oscillations, with only the two
smallest time steps capturing the pressure peaks resulting from the fracture propagation.

The pressure inside the complete discontinuity using the smallest time step is shown
in Figure 9.9a for the start of the simulation. At this start, a large increase in pressure oc-
curs to enforce the imposed fracture inflow while overcoming the effects of the fluid inertia.
However, it is likely that most of the pressure oscillations seen at t = 0.1 ms are due to the in-
ability of the discretisation to correctly represent the strong pressure gradient near this inlet,
and not caused by any physical phenomena. Once created, these pressure oscillations start
to travel through the fracture while diffusing over time. Similar travelling pressure waves
are created at the onset of fracture propagation, as shown in Figure 9.9b, with the sudden
increase in fracture volume causing a sharp decrease in fluid pressure. Even though most
of these pressure oscillations are unlikely to have a physical origin, their behaviour once
created shows the abilities of the numerical fracture flow model to include inertial effect in-
side the fracture. Although the velocity profile is solely determined from history variables
within the integration points, and solely uses the pressure gradient and opening height from
the macro scale discretisation, this seems sufficient to consistently include the interactions
between the sub-grid schemes in the integration points.
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Figure 9.8: Results near the start of the simulations for the timestep refinement study for a Carreau
fluid using the six layer mesh and 5 quartic fracture-scale elements

9.3.2. FRACTURE SCALE MESH REFINEMENT

The height discretisation used for the fracture scale model is varied while using a constant
time step size∆t = 1 ms and using the six layer mesh. The pressures inside the discontinuity
at t = 1 s are shown in Figure 9.11. Small differences are seen for the Newtonian fluid using
the linear and quadratic discretisation, while no differences occur upon further increasing
the discretisation order and using finer elements. This is explained by the velocity profile
inside the fracture corresponding to a quadratic parabola, Figure 9.10a. Due to the small
fracture opening and relatively long simulation time inertial effects are negligible, resulting
in a single quadratic spline exactly resolving the velocity profile, and therefore sufficing for
the discretisation.

Slightly larger differences occur for the Carreau fluid, Figures 9.11b and 9.10b. Since the
velocity profile is no longer a quadratic parabola, using quartic elements and using five el-
ements changes the obtained profile. However, these changes are small, and therefore the
effect of the discretisation on the discontinuity pressure is limited. This indicates that an ap-
proximation of the velocity profile suffices to obtain accurate pressures inside the discon-
tinuity, whereas a finer discretisation is required to accurately capture the velocity profile
itself.

9.3.3. INITIAL OPENING HEIGHT

Velocity profiles for the simulations using a Newtonian fluid with varying initial opening
heights are shown in Figure 9.12. In contrast to the previous subsection, these profiles show
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Figure 9.9: Pressure waves inside the discontinuity using ∆t = 0.01 ms
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Figure 9.10: Effect of the discretisation on the fluid velocity profile at x = 0.25 m, t = 1 s
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Figure 9.11: Effect of the discretisation on the discontinuity pressure at t = 1 s
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Figure 9.13: Effect of initial opening height on the discontinuity pressure at the left boundary.

a large influence of the fluid inertia, thereby deviating from a fully developed parabolic
profile. Since the response time of the fluid inside the fracture scales approximately with
ρ f h2/µ, providing a large offset to the fracture opening greatly increases the importance of
the inertia terms. The profiles for the h0 = 5 mm case highlight the ability of the derived
model to represent inertial effects, and the strong velocity gradients near the wall when a
sufficiently fine discretisation is employed.

The effect of the initial opening height on the propagation velocity is shown in Figure
9.13. When no initial height is present, these solutions approximate the analytic solution for
a simplified case [217]. Increasing the initial opening height allows the fluid to flow through
the fracture easier, thereby reducing the pressure required to move the nearly incompress-
ible fluid, and thus reducing the inlet pressure. However, these effects are limited to the start
of the simulation. The fracture length is nearly independent of the opening height, and the
inlet pressure approaches a similar value for all cases near the end of the simulations. This
indicates that even though a small opening height inhibits the fluid flow, and a large initial
opening height causes significant changes in the velocity profile, including these effects has
a limited influence on the fracture propagation.

9.4. CONCLUSION

This chapter presented a numeric fracture scale model which allows non-Newtonian flu-
ids and inertial effects to be included in a subgrid scale fracture flow scheme. By numeri-
cally resolving the velocity profile in every integration point and coupling this profile to the
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macro-scale mass conservation fluid behaviour for which no analytic solution exists can be
represented.

The capabilities of this model have been demonstrated for Newtonian and non-
Newtonian Carreau fluids through the simulation of a typical fracture propagation case.
These simulations showed that coarse time steps and meshes suffice to correctly simulate
the fracture propagation and macro-scale behaviour, while finer meshes and time steps are
required to capture the fluid behaviour inside the discontinuity. When extremely small time
steps are used, the presented model is capable of resolving travelling pressure waves inside
the discontinuity. This indicates that fluid inertial effects are properly included, and that
the coupling between the macro scale pressure gradients and the inertial effects separately
resolved within each integration point is strong enough to capture these pressure waves.

When inertial effects are negligible, a single quadratic spline suffices for the discreti-
sation of the fluid velocity profile for a Newtonian fluid. This same discretisation suffices
for Carreau fluids to obtain a correct fracture propagation behaviour, while slightly finer
meshes are needed to obtain an accurate velocity profile. When the fracture opening is suf-
ficiently high, inertial effects are no longer negligible, and a fine discretisation of the velocity
profile is needed to capture the strong velocity gradients near the wall.





10
CONCLUSION

In this thesis, sub-grid models for fluid flows inside fractures in poroelastic material have
been presented. These models have been derived, implemented, verified, and used to show
the relevance of including the additional physical behaviour included by these models:

• The first model presented was a continuous pressure model extended to describe a
non-Newtonian power-law fluid, both inside the fracture and inside the poroelastic
material. It was shown that including this non-Newtonian rheology had a significant
effect on the fluid transported through the fracture.

• Models were presented for bubbly and separated multiphase flows. These models are
able to represent the interactions within the fracture without this interior having to be
simulated. These interactions were shown to have a significant influence on the ob-
tained results by comparison with a cubic law formulation. Furthermore, these mod-
els allow for a detailed description of the fluid within the fracture to be reconstructed
through post-processing.

• The model for power-law fluids was extended to allow for pressurised and propagat-
ing fractures. It was shown that shear-thinning fluids have an increased leak-off from
the fracture to the surrounding porous material, whereas shear-thickening fluids flow
slower through the fracture and thereby obtain lower pressures near the fracture tip.
These two effects lead to a significantly different fracture propagation velocity: De-
pending on the permeability of the porous material, using either shear-thinning or
shear-thickening fluids will result in a higher propagation velocity.

• The discontinuous pressure model was compared to simulations which directly sim-
ulated the Stokes flow within the fracture. This showed the accuracy of the discon-
tinuous pressure model, which is able to correctly represent the fluid flow within the
fracture for reasonable opening heights, and still describes the overall effect of the
fracture on the surrounding porous material when the fracture aperture is outside of
the assumed limits.

• A numerical two-scale approach was detailed, numerically resolving the velocity pro-
file inside the fracture at each integration point, coupled to the mass conservation
equations for the fracture. This two-scale approach allowed for inertial effects within
the fracture to be included, and allowed for fluid rheologies for which an analytic ve-
locity profile is not available. It was shown that this model was able to capture trav-
elling pressure waves within the discontinuity when sufficiently small time steps are
used, with these pressure waves causing oscillations in the inlet pressure.

In addition to these models, other findings were:

• A continuous pressure model was used to show the advantages of using a spline-based
spatial discretisation, with this discretisation allowing for a continuous fracture inflow
and interior velocity, whereas this is not attained when using Lagrangian elements.

• A study on the convergence rate of the non-linear solver was performed, studying the
effects of including tangential stiffness terms related to the fracture. It was shown that
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quadratic convergence was only possible when including all terms related to the frac-
ture, at the cost of having to recalculate the system matrices for each iteration. When
using a linear line-search, some of these terms could be omitted while retaining a lin-
ear and non-oscillatory convergence rate, which allows for a constant and symmetric
stiffness matrix to be used.

• It was shown that the increased continuity of NURBS, combined with their inability
to represent only fractured elements, resulted in a non-physical fracture inflow sur-
rounding the fracture tips. To avoid this additional fracture inflow a special tip in-
tegration scheme was detailed. It was furthermore shown that a lumped integration
scheme in required to prevent fracture inflow velocities.

• The mesh generation for unequal order meshes using T-splines was detailed, inserting
interface elements solely to represent the fracture. This was shown to remove the
need of using a dummy stiffness and permeability, and removed the need for a special
integration scheme around the fracture tip. Simulations showed the effect of using T-
splines compared to NURBS, with T-splines obtaining a fully closed fracture at the
fracture tip whereas NURBS obtained a small aperture at the tip. In contrast, NURBS
were able to represent a sharper decrease in opening height compared to T-splines,
but this effect was shown to be localized to only a couple of elements near the fracture
tip.

• A scheme was derived which allowed inertial effects of the fluid and solid to be in-
cluded inside the standard pressure-displacement formulation. It was shown that in-
cluding the solid inertia term in the fluid flux definition resulted in strong pressure
changes around stress waves, but also caused severe oscillations. Adding the fluid in-
ertia as a separate term provided additional damping, removing these oscillations and
reducing the magnitude of the pressure and stress waves as they propagate.

• Simulations using a shear fracture showed the interactions between the interstitial
fluid pressure and the fracture propagation for fractures propagating near to the wave
speed. The propagating fracture results in zones of increased pressure near the frac-
ture tips. Once these zones overtake the tips the fracture propagation pauses until
these zones diffuse away. Once the pressure at the fracture tips is reduced, the frac-
ture starts again. This repeats, resulting in pauses in the fracture propagation.
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VERIFICATIONS

A.1. VERIFICATION NEWTONIAN FLUIDS

A.1.1. ONE-DIMENSIONAL CASE

The Terzaghi consolidation problem has been used for the first verification case [100, 228].
The geometry consists of an 1 mm×8 mm rectangular domain, as shown in Figure A.1. An
external force τ= 1 MPa is applied on the top, while the sides are constrained in horizontal
direction, and the bottom of the domain in both directions. An initial pressure of p0 = 1 MPa
is present at the start of the simulations in the complete domain, and a zero pressure bound-
ary condition is imposed on the bottom. The used parameters are given in Table A.1.

The domain has been discretised using 8 elements in the vertical direction. For the FEM
simulations, quadratic interpolants have been used for the solid deformations and fluid
pressure, whereas quartic and cubic interpolants have been used for the IGA simulations.
A constant time step of ∆t = 1 s has been used.

The analytic solution for this problem is given by [228]:
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with H the height of the domain, and the consolidation coefficient cv determined by:

cv = k

µ0( 1
M +α2mv )

(A.2)

The confined compressibility mv is defined as:

mv = 1

Ks + 4
3

E
2(1+ν)

(A.3)

The interstitial fluid pressure resulting from the simulations is shown in Figure A.2. The
IGA simulation matches almost exactly to the analytic solution, whereas the FEM simulation
shows very slight differences. The fluid flux, Figure A.3, has small differences between the
IGA and FEM, and the analytic solution. The FEM solution also shows jumps in the fluid
flux due to the C 0 inter-element continuity of the pressure, resulting in discontinuous fluid
fluxes.

A.1.2. TWO-DIMENSIONAL CASE

The second Verification case is the finite domain problem described in [129], and consists
of a rectangular 11m×10m domain on which on external load is applied to the middle 1m
on the top, as shown in Figure A.4. The deformations at the bottom of the domain are con-
strained in horizontal and vertical direction, while the sides are constrained in horizontal
direction. Zero pressure boundary conditions are present at all boundaries. This domain is
discretised using 22×20 elements, using quadratic elements for the FEM simulations, while
using quartic and cubic NURBS for the IGA simulations. A constant time-step of∆t = 1·105s
has been used, and all other parameters are given in Table A.2.

To compare the simulation results to the results from the analytic solution given in
[129], the obtained interstitial pressure p, displacements ux and uy , and time t are non-
dimensionalised using:

tD = C f

W 2 t (A.4)
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Figure A.1: Geometry of the one-dimensional
verification case

Parameter Value
a 1 mm
H 8 mm
τ 1 MPa
p0 1 MPa
E 6 GPa
ν 0.4

n f 0.5
α 1
Ks 3.6 GPa
K f 3 GPa
k 4 ·10−17 m2

µ0 20 Pa s
n 1

Table A.1: Parameters used for the 1D verifica-
tion case
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Figure A.2: Fluid pressure at t = 250s, t = 500s, t = 750s, and t = 1000s for the one-dimensional
verification case.
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The interstitial fluid pressure in the centre of the domain is shown in Figure A.5. The
IGA and the FEM results both match to the analytic results, with the IGA results having a
slightly higher interstital pressure throughout the simulation. The IGA results for the vertical
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Figure A.3: Fluid flux at t = 250s, t = 500s, t = 750s, and t = 1000s for the one-dimensional verifica-
tion case.
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Figure A.4: Geometry of the two-dimensional
verification case

Parameter Value
τ 0.065 MPa
E 3.9494 MPa
ν 0.25

n f 0.5
α 0.94577
Ks 2.4216 MPa
K f 2.4216 MPa
k 7.870 ·10−11 mm2

µ0 1 mPa s
n 1

W 11 m
H 10 m

C f /W 2 1.228 ·10−9

Table A.2: Parameters used for the 2D verifica-
tion case
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Figure A.5: Interstitial fluid pressure in the centre of the domain.
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Figure A.6: Vertical displacement in the centre of the domain.
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Figure A.7: Geometry of the curved beam verifi-
cation case

Parameter Value
qext 0.1 m/s

E 9 GPa
ν 0.4

n f 0.3
α 1
M 1 ·1015 GPa
k 4 ·10−6 mm2

µ0 1 mPa s
n 1

Table A.3: Parameters used for the curved beam
case

displacement, Figure A.6, also match to the analytic solution. The FEM results have slightly
lower vertical displacements, while showing a similar trend as the IGA and analytic results.

A.1.3. CURVED BEAM WITH A FRACTURE

The next verification case is the curved beam problem from [232]. The case consists of a
curved beam with an inner radius of 2.5m and an outer radius of 10m. A crack is located in
the centre of the beam, at a radius of 6.25m, as shown in Figure A.7. No displacements are
allowed at the bottom, while a zero pressure boundary condition is imposed on the outer
radius. An external flow qext = 0.1m/s is applied to the left edge, while the bottom and in-
ner radius have no-outflow boundary conditions. Both the FEM and IGA simulations used
a mesh of 18×20 elements, and a time-step of ∆t = 1.0s has been used. Interface elements
were inserted along the discontinuity, for the fractured and non-fractured elements. An
advantage of the NURBS mesh compared to the FEM mesh is that the NURBS are able to ex-
actly represent the curved geometry of the beam, whereas the FEM mesh only approximates
the curved geometry by using linear segments.
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Figure A.8: Deformations and interstitial fluid pressure using IGA after 10s for the curved beam veri-
fication case. Deformations are magnified with a factor of 1000.
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Figure A.9: Pressure along the discontinuity line after t = 10s.

The displacement and interstitial pressure resulting from the IGA simulation are shown
in Figure A.8. These displacements are visually the same as the displacements obtained
through the FEM simulations, and corresponds to the solution provided in [232]. The inter-
stitial fluid pressure along the discontinuity line is shown in Figure A.9. The IGA simulation
has a slightly higher pressure, but both simulations correspond to the reference results.

A.1.4. FRACTURED PLATE

The final verification case for Newtonian fluids is the square plate problem from [232]. The
case consists of a square plate, with a fluid flux imposed at the bottom and a zero pressure
boundary condition at the top. The middle of the plate contains a fracture under an angle
γ, with a horizontal length of 4m, as shown in Figure A.10. The fracture is not allowed to
propagate. The domain has been discretised using 40×20 elements, and interface elements
have been inserted for the fractured and non-fractured parts of the discontinuity line. The
material properties correspond to the previous case, and are given in Table A.3.

The displacement and pressure at steady state resulting from the IGA simulation using
γ = 20◦ are shown in Figure A.11, and the velocity inside the fracture for the IGA and FEM
simulations is shown in Figure A.12. Comparing the displacement to [232] shows large dif-
ferences, with the obtained results obtained here showing double the displacement. Com-
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Figure A.10: Geometry for the fractured plate verification case
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Figure A.11: Results from the IGA simulation for the fractured plate verification problem at steady
state (t = 40s). Deformations are magnified with a factor of 1000.
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Figure A.12: Tangential fluid velocity in the centre of the fracture at steady state (t = 40s)
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Figure A.13: Tangential fluid velocity in the centre of the fracture at t = 1s

paring the velocity in the centre of the fracture shows an even larger difference, with the
velocity obtained here being up to a factor 100 higher. Whereas for the γ= 0◦ case no fluid
flow is obtained at steady state, the reference results obtain a fluid flow towards the centre of
the fracture. Furthermore, only the γ= 40◦ case has a fully positive velocity in the reference
case, while all the velocities are positive in the results obtained here.

Comparing the results at t = 1s obtained here (Figure A.13) to the reference results, given
at steady state, provides a better match. These velocities are fully dominated by the pres-
sure gradients caused by the opening of the fracture. Since the fracture opens the most in
the middle, most fluid is absorbed near the middle and the lowest pressure is achieved here.
This lower pressure in the middle causes fluid to flow from both sides. This effect is damp-
ened by the imposed fluid flow at the bottom boundary increasing the pressure nearer to
the bottom, which creates an asymmetry for the angled fracture cases. While these results
show a similar trend as presented in [232], different values are obtained and the results are
mirrored. One possible explanation for the values being different can be attributed to the
time-step size, which results in the presented results being obtained in a single step. How-
ever, since a similar trend is observed it can be concluded that the results presented in the
reference case [232] are not at steady state, but at an unmentioned time before a steady-state
solution is achieved.

A.2. VERIFICATION NON-NEWTONIAN FLUIDS

A.2.1. ONE-DIMENSIONAL UNCOUPLED CASE

The first case simulated for 1D uncoupled non-Newtonian flow is the same as for 1D cou-
pled Newtonian flow with 2 differences: The biot coefficient α= 0 in order to uncouple the
fluid motion from the solid deformations, and instead of a Newtonian fluid, a shear thin-
ning fluid with n = 0.5 (k∗

f = 7.0 ·10−7(m/Pa)n/s) and a shear-thickening fluid with n = 2.0

(k∗
f = 3.5 ·10−6(m/Pa)n/s ) have been used. This uncoupling is necessary since no analytic

solutions are available for non-Newtonian flow through poroelastic materials. By uncou-
pling the solid deformations from the fluid pressure, the fluid equation can be solved by
MATLAB in order to verify the correct implementation. Since the coupling between defor-
mations and pressure has already been verified for one-dimensional and two-dimensional
cases, and this implementation is the same for non-Newtonian fluids, this solid-fluid cou-
pling should also be correct for non-Newtonian flow and need no further verification.
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Figure A.14: Results for the one-dimensional verification case using a non-Newtonian fluid.
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Figure A.15: Mesh and interstitial fluid pressure for the two-dimensional non-Newtonian verification
case.

The reference solution is obtained by using the MATLAB function pdepe to solve:

1

M

∂p

∂t
= k∗

f

∣∣∣∣∂p

∂x

∣∣∣∣1/n−1 ∂p

∂x
(A.7)

subject to the boundary conditions:

∂p

∂x

∣∣∣
x=h

= 0

px=0 = 0

and an initial pressure of p0 = 1MPa.
The simulations were performed using a time-step of ∆t = 10s for the shear-thinning

case, and ∆t = 1s for the shear-thickening case. The results of these simulations are shown
in Figure A.14, showing good agreement between the solutions obtained through MATLAB
and the FEM and IGA results.

A.2.2. TWO-DIMENSIONAL UNCOUPLED CASE

In order to verify the correct coupling between fluid flow directions in the non-Newtonian
porous flow implementation, the one-dimensional case is rotated 45 degrees, and triangu-
lar elements are used to mesh the domain. This ensures that, at least for most elements,
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Figure A.16: Comparison between the reference results and the simulation results for the two-
dimensional verification case.

the element edges are not perpendicular to the flow direction. Since this can only be done
for finite elements, and not for IGA, this verification was only done for the finite element
implementation. The used mesh can be seen in Figure A.15.

The results from the two-dimensional simulations are given in Figure A.15 and A.16.
What can be seen is that the results correspond well to the MATLAB one-dimensional re-
sults. This, combined with the correct results for the 2D Newtonian coupled simulation,
thus confirm that the finite element implementation for the equations for non-Newtonian
power-law fluids through deformable porous media is working correctly.

A.3. VERIFICATION PRESSURISED FRACTURES

A.3.1. FRACTURED PLATE

To verify the correct implementation of the discontinuity pressure fracture model, a case
similar to the one described in [173] was simulated. The geometry of the problem corre-
sponds to the fractured plate case shown in Figure A.10, with the fracture using γ= 30◦. The
boundary conditions for the displacements are the same as for the fractured plate problem,
while an interstitial fluid pressure of 0.5MPa has been applied to the bottom of the domain
and 0.0MPa to the top of the domain. This will ensure a more constant pressure gradient
throughout the domain, ensuring that the differences in pressure originate from the influ-
ence of the fracture and not from changes in pressure at the boundary.

The properties of the interior of the domain are given in table A.3, corresponding to the
properties used for the curved beam and fractured plate cases. The interface permeability
for the fracture has been varied between ki = 1·10−6m/Pa s and ki = 1·10−12m/Pa s, ranging
from a close to continuous pressure to a mostly impermeable fracture. A dummy perme-
ability of ki ,d = 0.5 ·10−3m/Pa s has been used for the non-fractured interface elements to
enforce a continuous pressure over the discontinuity. The domain is discretised using 80×40
Bézier extracted elements, quartic NURBS have been used for the solid displacement, and
cubic NURBS for the interstitial and discontinuity pressures.

The interstitial fluid pressure resulting from the simulations is shown in Figure A.20.
With a high interface permeability, the pressure is almost continuous across the fracture,
and the fracture is opened. In contrast, the low interface permeability results in a pressure
jump across the fracture, and prevents the fracture from opening due to the low discontinu-
ity pressure inside the fracture. These results correspond to the results from [173].
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Figure A.17: Pressure inside the discontinuity at t = 50s for the pressurised discontinuous pressure
verification case.
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Figure A.18: Fracture outflow along the discontinuity at t = 50s for the pressurised discontinuous
pressure verification case.

The pressure inside the discontinuity is shown in Figure A.17. This pressure also shows
a similar behaviour as the reference results, with a continuous pressure for a high perme-
ability, while obtaining a jump in discontinuity pressure between the fractured and non-
fractured interface elements for lower permeabilities. The Fracture outflow, Figure A.18
confirms this, with high outflows for higher permeabilities, and a similar outflow profile as
obtained for the continuous pressure model in section A.1.4. Finally the fluid flow normal to
the discontinuity is shown in Figure A.19. This shows the blocking effect of low-permeability
fractures, reducing the fluid flow passing through the fracture, while enhancing the flow
around the tips of the fracture. Since all these conclusions correspond to the results from
[173], it can be concluded that the discontinuous pressure model is working correctly for
Newtonian fluids.
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Figure A.19: Fluid velocity normal to the top discontinuity at t = 50s for the pressurised discontinu-
ous pressure verification case.
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Figure A.20: Interstitial fluid pressure at t = 50s for the pressurised discontinuous pressure verifica-
tion case.

A.4. VERIFICATION MULTIPHASE FLOWS
The results from the multiphase flow model for the interior domain, and the cubic law frac-
ture flow model are compared to results from [108]. The simulated case consists of a square
1m×m domain, with a 0.9m diagonal fracture in the centre. A wetting phase fluid inflow is
imposed on the bottom left, while constant wetting and non-wetting pressures are imposed
to the top right. A time-step of ∆t = 15 min is used, and the domain is discretised using
30×30 elements for the non-fractured case, and 80×40 elements for the fractured case.

The used model to relate the capillarity pressure to the saturation and permeability is:

Sw = e−pc /B

kr w = Sκi
w

kr n = (1−Sw )κi

(A.8)

with κi = κm for the interior of the domain, and κi = κ f for the cubic law flow model used
for the interior of the fracture.

The wetting phase saturation for the non-fractured case is given in Figure A.22a, and
for the fractured case (using the cubic law model) in Figure A.22b. Both of these results
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Parameter Value
E 20 GPa
ν 0.2

n f 0.2
α 1
Ks 36 GPa
Kw 2.15 GPa
Kn 1.5 GPa
k 9.86 ·10−10 mm2

µw 1 mPa s
µn 0.45 mPa s
pw 0 MPa
pn 0.3 MPa
Qw 2.32 ·10−8 m2/s
B 0.1 MPa
κm 5
κ f 3

Table A.4: Parameters used for the multiphase
verification case
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Figure A.22: Wetting phase saturation after t = 50 days for the multiphase verification cases.

correspond to results presented in [108], thus confirming that the multiphase fluid flows are
correctly simulated inside the porous medium and inside the fracture.



B
CONVERGENCE RATE OF COSSERAT AND

RATE-DEPENDENT CONTINUA

In this appendix, the regularising effect on the convergence of using a Cosserat continuum
and a standard continuum with viscoplasticity when simulating problems containing shear
fractures and non-associated plasticity will be compared. To focus on the effects of the used
continuum model, no fluid will be included. Both the linear displacement and the Cosserat
rotation (for the Cosserat continuum cases) are using cubic T-splines for their discretisation.

B.1. VISCOPLASTICITY
The viscoplasticity is modelled using a linear Perzyna viscoplasticity model, limiting the rate
of plastic deformation by:

ε̇= f

ησ0
m (B.1)

using the viscosity parameter η and reference stress σ0. This can be incorporated in the
return-mapping scheme of Eq. 8.23 as:

0 =σt+∆t
s −

(
σt+∆t

tr i al − ∆̂λDel m
)

(B.2a)

0 = f (σt+∆t
s )− ησ0

∆t
∆̂λ (B.2b)

with the iterative scheme, Eq. 8.24, becoming[
σt+∆t

s

∆̂λ

]
j+1

=
[
σt+∆t

s

∆̂λ

]
j

−C−1
e f f

[
σt+∆t

s −
(
σtr i al − ∆̂λDel m

)
f − ησ0

∆t ∆̂λ

]
j

(B.3)

with the effective compliance now given by:

Ce f f =
[

I + ∆̂λ j Del
∂m
∂σ Del m(

∂ f
∂σ

)T −ησ0

∆t

]
(B.4)

with the effective stiffness determined in the same manner as used without viscoplasticity,
inverting the effective compliance matrix, selecting the upper-left 7×7 sub-matrix and mul-

tiplying with Del

(
I − ∆̂λDel

∂m
∂σtr i al

)
. In contrast to rate-independent plasticity models, in the

case that the stresses exceeds the apex of the Drucker-Prager cone, this effective stiffness is
non-zero.

B.2. SIMPLIFIED CASE
To compare the convergence rate of a Cosserat continuum with a standard continuum with
and without viscoplasticity, a simple case without propagating fractures is first considered.
This case consists of a rectangular 1m×2m domain with a pre-existing discontinuity at the
centre, as shown in Figure B.1a. Absorbing boundary conditions and a normal traction of
τn = 1 MPa are applied to the edges of the domain. Two different values for the tangential
traction are studied, using τt = 0.2 MPa with∆t = 0.1 ms, and τt = 0.4 MPa with∆t = 1.0 ms.
The simulation starts from a static equilibrium without any plastic deformations, obtained
by simulating the first t0 = 1 s without enabling plasticity. After this initial period, plasticity
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Figure B.1: Mesh and geometry used for the simplified case.

is allowed and the smaller time steps are used. At this moment, a short burst of plastic
deformation occurs around the fracture tip, spread out over several time steps due to the
inertia of the solid. This case is an approximation of the sudden load changes as a result of
a propagating fracture.

The material is represented by Young’s modulus E = 10 GPa, Poisson ratio ν= 0.25, and
density ρ = 2500 kg/m3. A cohesionless Drucker-Prager plasticity model is used with an an-
gle of internal friction φ= 30◦ and dilatency angle ψ= 0◦. For the cases in which a Cosserat
continuum is used, the Cosserat shear modulus is taken as Gc = 4 GPa and the Cosserat
length scale values used are `c = 0.1 mm, `c = 1 mm, `c = 10 mm, and `c = 100 mm. The
cases using a standard continuum with viscoplasticity used: ησ0 = 0 Pa · s (no viscoplastic-
ity), ησ0 = 103 Pa ·s (`v = 0.4 mm), ησ0 = 104 Pa ·s (`v = 4 mm), ησ0 = 105 Pa ·s (`v = 40 mm),
and ησ0 = 106 Pa · s (`v = 400 mm), approximating the length scale over which the plas-
tic deformations are spread by `v = 2ησ0/(ρE)0.5. It should be noted that the length scale
related to the area over which the plastic strain is distributed in a Cosserat continuum is
approximately 4-5 times the Cosserat length scale [35], and therefore the simulations using
`c = 0.1 mm and ησ0 = 103 Pa · s (`v = 0.4 mm) use a comparable length scale.

Since no interstitial fluid is included in these simulations, the linear displacements and
Cosserat microrotation are all discretised using cubic T-splines. 40 Bézier extracted ele-
ments are used near the discontinuity, with coarser elements used away from this disconti-
nuity, as shown in Figure B.1b. The Newmark time discretisation uses β= 0.4 and Γ= 0.75,
and the Newton-Raphson iterative scheme is considered to be converged when the nor-
malised error reaches er r or j < 10−9.

The stabilising effect of adding viscoplasticity is demonstrated in Figure B.2, showing
the convergence during the first time step in which plasticity is allowed to occur. When
no viscoplasticity or Cosserat continuum is used, the simulation diverges during this time
step. Including even a small amount of viscosity, thereby introducing a time/length scale to
the problem, regularises the formulation and results in well-converging simulations. This
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Figure B.2: Convergence behaviour using a standard continuum with varying amounts of viscoplas-
ticity, and a Cosserat continuum using `c = 0.1 mm for τt = 0.2 MPa. The dotted line is the used
convergence criterium.
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Figure B.3: Convergence behaviour using a Cosserat continuum with varying Cosserat length scales
for τt = 0.2 MPa.
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Figure B.6: Convergence during selected time steps using a Cosserat continuum continuum with
`c = 10 mm.

improved convergence is independent on the used value of the viscoplasticity as long as this
value does not start to dominate the problem itself by severely limiting the amount of plastic
strain.

Using a Cosserat continuum, a similar improvement in the convergence is observed
(Figure B.3). As was the case using viscoplasticity, the introduction of a length scale sig-
nificantly improves the convergence rate, even if the length scale is small. Comparing
the convergence between the standard and Cosserat continua shows that these introduced
length scales influence the convergence extremely similarly: A small length scale results in
a converged time step in four iterations, and increasing the length scale to `c = 100 mm,
`v = 400 mm further results in nearly identical improvement in the convergence rate.

The behaviour using a larger external traction and time step size (τt = 0.4 MPa, ∆t =
1 ms) is shown in Figure B.4. A quadratic convergence rate can be clearly seen for all simula-
tions using a Cosserat continuum or a standard continuum with viscoplasticity. Comparing
the cases with a low internal length scale shows that the introduced length scale itself is im-
proving the convergence, and not necessarily the addition of time dependent plasticity or a
Cosserat microrotation. Increasing this length scale also results in a similar improved con-
vergence. Interestingly, combining a large amount of viscoplasticity with a small Cosserat
length scale further aids in the convergence, improving beyond the convergence behaviour
obtained by solely using a Cosserat continuum or viscoplasticity.
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B.3. FRACTURE PROPAGATION CASE
To show the improved convergence persists in the presence of propagating fractures, the
case from Figure 8.1 is simulated using a standard continuum with ησ0 = 105Pa · s and
a Cosserat continuum with `c = 10 mm. The domain is discretised using a mesh of
(160/80/40)×40 Bézier extracted elements with ∆t = 1 ms in this section, whereas Section
B.3.1 uses a (320/160/50)×40 mesh with ∆t = 0.1 ms. The Drucker-Prager plasticity model
uses c = 0, φ = 31◦, ψ = 0◦, and all other properties are taken identical to those of Section
B.2.

The convergence during selected time steps is shown in Figure B.5 using a standard con-
tinuum with viscoplasticity, and in Figure B.6 using a Cosserat continuum. The steps in
which no fracture propagation occurs converge within three iterations for both cases. The
steps with fracture propagation show a large peak in the error, corresponding to the first step
after propagation, on which the new convergence criteria is based. After this initial peak,
both cases show an approximately quadratic convergence rate, with the standard contin-
uum exhibiting slight oscillations, resulting in a slightly slower convergence compared to
the Cosserat continuum. However, even in the presence of propagating fractures, and using
a fairly large time step, both simulations converge without any issues. This indicates that
the use of a Cosserat continuum enables the simulation of fracture propagation combined
with plasticity, without the need to alter the plasticity model used. Similar results are pos-
sible using a standard continuum, but require alterations to the plasticity model to use a
rate-dependent formulation.

B.3.1. INFLUENCE OF STABILISATION

While in previous section it was shown that increasing the length scale resulted in an im-
proved convergence, this also alters the problem being simulated. To illustrate this, simu-
lations using a 320×50 mesh have been performed, using a smaller time step to eliminate
errors relating to the temporal discretisation. The results for varying Cosserat length scales
are presented in Figure B.7, and for varying viscosity parameters in Figure B.8. When a small
length scale is used, both the Cosserat continuum and the standard continuum obtain com-
parable plastic strains. Increasing the Cosserat length scale results in the stresses, and there-
fore the plastic strains, to be spread over a larger area. This results in the area influenced by
the plastic strains becoming more rounded, as is visible in the plastic strains near the frac-
ture tip. Further increasing the Cosserat length scale spreads the stresses over an even larger
area, decreasing the plastic deformations near the fracture, and for unrealistically large val-
ues severely limiting plastic deformations and the region influenced by them.

In contrast, using viscoplasticity spreads the plastic deformations over time instead, al-
lowing the stresses to exceed the yield function. This allows the region influenced by the
plastic strains to retain its triangular shape, without rounding this zone near the fracture tip
for larger length scales. Since the viscoplasticity only works in regions already having plas-
tic deformations, it does not alter the region of plastic deformations as much as a Cosserat
continuum, even for high viscosity parameter values. However, in contrast to a Cosserat
continuum, using viscoplasticity allows the stresses to exceed the yield function. Further-
more, comparing the plastic strain near the discontinuity shows that for low values of the
length scale, a standard continuum limits the plasticity slightly more compared to a Cosserat
continuum.
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Figure B.7: Plastic strain (ε2
xx +ε2

y y )1/2 at t = 1.2 s using a Cosserat continuum.
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Figure B.8: Plastic strain (ε2
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y y )1/2 at t = 1.2 s using a standard continuum.





C
TANGENTIAL STIFFNESS MATRICES

C.1. MULTIPHASE FLOWS
The system of non-linear equations is solved using a Newton-Raphson iterative method.
For this, the discretised equations are linearised as:

K +Kd Qsw +Qd ,sw Qsn +Qd ,sn

Qw s +Qd ,w s +Hd ,w s Hw w +Cw w +Qw w +Qd ,w w +Hd ,w w Hwn +Cwn +Qwn +Qd ,wn +Hd ,wn

Qns +Qd ,ns +Hd ,ns Hnw +Cnw +Qnw +Qd ,nw +Hd ,nw Hnn +Cnn +Qnn +Qd ,nn +Hd ,nn


 du

dpw

dpn

=
 fext

qw,ext

qn,ext

−
 fi nt + fd

qw,i nt +qw,d

qn,i nt +qn,d

 (C.1)

with the external and internal forces defined in Eq. 2.47, 4.48, and 4.49, and the fluxes de-
fined in Eq. 4.52-4.55.

The tangential stiffness sub-matrices related to the interior forces and fluxes are given
by:

K =
∫
Ω

B T Del B dΩ (C.2)

Qsw =−
∫
Ω
α

(
Sw −pw

∂Sw

∂pc

)
B T mNw +α

(
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∂Sw

∂pc

)
B T mNn dΩ (C.3)

Qsn =−
∫
Ω
α

(
Sn −pn
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∂pc

)
B T mNn +α

(
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∂pc

)
B T mNw dΩ (C.4)

Qw s =−
∫
Ω
αSw N T

w mT B dΩ (C.5)

Qw w =
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(
mT B
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mT B

(
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αSn N T

n mT B dΩ (C.8)
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Hw w =−∆t
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with all variables determined by using the updated displacements and pressures, and all
values determined in the integration points.

The tangential stiffness sub-matrices related to the forces at the discontinuity are given
by:

Kd =
∫
Γd

N T
d RDd R Nd dΓd (C.19)
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The terms related to the fluid absorbed by the fracture opening are independent of the
fracture flow model, and given by:
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nT
Γd

Nd u
) ∂Sw

∂pc

)
N T

n Nw dΓd (C.26)

Qd ,nn =
∫
Γd

(
∂Sw

∂pc

(
nT
Γd

Nd
(
u t+∆t −u t ))+ (

nT
Γd

Nd u
) ∂Sw

∂pc

)
N T

n Nn dΓd (C.27)

The final terms, related to the sub-grid model used to model the fracture in and outflow,
depend on the flow type assumed for the flow inside the fracture. For the cubic-law model,
the tangential stiffness matrices are given by:

H cubi c
d ,w s =−∆t

∫
Γd

S3
w

4µw

(
nT
Γd

Nd u
)2 (∇∇∇Nw pw

)
(∇∇∇Nw )T nT

Γd
Nd dΓd (C.28)

H cubi c
d ,w w =−∆t

∫
Γd

S3
w

12µw

(
nT
Γd

Nd u
)3

(∇∇∇Nw )T ∇∇∇Nw

− S2
w

4µw

(
nT
Γd

Nd u
)3 (∇∇∇Nw pw

) ∂Sw

∂pc
(∇∇∇Nw )T Nw dΓd

(C.29)

H cubi c
d ,wn =−∆t

∫
Γd

S2
w

4µw

(
nT
Γd

Nd u
)3 (∇∇∇Nw pw

) ∂Sw

∂pc
(∇∇∇Nw )T Nn dΓd (C.30)

H cubi c
d ,ns =−∆t

∫
Γd

S3
n

4µn

(
nT
Γd

Nd u
)2 (∇∇∇Nn pn

)
(∇∇∇Nn)T nT

Γd
Nd dΓd (C.31)
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H cubi c
d ,nw =−∆t

∫
Γd

S2
n

4µn

(
nT
Γd

Nd u
)3 (∇∇∇Nn pn

) ∂Sw

∂pc
(∇∇∇Nn)T Nw dΓd (C.32)

H cubi c
d ,nn =−∆t

∫
Γd

S3
n

12µn

(
nT
Γd

Nd u
)3

(∇∇∇Nn)T ∇∇∇Nn

− S2
w

4µw

(
nT
Γd

Nd u
)3 (∇∇∇Nw pw

) ∂Sw

∂pc
(∇∇∇Nn)T Nn dΓd

(C.33)

for the volume-averaged bubbly flow by:

H bubbl y
d ,w s =−∆t

∫
Γd

∆tSw

4
(
Swµw +Snµn

) (
nT
Γd

Nd u t+∆t
)2

(
Sw∇∇∇Nw p t+∆t

w +Sn∇∇∇Nn p t+∆t
n

)
(∇∇∇Nw )T nT

Γd
Nd dΓd

(C.34)

H bubbl y
d ,w w =−∆t

∫
Γd

1

12
(
Swµw +Snµn

) (
nT
Γd

Nd u t+∆t
)3

(((
Sw∇∇∇Nw pw +Sn∇∇∇Nn pn

)
(
−∂Sw

∂pc
+ −Sw

Swµw +Snµn

(
−∂Sw

∂pc
µw + ∂Sw

∂pc
µn

))
+Sw

(
−∂Sw

∂pc
∇∇∇Nw pw + ∂Sw

∂pc
∇∇∇Nn pn

))
(∇∇∇Nw )T Nw +S2

w (∇∇∇Nw )T ∇∇∇Nw

)
dΓd

(C.35)

H bubbl y
d ,wn =−∆t

∫
Γd

1

12
(
Swµw +Snµn

) (
nT
Γd

Nd u t+∆t
)3

(((
Sw∇∇∇Nw pw +Sn∇∇∇Nn pn

)
(
∂Sw

∂pc
+ −Sw

Swµw +Snµn

(
∂Sw

∂pc
µw − ∂Sw

∂pc
µn

))
+Sw

(
∂Sw

∂pc
∇∇∇Nw pw − ∂Sw

∂pc
∇∇∇Nn pn

))
(∇∇∇Nw )T Nn +Sw Sn (∇∇∇Nw )T ∇∇∇Nn

)
dΓd

(C.36)

H bubbl y
d ,ns =−∆t

∫
Γd

∆tSn

4
(
Swµw +Snµn

) (
nT
Γd

Nd u t+∆t
)2

(
Sw∇∇∇Nw p t+∆t

w +Sn∇∇∇Nn p t+∆t
n

)
(∇∇∇Nw )T nT

Γd
Nd d Γd

(C.37)

H bubbl y
d ,nw =−∆t

∫
Γd

1

12
(
Swµw +Snµn

) (
nT
Γd

Nd u t+∆t
)3

(((
Sw∇∇∇Nw pw +Sn∇∇∇Nn pn

)
(
∂Sw

∂pc
+ −Sn

Swµw +Snµn

(
−∂Sw

∂pc
µw + ∂Sw

∂pc
µn

))
+Sn

(
−∂Sw

∂pc
∇∇∇Nw pw + ∂Sw

∂pc
∇∇∇Nn pn

))
(∇∇∇Nn)T Nw +SnSw (∇∇∇Nn)T ∇∇∇Nw

)
dΓd

(C.38)

H bubbl y
d ,nn =−∆t

∫
Γd

1

12
(
Swµw +Snµn

) (
nT
Γd

Nd u t+∆t
)3

(((
Sw∇∇∇Nw pw +Sn∇∇∇Nn pn

)
(
−∂Sw

∂pc
+ −Sn

Swµw +Snµn

(
∂Sw

∂pc
µw − ∂Sw

∂pc
µn

))
+Sn

(
∂Sw

∂pc
∇∇∇Nw pw − ∂Sw

∂pc
∇∇∇Nn pn

))
(∇∇∇Nn)T Nn +S2

n (∇∇∇Nn)T ∇∇∇Nn

)
dΓd

(C.39)

and for the separated flow model by:

H separ ated
d ,w s =−∆t

∫
Γd

1

µw

(
nT
Γd

Nd u
)2 (

∇∇∇Nw pw

(
1

4
− 3

8
Sn + 1

8
S3

n

)
+ (∇∇∇Nn pn −∇∇∇Nw pw

)(3

8
Sn − 3

4
S2

n + 3

8
S3

n

))
(∇∇∇Nw )T nT

Γd
Nd dΓd

(C.40)
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H separ ated
d ,w w =−∆t

∫
Γd

1

µw

(
nT
Γd

Nd u
)3

((
∇∇∇Nw pw

(
1

8
S2

n − 1

8

)
+ (∇∇∇Nn pn −∇∇∇Nw pw

)
(

1

8
− 1

2
Sn + 3

8
S2

n

))
∂Sw

∂pc
(∇∇∇Nw )T Nw +

(
1

12
− 2

8
Sn − 1

12
S3

n + 1

4
S2

n

)
(∇∇∇Nw )T ∇∇∇Nw

)
dΓd

(C.41)

H separ ated
d ,wn =∆t

∫
Γd

1

µw

(
nT
Γd

Nd u
)3

((
∇∇∇Nw pw

(
1

8
S2

n − 1

8

)
+ (∇∇∇Nn pn −∇∇∇Nw pw

)
(

1

8
− 1

2
Sn + 3

8
S2

n

))
∂Sw

∂pc
(∇∇∇Nw )T Nn +

(
1

4
S2

n − 1

8
Sn − 1

8
S3

n

)
(∇∇∇Nw )T ∇∇∇Nn

)
dΓd

(C.42)

H separ ated
d ,ns =−∆t

∫
Γd

1

µw

(
nT
Γd

Nd u
)2

(
1

12µn
S3

n∇∇∇Nn pn + 1

8µw
∇∇∇Nw pw

(
Sn −S3

n

)
+ 1

4µw

(∇∇∇Nn pn −∇∇∇Nw pw
)(

S2
n −S3

n

))
(∇∇∇Nn)T nT

Γd
Nd dΓd

(C.43)

H separ ated
d ,nw =∆t

∫
Γd

(
nT
Γd

Nd u
)3

((
− 1

4µn
S2

n∇∇∇Nn pn + 1

µw
∇∇∇Nw pw

(
3

8
S2

n − 1

8

)
+ 1

µw

(∇∇∇Nn pn −∇∇∇Nw pw
)(3

4
S2

n − 1

2
Sn

))
∂Sw

∂pc
(∇∇∇Nn)T Nn

+
(

1

8µw

(
S3

n −Sn
)+ 1

4µw

(
S2

n −S3
n

))
(∇∇∇Nn)T ∇∇∇Nw

)
dΓd

(C.44)

H separ ated
d ,nn =−∆t

∫
Γd

(
nT
Γd

Nd u
)3

((
− 1

4µn
S2

n∇∇∇Nn pn + 1

µw
∇∇∇Nw pw

(
3

8
S2

n − 1

8

)
+ 1

µw

(∇∇∇Nn pn −∇∇∇Nw pw
)(3

4
S2

n − 1

2
Sn

))
∂Sw

∂pc
(∇∇∇Nn)T Nn

+
(

1

12µn
S3

n + 1

4µw

(
S2

n −S3
n

))
(∇∇∇Nn)T ∇∇∇Nn

)
dΓd

(C.45)

C.2. DISCONTINUOUS PRESSURE MODEL
The discretised equations are linearised using a Newton-Raphson scheme, resulting in: K +Kd Q Qd

QT C +H +Hd ,p Hd ,d

QT
d +Hd p,u H T

d ,d Hd ,d p +Hd p,d p


 du

dp

dpd

=

 fext

qext

qd ,ext

−

 fi nt + fd

qi nt +qd

qd ,i nt +qd ,d

 (C.46)

with the forces defined in Eq 2.48,2.47,5.16, the fluid fluxes for the porous media in Eq. 2.52,
2.53, 5.18, and for the fracture in 5.20, 5.21, 5.22. The tangential stiffness sub-matrices are
given by:

K = ∂ fi nt

∂u
=

∫
Ω

B T DB dΩ (C.47)

Kd = ∂ fd

∂u
=

∫
Γd

N T
d RT Dd R Nd dΓd (C.48)

Q = ∂ fi nt

∂p
=−

∫
Ω
αB T mN f dΩ (C.49)

Qd = ∂ fd

∂pd
=−

∫
Γd

N T
d nΓd Npd dΓd (C.50)

C = ∂qi nt1

∂p
=−

∫
Ω

1

M
N T

f N f dΩ (C.51)
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H = ∂qi nt2

∂p
=−

∫
Ω

k∗
f ∆t

n

∣∣∇∇∇p t+∆t
∣∣ 1

n −1 (∇∇∇N f
)T ∇∇∇N f dΩ (C.52)

Hd ,p = ∂qd

∂p
=−

∫
Γ±d

kel
i ∆t N T

f N f dΓd (C.53)

Hd ,d = ∂qd

∂pd
=

∫
Γ±d

kel
i ∆t N T

f Npd dΓd (C.54)

Hd ,d p = ∂qd ,d

∂pd
=−2

∫
Γd

kel
i ∆t N T

pd Npd dΓd (C.55)

Hd p,u = ∂qd ,i nt

∂u
=−

∫
Γd

∆tµ
− 1

n
0

∣∣∇∇∇Npd p t+∆t
d

∣∣ 1
n −1

(
nΓd Nd u t+∆t

2

) 1
n +1

∇∇∇Npd p t+∆t
d ∇∇∇N T

pd nΓd Nd dΓd

(C.56)

Hd p,d p = ∂qd ,i nt

∂pd
=−

∫
Γd

∆t
2

2n +1
µ
− 1

n
0

∣∣∇∇∇Npd p t+∆t
d

∣∣ 1
n −1

(
nΓd Nd u t+∆t

2

) 1
n +2

∇∇∇ N T
pd∇∇∇Npd dΓd

(C.57)

C.3. COSSERAT CONTINUUM
The discretised equations are solved using a monolithic Newton-Raphson scheme, calcu-
lating the iterative increments through:

K +M +Kd +Kext Qs +M f Qd

Q f + As C f +H +Hd Hdd

0 H T
dd Hd f




du

dp

dpd

=


fext

qext

0

−


fi nt + fd

qi nt +qd

qd ,i nt

 (C.58)

with the sub-matrices for the momentum balance given by:

K =
∫
Ω

B T De f f B dΩ (C.59)

M =
∫
Ω

1

β∆t 2 N T
s

(
ρ− An f ρ f

)
Ns dΩ (C.60)

Kd =
∫
Γd

N T
s RT Di R Ns +N T

s RT DczmR Ns dΓd (C.61)

Kext =
∫
Γ

γ

β∆t
N T

s RT SR Ns dΓ (C.62)

Qs =−
∫
Ω
αB T mN f dΩ (C.63)

M f =−
∫
Ω

An f N T
s Ic∇∇∇N T

f dΩ (C.64)

Qd =−
∫
Γd

N T
s nΓd Npd dΓd (C.65)

The matrix which contains the dummy stiffness values used to prevent a negative frac-
ture opening reads:

Di =
dn 0 0

0 0 0
0 0 dω
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If the history variable is larger than the current tangential displacement, then the tangential
stiffness component is given by:

Dczm(t ,n) =− fr dn+( fp− fr )exp(−2�dx�/Dc )
(−dn +dn�un� ·2�dx�/D2

c ·2Gc /
(
( fp − fr )dn�un�2))

Otherwise, the non-zero components read:

Dczm(t , t ) = 2( fp − fr )dn�un�/Dc exp(−2�ut �/Dc )

Dczm(t ,n) =− fr dn + ( fp − fr )exp(−2�ut �/Dc )
(−dn +dn�un� ·2�ut �/D2

c ·2Gc /
(
( fp − fr )dn�un�2))

The sub-matrices related to the mass balances of the porous material and the fracture
are given by:

Q f =−
∫
Ω

αγ

β
N T

f Ic B dΩ (C.66)

C f =−
∫
Ω

1

Mθ
N T

f N f dΩ (C.67)

As =−
∫
Ω

kρ f

µ∆tβ

(
1+ ρ f k

n f µθ∆t

)−1 (∇∇∇N f
)T Ic Ns dΩ (C.68)

H =−
∫
Ω

k∆t

µ

(
1+ ρ f k

n f µθ∆t

)−1 (∇∇∇N f
)T ∇∇∇N f dΩ (C.69)

Hd =−
∫
Γd

ki∆t N T
f N f dΓd (C.70)

Hdd =
∫
Γd

ki∆t N T
f Npd dΓd (C.71)

Hd f =−
∫
Γd

2ki∆t N T
pd Npd dΓd (C.72)



D
DERIVATION OF MULTIPHASE POROELASTICITY

Formulations for the mass balances for multiphase fluid flow are given in [39, 108, 110, 155,
188]. However, these formulations differ and little to none of the derivation and used as-
sumptions are given. Because of this, the equations for the mass balance will be derived
in this section, and a dimensional analysis will be done to determine under which circum-
stances certain terms can be neglected.

MASS CONSERVATION

First, the mass conservation for the solid is used [110], and a constant porosity is assumed:

∂(1−n f )ρs

∂t
+∇∇∇· ((1−n f )ρs vs) = 0

(1−n f )
∂ρs

∂t
+ (1−n f )

(
ρs∇∇∇·vs +vs ·∇∇∇ρs

)= 0 (D.1)

with n f the porosity, ρs the density of the solid, and vs the velocity of the solid material. The
time derivative of the density is rewritten as [39]:

∂ρs

∂t
= ρs

1−n f

(
α−n f

Ks
ṗ − (1−α)∇∇∇·vs

)
(D.2)

with Ks the bulk modulus of the solid material and ṗ the time derivative of the total pressure,
defined as:

ṗ = ∂

∂t

(
Sn pn +Sw pw

)
= Ṡn pn +Sn ṗn + Ṡw pw +Sw ṗw

=
(
Sn −pc

∂Sw

∂pc

)
ṗn +

(
Sw +pc

∂Sw

∂pc

)
ṗw (D.3)

using pπ and Sπ for the pressure and saturation of phase π. Substituting Equation D.2 in
Equation D.1 results in:

α−n f

Ks
ṗ +α∇∇∇·vs −n f ∇∇∇·vs +

1−n f

ρs
vs ·∇∇∇ρs = 0 (D.4)

The mass conservation equation for the wetting fluid phase is [110]:

∂n f Swρw

∂t
+∇∇∇· (n f Swρw vw

)= 0

n f

(
ρw Ṡw +Sw

∂ρw

∂t

)
+n f

(
ρw∇∇∇· (Sw vw )+Sw vw ·∇∇∇ρw

)= 0 (D.5)

Using the definition for the density change of the wetting phase [39]:

∂ρw

∂t
= ρw

Kw
ṗw (D.6)

Equation D.5 can be rewritten to:

n f Ṡw + n f Sw

Kw
ṗw +n f ∇∇∇· (Sw vw )+ n f Sw

ρw
vw ·∇∇∇ρw = 0 (D.7)
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In the same manner, an expression is derived for the mass conservation of the non-
wetting phase:

n f Ṡn + n f Sn

Kn
ṗn +n f ∇∇∇· (Sn vn)+ n f Sn

ρn
vn ·∇∇∇ρn = 0 (D.8)

The time derivatives of the saturation are defined as:

Ṡw =−Ṡn = ∂Sw

∂pc

∂pc

∂t
= (ṗn − ṗw )

∂Sw

∂pc
(D.9)

PRESSURE CHANGES

Multiplying Equation D.4 with Sw and adding this to the mass conservation of the wetting
phase (Equation D.7) results in:

Sw
α−n f

Ks
ṗ +αSw∇∇∇·vs +n f Ṡw + n f Sw

Kw
ṗw +n f ∇∇∇· (Sw vw )−n f Sw∇∇∇·vs +R ′

w = 0

Sw
α−n f

Ks
ṗ +αSw∇∇∇·vs +n f Ṡw + n f Sw

Kw
ṗw +∇∇∇· (n f Sw (vw −vs))−n f vs ·∇∇∇Sw +R ′

w = 0

(D.10)

with R ′
w defined as:

R ′
w = Sw

1−n f

ρs
vs ·∇∇∇ρs +

n f Sw

ρw
vw ·∇∇∇ρw (D.11)

Using the definition for the Darcy velocity, qw = n f Sw (vw − vs), Equation D.10 can be
simplified to:

Sw
α−n f

Ks
ṗ +αSw∇∇∇·vs +n f Ṡw + n f Sw

Kw
ṗw +∇∇∇·qw +Rw = 0 (D.12)

and multiplying Equation D.4 with Sn and adding to the mass conservation equation of
non-wetting phase (Equation D.8) results in:

Sn
α−n f

Ks
ṗ +αSn∇∇∇·vs +n f Ṡn + n f Sn

Kn
ṗn +∇∇∇·qn +Rn = 0 (D.13)

The groups Rw and Rn are defined as:

Rw = Sw
1−n f

ρs
vs ·∇∇∇ρs +

n f Sw

ρw
vw ·∇∇∇ρw −n f vs ·∇∇∇Sw (D.14)

Rn = Sn
1−n f

ρs
vs ·∇∇∇ρs +

n f Sn

ρn
vn ·∇∇∇ρn −n f vs ·∇∇∇Sn (D.15)

Substituting the definition for the total pressure derivative (Equation D.3) and for the
saturation derivatives (Equation D.9) into Equation D.12 and D.13 results in the following
system of equations:

1

Mw w
ṗw + 1

Mwn
ṗn =−αSw∇∇∇·vs −∇∇∇·qw −Rw (D.16)

1

Mnw
ṗw + 1

Mnn
ṗn =−αSn∇∇∇·vs −∇∇∇·qn −Rn (D.17)
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with the coefficients defined as:

1

Mw w
= Sw

α−n f

Ks

(
Sw +pc

∂Sw

∂pc

)
−n f

∂Sw

∂pc
+ n f Sw

Kw

1

Mwn
= Sw

α−n f

Ks

(
Sn −pc

∂Sw

∂pc

)
+n f

∂Sw

∂pc

1

Mnw
= Sn

α−n f

Ks

(
Sw +pc

∂Sw

∂pc

)
+n f

∂Sw

∂pc

1

Mnn
= Sn

α−n f

Ks

(
Sn −pc

∂Sw

∂pc

)
−n f

∂Sw

∂pc
+ n f Sn

Kn

(D.18)

DIMENSIONAL ANALYSIS

To determine which terms can be neglected, a dimensional analysis was performed. For
this, the R terms are rewritten in term of the solid velocity and Darcy fluid flux:

Rw = Sw
1−n f

ρs
vs ·∇∇∇ρs −n f vs ·∇∇∇Sw + 1

ρw
qw ·∇∇∇ρw + n f Sw

ρw
vs ·∇∇∇ρw

Rn = Sn
1−n f

ρs
vs ·∇∇∇ρs −n f vs ·∇∇∇Sn + 1

ρn
qn ·∇∇∇ρn + n f Sn

ρn
vs ·∇∇∇ρn

(D.19)

In order to make Equation D.16-D.19 dimensionless, the following normalisation is used:

p = P p∗

t = τt∗

vπ =Uπv∗
π

qπ = kP

Lµπ
q∗
π

∇∇∇= 1

L
∇∇∇∗

1

ρπ
∇∇∇ρπ = P

LKπ
∇∇∇∗p∗

with π being s, w,n to indicate the different phases. This normalisation allows the M coeffi-
cients to be normalised as:

1

Mππ
= 1

Ks

1

M∗
ππ

and allows Equation D.12 to be normalised as:
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τKs
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w w
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w −Rw

1

M∗
w w

ṗ∗
w + 1

M∗
w g

ṗ∗
n =−UsKsτ

LP
αSw∇∇∇∗ ·v∗

s − kτKs

L2µw
∇∇∇∗ ·q∗

w −R∗
w (D.20)

with R∗
w defined as:

R∗
w = τKs

P
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PUs

LKs
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n f v∗
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n f Sw v∗
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(D.21)
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For pressure driven flows the Darcy fluid velocity term of Equation D.20 is much larger than
the solid velocity term. In contrast, for cases where flow is induced through compression
of the porous material, both terms are of the same order of magnitude. When comparing
the terms from R with the terms from Equation D.20, it can thus be concluded that terms
can be neglected for pressure driven cases if they are much smaller than the Darcy fluid
velocity term. For solid deformation driven cases, the R terms need to be smaller than both
the Darcy velocity and the deformation terms. In the remainder of this section, the R terms
will be compared to both, with on the left the comparison with the solid velocity, and on the
right with the Darcy velocity.

The requirements for the first term in Equation D.21 to be neglected are:

Ks

P
>> 1 and

kKs

UsLµw
>> 1 (D.22)

The first condition is almost always satisfied since pressures usually are in the order of MPa,
while the solid bulk modulus is in the order of GPa. The second condition is also almost
always satisfied: replacing Ks with P (which will always result in a smaller value) reduces this
assumption to (Uw −Us)/Us . Since the solid only has small deformations, and the wetting
phase velocity will be much larger than the solid velocity, this will be much larger than one.
Both these conditions are always fulfilled, thus this term can be neglected for all cases.

The conditions for the second term are:

1 >> 1 and
kP

LµwUs
>> 1 (D.23)

Since the first assumption is impossible to satisfy, this term can’t be neglected when the
simulated case is dominated by deformation induced flow. The second assumption corre-
sponds to the second assumption for the first term, thus is valid. The second term of Rw can
thus be neglected for pressure driven flows.

The conditions for the third term are:

UsLKwµw

P 2k
>> 1 and

Kw

P
>> 1 (D.24)

which are valid as long as the wetting phase is mostly incompressible. Finally the fourth
term can be neglected if:

Kw

P
>> 1 and

kKw

UsLµw
>> 1 (D.25)

Assuming the wetting fluid and the solid have comparable bulk moduli, these assumptions
correspond to the assumption of D.22, and thus are satisfied, indicating the fourth term can
be neglected.

The same can be done for the equation for the non-wetting phase, resulting in the fol-
lowing assumptions:

Ks

P
>> 1 and

kKs

UsLµw
>> 1 (D.26)

1 >> 1 and
kP

LµnUs
>> 1 (D.27)

UsLKnµw

P 2k
>> 1 and

Kn

P
>> 1 (D.28)

Kn

P
>> 1 and

kKn

UsLµn
>> 1 (D.29)
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Similarly to the wetting phase, the second term can’t be neglected for deformation dom-
inated cases. However, if the non-wetting phase represents a gas phase, the non-wetting
phase can’t be assumed to be incompressible. For this case, Kn is of the same order of the
applied pressure, therefore the third term can’t be neglected under any circumstance. The
fourth term can also not be neglected for compression dominated flows.

RESULTING EQUATIONS

For fluid pressure driven flows, the resulting equations are:

1

Mw w
ṗw + 1

Mwn
ṗn =−αSw∇∇∇·vs −∇∇∇·qw − 1

Kw
qw ·∇∇∇pw (D.30)

1

Mnw
ṗw + 1

Mnn
ṗn =−αSn∇∇∇·vs −∇∇∇·qn − 1

Kn
qn ·∇∇∇pn (D.31)

with the Biot moduli given by Equation D.18. In these equations, the 1
Kw

qw ·∇∇∇pw and 1
Kn

qn ·
∇∇∇pn terms can be neglected when an incompressible non-wetting phase is assumed. This
corresponds to the equations from [110] for a compressible gas, and the equations from
[188] for an incompressible non-wetting phase.
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