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Abstract

Many mysteries remain about the inner workings of the Earth from what the origins of

lower mantle structures to when did plate tectonics begin. Seismology provides obser-

vations of the Earth’s interior by analysing phenomena such as the reflections of waves

or anomalous timings of waves arriving at the recording stations. Through analysis of

these phenomena, information such as the morphology, location and velocity pertur-

bation of mantle heterogeneity has been constrained. Information about the velocity

gradients, how quickly the seismic velocity of material changes with distance, at the

boundaries of mantle heterogeneities has not been analysed to the same extent and can

aid our understanding of its thermal and chemical properties. When a wave interacts

with a sufficiently strong velocity gradient, the wave moves at two different speeds over

a short distance leading to multiple arrivals arriving at the recording station. This

phenomenon, called multipathing, has been analysed through the waveform complex-

ity it creates and has led to estimations of the velocity gradients at the boundaries of

mantle heterogeneity. In addition to the waveform complexity, the multiple arrivals

should arrive with different directions and horizontal speeds through diffraction of the

wave by the velocity gradient. The direction and horizontal speeds have seldom been

used to analyse multipathed arrivals and could give more information about the het-

erogeneities. In this thesis, I use array seismology methods to analyse multipathing

and diffraction of the wavefield by measuring the direction and speeds of the arrivals

and expand the analysis to a global scale. First, I analyse multipathing caused by

the African Large Low-Velocity Province (LLVP), a continent-sized anomaly at the

core-mantle boundary beneath Africa, and show multipathing is frequency dependent

and can be caused by relatively weak velocity gradients. Then, I develop a method to

automate the identification of multipathing with array methods using cluster analysis

which also provides uncertainty estimates of the measurements. Finally, this automated

method is used to create a multi-regional map of SKS multipathing which motivates

future studies analysing the conditions needed for multipathing and for comparison

with other investigations into the Earth’s current state and evolution.
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array in Germany (GR) filtered between 0.5 and 2.0 Hz. The left sub-

figure shows the traces used in the example which are aligned on the

predicted PKIKP arrival time and the time window for the analysis

shown in red. On the right, the result of the algorithm with parameters

of ε = 0.2 s/◦ and MinPts = 0.25. . . . . . . . . . . . . . . . . . . . . . 91

3.10 Example application of the method for identifying multipathing in sur-

face waves. The left subfigure shows the raypaths (red lines) from the

05 January, 2013 event (white star) to the Southern California Seismic

Array (CI) stations (green triangles). Before the beamforming, the data

were filtered between 0.04 and 0.06 Hz. In this example, three arrivals

have been identified by the algorithm (right subfigure). For each arrival,

a path is marked from the mean station location along the mean backaz-

imuth to a point with the same epicentral distance as the event (dashed

white lines and circles). The solid white lines indicate the uncertainty

bounds of the backazimuth for the measurement. . . . . . . . . . . . . . 92

4.1 Cartoon describing the steps to automatically form a distribution of

stations (a) into sub-arrays (e). (b) apply DBSCAN (Ester et al., 1996)

to classify the stations into core, boundary and outlier stations. In the

cartoon, a station needs 4 other stations in the neighbourhood to be a

core station. (c) remove outlier stations. (d) from the core stations,

resample them so none are within the desired spacing of each other, here

the spacing is the same as the neighbourhood radius. (e) form sub-arrays

by collecting the stations within the neighbourhood of the centroid stations.107

4.2 Same as Figure 3.1 in Chapter 3. Cartoon describing the steps to auto-

matically identify arrivals in slowness space and measuring their slowness

vector properties. First bootstrap sample the traces recorded at an ar-

ray 1000 times creating 1000 random sub arrays (a). Then, for each

bootstrap sample, perform linear beamforming grid search and recover

the top peaks (b). Once this is done, collect all the points from all 1000

samples (c). Finally, apply clustering algorithm DBSCAN (Ester et al.,

1996) to identify regions dense enough to form clusters and, from their

location, measure their slowness vector properties. . . . . . . . . . . . . 109



List of Figures xxiii

4.3 Top: Event (orange stars) and sub-array (green triangles) coverage of the

usable observations after applying the method from Ward et al. (2021).

Middle: map of SKS pierce point coverage at 2800 km depth for the

observations after applying the method of Ward et al. (2021). Blue and

red circles show the pierce point location on the receiver- and source-side,

respectively. Bottom: great circle paths from event to stations. . . . . . 110

4.4 Model setups for the 3-D ray-tracing through a fast box (top) with length

and width of 1000 km, a height of 500km and a velocity perturbation of

+5%δVS and a slow cylinder with a diameter of 1000 km, height of 500

km and a velocity perturbation of −5% δVS . Also shown are the event

location (red star) at −97◦ longitude, 0◦ latitude and the mean station

locations of the sub-arrays (green triangles). . . . . . . . . . . . . . . . . 112

4.5 Slowness vector residuals for both model setups shown in Figure 4.4 with

the fast box shown in subfigures (a) and (b) and the slow cylinder shown

in (c) and (d). Slowness vectors shown in subfigures (a) and (c) plot

the slowness vectors at their great circle path pierce points between the

event and sub-array locations. Slowness vectors in subfigures (b) and

(d) are marked at their relocated locations. Notice, the slowness vector

patterns for the slow cylinder show a diverging pattern and for the fast

box a converging pattern. In all instances, the slowness vector azimuth

is orthogonal to the boundary of the structure. . . . . . . . . . . . . . . 114

4.6 Cartoon of how from a cluster of slowness vector points in slowness space

(a), the mean is measured (b) and the distances in slowness space are

found (c). From these distances the RMS is calculated. . . . . . . . . . . 116

4.7 Histograms of the number of bins with a low variance slowness vec-

tor measurements. The different histograms represent the different fre-

quency bands used. Top left is the lowest frequency band (0.10 – 0.20 Hz,

top right is the central frequency band (0.15 – 0.30 Hz) and the bottom

histogram is the highest frequency band (0.20 – 0.40 Hz). Receiver-side

paths beneath Europe are used for this analysis for these histograms. . . 118

4.8 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 2891 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 120

4.9 Binned multipathed arrival loci (top) and multipathing proportion (bot-

tom) showing regions which may have strong lateral velocity gradients.

The data used are from the 0.20 – 0.40 Hz frequency band and plotted

at 2891 km depth. The bins have a radius of 200km with a spacing of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



xxiv List of Figures

4.10 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 1800 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 122

4.11 Binned multipathed arrival loci (top) and multipathing proportion (bot-

tom) showing regions which may have strong lateral velocity gradients.

The data used are from the 0.20 – 0.40 Hz frequency band and plotted

at 1800 km depth. The bins have a radius of 200km with a spacing of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.12 Binned multipathed arrival loci (top) and multipathing proportion (bot-

tom) plotted at 500 km depth using data from the 0.15 – 0.30 Hz fre-

quency band. The bins have a radius of 200km with a spacing of 100

km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.13 Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using

pierce points at 500 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 127

4.14 Histograms in different frequency bands of the number of bins with a low

variance between the slowness vector measurement and slowness vector

measurements within 200 km of it. Source-side paths for data recorded

in Europe are used for this analysis for these histograms. . . . . . . . . . 129

4.15 Map of slowness vector bins on the source-side beneath South America

travelling to Europe. The bins used pierce points at 2891 km depth and

use data from the 0.10 – 0.20 Hz frequency band. . . . . . . . . . . . . . 130

4.16 Slowness vector bins in the 0.20 – 0.40 Hz frequency band at 2891 km

depth. The bins have a radius of 200 km with a spacing of 100 km. In

the background, we show tomography models, S40RTS (Ritsema et al.,

2011) (top) and GyPSuM (Simmons et al., 2010) (bottom) to highlight

the difference in the possible locations of the Perm anomaly. Scale for

slowness vector magnitude is given in top left. . . . . . . . . . . . . . . . 132

4.17 Slowness vector bins in the 0.10 – 0.20 Hz frequency band at 500 km

depth. The bins have a radius of 200 km with a spacing of 100 km. In

the background, we show tomography model S40RTS (Ritsema et al.,

2011). Scale for slowness vector magnitude is given in top left. . . . . . 133

4.18 Cartoon summarising the interpretations of the spatial distribution of

slowness vector deviation observations beneath Europe. . . . . . . . . . 134

4.19 Histograms for the receiver-side paths beneath NA in different frequency

bands of the number of bins with a low variance between the slowness

vector measurement and slowness vector measurements within 200 km

of it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



List of Figures xxv

4.20 Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using

pierce points at 200 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 137

4.21 Figure summarising multipathing observations using data in the 0.20 –

0.40 Hz frequency band and pierce points at 300 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.22 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 300 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.23 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 1800 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.24 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 2891 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 142

4.25 Figure summarising multipathing observations using data in the 0.20 –

0.40 Hz frequency band and pierce points at 2891 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.26 Histograms of source-side paths beneath NA in different frequency bands

of the number of bins with a low variance between the slowness vector

measurement and slowness vector measurements within 200 km of it for

data recorded in NA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



xxvi List of Figures

4.27 Map of slowness vector bins on the source-side beneath the southwest

Pacific traveling to stations in North America. The bins use pierce points

at 2891 km depth and use data from the 0.10 – 0.20 Hz frequency band. 148

4.28 Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using

pierce points at 200 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. The vectors are plotted on top of

the collaborative seismic earth model (Fichtner et al., 2018) . . . . . . . 149

4.29 Map of slowness vector bins using observations in the the 0.20 – 0.40

frequency band. The bins have a radius of 200km with a spacing of 100

km. The pierce points are at 2891 km depth (CMB) plotted on top of

tomography model is S40RTS (Ritsema et al., 2011). . . . . . . . . . . . 149

4.30 Cartoon summarising the interpretations of the spatial distribution of

slowness vector deviation observations beneath North America. Note

for the Yellowstone plume, we do not advocate for a linear feature from

the CMB to the surface but this is to simply show the diverging pattern

in the lower mantle may be related to the Yellowstone anomaly. . . . . 150

A.1 A comparison of the effect of (a) plane and (b) circular wavefront ap-

proximation on the grid search over slowness vectors. The observed

maximum for the plane wavefront approximation has a backazimuth de-

viation of 2.37◦ and an horizontal slowness deviation of 0.20 s/◦. The

circular wavefront approximation reduces these deviations to 0.4◦ for

backazimuth and 0.03 s/◦ for horizontal slowness. The data are gener-

ated by inserting a Ricker wavelet of frequency 0.15 Hz at the PREM

predicted arrival time for all stations in the Kaapvaal array. Correct-

ing for a circular wavefront significantly reduces the deviation of the

observed arrival from the prediction. . . . . . . . . . . . . . . . . . . . . 180

A.2 A comparison of results for synthetic data generated from Syngine using

model prem i 2s Hutko et al., 2017 (a) and the recorded data (b) from

an event on 25 May, 1995. These examples have had the array response

function deconvolved. The high power S2KS arrival in the synthetics

(a) and no visible S3KS power suggest the observation (b) shows mul-

tipathing and not phases of SmKS reverberations arriving in the time

window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



List of Figures xxvii

A.3 A comparison of the techniques used to improve the signal-noise ratio and

resolution of the θ−p plots. These examples use all data from an event on

the 29 May, 1997. (a) uses a linear stack and shows the most background

noise. (b) uses phase weighted stacking Schimmel and Paulssen, 1997a

and shows significant noise reduction. (c) is the result of deconvolving

the linear plot with the array response function using Richardson-Lucy

deconvolution Richardson, 1972 showing significant noise reduction after

5 iterations. (d) shows the linear stack with the F-statistic Blandford,

1974 applied showing a reduction in noise. . . . . . . . . . . . . . . . . . 182

A.4 Pierce points for sub array observations (frequency band 0.13 Hz to 0.52

Hz) at 2400 km depth coloured by backazimuth deviations relative to

the great circle path. Blue colours show paths that arrive from a more

clockwise direction and red show paths arriving from a more anticlock-

wise direction than predicted. Contours from S40RTS Ritsema et al.,

2011 at a depth of 2400 km are shown to represent potential structures

causing the observations. Pierce points are corrected to the measured

horizontal slowness and backazimuth. . . . . . . . . . . . . . . . . . . . . 184

A.5 Histograms of the backazimuth deviations of all observations in each

frequency band. The majority of the observations lie close to 0◦ with

maximum observed values of 10◦ to −22◦. . . . . . . . . . . . . . . . . . 185

A.6 Pierce points for sub array observations (frequency band 0.13 Hz to 0.52

Hz) at 2400 km depth, coloured by horizontal slowness deviations relative

to the PREM predicted ray parameter Dziewonski and Anderson, 1981.

Contours from S40RTS Ritsema et al., 2011 at a depth of 2400 km are

marked to outline structures potentially contributing to the observations.

Pierce points are corrected to match the observed horizontal slowness

and backazimuth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.7 Histograms of the horizontal slowness deviations of all observations in

individual frequency bands. Maximum deviations of 1.2 s/◦ and −1.0

s/◦ are observed. More positive than negative deviations are expected

due to the dominantly negative velocity mantle structure beneath Africa. 187

A.8 Histograms of slowness vector deviation magnitude with frequency. Dis-

tributions are very similar with frequency, with arguably slightly more

high magnitude vectors at higher frequency bands. The smallest slow-

ness vector magnitudes vary from less than 0.1 s/◦ to 2.1 s/◦. . . . . . . 188



xxviii List of Figures

A.9 Three θ-p plots showing synthetic observations with velocity perturba-

tions doubled at depths greater than 1000 km and tapered to a 1-D

model at 660 km depth. Left plot is data when using a 1-D upper man-

tle velocity model and no crustal model. Centre plot uses data when a

1-D upper mantle is used but a crustal model is included. Right plot

uses a 3-D upper mantle velocity model from S40RTS Ritsema et al.,

2011 and no crustal model. There is very little difference made from

adding 3-D crustal structure but a large difference from adding upper

mantle structure. Because of this, we include 3-D velocity structure in

the upper mantle for all our modelling runs. . . . . . . . . . . . . . . . . 189

A.10 Top: power spectra of a multipathed (orange) and non multipathed

(blue) arrival for data from the 21 May 1997 event. The power spec-

tra are calculated using Welch’s method Welch, 1967. Bottom: the

waveforms used to calculate power spectra. . . . . . . . . . . . . . . . . 190

A.11 Top: power spectra of a multipathed (orange) and non multipathed

(blue) arrival for data from the 25 May 1997 event. The power spec-

tra are calculated using Welch’s method Welch, 1967. Bottom: the

waveforms used to calculate power spectra. . . . . . . . . . . . . . . . . 191

A.12 Top: power spectra of a multipathed (orange) and non multipathed

(blue) arrival for data from the 05 April 1999 event. The power spectra

are calculated using Welch’s method Welch, 1967. Bottom: the wave-

forms used to calculate power spectra. . . . . . . . . . . . . . . . . . . . 192

A.13 Power spectra of waveforms recorded by several stations (shown in the

legend) which show (top) no multipathing and (bottom) clear multi-

pathing. Data used was recorded from the 25 May 1997 event. Power

spectra were calculated using Welch’s method Welch, 1967. . . . . . . . 193

A.14 Power spectra of waveforms recorded by several stations (shown in the

legend) which show (top) no multipathing and (bottom) clear multi-

pathing. Data used was recorded from the 05 April 1999 event. Power

spectra were calculated using Welch’s method Welch, 1967. . . . . . . . 194

A.15 A comparison of θ-p plots using the observed data (top row), synthetic

data from model M3 (middle row) and PREM Dziewonski and Anderson,

1981. The waveforms used have epicentral distances larger than 119◦

because there is evidence for SPdKS in the waveforms (Figure 13 in

main text). These use phase weighted stacking with degree 2. . . . . . . 196

A.16 Example θ-p plots showing how correcting for anisotropy affects multi-

pathing observations. In this example we use data from the 25 May 1997

event recorded at the Kaapvaal array. Plots on the left use a linear stack

only and the right hand plots use phase weighted stacking (Schimmel

and Paulssen, 1997b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



List of Figures xxix

B.1 Three results when using the automated method on Rayleigh wave data

in three different frequency bands do investigate the effect of disper-

sion. Data is from the 05 January 2013 event recorded at the Southern

California Seismic Array (CI). . . . . . . . . . . . . . . . . . . . . . . . . 202

C.1 Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using

pierce points at 2891 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 203

C.2 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 500 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 204

C.3 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 800 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 205

C.4 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 1000 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 206

C.5 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 2891 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 207

C.6 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 800 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

C.7 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 1000 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



xxx List of Figures

C.8 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 2891 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.9 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 2000 km depth beneath Europe. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 211

C.10 Figure summarising multipathing observations using data in the 0.20 –

0.40 Hz frequency band and pierce points at 2000 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

C.11 Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using

pierce points at 1000 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 213

C.12 Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using

pierce points at 1800 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 214

C.13 Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using

pierce points at 2000 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 214

C.14 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 200 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 215

C.15 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 500 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 215

C.16 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 800 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 216

C.17 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 1000 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 216



List of Figures xxxi

C.18 Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using

pierce points at 1800 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 217

C.19 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 500 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

C.20 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 800 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

C.21 Figure summarising multipathing observations using data in the 0.15 –

0.30 Hz frequency band and pierce points at 1000 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

C.22 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 300 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 221

C.23 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 1400 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 221

C.24 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 1800 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 222

C.25 Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using

pierce points at 2000 km depth beneath the US. The bins have a radius

of 200km with a spacing of 100 km. . . . . . . . . . . . . . . . . . . . . . 222



xxxii List of Figures

C.26 Figure summarising multipathing observations using data in the 0.20 –

0.40 Hz frequency band and pierce points at 1400 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C.27 Figure summarising multipathing observations using data in the 0.20 –

0.40 Hz frequency band and pierce points at 1800 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.28 Figure summarising multipathing observations using data in the 0.20 –

0.40 Hz frequency band and pierce points at 2000 km depth. The top

figure shows the mean loci in bins of 200 km radius in increments of 100

km. The bottom figure shows the proportion of multipathing relative to

the total number of observations in the bin. Bins for the multipathing

proportion measurements are 200 km radius spaced with increments of

100 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



Chapter 1

Introduction

This dissertation focuses on the use of seismic array methods to analyse mantle het-

erogeneities by measuring how they have perturbed the teleseismic wavefield through

phenomena such as multipathing (Section 1.1.2) and scaling up the measurements from

regional to global scale. To give context to the work presented later, I discuss why we

should study the Earth’s interior seismically and briefly outline what phenomena can

be studied and why I focus on analysing the lateral velocity gradients of mantle hetero-

geneities (Section 1.1). Then, I summarise array methods used to measure the slowness

vector properties (direction and horizontal velocity of a wave), their limitations and

methods developed to overcome some of these limitations (Section 1.2).

1.1 Investigating the structure of the mantle seismically

The movement of Earth’s tectonic plates driven by mantle convection is the cause of

many of the most hazardous and extreme features of the surface including earthquakes,

volcanoes and tsunamis. Although the dynamic interior of the Earth drastically affects

the surface we live on, many questions concerning the structure and processes of the

mantle remain. Such questions include: When did plate tectonics begin (Stern, 2007)?

How do plumes or hotspots initiate (Koppers et al., 2021)? Does subducted lithosphere

reach the core-mantle boundary? Why do some slabs stagnate and others not (Fukao

and Obayashi, 2013)? Are there remnants of the primordial Earth in the mantle (Gar-

nero et al., 2016)? Why are slabs (Fukao and Obayashi, 2013) and plumes (French and

Romanowicz, 2015; Rickers et al., 2013) apparently impeded at 1000 km depth? What

is the evolutionary history of the mantle? To address these and other uncertainties,

seismology provides invaluable observations of the Earth’s interior on scales ranging

from global 1-D velocity models of the Earth (Dziewonski and Anderson, 1981) to tens

of kilometre scale observations of the core-mantle boundary (e.g. Frost et al., 2013).

Furthermore, as computational power and coverage of seismometers with novel de-

1
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ployments (e.g. Simon et al., 2021) expands, further constraints on hypothetical Earth

models such as that shown in Figure 1.1 can be made.
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Figure 1.1: Figure 13 from Trønnes (2010) summarising a possible conceptual Earth model. In
this hypothetical model, the LLVPs here are denoted as thermochemical piles causing large scale
convection causing surface uplift. LLVPs are hypothesised to influence other mantle structures
by possibly initiating mantle plumes at their boundaries as plume generation zones (PGZs) and
Ultra Low Velocity Zones (ULVZs) collected at their boundaries. The sinking material reaches
the core-mantle boundary and pushes the thermochemical material into the LLVP piles.

1.1.1 Seismic observations of the Earth

Seismologists have applied many techniques to the ever growing dataset of seismo-

grams. Seismic tomography provides broad (>1000 kilometre scale) observations of

3-D elastic structure of the Earth (e.g. French and Romanowicz, 2014; Ritsema et al.,

2011; Simmons et al., 2010), but cannot resolve finer scale structure on the order of
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100s of kilometres. Regional studies focusing on a specific area of the Earth can have

higher resolution and uncover structures invisible to tomography adding to the picture

of what the Earth’s internal structure is. Some of these regional studies employ array

techniques outlined in Section 1.2 to observe weaker signals created through interaction

with seismic heterogeneity such as from scattering in the mid mantle (Bentham and

Rost, 2014; Li et al., 2014; Ritsema et al., 2020; Rost et al., 2008) and lower mantle

(Cao and Romanowicz, 2007; Haddon and Cleary, 1974; Haddon et al., 1982; Ma and

Thomas, 2020; Rost and Earle, 2010), reflected arrivals from transition zone (Day and

Deuss, 2013; Lessing et al., 2014; Waszek et al., 2018) and mantle heterogeneity (Kito

et al., 2007; Lay, 2007; Revenaugh and Meyer, 1997; Schumacher and Thomas, 2016;

Schumacher et al., 2018) or diffraction and refraction of the wavefield (Cottaar and

Romanowicz, 2012; Stockmann et al., 2019; Xu and Koper, 2009). Despite advances of

seismic imaging of the Earth, standout questions of the most enigmatic features of the

mantle remain.

1.1.1.1 Large Low-Velocity Provinces and Ultra Low Velocity Zones

Since the first seismic tomography models (Dziewonski et al., 1977), two extremely

large low-velocity regions have been imaged beneath Africa and the Pacific labelled

Large Low-Velocity Provinces (LLVPs) and have been a common feature in all S-wave

tomography models (e.g. French and Romanowicz, 2014; Koelemeijer et al., 2015; Lu

et al., 2019; Ritsema et al., 2011). Since their discovery, LLVPs have remained one of

the most enigmatic and studied structures of the mantle with uncertainties remaining

over their spatial scale, how ‘sharp’ the transition from the surrounding mantle to the

LLVPs is, or their relationship with other mantle heterogeneity. Further uncertainties

can be shown from the different hypotheses of what LLVPs are. Are they purely thermal

structures or do they have some form of chemical heterogeneity? How old are LLVPs?

Are they long lived features of the mantle or are they relatively short-lived features?

Some of the differing conceptual models for LLVPs are shown in Figure 1.2 edited from

Figure 2 in Garnero et al. (2016).

Seismic tomography typically shows LLVPs to spatially extend 1000s of km laterally

and up to 1000 km above the CMB, have approximately 3% reduced S-wave velocity and

approximately 2% reduced P-wave velocity relative to the surrounding mantle, although

it has been shown tomography can underestimate seismic velocity anomalies in the lower

mantle (Bull et al., 2009; Bull et al., 2010; Ritsema et al., 2007; Schuberth et al., 2009).

The density of LLVPs has been a heavily discussed topic and knowledge of the density

anomaly of LLVPs can potentially differentiate between the conceptual models shown in

Figure 1.2. Initial estimates using gravity and normal mode (whole Earth oscillations)

data suggested LLVPs may be 0.8% – 1.8% denser than the surrounding mantle (Ishii

and Tromp, 1999; Trampert et al., 2004). Since these studies, other estimates have
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Figure 1.2: Edited from Figure 2 in Garnero et al. (2016). Four conceptual models of what
LLVPs could be. (a), a cluster of mantle plumes, (b) a superplume with chemical heterogeneity,
(c), a stable and long-lived dense thermochemical pile and (d), a thermochemical pile with
density similar to the surrounding mantle.

been made and suggest the LLVPs may be 0.88% less dense than the surrounding

mantle (Koelemeijer et al., 2017) while others suggest they are 0.5% denser than the

surrounding mantle (Lau et al., 2017). Work continues to consolidate the different

results of Stonely modes and tide observations with an LLVP model with a more dense

base and less dense tops (Richards et al., 2021). To infer whether chemical heterogeneity

may be present, correlations between shear wave velocity (sensitive to the rigidity of

the material) and bulk sound (sensitive to the compressibility of the material) can

be made. Studies comparing these properties found a negative correlation between the

two, which cannot be produced by thermal anomalies alone for the same phase (Masters

et al., 2000) suggesting chemical heterogeneity is present, although, this could indicate

locations of a phase change (Koelemeijer et al., 2017) and not necessarily constrain

whether LLVPs are compositionally unique to the mantle. Seismic tomography provides

broad-scale observations of LLVPs, but cannot resolve the spatial scale of the transition

from the mantle to LLVP, which could give information about how distinct LLVPs are

from the surrounding mantle. Studies analysing sharp changes in arrival times of waves

over small spatial scales and identifying multipathing give estimates of a transition

length of 10s of kilometres and a shear wave velocity reduction of between 3% and 5%

(Bréger and Romanowicz, 1998; Ford et al., 2006; He and Wen, 2012; He et al., 2006; Ni

and Helmberger, 2003a; Ni and Helmberger, 2003b; Ni et al., 2002; Ritsema et al., 1997;

Sun et al., 2009; Sun and Miller, 2013; Wang and Wen, 2004; Wen, 2001; Zhao et al.,

2015). Multipathing only occurs when a wave is incident on a sufficiently strong lateral
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velocity gradient and leads to two arrivals which arrive at different times, directions and

horizontal speeds. For further discussion of multipathing, see Section 1.1.2. Despite

claims that sharp velocity gradients are evidence for chemical heterogeneity, it has

been shown that purely thermal structures with no chemical heterogeneity can produce

sharp velocity gradients and velocity reductions (Davies et al., 2012). At the moment,

both purely thermal and thermochemical models of LLVPs can replicate the seismic

observations made so far, therefore none of the conceptual models can be ruled out yet.

On a much smaller scale, Ultra Low Velocity Zones (ULVZs) have been imaged in

various regions at the CMB with very strong reductions in S and P-wave velocity of

up to 50% and 25% respectively (Garnero and Helmberger, 1996; Garnero et al., 1998;

Idehara, 2011; Rondenay and Fischer, 2003; Rost et al., 2005; Yu and Garnero, 2018)

and be up to 20% more dense than the mantle (Idehara, 2011; Rost et al., 2005). ULVZs

are typically on the order of 10s of kilometres high and 100s of kilometres laterally

(McNamara, 2019; Rost et al., 2005; Thorne and Garnero, 2004) although there have

been observations of so called ‘mega’ ULVZs (Cottaar and Romanowicz, 2012; Thorne

et al., 2013) which have lateral spatial scales of up to 1000 km. ULVZs have been

detected using a variety of seismic techniques including scattering (e.g. Ma et al., 2019;

Rondenay and Fischer, 2003; Rost and Garnero, 2006) and diffraction (Cottaar and

Romanowicz, 2012) as well as by waveform analysis (e.g. Thorne and Garnero, 2004;

Thorne et al., 2021; Thorne et al., 2019). Like LLVPs, ULVZs remain very enigmatic

with uncertainty over their origins remaining and determining which hypotheses are

correct is challenging. The hypotheses often involve partial melt, dense, compositionally

distinct material, or some combination of the two. To be dense enough (10% denser

McNamara et al. (2010)) to survive mantle mixing and not be limited to only the hottest

regions of the mantle, ULVZs have been proposed to be compositionally distinct with

a range of hypotheses proposed as sources for this compositional heterogeneity such

as silicate sediments from the core (Buffett et al., 2000), iron enriched post perovskite

(Mao et al., 2006; Mao et al., 2005), partial melt from subducted slab (Liu et al., 2016),

iron-enriched oxides (e.g. Wicks et al., 2017).

ULVZs and LLVPs are likely related in some dynamic sense as ULVZs have been

shown at the boundaries of LLVPs (Yu and Garnero, 2018). Understanding the rela-

tionship between ULVZs and LLVPs would give some insight into the origin of LLVPs

and their role in global mantle convection. As it is unclear if either or both LLVPs

and ULVZs are home to some heterogeneity it is challenging to constrain their rela-

tionship. Observations of ULVZ location, shape and sizes can further constrain their

role in the mantle and with LLVPs and possibly the chemical nature of both structures

(McNamara, 2019).
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1.1.2 Why analyse multipathing, diffraction and refraction?

Of the phenomena analysed seismically, multipathing has not been analysed in the same

detail or as widely applied as other seismic phenomena. Multipathing observations

provide information about the lateral velocity gradients the wave has sampled and over

what distance the properties change between the ambient mantle and the heterogeneity

itself. Analysis of boundary structure has been focused on LLVPs using observations

of waveform complexity and distinct changes in travel time anomalies (e.g. Ni et al.,

2002). In addition to these observations, more information is available by using array-

based methods to measure the slowness vector properties of the multipathed arrivals

(Ward et al., 2020), see Section 1.2 for details. Furthermore, analysing the slowness

vector properties of waves that have diffracted when interacting with the boundaries

of mantle heterogeneities can also be used to constrain the velocity gradients. In this

section, I outline in more detail what multipathing is, the progress that has been made

in analysing the phenomenon and what analysing the slowness vectors of multipathing

could contribute.

Multipathing occurs when a wave is incident on a sufficiently strong lateral veloc-

ity gradient. Figure 1.3 illustrates multipathing at the boundary of LLVPs and fast

material and how they may be observed at the surface. The velocity gradient causes

different parts of the wavefield to move at different speeds depending on whether they

are travelling inside or outside of the structure. The different parts of the wave will

diffract along the boundary and through the structure. This results in two or more

wavefront segments that arrive at the station at different times and with different hori-

zontal speeds and directions. Multipathing from mantle heterogeneity is often analysed

in terms of their arrival times and waveform complexity (e.g. Ni and Helmberger, 2003a;

Sun and Miller, 2013; Zhao et al., 2015) and later I show multipathed arrivals can be

observed using their different direction and horizontal speeds.

Multipathing has been used to infer the morphology, location, velocity perturbation

and lateral velocity gradient at the boundaries of mantle heterogeneity to understand

processes active in the mantle. Silver and Chan (1986) identify multipathing in di-

rect S waveforms by their broadening relative to ScS phases to identify a slab feature

penetrating the 660 km discontinuity, verified using forward modelling to replicate

the multipathing with a slab like feature. There have been several studies analysing

multipathing caused by the LLVPs. As described earlier, a standout question about

LLVPs is whether they are purely thermal features or if they are home to chemical

heterogeneity. Observing multipathing at the boundaries of LLVPs and quantifying

the possible gradients to compare with those in geodynamic models may constrain if

chemical heterogeneity is required to produce strong enough velocity gradients to cause

multipathing. A standout study on this was conducted by Ni et al. (2002) who analysed

the waveforms of S, ScS, Sdiff and SKS waves recorded in southern African which is lo-
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Figure 1.3: Cartoons of how SKS multipathing from an earthquake (red star) to a seismic
array (green triangles) may occur at the boundaries of seismically fast material (top) and
slow material (bottom). The raypaths are coloured by whether they are relatively slow (red),
fast (blue) or if they will show multipathed arrivals (pink). These cartoons show how sharp
boundaries and multipathing may be observed in seismograms recorded at an array. (1) of both
subfigures shows the waveforms and an abrupt change in arrival times whereas (2) shows the
difference in the vector properties of the arrivals, which is the focus of this thesis. The bottom
subfigure is taken from Ward et al. (2020).
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cated directly above the African LLVP. They find evidence for clear multipathing and,

through a 2-D ray-tracing approach, estimated the velocity gradients as a reduction of

3% S-wave velocity over 50 km. Several other studies using similar approaches of wave-

form analysis and then replication using 2-D ray tracing synthetics (Ni and Helmberger,

2003a; Ni and Helmberger, 2003b; Sun et al., 2007) have found similar estimates for the

lateral velocity gradients as have those expanding to 3-D ray tracing (Helmberger and

Ni, 2005; Ni et al., 2005). Following this series of studies, efforts have been made to

automate the identification of multipathing in the waveforms (Sun et al., 2009). In this

algorithm, multipathing is identified by comparing the observed waveform to a synthet-

ically generated seismogram where multipathing has been approximated as a difference

in arrival times between the different sides of the Fresnel zone. The Fresnel zone de-

scribes the area at a point along the path of the wave between the source and receiver

(for further discussion on Fresnel zones and array seismology see Rost and Thomas,

2009). This ‘multipathing detector’ (Sun et al., 2009) has since been used to analyse

multipathing caused by plumes (Sun et al., 2010), African LLVP boundaries (Sun and

Miller, 2013), ULVZs (Sun et al., 2019) and subducting slabs (Sun et al., 2017). Mul-

tipathing has been analysed using measurements of the multipathed arrivals’ direction

and horizontal speed, but the multipathed arrival is described as a post cursor to the

main Sdiff arrival caused by sampling an ULVZ (Cottaar and Romanowicz, 2012).

It has often been proposed that the presence of ‘sharp’ velocity gradients capable

of producing multipathing is evidence for chemical heterogeneity, particularly for lower

mantle structure (e.g. Ni et al., 2002), however, it has been shown purely thermal struc-

tures are also capable of producing sharp velocity gradients (e.g. Davies et al., 2012).

Studies analysing strong lateral velocity gradients have focused on LLVP boundary

structure and the lateral velocity gradients of other mantle heterogeneities have not

been fully explored. Therefore, multipathing observations to identify and quantify lat-

eral velocity gradients are still valuable to understand mantle dynamics and history.

Unlike other mechanisms for mantle heterogeneity to affect the seismic wavefield, multi-

pathing has not been analysed on a global scale to identify where strong lateral velocity

gradients exist and quantify their strengths. This is part of the motivation for the end

goal of this thesis where I begin to create a global dataset of multipathing in different

seismic phases starting with SKS.

1.2 Array methods: overview, limitations and develop-

ments

All of the work in this project uses a spatial distribution of recording stations to measure

the properties of a teleseismic wave. It is therefore necessary to lay the foundation by

describing what property I measure (Section 1.2.1), and introduce the techniques used
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to measure it (Sections 1.2.2 and 1.2.3). Then, assumptions and limitations of the

standard methods are outlined and the techniques I and others have used to address

them are described (Section 1.2.4).

1.2.1 Slowness vector

All work in this thesis in some way involves making slowness vector measurements of

a teleseismic wave arriving at receiver stations distributed spatially in close proximity

called a ‘seismic array’ (Figure 1.4 shows an example of an array). Later in this section,

I describe techniques to measure the slowness vector of a wave with a seismic array and,

to understand the implications and results of Chapters 2, 3 and 4, I describe what a

slowness vector represents.

n

Figure 1.4: Edited from Figure 3 of Rost and Thomas (2002) showing a spatial distribution
of stations (triangles). The position of the stations are recorded in the vector −→rm with their x
(east), y (north) and z (elevation) coordinates.

The slowness vector describes the horizontal direction and inclination of a wavefront.

The horizontal direction (or backazimuth, θ) can be measured as the angle clockwise

from north to the direction the wave is coming from (Figure 1.5). The inclination of

the wave is inferred from the apparent horizontal velocity (vhor) of the wave with

i = arcsin (
vmed
vhor

), (1.1)

assuming the velocity of the material beneath the array (vmed). The apparent horizontal

velocity can be calculated from the time taken for the wave to travel between stations

at the surface. As these stations usually have very little elevation difference between

them, relative to the seismic wavelength, only the horizontal component of the wave’s

velocity can be measured. Assuming similar velocity properties of the medium beneath

the array, the faster the apparent horizontal velocity of the wave, the more steeply it is

arriving. A completely vertical wave will arrive at all stations at the same time, thus

having an infinite apparent velocity. In work presented later, the measurement made is

not the apparent horizontal velocity but the horizontal slowness of the wave (p), which
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is the inverse of the apparent horizontal velocity (vhor),

p =
1

vhor
, (1.2)

of the wave moving over the array. From the horizontal slowness, the inclination (i)

of the wave can be calculated by assuming a slowness of the wave u (the inverse of

the velocity of the wave through the medium, vmed) travelling through the material

beneath the stations with

i = arcsin (
p

u
). (1.3)

The slowness vector can be plotted in a polar coordinate system with horizontal

slowness on the radial axis and the backazimuth on the azimuthal axis (Figure 1.5).

The distance of a point on this plot from the centre gives the horizontal slowness and

the angle from 0◦ (or north) gives the backazimuth. This can, if the velocity of the

medium is known, be interpreted in 3D as a hemisphere beneath the array and a wave

arriving from beneath. The closer the point is to the centre, the steeper the inclination

of the arrival.

N

θ

p

p

i

station arrival backazimuth horizontal
slowness

Figure 1.5: Cartoon explanation of making a slowness vector measurement when plotting
horizontal slowness (p) on the radial axis and backazimuth (θ) on the azimuthal axis. a) shows
the plot on the horizontal plane where the measurement can be made and b) shows how the
horizontal slowness measurement on this plot relates to inclination angle.



§1.2 Array methods: overview, limitations and developments 11

When measuring the slowness vector of a wave using the methods described in Sec-

tions 1.2.2 and 1.2.3, one often searches over a range of different slowness vectors. For

this search, the slowness vector can be defined through its px and py components which

describe the slowness vector components in the East and North direction respectively.

If searching over a range of slowness vectors in the polar system (backazimuth and

horizontal slowness), the spacing between the vectors increases as a function of the

horizontal slowness such that at very low horizontal slowness, the distance between

the vectors is very small and at larger p values the distance is very large for the same

backazimuth spacing. If the slowness vector is defined with px and py representation,

the spacing between the slowness vectors in the search can be the same regardless. In

all methods applied in this thesis, we search over a range of slowness vectors using

their px and py representation, but for more intuitive interpretation we convert the

measurements to backazimuth and horizontal slowness values.

1.2.2 Beamforming

In all methods used in this thesis, beamforming (Rost and Thomas, 2002) plays a

crucial role. Beamforming is used to amplify the coherent signal and suppress incoher-

ent noise for energy arriving from a particular backazimuth and horizontal slowness.

Beamforming uses the fact that at a given array of stations distributed spatially, a wave

arriving from a particular direction with a particular horizontal velocity will arrive at

the stations at different times. Depending on the apparent horizontal velocity, the time

taken to travel the horizontal distance between stations will be different and can be

clearly seen as a moveout on a distance-time plot (Figure 1.6).

Given a backazimuth, horizontal slowness and station locations (−→rm), the estimated

arrival times relative to a reference point assuming a plane wavefront can be calculated.

The plane wavefront model assumes the curvature of the wavefront leads to negligible

effects on the travel time estimates. This holds for a small seismic array but, for larger

arrays and arrays which are close to the source or antipode, this assumption breaks

down. This is discussed further in Section 1.2.4.1. Using the calculated delay times,

the seismograms can be shifted in time. After the seismograms are shifted, they are

‘stacked’ which is essentially taking the mean amplitude at each time over all of the

seismograms. The resultant stacked seismogram is the ‘beam’ that is formed. This

whole process can be described by

b(tdisc,
−→
k ) =

1

M

M∑
m=1

sm(tdisc +−→rm ·
−→
k ), (1.4)

where b(tdisc) is the amplitude of the beam at a discrete time tdisc, M is the number of

seismograms, sm is the mth seismogram, −→rm is a vector describing the location of the

seismograph which recorded the seismogram sm and
−→
k is the horizontal slowness vector.
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Figure 1.6: A distance-time plot of data from the 25 May, 1997 event recorded at the Kaapvaal
array in South Africa. This plot illustrates the high amplitude waves generate by the earthquake
arrives at about 1460s at an epicentral distance of 113.2◦ and then the wave arrives gradually
later with epicentral distance until the top of the plot where the wave arrives at approximately
1490s. The blue line marks the expected arrival time if the wave travels through the 1-D Earth
model PREM (Dziewonski and Anderson, 1981).
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The full derivation for this equation and how the coherent signal separates from the

incoherent noise can be found in Rost and Thomas (2002). The level to which the signal

to noise (SNR) is increased from stacking is approximately
√
M where M is the number

of seismograms used in the beamforming assuming perfectly coherent signals and totally

incoherent noise (Harjes and Henger, 1973). Beamforming can amplify the signal of

coherent waves arriving from a particular backazimuth and horizontal slowness if it is

known. What many techniques discussed in the next sections take advantage of is how

beamforming can also be used to measure the coherent signal arriving from a particular

backazimuth and horizontal slowness. Through this measurement of coherence, a range

of slowness vector properties can be used to find which has the strongest coherent signal

and therefore has the closest slowness vector properties to the arrival.

1.2.3 Vespagrams, beamforming grid searches and f–k analysis

It is rare to know the slowness vector properties of an arrival before using beamforming

and it is often very useful to estimate these properties and study what may have caused

them to deviate from the prediction of an Earth model. To estimate the slowness vector

properties of arrivals in a given time section of seismograms recorded at a seismic

array, velocity spectral analysis/vespagrams (Davies et al., 1971), beamforming and

f–k analysis can be used. Here, I give a brief overview of these methods.

The vespa process takes advantage of the ability of beamforming to amplify the

coherent signal and suppress the incoherent noise of a backazimuth and horizontal

slowness of a wave. Vespagrams vary one of either backazimuth or horizontal slowness

while keeping the other one constant and create beams at each combination of slow-

ness vector properties. The result of the vespa process can be plotted as a vespagram

which has the slowness vector property investigated on the y-axis and time on the x-

axis (Figure 1.7). This example shows a vespagram where the horizontal slowness is

varied and backazimuth is kept constant as the backazimuth between the source and

the centre of the array. Alternatively, the horizontal slowness could be kept constant

and vary the backazimuth. The value given to the constant slowness vector property

is very important and may lead to misleading measurements of the other slowness vec-

tor property (Rost and Thomas, 2002). Furthermore, the array geometry, aperture

and station spacing affect the resolution of the arrivals in the vespagram plot. Poor

resolution on a vespagram is shown by high amplitudes at many horizontal slowness

or backazimuth values making it difficult to measure the slowness vector property of

the arrival. This is problematic when trying to isolate different arrivals based on their

slowness vector properties. Strategies have been developed to improve the slowness

resolution such as Nth-root stacking (McFadden et al., 1986), phase weighted stack-

ing (Schimmel and Paulssen, 1997), F statistic (Blandford, 1974), or cross-correlation

beamforming (Ruigrok et al., 2017).
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Figure 1.7: Example of a vespagram showing what times and horizontal slownesses have the
most coherent signal. Data used are the same as in Figure 1.6. Notice that there are two clear
regions where phases SKS and SKKS arrive (Figure 1.10). Furthermore, there may be two
arrivals with different slownesses for both of these phases possible evidence for multipathing
(Section 1.1.2).
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The full slowness vector (finding both the backazimuth and horizontal slowness) of

the coherent signal(s) in a time window can also be found using the beamforming ap-

proach. To do this, both backazimuth and horizontal slowness parameters are searched

in a grid search. For each slowness vector, the beam is formed and a measure of the

power in the beam with

P (
−→
k ) =

∫ t2

t1
b2(tcont,

−→
k )dt, (1.5)

where P (
−→
k ) is the power value for a slowness vector

−→
k and is found by integrating

along the power of the beam b2(tcont,
−→
k ) between times t1 and t2. Note, now time is a

continuous variable. This gives a single value describing how coherent a signal is at a

given slowness vector and therefore if you search over a range of slowness vectors, you

can determine which have the strongest coherent signal. For example, Figure 1.8 shows

the result of this grid search approach with the data in Figure 1.6 and there is clearly

a region of high power values near the predicted SKS slowness vector value.

For the sake of efficiency, this grid search approach can be conducted in the fre-

quency domain with the f–k method, which will calculate the coherent power distri-

bution over frequency (f) and wavenumber (k) (Aki and Richards, 2002; Capon, 1969;

Hinich, 1981) described as

P (
−→
k −
−→
k0) =

∫ ∞
−∞

b(tcont,
−→
k ) dt =

∫ ∞
−∞
|S(ω)|2

∣∣∣∣∣ 1

M

M∑
m=1

e2πi·(
−→
k −
−→
k0)·−→rm

∣∣∣∣∣
2
dω

2π
, (1.6)

where P (
−→
k −
−→
k0) is the power at a particular slowness vector

−→
k relative to the slowness

vector of the signal
−→
k0, S(ω) is the Fourier transform of the signal, −→rm is the position

vector of station m and ω is the angular frequency. From this expression of the power

as a function of wave number, the power can be broken into the amplitude spectrum

(S(ω)) and the array response function

ARF (
−→
k −
−→
k0) =

∣∣∣∣∣ 1

M

M∑
m=1

e2πi·(
−→
k −
−→
k0)·−→rm

∣∣∣∣∣
2

. (1.7)

The array response function describes the effect of array aperture and inter-station

spacing on the wavenumber power spectrum. As the ARF can be calculated theo-

retically given an array geometry, studies have deconvolved the ARF from the power

distribution to try and recover the signal S(ω). We discuss this alongside other lim-

itations of using seismic arrays and methods developed to address them in the next

section.
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Figure 1.8: Example of a power distribution on a grid of different slowness vectors defined
by their px and py components. The px is the easterly component of the slowness vector and
py is the northerly component of the slowness vector. Data used are the same as in Figure
1.6 and the analysis is conducted between 1450 and 1500 seconds after event origin time in a
frequency band between 0.10 – 0.40 Hz. Notice that there is one clear region with high power
values and the centre of this region slightly deviates from the SKS predicted slowness vector
(white cross). The shape of the high power region is determined by array geometry, spacing
and aperture which can be calculated as the array response function.
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1.2.4 Building on standard array processes

The techniques outlined in the previous section make assumptions about the wave

speed, wavefront shape, near-surface geology, waveform shape, the contribution of noise

and others. In this section, we describe these limitations and how studies have addressed

these limitations and improved the resolution of slowness vector measurements.

1.2.4.1 Correcting for a curved wavefront

Conventional array methods assume the wave moving over the array can be approx-

imated as a plane wave. A plane wavefront assumes the backazimuth and horizontal

slowness of the wave are the same at all stations in the array. However, assuming a

finite source and a spherical Earth, the backazimuth of the wave varies with location

and the horizontal slowness varies with source-receiver distance. For arrays of a smaller

aperture, the plane wave assumption holds and there is no effect of assuming a plane

wavefront on the measured slowness vector. For large aperture arrays, such as the

Kaapvaal array used for analysis in Chapter 2, the assumption breaks down and can

affect the slowness vector measurement. Because of this, I change the beamforming

methodology to correct for a curved wavefront.

To correct for a curved wavefront I alter the travel time estimation process given

a backazimuth and horizontal slowness. To estimate the travel times, of a curved

wavefront moving from an event to an array of stations, the radial distance over a

spherical Earth is calculated using the Haversine formula,

a = (sin(
∆φ

2
)2 + cos(φ1) cos(φ2) sin(

∆ϕ

2
))2 (1.8)

c = 2 arctan(

√
a√

1− a
) (1.9)

d =
180

π
c, (1.10)

where d is the distance in degrees, ∆φ is the latitudinal difference between the event

and the station, ∆ϕ is the longitudinal difference between the station and the event, φ1

is the latitude of the event, φ2 is the latitude of the mean station location. From these

distances, the arrival times are estimated by multiplying the distances by a horizontal

slowness value, the traces are then shifted and stacked as in the conventional beam-

forming approach. For each backazimuth of interest, the event is relocated keeping the

epicentral distance constant along the backazimuth in question from the centre of the

array using

φnew = [arcsin(sin(φold) cos(d) + cos(φold) sin(d) cos(θ))] , (1.11)

ϕnew =

[
ϕold + arctan

(
sin(θ) sin(d) cos(φold)

cos(d)− sin(φold) sin(φnew)

)]
, (1.12)
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where φnew is the new latitude, ϕnew is the new longitude, φold is the old latitude, ϕold

is the old longitude, d is the epicentral distance and θ is the backazimuth. From this

new location, the distances and travel times can be recalculated. Figure 1.9 visualises

the process of searching over backazimuths and calculating the radial distances as is

also shown in Chapter 2.

Figure 1.9: Figure 3 in Chapter 2 showing the process of correction for a curved wavefront
and how the method searches over different backazimuths.

Rather than assuming the backazimuth is the same at all stations, this curved wave-

front correction assumes the backazimuth of the wave at each station is the same as the

theoretical backazimuth over a spherical Earth from the relocated point to the station.

This accounts for the curved wavefront shape as it travels over an array. To test the

correction, I apply the corrected beamforming method on synthetic data arriving from a

known backazimuth and horizontal slowness (also shown in the supplementary material

for Chapter 2 in Appendix Section A.1). The correction reduces the backazimuth error

from 2.37◦ to 0.40◦ and the horizontal slowness error from 0.20 s/◦ to 0.03 s/◦. It is

still assumed the wave moves over the array with a constant horizontal velocity, which

is not true for large arrays and may still account for the very small errors observed in

slowness vector measurements observed from synthetic data.
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1.2.4.2 Reducing the effect of array geometry

As discussed in Section 1.2.3 the power distribution can be described in the frequency

domain as a convolution of the signal power and the array response function (ARF). The

array response function describes how the array aperture and station distribution affects

the resolution of the signal in the power distribution. As the ARF can be estimated

theoretically using the array geometry, the ARF could be deconvolved from the power

distribution output from beamforming or f–k analysis to improve the resolution.

I use the Richardson-Lucy (R–L) deconvolution algorithm (Lucy, 1974; Richardson,

1972) to deconvolve the theoretical ARF from the power distributions in Chapter 2 to

better identify multipathed and single arrivals. The R–L algorithm restores an image

that has been blurred by a known point spread function (psf). For this application, the

blurred image is the beamforming power distribution and the point spread function is

the ARF. Rather than directly deconvolve the point spread function from the image,

which may increase the noise in the image, the R–L algorithm instead estimates what

the deblurred image is by finding an image that, when convolved with the psf, is as

close to the blurred image as possible. The algorithm assumes the blurred image (G)

is described by

G = P ∗D, (1.13)

where G is a matrix describing the blurred image, which is produced by the 2-D convo-

lution (∗) of P , a matrix describing the point spread function, with D, the unblurred

image. The iterative deconvolution process is described in the following paragraph.

At each iteration, the algorithm calculates a correction factor matrix C, which

is multiplied element-wise with each value in the current iteration’s estimate of the

unblurred image. If the estimated unblurred image is the same as the true unblurred

image, the correction matrix will be filled with ones and the estimate of the unblurred

image will not change.

The algorithm first convolves the point spread function matrix (P ) with the previous

iteration’s image estimate matrix (Di−1) as P ∗Di−1. If the deblurred image estimate

Di−1 is the true deblurred image, the result of this convolution will be the same as the

observed image G. To quantify the deviation between the true deblurred image and the

image estimate, the original image matrix G is divided element-wise by the output of

the previous step as shown by G
P∗Di−1

. To create the correction matrix C, the transpose

of the point spread function (P T ) is convolved with the output of the previous step as

shown by P T ∗ G
P∗Di−1

. The correction factor is then multiplied element-wise with the

image estimate of the previous iteration (Di−1) to give an updated estimate (Di) and

the algorithm moves on to the next iteration. All of the above steps can be described
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by

Di = αDi−1(P T ∗ G

P ∗Di−1
) , (1.14)

where Di is the deblurred image at iteration i, Di−1 is the deblurred image of the

previous iteration, α is the inverse of the sum of the columns of the point spread

matrix P and acts as a normalising vector, P is the point spreading function, P T is

the transpose of the point spreading function, ∗ indicates 2-D convolution, and G is

the original observed image.

This technique has been applied to f–k power outputs in previous studies (Maupin,

2011; Picozzi et al., 2010) and I use this to deblur beamforming outputs in Chapter

2. For this application, the original image G is the beamforming output and the point

spread function (P ) is the ARF. A limitation of the R–L deconvolution technique in

this application is the ARF accounts for array geometry, aperture and station spacing

but not for the effect of the local geology. Therefore, the ARF may not be the same as

the true point spread function which blurs the signal in the power distribution.

Other deconvolution algorithms have been implemented such as the CLEAN-PSF

algorithm (for details see Gal et al., 2016) and algorithms which could be implemented

such as blind deconvolution where the point spread function is not known to begin with

and is updated alongside the deblurred image (Kundur and Hatzinakos, 1996). I do not

explore these options further as the R–L deconvolution is satisfactory and improving

the resolution further is not necessary or the focus of this work.

1.2.4.3 Reducing incoherent noise

In a linear stack, where seismograms are stacked with no weighting, only the time

series of the amplitudes are used to create beams and search for the slowness vector

properties. If incoherent noise is present in the traces with large amplitudes, it may, by

chance, stack coherently and affect the slowness vector measurement. In this section,

I outline methods often employed to reduce the power of incoherent noise and boost

the signal of coherent arrivals. Through these processes, low amplitude but coherent

arrivals may be identified and the resolution of the arrival of the power distributions

are improved.

1.2.4.3.1 F statistic

The F statistic (Blandford, 1974; Frost et al., 2013) has been employed to improve the

signal of coherent arrivals and reduce incoherent noise in the power distribution. The

F statistic is calculated by dividing the total power of the beam by the total power of
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the residual of the beam and the individual traces

Fθ,p = (M − 1)
M
∑T

tdisc=1 b(θ,p)(tdisc)
2∑T

tdisc=1

∑M
m=1[sm(θ,p)(tdisc)− b(θ,p)(tdisc)]2

, (1.15)

where Fθ,p is the F statistic at a particular backazimuth (θ) and horizontal slowness

(p), M is the number of traces that form the beam, b(θ,p)(tdisc) is the beam at time

tdisc (time is a discrete variable here) for a given backazimuth and horizontal slowness

and sm(θ,p)(tdisc) is trace m at time tdisc shifted by the time calculated for a particular

backazimuth and horizontal slowness. The F statistic gives a measure of the coherence

of the signals in the time widow by measuring the similarity of the amplitude in time

after the time shift from beamforming.

The F statistic assumes the signal waveform is the same on each trace and both the

signal and noise are assumed to be stationary (their mean amplitude does not change

over the time the signal is analysed) and spectrally white, the signal is perfectly cor-

related and noise completely uncorrelated (Blandford, 1974). The F statistic performs

less well in instances where these assumptions are not met such as when the noise is

correlated as found when using very small aperture arrays (station spacings of less than

a kilometre) (Blandford, 1974), although techniques have been developed to use the F

statistic on small arrays (Selby, 2008; Selby, 2011). The apertures of the arrays used

in this work are much larger than those where the F statistic is less effective. Other

assumptions in the beamforming process may make the signal appear less coherent such

as not accounting for a curved wavefront at a large aperture array or from effects of the

local geology. This would produce scatter in the time calculations leading to reduced

coherence of the signal.

1.2.4.3.2 Phase weighted stacking

The methods described in Section 1.2.2 and 1.2.3 the stacking process is a linear stack

where there is no additional weighting of the seismograms when they are summed. By

weighting the seismograms or points of the seismograms, the signal-to-noise ratio of

the beams can be improved, improving the resolution of the slowness vector power dis-

tribution and improving the relative amplitude of low amplitude but coherent arrivals.

Phase weighted stacking (Schimmel and Paulssen, 1997) is a non-linear stacking method

which weights each point of the linear stack by an amplitude independent measure of

coherency described by

bpws(tdisc) = b(tdisc)

∣∣∣∣∣ 1

M

M∑
m=1

e(iΦm(tdisc))

∣∣∣∣∣
v

, (1.16)
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where bpws(tdisc) is the phase weighted stack at time t, M is the number of seismograms,

Φm(tdisc) is the mth instantaneous phase at time tdisc, b(tdisc) is the amplitude at

time tdisc of the linear beam and v is the weighting power. Phase weighted stacking

creates a ‘phase stack’ to weight the linear beam by. If the signal is coherent at a

specific time, then the weighting from the phase stack is 1 and incoherent signals have

a weighting closer to zero. The power value v in equation 1.16 controls how aggressively

the incoherent signals are suppressed.

As phase weighted stacking is a non-linear stacking method, the waveforms are

distorted and therefore the resultant phase weighted stack cannot be used for waveform

analysis. Phase weighted stacking is very sensitive to the coherency of the wave over the

array and therefore if an arrival is only present in some but not all of the traces it can

be heavily down-weighted depending on v. Furthermore, the coherency measure means

phase weighted stacking is very sensitive to time offsets which can greatly improve the

slowness resolution of vespagrams or power distributions. However, errors in the travel

time estimates during beamforming from effects of local geology or not correcting for

a curved wavefront could offset arrivals in time making them less coherent and phase

weighted stacking could erode them such that they are no longer visible.

1.2.4.3.3 Nth-root stacking

Although not used in this thesis, an approach used by some studies discussed later

in Section 1.1 to improve the resolution of the vespa process is the Nth-root stack

(McFadden et al., 1986). Like the F statistic and phase weighted stacking, Nth-root

stacking is a non-linear stacking approach which enhances weak but coherent signals

measured across the array. The Nth-root stack takes the Nth-root of each seismogram

before creating the beam

b′N (tdisc) =
1

M

M∑
m=1

∣∣∣sm(tdisc +−→rm ·
−→
k )
∣∣∣1/N sm(tdisc)

|sm(tdisc)|
, (1.17)

where b′N (tdisc) is the temporary beam at time tdisc, M is the number of seismograms,

sm(tdisc + −→rm ·
−→
k ) is the time shifted seismogram of some slowness vector

−→
k and N

is the order of the Nth-root stack. The Nth-root of the absolute amplitude is taken,

therefore to retain the sign of the signal at time tdisc the Nth-rooted trace is multiplied

by sm(tdisc)
|sm(tdisc)| . To create the Nth-root stack, the temporary beam is taken to the power

N

bN (tdisc) =
∣∣b′N (tdisc)

∣∣N b′N (tdisc)∣∣b′N (tdisc)
∣∣ , (1.18)

bN (tdisc) is the Nth-root stacked beam and again to retain the sign of the signal at

time tdisc, the trace is multiplied by
b′N (tdisc)

|b′N (tdisc)| . Taking the Nth-root of the single traces

reduces the amplitude variance of the individual traces means the small amplitude but
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coherent phases stack to a relatively greater amplitude than in a linear stack. This pro-

cess puts greater importance on the coherence of the phase than the amplitude leading

to more suppressed noise and greater enhancement of signal by reducing the signal am-

plitude variance. In Nth-root stacking, both the signal and the background noise are

attenuated, but the background noise is much more attenuated relative to the signal

(McFadden et al., 1986). When using a very high N value, even the signal itself begins

to be attenuated, therefore a suitable value for N is essential in this application. The

attenuation of the signal deforms the waveforms in the beam, therefore the resultant

beams from Nth-root stacking cannot be used for waveform analysis.

1.2.4.4 Wavefield coherence assumption

Standard beamforming procedure assumes waveform coherence across the array or in

other words the wavelet of the arriving signal is assumed to be the same across the

array. Heterogeneities in the Earth which are sampled by some paths to the array but

not all or complex source time functions recorded on a large enough array may result

in waveform incoherence which can result in inaccurate measurements (Gibbons et al.,

2018; Gibbons et al., 2008). Strategies to address the impacts of this assumption include

using spectrogram beamforming (for details see Gibbons, 2014; Gibbons et al., 2008)

or using the seismic envelopes, the instantaneous amplitude with the phase information

removed (Eaton and Kendall, 2006). Other than the waveform shape, the effect of local

geology on the wavefield as it moves across the array may result in scatter of the arrival

times and lead to errors in the slowness vector measurement (Gibbons et al., 2018).

Currently, there is no way to correct for the local structure without a velocity model

of the near array structure. However, blind deconvolution (Kundur and Hatzinakos,

1996) and updating the array response function to better deblur the power distribution

may contain some information about what may deform the signal in slowness space

that is not included in the theoretical ARF.

Rather than trying to reduce or eliminate the effects of some of these assumptions

about the local geology and waveform incoherence, the method presented in Chapter 3

estimates the combined uncertainty of these assumptions. This is because the array in

question is bootstrapped (random sampling with replacement, Efron (1992)), therefore

if local geology or differences in waveform shape does affect the measurement this

will produce some scatter between the samples. The extent of the scatter of slowness

vectors then gives the estimate of the uncertainty of the measurement when using all

the stations in the array. This is discussed and demonstrated further in Chapter 3 and

applied to a large dataset in Chapter 4.
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1.3 Rationale of the thesis

The goal of this work is to quantify the effect mantle heterogeneity has on the teleseismic

wavefield by using array methods to identify multipathing through slowness vector

perturbation and to upscale the process to a global scale. This section outlines the

strategy to achieve the goal of the thesis and discuss the reasoning behind decisions

such as the choice of seismic phase I use (Section 1.3.2).

1.3.1 Strategy

Before trying to scale up the identification of multipathing and wavefield perturbation

on a global scale, I investigate whether it is possible or worthwhile to investigate mantle

heterogeneity through array analysis of multipathing and what can be learned from

the observations. Chapter 2 investigates the use of array analysis of multipathing by

gathering a large dataset of SKS and SKKS arrivals (Figure 1.10) and use beamforming

(Section 1.2) to identify multipathing and wavefield perturbation by their slowness

vector properties. The dataset samples the African LLVP which has been extensively

studied and many studies have observed multipathing in the waveforms (e.g. Ni and

Helmberger, 2003a; Ni et al., 2002; Sun and Miller, 2013; Wang and Wen, 2007) giving

the best chance to observe and investigate the potential of using array methods with

multipathing. This study also served to aid the automation of the process. Analysing

the data by visual inspection and labelling the observations with multipathing, single

arrival and noise helped to understand challenges such as identifying multipathing over

spatial aliasing and misidentifying arrivals as noise.

After gaining an understanding of the process, I then try to automate the process

as much as possible to make the analysis of large global datasets feasible. In addition

to classifying seismic arrivals, the method in Chapter 3 also estimates the uncertainties

of the slowness vector measurements of the arrivals, which typically are not included in

slowness vector analysis. The uncertainty estimates account for many of the limitations

discussed in Section 1.2.4. These uncertainty estimates allow for the properties such as

the location of a structure or the depth of reflectors to have quantifiable uncertainty

bounds. Other than SKS multipathing, the method is tested on other data such as

PKPdf precursors and surface waves to show the parameters I find do generalise to

other seismic arrivals. Challenges remain to reduce the misclassification of noise as an

arrival and improvements to the method are discussed in Chapter 5.

Armed with this new method to automatically identify multipathed arrivals, I take

the large dataset of SKS waveforms from Thorne et al. (2020) and apply the method

and make global-scale observations of SKS multipathing. This final study essentially

has started the journey towards global coverage of multipathing and slowness vector

perturbation which can be used to infer locations, velocity perturbations and velocity
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gradients of heterogeneities as well as make global scale interpretations of the frequency

dependence of multipathing and wavefield perturbation. In Chapter 4, the process to

make global-scale observations of SKS multipathing is outlined in more detail and basic

interpretation are made to suggest possible causes of the observations. Even with simple

statistical methods and smoothing the observations by binning, several structures found

by comparing with findings from other approaches are visible. This motivates further

study of what properties are capable of producing such observations and expanding the

dataset to cover even more of the Earth.

1.3.2 Seismic phase choice

For all projects, I have used SKS and SKKS (Figure 1.10). I choose SKS because of

the nearly vertical path it takes through the mantle after leaving the core. Having

the wave exit the core at a near-vertical angle gives a greater chance for the wave to

sample a vertically orientated lateral velocity gradient from structures such as mantle

plumes or LLVPs for longer. Therefore, the velocity gradients of these structures can

perturb the wavefield more and it is more likely to detect multipathing and the effects of

diffraction. I collected a large dataset of over 2000 SKS and SKKS arrivals over several

frequency bands to analyse in Chapter 2 of this thesis. I use this dataset of human-

analysed observations to tune the method developed to automate the identification of

multipathing and measurement of slowness vector properties in Chapter 3. Given the

advantages of SKS described earlier, we then use an already collected global dataset of

SKS waveforms from Thorne et al. (2020) to apply this method and begin to create a

global map of multipathing and slowness vector deviations.

While using SKS has some advantages and I argue it is the best-suited phase to

probe the lower and mid mantle for heterogeneity, there are some challenges to be

noted. SKS is sensitive to some source side structure, but the extent of the perturbation

remains to be fully explored and I argue large slowness vector deviations are unlikely

to be caused by source side structure only because of the very large spatial deviation

of the pierce points on the source side needed for a wave to arrive with the observed

slowness vector properties. However, smaller slowness vector deviations may be caused

by source side structure and this deviation will change the path taken on the receiver

side.

1.3.3 Contribution and novelty

Each chapter of this thesis contributes to scientific knowledge differently. Chapter 2

demonstrates multipathed arrivals can be observed by their different slowness vector

properties and slowness vector measurements of SKS waves alone can give real insight

into the location, morphology and velocity gradient of LLVP boundaries. Forward mod-

elling in the chapter uses the finite frequency code SPECFEM3D Globe (Komatitsch
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Figure 1.10: Ray paths of SKS (red) and SKKS (blue) from source (white star) to receiver
(green triangle).

and Tromp, 2002a; Komatitsch and Tromp, 2002b) to model a full wavefield rather than

ray tracing or coupled Earth mode–spectral element method approximations (Capdev-

ille et al., 2003a; Capdeville et al., 2003b; Helmberger and Ni, 2005; Ni et al., 2000) to

find lateral velocity gradients an order of magnitude lower than the strong gradients

reported by Ni et al. (2002). In addition to suggesting LLVPs may have weaker velocity

gradients than thought for the past 20 years or so, this also motivates a comparison

between ray-tracing methods and finite frequency modelling to determine whether the

inferred velocity gradients of the methods differ.

The implications of Chapter 3 come from providing the first method, to my knowl-

edge, which both automatically identifies multiple arrivals in slowness space and gives

the slowness vector measurements of those arrivals uncertainty estimates. The method

makes global-scale measurements of slowness vector properties of seismic arrivals and

identification of multipathing more feasible. Furthermore, the method allows uncer-

tainty bounds on the location of structures such as the depth of a reflector or the

location of scattering in the lower mantle. Even with applications on a smaller scale,

knowing the uncertainty of the slowness vector measurement can allow the user to

discriminate between measurements and determine which should be interpreted.

Finally, the novelty and contribution of the work in Chapter 4 is a global scale

investigation locating mantle heterogeneities by their velocity gradients, which has not

previously been conducted. The results of the study can already be used to iden-

tify several mantle heterogeneities in densely sampled regions unresolvable to global

or regional tomographic studies. From this dataset, work can be done to expand the

observations using phases such as Sdiff and ScS to get greater global coverage and

can be used to compare the results of geodynamic studies as well as in tomographic

studies. Furthermore, studies using forward modelling to quantify what velocity gradi-
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ents, perturbations and height are needed to observe multipathing and slowness vector

magnitudes now have a large number of observations to use for comparison. This multi-

regional study shows each of the heterogeneities has unique characteristics in terms of

the slowness vector pattern, magnitude and multipathing observations. These differing

observations between heterogeneities show the value of these measurements to constrain

the unique properties such as the geometry, velocity gradient magnitude and velocity

perturbation of the structures. Having a global dataset of lateral velocity gradient

properties can then be used to infer the differing thermal and chemical properties of

the heterogeneities which then feed into inferences of their age and origin.

Overall the contribution of this work is to demonstrate the value of analysing the

slowness vector properties of multipathing, developed an automated to identify multi-

pathing and make slowness vector deviation measurements and applied the method to

create large scale observations of mantle heterogeneities to improve our understanding

of mantle structure and further constrain Earth’s mantle dynamics.
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865–905.

He, Y., & Wen, L. (2012). Geographic boundary of the âPacific Anomalyâ and its geom-

etry and transitional structure in the north. Journal of Geophysical Research:

Solid Earth, 117 (B9).

He, Y., Wen, L., & Zheng, T. (2006). Geographic boundary and shear wave velocity
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S-wave velocity structure of the Dâ³ discontinuity beneath the Cocos plate.

Geophysical Journal International, 169 (2), 631–645.

Koelemeijer, P., Ritsema, J., Deuss, A., & Van Heijst, H.-J. (2015). SP12RTS: A degree-

12 model of shear-and compressional-wave velocity for Earth’s mantle. Geophys-

ical Journal International, 204 (2), 1024–1039.

Koelemeijer, P., Deuss, A., & Ritsema, J. (2017). Density structure of Earth’s lowermost

mantle from Stoneley mode splitting observations. Nature Communications, 8.

Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seis-
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551 (7680), 321–326.

Lay, T. (2007). Deep earth structure-lower mantle and D. Seismology and Structure of

the Earth, 619–654.

Lessing, S., Thomas, C., Rost, S., Cobden, L., & Dobson, D. P. (2014). Mantle transition

zone structure beneath India and Western China from migration of PP and SS

precursors. Geophysical Journal International, 197 (1), 396–413.

Li, M., McNamara, A. K., & Garnero, E. J. (2014). Chemical complexity of hotspots

caused by cycling oceanic crust through mantle reservoirs. Nature Geoscience,

7 (5), 366–370.



REFERENCES 31

Liu, J., Li, J., Hrubiak, R., & Smith, J. S. (2016). Origins of ultralow velocity zones

through slab-derived metallic melt. Proceedings of the National Academy of

Sciences, 113 (20), 5547–5551.

Lu, C., Grand, S. P., Lai, H., & Garnero, E. J. (2019). TX2019slab: A New P and

S Tomography Model Incorporating Subducting Slabs. Journal of Geophysical

Research: Solid Earth, 124 (11), 11549–11567.

Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions.

The Astronomical Journal, 79, 745.

Ma, X., Sun, X., & Thomas, C. (2019). Localized ultra-low velocity zones at the eastern

boundary of Pacific LLSVP. Earth and Planetary Science Letters, 507, 40–49.

Ma, X., & Thomas, C. (2020). Small-Scale Scattering Heterogeneities in the Lowermost

Mantle From a Global Analysis of PKP Precursors. Journal of Geophysical

Research: Solid Earth, 125 (3), e2019JB018736

e2019JB018736 2019JB018736.

Mao, W. L., Mao, H.-k., Sturhahn, W., Zhao, J., Prakapenka, V. B., Meng, Y., Shu,

J., Fei, Y., & Hemley, R. J. (2006). Iron-rich post-perovskite and the origin of

ultralow-velocity zones. Science, 312 (5773), 564–565.

Mao, W. L., Meng, Y., Shen, G., Prakapenka, V. B., Campbell, A. J., Heinz, D. L.,

Shu, J., Caracas, R., Cohen, R. E., Fei, Y. et al. (2005). Iron-rich silicates in

the Earth’s D” layer. Proceedings of the National Academy of Sciences, 102 (28),

9751–9753.

Masters, G., Laske, G., Bolton, H., & Dziewonski, A. (2000). The relative behavior

of shear velocity, bulk sound speed, and compressional velocity in the mantle:

Implications for chemical and thermal structure. Earth’s deep interior: mineral

physics and tomography from the atomic to the global scale, 63–87.

Maupin, V. (2011). Upper-mantle structure in southern Norway from beamforming of

Rayleigh wave data presenting multipathing. Geophysical Journal International,

185 (2), 985–1002.

McFadden, P. L., Drummond, B. J., & Kravis, S. (1986). The Nthâroot stack: Theory,
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ages from small-scale seismic arrays. Geophysical Journal International, 181 (1),

357–368.

Revenaugh, J., & Meyer, R. (1997). Seismic Evidence of Partial Melt Within a Possibly

Ubiquitous Low-Velocity Layer at the Base of the Mantle. Science, 277 (5326),

670–673.

Richards, F., Hoggard, M., Ghelichkhan, S., Koelemeijer, P., & Lau, H. (2021). Geody-

namic, geodetic, and seismic constraints favour deflated and dense-cored llvps.

Richardson, W. H. (1972). Bayesian-Based Iterative Method of Image Restoration*.

Journal of the Optical Society of America, 62 (1), 55.

Rickers, F., Fichtner, A., & Trampert, J. (2013). The IcelandâJan Mayen plume system
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density of magnesiowüstites: Implications for ultralow-velocity zone topography.

Geophysical Research Letters, 44 (5), 2148–2158.

Xu, Y., & Koper, K. D. (2009). Detection of a ULVZ at the base of the mantle beneath

the northwest Pacific. Geophysical Research Letters, 36 (17).

Yu, S., & Garnero, E. J. (2018). Ultralow velocity zone locations: A global assessment.

Geochemistry, Geophysics, Geosystems, 19 (2), 396–414.

Zhao, L., Paul, A., Guillot, S., Solarino, S., Malusa, M. G., Zheng, T., Aubert, C.,

Salimbeni, S., Dumont, T., Schwartz, S., Zhu, R., & Wang, Q. (2015). First

seismic evidence for continental subduction beneath the Western Alps. Geology,

43 (9), 815–818.





Chapter 2

Lateral Velocity Gradients in the

African Lower Mantle Inferred

from Slowness Space

Observations of Multipathing

Abstract

Large Low-Velocity Provinces (LLVPs) are hypothesised to be purely thermal features

or possess some chemical heterogeneity, but exactly which remains ambiguous. Regional

seismology studies typically use travel time residuals and multipathing identification

in the waveforms to infer properties of LLVPs. These studies have not fully analysed

all available information such as measuring the direction and inclination of the ar-

rivals. These measurements would provide more constraints of LLVP properties such

as the boundary velocity gradient and help determine their nature. Here, we use array

seismology to measure backazimuth (direction) and horizontal slowness (inclination)

of arriving waves to identify structures causing multipathing and wavefield perturba-

tion. Following this, we use full-wavefield forward modelling to estimate the gradients

required to produce the observed multipathing. We use SKS and SKKS data from

83 events sampling the African LLVP, which has been extensively studied providing a

good comparison to our observations. We find evidence for structures at heights of up

to 600 km above the core-mantle boundary causing multipathing and wavefield pertur-

bation. Forward modelling shows gradients of up to 0.7% δVs per 100 km (0.0005 km

s−1 km−1) can produce multipathing with similar backazimuth and horizontal slowness

to our observations. This is an order of magnitude lower than the previous strongest

estimates of −3% δVs per 50 km (0.0044 kms−1 km−1). As this is lower than found
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for both thermal and thermochemical structures, lateral velocity gradients capable of

producing multipathing are not necessarily evidence for a thermochemical nature.

Plain Language Summary

Of the structures observed within the Earth, ‘Large Low-Velocity Provinces’ (LLVPs)

have remained enigmatic in terms of their composition and origin. LLVPs have been

hypothesised to affect the Earth from surface uplift to the magnetic field. Determining

what LLVPs are remains a major question for those studying Earth structure.

Previous seismology studies analysing LLVPs used the time taken for the wave to

travel from the earthquake to the recording station and what the seismic signals look

like when they arrive. However, properties such as the direction and speed at which the

waves arrive are not analysed in detail. The speed and direction of the waves can inform

us about how LLVPs have perturbed the waves by phenomena such as refraction.

This study measures the direction and speed of the arriving waves that have sampled

the LLVP beneath Africa. Analysing this information has lead to several structures

to be identified. From modelling the full wavefield with different LLVP models, we

estimate the distance over which the transition from the mantle to the LLVP happens.

To replicate our observed changes in the direction and speed of the waves, the transition

could be an order of magnitude larger than previous estimates.

2.1 Introduction

Large Low-Velocity Provinces (LLVPs) are roughly antipodal, low-velocity features of

the lower mantle located beneath Africa and the Pacific and are surrounded by high-

velocity material hypothesised to be slab remnants (Bijwaard et al., 1998; Grand et al.,

1997; Grand, 2002), shown in Figure 2.1. Since first observed, LLVPs have remained

enigmatic features of the lower mantle with their origin, composition and therefore

their influence remaining uncertain.

The location of the LLVPs relative to other structures and phenomena such as

surface uplift (Bull et al., 2010; Hager et al., 1985; Lithgow-Bertelloni and Silver,

1998), possible subducted slab remnants (Hager, 1984), mantle plumes (Davies et al.,

2015b; Thorne et al., 2004), large igneous provinces (Torsvik et al., 2010), Ultra Low

Velocity Zones (McNamara et al., 2010) and outer core stratification (Mound et al.,

2019) suggests LLVPs are influential on whole Earth dynamics. Despite being very

significant for our understanding of global dynamics, many properties of the LLVPs are

still unknown and there are several hypotheses of their origin. These hypotheses can be

approximately split into those where LLVPs are purely thermal features and those in

which they are chemically distinct relative to the surrounding mantle (Garnero et al.,
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Figure 2.1: (a) 3D map of tomography model SEMUCB-WM1 (French and Romanowicz,
2014) with an isosurface of −1% δVs shown in red and an isosurface of +1% δVs in blue. The
isosurface is plotted below 80% of the Earth’s radius (5097 km, 2205 km above the CMB).
(b) Multipathing at LLVP boundaries. As the wavefront moves over a strong lateral velocity
gradient, different parts travel at different speeds and arrive at the stations at different times
as two distinct arrivals (1). The gradients can cause the wave to diffract and the structure can
cause the wave to refract as it passes through it. As a result, multipathed arrivals can arrive
from different directions and inclinations (2).
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2016). For a purely thermal feature, a common hypothesis is that LLVPs are a cluster

of plumes (Schubert et al., 2004) which appear as one large slow feature because of

the inherent resolution limitations from seismic tomography (Bull et al., 2009; Davies

et al., 2015a; Davies et al., 2012; Ritsema et al., 2007). The thermochemical origin

hypothesis requires a source of material chemically unique to the current lower mantle

either from the primordial Earth or material that has accumulated over geological time.

Material from the primordial Earth is hypothesised to start as a basal layer of material

that is swept into piles forming the LLVPs. Mechanisms for the origin of this base layer

include a basal magma ocean (Labrosse et al., 2007), accumulation of dense melts (Lee

et al., 2010) or an ancient, iron-enriched crust which was then subducted and is stable

at CMB conditions (Tolstikhin and Hofmann, 2005). This basal layer could then have

been swept into piles observed as LLVPs which has been shown numerically (Tackley,

1998) and experimentally (Davaille, 1999). Alternatively, they could have accumulated

over geological time as subducted lithosphere in the lower mantle (Christensen and

Hofmann, 1994; Hirose et al., 1999; Hirose et al., 2005) which is swept into piles,

forming the LLVPs (Mulyukova et al., 2015; Tackley, 2011). However, there is some

question of the feasibility of producing negative velocity perturbations (Deschamps et

al., 2012) and for the slab material to accumulate at the same rate as it is stirred into

the mantle (Li and McNamara, 2013).

Depending on the origin of the LLVPs, our understanding of how the Earth evolved

from its primordial state changes. If LLVPs are a short-lived cluster of mantle plumes,

they do not need to exist in early Earth history. If they are long-lived piles of pri-

mordial Earth remnants, their formation and survival would need to be accounted for.

Constraining the origin of LLVPs, therefore, has implications for our understanding of

the Earth’s history as well as whole Earth dynamics.

To reduce the number of hypotheses, there has been a focus on determining whether

LLVPs are purely thermal or thermochemical features. Their relative density could

provide constraints but conflicting observations have suggested both higher and lower

relative density (Ishii and Tromp, 1999; Koelemeijer et al., 2017; Lau et al., 2017).

Anticorrelation of S-wave velocity and bulk sound speed (Masters et al., 2000; Su and

Dziewonski, 1997) is commonly used as evidence for compositional heterogeneity for

LLVPs, but this has also been interpreted as the presence of post-perovskite (Davies

et al., 2012; Koelemeijer et al., 2015). The presence of strong lateral velocity gradients

has been attributed to a thermochemical origin (Ni et al., 2002; To et al., 2005), but

these gradients can also be replicated with purely thermal structures (Davies et al.,

2012; Schuberth et al., 2009).

Most of these studies use observations or constraints from seismological studies.

Seismic tomography provides global, broad observations of LLVP location, morphology

and relative velocity (e.g. French and Romanowicz, 2014; Grand et al., 1997; Grand,
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2002; Koelemeijer et al., 2015; Ritsema et al., 2011; Simmons et al., 2010). The

agreement of the long-wavelength structure of LLVPs in tomography models shows they

are a result of the lower-mantle structure and not the different datasets or methodologies

used (Lekic et al., 2012). In addition to these global observations, regional seismology

studies combine travel time residuals, multipathing observations in the waveform and

forward modelling to recover the location, gradient and inclination of LLVP boundaries

(e.g. Frost and Rost, 2014; He and Wen, 2009; He and Wen, 2012; He et al., 2006; Ni

et al., 2002; Ritsema et al., 1998; Roy et al., 2019; Sun and Miller, 2013; To et al.,

2005). Multipathing occurs when a wavefront is incident on a strong lateral velocity

gradient that causes the wavefront to move at different speeds and arrive at a recording

station with different travel times as two arrivals. In addition to this, the boundary

structure causes the wave to diffract and the structure causes the waves to refract as

they pass through it, so the multipathed arrivals arrive from different directions and

inclinations as well as arrival times. Figure 2.1 illustrates the multipathing phenomena

at LLVP boundaries and how they can be observed at the surface.

LLVP boundary studies using travel time residuals and waveforms are common and,

from their observations, have estimated the gradients at the boundaries of LLVPs to

range from 3% δVs per 50 km ( 0.0044 km s−1 km−1 ) (Ni et al., 2002) to 2% δVs per

300 km ( 0.00048 km s−1 km−1) (Ritsema et al., 1998) (See Table 2.1 for published

estimates of African LLVP S-wave velocity gradients). Combining travel time residuals,

multipathing identification and forward modelling to observe and infer the properties

of structures is well established and has been applied to a variety of structures (Silver

and Chan, 1986; Sun et al., 2019; Sun et al., 2017; Sun et al., 2010) and algorithms

developed to identify multipathing automatically in the waveforms (Sun et al., 2009;

Zhao et al., 2015). Although regional seismology studies only use the waveform to infer

the effects of deep Earth structure on the wavefield, they do not analyse all information

available such as the direction and inclination of the arrival.

Study Gradient (δVs) Gradient (kms−1 km−1)

Ni et al. (2002) −3% per 50 km 0.0044

Ni and Helmberger (2003c) −3% per 100–150 km 0.0022 – 0.0015

Ni and Helmberger (2003a) −3% per 50 km 0.0044

Sun and Miller (2013) −3.5% per 200 km 0.0013

Ritsema et al. (1998) −2% per 300 km 0.00048

This study −0.7% per 100 km 0.00050

Table 2.1: Table of lateral gradients of the African LLVP’s boundaries in δVs and kms−1km−1.
The gradients for kms−1km−1 were calculated using the Vs value for PREM (Dziewonski and
Anderson, 1981) at the CMB.

Current observations have not been sufficient to constrain LLVP properties and

therefore their composition, origin and influence remain ambiguous. Both purely ther-
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mal and thermochemical structures can replicate properties such as the strong gradi-

ents, velocity reduction, morphology and anticorrelation between S-wave velocity and

bulk sound speed (Davies et al., 2012; McNamara et al., 2010; McNamara and Zhong,

2004; McNamara and Zhong, 2005; Schuberth et al., 2009; Tackley, 1998). Because

current seismic observations are not enough to constrain LLVP properties, we explore

what can be inferred from analysing the direction and inclination of the arrivals.

This study uses array seismology to measure the backazimuth (direction) and hori-

zontal slowness (a proxy for inclination) to identify multipathing and regions of diffrac-

tion and refraction. This is applied to data sampling the lower mantle beneath Africa,

where several studies have identified multipathing and sharp travel time residuals (e.g.

Ni et al., 2002; Sun et al., 2009; Wen et al., 2001). Different frequency bands are used

to hypothesise differences in the African LLVP boundary structure such as gradient,

depth and inclination. Using these observations, we estimate the gradients capable of

producing multipathing with similar backazimuth and horizontal slowness deviations

as our observations.

2.2 Methodology

2.2.1 Slowness vector grid search and beamforming

To measure the backazimuth and horizontal slowness, we search over a range of slowness

vectors each with its own backazimuth and horizontal slowness and use beamforming

(Rost and Thomas, 2002) to measure the power of the coherent signal. If there are

multiple arrivals, we detect high power values at different backazimuths and horizontal

slownesses. The results are referred to as θ − p plots as they describe how the power

of coherent signal varies with backazimuth (θ) and horizontal slowness (p). Figure 2.2

shows examples of clear, possible and null multipathing observations in the θ− p plots

and clear example of multipathing in the waveforms. The analysis is conducted within

a time window selected from the visual inspection of the record section, typically on the

order of tens of seconds. Information such as the time windows, stations, measurements,

multipathing identification is available from 10.6084/m9.figshare.16573646.

Most array techniques assume energy propagates as a plane wavefront (Rost and

Thomas, 2002). If the array aperture is small, this assumption holds and the effect

of a curved wavefront is negligible. We use data from the Kaapvaal array (James et

al., 2001), which has a large aperture (spread over approximately 20◦ in northwest-

southeast orientation) so the plane wave assumption breaks down and can contribute

to some deviation from the predicted backazimuth and horizontal slowness.

We alter the travel time calculation of beamforming to account for a circular wave-

front given a backazimuth and horizontal slowness (Figure 2.3). To calculate the travel

10.6084/m9.figshare.16573646
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Figure 2.2: θ–p plots giving examples of arrivals classified as (a) clear multipathing using
data from an event on 29 May, 1997, (b) potential multipathing using data from an event on
25 May, 1997 and (c) no multipathing using data from an event on 06 October, 1997. Details
of event location and date are provided in the appendix Section A.8. All of these were filtered
between 0.10 and 0.40 Hz and the power linearly normalised. (d) Waveforms from an event on
25 May, 1997 plotted by their great circle path backazimuth with a possible multipathed arrival
highlighted.

times of a circular wavefront moving over a spherical Earth from event to station loca-

tions, the radial distances are calculated using the Haversine formula. This distance is

then multiplied by an angular slowness value in s/◦. From these estimates, the traces

are shifted, stacked and the power of the coherent signal estimated. To search over

backazimuth, the event is relocated keeping the epicentral distance constant. From

this new location, the radial distance to each station is calculated relative to the mean

distance and the travel times calculated (see Chapter 1 for details).

We test our correction on synthetic data arriving from a known backazimuth and

horizontal slowness (see appendix section A.1). We find our correction reduces the

backazimuth deviation from 2.37◦ to 0.40◦ and the horizontal slowness deviation from

0.20 s/◦ to 0.03 s/◦.
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Figure 2.3: Illustration of the correction for a circular wavefront over a spherical Earth and
how we search over backazimuth. The event location is changed depending on what backazimuth
is tested with the epicentral distance kept the same. For each location, the radial distance to
each station is calculated and the product of this with the angular slowness gives a travel time
estimation.
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2.2.2 Multipathing identification and slowness vector measurements

Multipathed arrivals are identified as power maxima separated in backazimuth and

horizontal slowness and with a power value above the background noise and at least

10% of the maximum power value (Figure 2.2). We calculate the orientation of the

locus between the multipathed arrivals clockwise from North where multipathing is

identified. To calculate this, the locations of the multipathed arrivals in the θ − p

observation are recorded and the angle of the vector connecting the two points from

North is calculated. This angle is then rotated by 90◦ as the locus is orthogonal to the

vector connecting the two points.

Our data set includes SKKS phases (Section 2.2.4) at distances where other phases

such as S3KS could arrive at similar times and horizontal slownesses, which make

it challenging to identify multipathing. For SKKS observations where multipathing

could be present, we analyse synthetics generated using SYNGINE and the 1-D model

prem i 2s (Hutko et al., 2017; Krischer et al., 2017) as an estimate of the relative power

of SKKS and S3KS. If there is any power for an S3KS arrival in the synthetic θ − p
plots and there are multiple arrivals in the recorded data, the observation is labelled

as “possible” multipathing. See Section A.2 for more details.

In addition to identifying multipathing, several measurements can be made from

each observation. The backazimuth residual (∆Θ) between the observed (Θobserved)

and the backazimuth predicted by the great circle path between the event and mean

station location (Θpredicted) is given by ∆Θ = Θobserved − Θpredicted. The horizontal

slowness residual (∆p) between the observed (pobserved) and the PREM (Dziewonski and

Anderson, 1981) predicted horizontal slowness (ppredicted) is given by ∆p = pobserved −
ppredicted. The vector from the predicted location to the observation location in the

θ−p plot is recorded as a measure of the direction and strength of the perturbation the

wave has experienced. Figure 2.4 illustrates the meaning of this vector residual, locus

between the arrivals and visualises backazimuth and horizontal slowness deviations.

2.2.3 Frequency Analysis

To analyse the frequency dependence of multipathing and its wavefield effects, the data

are filtered in five frequency bands and analysed separately (frequency bands: 0.07-0.28

Hz, 0.10-0.40 Hz, 0.13-0.52 Hz, 0.15-0.60 Hz, 0.18-0.72 Hz, 0.20-0.80 Hz) each with a

width of two octaves. The frequencies will affect the size of the Fresnel zone, which gives

an approximation of the area contributing to the observation. For both the main and

multipathed arrival to have enough power to be observed, there needs to be a significant

enough velocity change over the Fresnel zone. The frequency variation of multipathing

could be indicative of differences in sharpness, depth or inclination between boundaries.

Fresnel zones for each frequency band were calculated at the CMB using velocity values
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Figure 2.4: Annotations of the θ–p observation with data from an event on the 29 May, 1997
showing clear multipathing. The locus between the multipathed arrivals marked in blue gives
an approximation of the boundary orientation. The residual slowness vector from the predicted
backazimuth and horizontal slowness gives information of how the wavefield has been perturbed.
Illustrations of positive and negative residuals for backazimuth and horizontal slowness are
shown.
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from PREM (Dziewonski and Anderson, 1981), details in Section A.9.

2.2.4 Data and preprocessing

SKS and SKKS data (Figure 2.5) from events located 70◦ to 140◦ away from the centre

of the array and with magnitudes between 5.5 and 7.5 recorded at the Kaapvaal array

are used to analyse Africa LLVP boundary structure (Figure 2.5). We deconvolve the

instrument response, remove the mean amplitude, taper and apply a bandpass filter

between 0.05 and 1.0 Hz (period of 1−20 s) for visual inspection. The horizontal

components are rotated to radial and tangential components for clear SKS and SKKS

identification. Following this, the signal-noise ratio (SNR) is estimated in a 70s time

window around the predicted arrival time and used to roughly sort the data into traces

that should be kept (SNR > 3), removed (SNR < 2.5) and could be used (2.5 < SNR

< 3). Events with more than 10 traces sorted into “keep” or more than half between

the “keep” and the potentially usable bins were sorted by hand after visual inspection

of the record section aligned on the PREM (Dziewonski and Anderson, 1981) predicted

SKS arrival. If there is a clear SKKS arrival, SKKS is also analysed. 83 events remain

(see Appendix Section A.8 for event details).

The frequency bands we use are limited by the station spacing of the array. If the

inter-station spacing is too large, spatial aliasing could occur in the θ − p plot and be

misidentified as multipathing. The Nyquist criterion for the station spacing of each

frequency band is used to limit the frequencies used. The lower frequencies will likely

have higher amplitudes and influence the stacking significantly more than the higher

frequencies, so we only limit the lower frequency cutoffs for the frequency analysis using

this criterion. The lower frequency cut-off is limited to 0.20 Hz.

2.2.5 Noise reduction techniques

Multipathed arrivals could arrive with a lower SNR and stack to a similar power

as incoherent signal at other backazimuths and horizontal slownesses. To aid mul-

tipathing identification, several techniques to improve the SNR of coherent arrivals

are implemented. We use phase weighted stacking (Schimmel and Paulssen, 1997), F-

statistic (Blandford, 1974) and deconvolve the array response function (ARF) using the

Richardson-Lucy deconvolution method (Lucy, 1974; Richardson, 1972) as done in pre-

vious studies (Maupin, 2011; Picozzi et al., 2010). These are detailed further in Section

A.3 with examples of their effectiveness. We use the outputs of all these methods to

identify multipathing in the data with criteria for clear, potential and no multipathing

explained in Section 2.2.2. Measurements of horizontal slowness and backazimuth devi-

ations are taken using the phase-weighted (Schimmel and Paulssen, 1997) stack points

as they most consistently have lower noise than the other methods.
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Figure 2.5: (a) The CMB pierce point locations for SKS and SKKS from events used in
the analysis (Section 2.2.1) for whole array and sub-array observations (Section 2.2.6). The
earthquakes, stations and ray paths are also plotted to show what other structures could have
been sampled. The paths provide good coverage of the African LLVP, its boundaries and the
surrounding mantle. The pierce points are shown on tomography model S40RTS (Ritsema et
al., 2011) with shear wave velocity contours of −0.5%, −1.0%, −1.5% and −2.0% δVs marked
to highlight potential boundaries and structure. (b) Paths of SKS (purple) and SKKS (green)
through the Earth. (c) Station coverage of the Kaapvaal array, chosen for its excellent station
density and coverage.

2.2.6 Sub arrays

To better constrain the location of multipathing and its wavefield effects, the available

stations in the Kaapvaal array are grouped into sub-arrays. Data from all available

stations are also analysed. We group the traces using their waveform properties, back-

azimuths and epicentral distances. We accept that we are adding our own bias to the

observations by grouping the sub-arrays this way. Whole array observations are used to

identify multipathing but, because the large area of the combined Fresnel zones of the

Kaapvaal array, not used to analyse backazimuth and horizontal slowness deviations.

317 different sub-array geometries were used; stations for each sub-array and the data

for each sub-array can be found from https://figshare.com/s/fbcb167ad15d581cfd4e.

2.2.7 Method strengths and limitations

Other studies have developed a method to automatically detect multipathing in the

waveform (Sun et al., 2009). In comparison to this method, there are several limitations

and advantages. The multipathed arrivals need to be present in enough traces to stack

coherently and produce clear arrivals on the θ − p plot. Arrivals of similar slowness

https://figshare.com/s/fbcb167ad15d581cfd4e
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may not be resolved as separate arrivals. On the other hand, noisier traces can be

used because the stacking methods improve the SNR. The observations themselves also

allow measurements of backazimuth and horizontal slowness deviations, which can be

used to analyse structures affecting the wavefield.

2.3 Multipathing

This section describes our multipathing observations and discusses the frequency de-

pendence (Section 2.3.1) and spatial variation (Section 2.3.2) with interpretations of

possible boundary locations. Clear multipathing is observed in 16% of our whole array

observations and 6.6% of our sub-array observations.

2.3.1 Frequency dependence

Figure 2.6 shows the variability of multipathing with different frequency bands. Some

observations show clear multipathing within specific frequency bands while others in

all frequency bands, which could be due to differences in boundary nature such as

the velocity gradient, inclination or depth. As explained in Section 2.2.3, to observe

multipathed arrivals, enough of the Fresnel zone needs to sample different velocities.

This requires the lateral velocity gradient is sufficiently strong and sufficiently sampled

by the wavefield. Analysing the power spectra of data with and without multipathing,

using Welch’s method (Welch, 1967), shows evidence for an increase in the power of

higher frequencies (appendix Figures A.10 to A.14). We hypothesise this is caused

by the focusing of higher frequencies due to diffraction from lateral velocity gradients.

Further work is needed to constrain the exact relation between velocity gradient and

frequency content and other possible causes, which is not the focus of this study.

Observations of multipathing at different frequencies could be due to differences

in wavelength. Multipathing observations at higher frequencies could be indicative

of strong velocity gradients while multipathing at low frequencies is indicative of a

significant velocity change over a wider boundary. If the boundary is at an angle to

the incidence of the wave, the boundary will not be sampled for as long and appear

smoother.

Sampling boundaries at different depths could cause frequency variation in our

observations due to changes of wavelength with velocity. At the same depth, and

therefore the same 1-D velocity, the boundaries need to have different gradients or

inclinations for multipathing to occur at different frequencies. At different depths,

the boundaries could be the same sharpness and inclination but observed at different

frequencies due to different Fresnel zone sizes.

The size and station density of the array could contribute to the frequency varia-
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Figure 2.6: θ-p plots comparing the frequency bands in which clear multipathing is observed.
The left column uses data from the 25 May 1997 event and clear multipathing is only observed
in the 0.13 – 0.52 Hz band. The right column uses data from the 29 March 1998 event where
clear multipathing is only observed in the 0.10 – 0.40 Hz frequency band.
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tion. Larger, denser arrays will be sensitive to a larger area and will record multipathed

arrivals in more waveforms. Lower frequencies with larger Fresnel volumes are more

sensitive to weaker velocity gradients, but the weaker gradients may mean the multi-

pathed arrivals will have a smaller amplitude also. Whole array observations should

have more multipathing observations at lower frequencies (Figure 2.7) because weaker

multipathed arrivals will be recorded in more waveforms and stack to an observable

power.

Figure 2.7: Number of observations of clear (green), possible (yellow) and no multipathing
(grey) in different frequency bands for whole array and sub-array observations. The number
of usable observations changes with frequency due to noise conditions and slowness resolution.
At higher frequencies, the observations were noisier and at the lowest frequencies the slowness
resolution is too poor to use.

2.3.2 Spatial analysis

Our observations show multipathing is not limited to one region and occurs in different

frequency bands depending on the region. In Figure 2.8, the loci and the tomog-

raphy velocity contours for both whole and sub-array observations align well to the

east of Africa (25◦S, 32◦W) with a boundary trending northwest-southeast which then

curves to trend approximately west-east as the boundary moves southward. Contours of

S40RTS (Ritsema et al., 2011) and pierce points are mapped at 2400 km depth because

for several paths this depth has an increase in lateral velocity gradient (e.g. Figure

2.12) and features at this depth provide possible explanations for most observations.

It is possible, due to the 3-D nature of the structure, structures at other depths could

explain our observations. However, we have tested several tomographic, and therefore

data-based, models at different depths and found this to be the most satisfactory. In

these regions, multipathing is observed in all frequency bands over both whole and

sub-array observations. The range of frequencies could be interpreted as an LLVP

boundary being sampled at several depths, or a boundary with both a strong lateral

velocity gradients and a significant velocity change.

The circular low-velocity feature to the southeast of Africa (35◦S, 30◦W) is marked
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by −1.5% δVs velocity contour aligns well with the loci in the area. Multipathing

is observed at a range of different frequencies here with arguably more observations

at frequencies above the 0.15 – 0.60 Hz band. Observing multipathing at higher fre-

quencies imply sampling of a relatively sharp gradient and observations in a broad

frequency range suggest large and sharp velocity changes or sampling boundaries at

several depths.

To the west of Africa (25◦S, 15◦W), particularly in the sub-array observations,

there is a lot of scatter in loci orientations and multipathing is mainly observed in the

higher frequency bands. The scattered loci are possibly due to the waves travelling

through the body of the LLVP boundaries and sampling boundaries at several depths.

Depending on the depth, the boundaries could have different orientations, therefore

leading to scattered loci. Observing multipathing in higher frequency bands could be

due to strong lateral velocity gradients or the depths the boundaries have been sampled.

There are significant differences between the whole and sub-array observations.

Whole array observations will be sensitive to a larger area meaning small structures

affecting a small part of the wavefield may not be resolved. This could explain why more

multipathing is observed to the west in sub-array observations. Where multipathing is

observed in whole array observations only, the velocity gradient may not be sampled

for long enough along raypaths from the event to the sub-arrays. The multipathed

arrivals would then not arrive with enough amplitude to stack to an observable power.

Studies using travel time and waveform observations have reported a boundary

to the southwest of Africa with an approximate northwest-southeast strike (Ni et al.,

2002). The orientation of the locus of our multipathed arrival in this region approx-

imately agrees (Figure 2.8) supporting these previous results. Sun et al. (2010) find

evidence for a mantle plume in the mid-mantle of this region too. We do not find

evidence for this, most likely because of resolution and sampling limitations.

To further explore the spatial distribution of multipathing, we compare the loca-

tions of clear, possible and no multipathing observed at any frequency (Figure 2.8).

Multipathing is not limited to one region and the pierce points of clear multipathing

are very close to pierce points that show no or unclear multipathing. Our interpretation

is the boundary structure needs to be sampled in a specific way for the multipathed

arrivals to arrive with observable amplitudes.

2.3.3 Seismic anisotropy

There have been several studies analysing seismic anisotropy in the region of this study

(e.g. Cottaar and Romanowicz, 2013; Ford et al., 2015; Lynner and Long, 2014; Reiss et

al., 2019; Wang and Wen, 2007a). Shear wave splitting could complicate the waveforms

and be misinterpreted as multipathing. Therefore, we measure SKS splitting in splitting
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Figure 2.8: Subfigures (a) and (b) show 1-D ray path pierce points at 2400 km depth (ap-
proximately 500 km above the CMB) for events showing clear multipathing for whole array and
sub-array observations respectively. The size and colour of the circles correspond to the fre-
quencies at which multipathing is observed. The locus between the arrivals is marked for each
frequency to represent the approximate orientation of the boundary causing the multipathing.
Subfigures (c) and (d) show the pierce points at 2400 km depth for clear (red) possible (or-
ange) and no (blue) multipathing for whole and sub-array observations respectively. Velocity
contours are shown at 2400 km depth from tomography model S40RTS (Ritsema et al., 2011).
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time and direction of the fast axis, remove the measured effect and repeat the analysis

for a selection of events. After the anisotropy correction, we still observe multipathing

(Figure A.16). For low SNR events, correcting for anisotropy reduced the quality of

the observation. Since anisotropy alone is not the cause of observed multipathing and

can reduce the quality of some observations, we do not correct for shear wave splitting.

2.4 Slowness Vector Residuals

This section analyses the slowness vector deviations and how they vary spatially. We

focus our spatial analysis on the full slowness vector deviation from the predicted to

the observed arrival in slowness space (Figure 2.4). Descriptions of backazimuth and

horizontal slowness deviations are given in Section A.4. When spatially analysing these

deviations, the pierce point location is moved to match observed backazimuth and

horizontal slowness.

Backazimuth residuals show little variation between frequency bands (Figure A.5).

The majority of the observations lie between 8◦ and −14◦ and maximum values are

10◦ to −22◦ for positive and negative deviations respectively. There are more negative

residual observations with on average approximately 64% negative residual observations

compared to 36% positive. This is possibly due to heterogeneous sampling from limited

event-station configurations.

The horizontal slowness deviations vary little with frequency, with most observa-

tions lying between 1.2 s/◦ and −1.0 s/◦ (Figure A.7). Outliers are present in these

observations but show no clear pattern and range from a maximum of 2.1 s/◦ and a

minimum of −1.6 s/◦. Like the backazimuth residuals, the observations are not evenly

distributed about 0 s/◦ with 60% positive residuals and 40% negative. This variation

could be due to the large-scale low velocity structures in the mantle beneath Africa

causing them to refract and arrive at a shallower angle.

The magnitude of the slowness vector deviations does not vary greatly with fre-

quency with slightly more high magnitude deviations at higher frequencies and with

minimum and maximum observed values from less than 0.1 s/◦ to 2.1 s/◦ (Figure A.8).

2.4.1 Spatial analysis of slowness vector deviations

The full slowness vector deviation is a vector from the predicted arrival in the θ−p plot

to the observed arrival. The azimuth of the vector indicates the direction of perturba-

tion and the length is indicative magnitude. This vector combines the backazimuth and

horizontal slowness perturbations giving a clear picture of how the wavefield is being

affected. Figure 2.9 shows how these vectors vary spatially.

The radial pattern and magnitude of the vectors around the circular feature south-
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Figure 2.9: Pierce points for sub-array observations showing the full slowness vector devia-
tion from the prediction to the observation in the θ-p plot coloured by azimuth (Figure 2.4).
The slowness vector describes the full perturbation of the wavefield essentially combining the
information from backazimuth and horizontal slowness. The contours from S40RTS (Ritsema
et al., 2011) and the pierce points are marked at a depth of 2400 km to outline potential struc-
tures contributing to the observations. The frequency band used is from 0.13 Hz to 0.52 Hz.
The pierce points have been relocated according to the observed backazimuth and horizontal
slowness.
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east of Africa (35◦S, 30◦W) support our interpretation that this structure is the cause of

our observations. Northeast of this region, the azimuths change their orientation to be

approximately orthogonal to the velocity contours striking northwest-southeast. The

vector residuals west of Africa (25◦S, 15◦W) are more scattered than in other regions

but generally have an azimuth pointing away from the array and arrive at a shallower

inclination. The scattered vector residuals, the scattered loci and the presence of mul-

tipathing in this region suggest the wavefield is being affected by several boundaries at

different depths. The trend of slowness vectors pointing away from the array suggest

they are being refracted by the body of the LLVP.

East of Africa (25◦S, 40◦W) the vectors have opposite azimuths shown by the colour

change from red to green in the vector heads. The paths of these waves suggest they may

not sample the LLVP boundary. The arrivals sampling this region arrive with negligible

backazimuth residuals but have opposite horizontal slowness residuals (Figure 2.10).

We hypothesise the cause of these observations are adjacent fast and slow structures

causing the wavefield to vertically refract. The location of fast structures relative to

the LLVP boundary at the core-mantle boundary in tomography model SEMUCB-

WM1 (French and Romanowicz, 2014) aligns well with the transition (Figure 2.10),

implying these structures could be the cause of our observations. Given the size of

the sub-arrays and the size of the Fresnel zone at these frequencies, it is possible this

fast structure is causing the waves to refract and arrive at a steeper inclination with

negligible backazimuth deviation.

Previous studies have analysed similar regions and show some evidence for similar

structures. Sun et al. (2009) analyse regions of the lowermost mantle similar to areas

where we find boundaries between slow and fast structures and a quasi-circular struc-

ture. Using their multipath detector method with Sdiff data, they identify a region

with strong gradients southeast of Africa similar to our hypothesised boundary in Fig-

ure 2.10. Their travel time residuals transition from negative to positive over this region

supports our interpretation of a transition from slow to fast. Another Sun et al. (2009)

event shows evidence for a smaller scale structure southeast of the Kaapvaal array with

a similar structure and approximate location as our observed circular structure. Mega

ULVZs have been shown to cause backazimuth deviations (Cottaar and Romanowicz,

2012) and are a possible explanation of our observations. However, a 20 km tall ULVZ

with a 20% δVs reduction lead to travel time residuals of 0.7s, which is well below the

observed difference between multipathed arrivals. We tested travel time contributions

of stronger ULVZ models (Yu and Garnero, 2018) and found they also can not explain

our results.
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Figure 2.10: Pierce points at the CMB coloured with (a) horizontal slowness deviations
and (b) backazimuth deviations. Negative contours −1.0%, −1.5%, −2.0% δVs and positive
contours 0.5%, 1.0%, 1.5% δVs of tomography model SEMUCB-WM1 (French and Romanowicz,
2014) are shown to highlight the transition from fast to slow structures east of Africa. The events
have been relocated so the 1-D paths arrive from the observed backazimuth and horizontal
slowness.
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2.5 Forward modelling and comparison to tomography

models

In this section, we explore possible conditions for multipathing to be observed in slow-

ness space and compare these to previous studies (Table 2.1).

Our observations are sensitive to 3D structure, show frequency dependence, and

have been made at relatively high frequencies (up to ∼0.20 Hz). Therefore, forward-

modelling strategies based on approximations, such as ray theory, are not appropriate

to reproduce them. Instead, we must use a full-physics numerical method to capture the

finite-frequency effects of wave propagation in a 3D medium, which is necessarily much

more computationally costly. We use SPECFEM3D (Komatitsch and Tromp, 2002a;

Komatitsch and Tromp, 2002b), to create synthetic data for three earthquakes (Section

2.5.1). These events were chosen as they show the clearest multipathing, and therefore

likely sample the strongest gradients along their raypaths. As such, the analysis of these

events will provide us with an upper bound of the seismic velocity gradients required

to explain the data in this locale. As the modelling is computationally expensive, we

limit ourselves to these events and model frequencies up to approximately 0.18 Hz. We

test the effects of ellipticity and topography and find they have a negligible effect.

The loss of small-scale heterogeneity and reduction of velocity amplitude and gra-

dients in seismic tomography from regularisation, smoothing and limited sampling cov-

erage is well documented (Bull et al., 2009; Foulger et al., 2013; Ritsema et al., 2007;

Schuberth et al., 2009). Given the large parameter space of a 3-D structure that

could cause multipathing, we take the structure of tomography as an approximation of

the long-wavelength Earth structure and accept the mentioned limitations. From this

starting point, we increase the velocity perturbations and gradients linearly to approxi-

mately account for the reduction through tomographic filtering and recreate conditions

for multipathing to be observed in our method.

S40RTS (Ritsema et al., 2011) is used as a starting point as the velocity contours

shown in figures in Sections 2.3 and 2.4 provide possible explanations for our observa-

tions. In each model, the velocity perturbations have been amplified at depths greater

than 1000 km with depths shallower than 660 km are unchanged. The transition from

the amplified lower mantle to the upper mantle is tapered to avoid artefacts. No crustal

model is used in our modelling as tests show no identifiable effect of crustal structure

on our observations. Three models are used where perturbations at depths greater than

1000 km have been doubled (labelled as M2), trebled (M3), quadrupled (M4) and we

use S40RTS (Ritsema et al., 2011) with no amplification (M1). Of course, any single

mantle velocity model is not a unique fit to the data and many other possible models

exist. However, using tomography-based, and therefore data-based, models means we
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incorporate structures that other observations have already identified.

2.5.1 Gradients of boundaries

We compare observations of SKS data from events on the 25 May 1997, 28 March 1998

and 28 May 1997 to runs using all models described earlier. Figure 2.11 shows the θ−p
plots of the synthetic data with the observations.

For these events, the S40RTS (Ritsema et al., 2011) velocity perturbations are

not sufficient to cause detectable multipathing, indicating that stronger gradients are

required. In models with stronger gradients, whether multipathing is observed and

how similar it is to the observation varies with the event likely due to the different

sampling geometry. Synthetic data for the 25 May 1997 in model M3 shows clear

multipathing where the relative power and location of the two arrivals are similar to

the observation. In model M2, there is no clear multipathing and the location of

the arrival is approximately the average of the locations of the observed multipathed

arrivals. As the only difference between M2 and M3 is the strength of amplitudes in the

lower mantle, we argue it is lower mantle structure causing the observed multipathed

arrivals in this event.

The 29 May 1997 event shows some weak multipathing in all amplified models in

similar locations to the observation, but the arrivals do not have the same relative

power in the θ − p plot. This suggests there is a boundary being sampled, but the

gradient in the model is weaker or the path length along the boundary is shorter than

in the data. The 29 March 1998 event shows no multipathing in most of the models

except for M4, but this has much weaker multipathing and both arrivals are different to

their location in the observation. The strength of the velocity gradient of the boundary

or its location in the models is not enough to reproduce the observation.

These varying results are to be expected with the inherent limitations of tomography

and show the models are not representative of the velocity gradients at the boundary of

the African LLVP everywhere. Due to the good agreement between synthetic data from

model M3 and real observation for the 25 May 1997 event, we analyse the gradients

sampled along this path.

Figure 2.12 a shows a cross-section through model M3 between 70◦ and 140◦ distance

along the great-circle path for the 25 May 1997 event. The 1-D raypath to the mean

station location from the exit point is shown on the cross-section with the lateral

velocity gradient and velocity perturbations sampled are shown in Figure 2.12b. The

receiver-side cross-section and gradients sampled by the 25 May 1997 event along the

raypath to the mean station location in model M3 are shown in Figure 2.12. The

largest gradients sampled are not at the CMB but approximately 600 km above it, a

similar depth to the maximum misfit found by Zhao et al. (2015) in their analysis of
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Figure 2.11: Analysis of multipathing for three events in the observed data (top row) with
synthetics from models M1 to M4 in the rows beneath (labeled on the right). For each event,
the same frequency bands are used for the observed and synthetic data.
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waveform broadening and the Pacific LLVP. The path in the cross-section samples the

edge of a particularly low-velocity region at 4100 km radius (shown by velocity contour

of −4% δVs), which we hypothesise is the same feature causing the circular contours

shown previously. The maximum gradient sampled is 0.7% δVs per 100 km (0.0005 km

s−1 km−1) about 600 km above the CMB. This is an order of magnitude lower than

found in some previous studies, which we discuss further below.

Figure 2.12: (a) Cross section of the receiver-side path of SKS from the 25 May 1997 event
through M3. (b) two depth sections of the gradients and velocity perturbations sampled by
the receiver-side 1-D path from event to average station location through model M3. Contour
of −4% δVs is shown to highlight the possible cause of our observations.

Although the modelled θ − p observation is similar, the modelled SKS data arrives

much earlier than in the observations as shown in Figure 2.13. The difference in travel

times is a reflection of the velocity perturbations sampled, whereas the observation of

multipathing is indicative of the gradients sampled. For this example, the gradient

sampled over the raypath is sufficient to create comparable multipathing to the ob-

servations, but the velocity perturbations are not sufficient to replicate the observed

travel-time residuals.

In the synthetic waveforms, there is evidence for diffracted phases such as SPdKS.

We do not think this is the cause of the second arrival in the θ − p plots. SPdKS is

expected to arrive within a narrow slowness window, which the majority of our arrivals

are not observed in. Furthermore, multipathed arrivals only appear in the θ − p plots

once the velocity gradients have been increased. If SPdKS arrivals are present, they

should be observed in the θ − p plots of all models and not just those with amplified

gradients. We use a relative stack to isolate SPdKS using data in Figure 2.13 at

distances larger than 119◦ where SPdKS is most clear and separated from SKS. We find

SPdKS is not visible when SKS is included in the analysis time window (see Appendix

Section A.7) and suggest it is because it arrives with a lower amplitude. When not

including SKS, SPdKS is only visible in the synthetics using PREM (Dziewonski and

Anderson, 1981) and not in the real data or synthetics from M3. Because of this, we

are confident that the multiple arrivals observed are multipathing and not SPdKS.
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Figure 2.13: Record sections to illustrate the differences observed between the synthetic data
from using the PREM (Dziewonski and Anderson, 1981) model (left), the M3 model (centre)
and the observed data (right) for the 25 May 1997 event in terms of the effect of SPdKS on
multipathing observations. Each of the record sections are annotated with shaded regions for the
SKS arrival and the presence, or lack of, of multipathing or SPdKS. The multipathed arrivals in
the observed data (right) and M3 synthetics (centre) have a visibly different moveout to SPdKS
and in the observed data it is arguable SPdKS is not present where as in the M3 synthetics
it is not clear. We discuss the possible presence of SPdKS further in Appendix Section A.7
and apply the same array processing technique to test the effects of SPdKS. The modelled
waveforms arrive significantly earlier than the observations. We suggest this is a reflection of
the velocity perturbations in the model rather than the lateral velocity gradients.
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From travel time residuals and waveform analysis, several studies have inferred the

velocity gradients at the boundaries and perturbations inside the African LLVP (Ni

et al., 2002; Ritsema et al., 1998; Sun and Miller, 2013; Wang and Wen, 2007b). We

assume the gradient of the boundary is the main cause of the observed multipathing. As

only one of our models matches well with the observation, we only compare the gradient

we found to produce multipathing for the 25 May 1997 event with other studies (See

Table 2.1). Gradients up to 0.7% δVs per 100 km (0.00050 km s−1 km−1) can produce

multipathing for the 25 May 1997 event which is an order of magnitude lower than the

strongest estimated gradients of −3% δVs per 50 km (0.044 km s−1 km−1) (Ni et al.,

2002), though similar to that found by Ritsema et al. (1998) −2% δVs per 300 km

(0.00048 km s−1 km−1).

The apparent disparity between studies may be explained by the differing sensitiv-

ity of the methods used. Our observations analyse coherent signals across the array

by stacking many waveforms together and not analysing them individually. Each mea-

surement is sensitive to a larger region and could lead to boundary structures being

sampled for longer, therefore weaker gradients are sufficient to produce multipathing.

Most estimates of the stronger gradients used 2-D forward modelling to replicate their

observations (Ni and Helmberger, 2003b; Ni et al., 2002), therefore estimate the gradi-

ents along the great-circle path. Any travel time delay or multipathing would have to

be from in-plane structures and contributions from out of plane structure would not be

accounted for. We use 3-D full wavefield modelling thus accounting for contributions

from out of plane structures which more fully represents the ability of weaker gradients

to lead to the same effect.

The presence of strong velocity gradients at LLVP boundaries causing multipathing

and sharp changes in travel time residuals is commonly used as evidence for a thermo-

chemical origin of LLVPs (Ni et al., 2002; Ritsema et al., 1998; To et al., 2005). We

require gradients an order of magnitude lower than previous estimates to produce mul-

tipathing similar to our observations. The gradients of 0.7% δVs per 100 km (0.00050

km s−1 km−1) are well below those evident in purely thermal models (2.25% δVs over

50 km (0.0032 km s−1 km−1) (Schuberth et al., 2009) and 3.5 – 4.5% δVs per 100 km

(0.0025 – 0.0032 km s−1 km−1) (Davies et al., 2012)). This modelling implies that

the presence of lateral velocity gradients capable of producing observable multipathing

cannot distinguish between thermal and thermochemical LLVPs.

2.6 Conclusions

Through measuring the backazimuth and horizontal slowness of SKS and SKKS data

sampling the lower mantle beneath Africa, we identify clear multipathing in approxi-

mately 16% of our whole array observations and 8.0% of our sub-array observations.
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We find evidence for wavefield perturbation from backazimuth deviations of up to 22◦

and horizontal slowness deviations of up to 1.2 s/◦. Spatial analysis of these mea-

surements relative to structure resolved by seismic tomography gives evidence for a

circular feature to the southeast of Africa, adjacent fast and slow structures and an

LLVP boundary. This suggests that tomography models can recover the shape but not

the strength of the features explaining our observations.

We conduct full wavefield forward modelling to constrain what lateral velocity gra-

dients are needed to observe multipathing in slowness space. We find gradients of up

to 0.7% δV s per 100 km (0.00050 km s−1 km−1) sampled approximately 600 km above

the CMB can reproduce our multipathing observations. This is an order of magnitude

lower than previous estimates of −3% δVs per 50 km (0.0044 km s−1 km−1) (Ni et al.,

2002), commonly used to argue for a thermochemical origin of LLVPs. As the gradients

we predict are well below the largest estimates for both thermal and thermochemical

structures (Davies et al., 2012), we argue observing multipathing caused by lateral ve-

locity gradients of LLVP boundaries is not necessarily evidence for a thermochemical

composition.
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Chapter 3

Automatic Slowness Vector

Measurements of Seismic

Arrivals with Uncertainty

Estimates using Bootstrap

Sampling, Array Methods and

Unsupervised Learning

Abstract

Horizontal slowness vector measurements using array techniques have been used to

analyse many Earth phenomena from lower mantle heterogeneity to meteorological

event location. While providing observations essential for studying much of the Earth,

slowness vector analysis is limited by the necessary and subjective visual inspection

of observations. Furthermore, it is challenging to determine the uncertainties caused

by limitations of array processing such as array geometry, local structure, noise and

their effect on slowness vector measurements. To address these issues, we present a

method to automatically identify seismic arrivals and measure their slowness vector

properties with uncertainty bounds. We do this by bootstrap sampling waveforms,

therefore also creating random sub-arrays, then use linear beamforming to measure

the coherent power at a range of slowness vectors. For each bootstrap sample, we

take the top N peaks from each power distribution as the slowness vectors of possible

arrivals. The slowness vectors of all bootstrap samples are gathered and the clustering

algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is
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used to identify arrivals as clusters of slowness vectors. The mean of each cluster

gives the slowness vector measurement for that arrival and the distribution of slowness

vectors in each cluster gives the uncertainty estimate. We tuned the parameters of

DBSCAN using a dataset of 2489 SKS and SKKS observations at a range of frequency

bands from 0.1 Hz to 1 Hz. We then present examples at higher frequencies (0.5 to

2.0 Hz) than the example dataset, identifying PKP precursors, and lower frequency

by identifying multipathing in surface waves (0.04 to 0.06 Hz). While we use a linear

beamforming process, this method can be implemented with any beamforming process

such as cross-correlation beamforming or phase weighted stacking. This method allows

for much larger datasets to be analysed without visual inspection of data. Phenomena

such as multipathing, reflections or scattering can be identified automatically in body

or surface waves and their properties analysed with uncertainties.

3.1 Introduction

Seismic array techniques which measure the full horizontal slowness vector (backaz-

imuth and inclination) of seismic arrivals have been used to investigate Earth structure

for decades. These analyses have been applied to a wide variety of seismic arrivals

and problems such as by using long-period surface waves to identify upper mantle and

surface heterogeneity (Ji et al., 2005; Maupin, 2011; Xia et al., 2018), short period S-

waves to analyse lower mantle structure (Cottaar and Romanowicz, 2012; Schumacher

and Thomas, 2016; Stockmann et al., 2019; Ward et al., 2020), high-frequency P-waves

to study scatterers in the mid and lower mantle (Bentham and Rost, 2014; Cao and

Romanowicz, 2007; Frost et al., 2013; Niu and Kawakatsu, 1997; Ritsema et al., 2020;

Thomas et al., 2002; Yang and He, 2015), event detection and spatial location (Chevrot

et al., 2007; Landès et al., 2010; Liu et al., 2016), ambient noise (Behr et al., 2013;

Roux and Ben-Zion, 2017), nuclear event detection (Bowers and Selby, 2009; Gibbons

and Ringdal, 2011) and meteorological event spatial location (Gerstoft et al., 2006;

Gerstoft et al., 2008).

Past studies which analysed slowness vector properties using array methods (for a

review see: Rost and Thomas, 2002; Rost and Thomas, 2009) were limited in terms

of the number of observations due to the usual requirement to visually inspect each

observation to determine an arrivals slowness vector properties or if it is too noisy to

use. In addition, several studies have discussed the limitations of using beamforming

or f–k methodology to identify phases and estimate their slowness vector properties

(Berteussen, 1976; Gibbons et al., 2008; Selby, 2011) and methods have been devel-

oped to correct slowness vector measurements for Earth structure when locating events

(Bondár et al., 1999; Gibbons et al., 2011; Koch and Kradolfer, 1999; Schweitzer, 2001).

To clarify what limitations the uncertainty estimate is accounting for, we first discuss

the assumptions and limitations of making one slowness vector measurement.
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Each slowness vector in the beamforming grid search assumes the wave moves over

the array with a constant horizontal slowness and arrives at the stations with a back-

azimuth equal to that along the great circle path from the relocated event location (for

details see: Ward et al., 2020). The beamforming process does not account for limita-

tions in heterogeneous station distribution, which can lead to heterogeneous sampling

of the wavefield, and interference from noise may contribute to errors in slowness vector

measurement. The waveforms of the arrivals are assumed to be coherent across the ar-

ray. Waveform incoherence of the signal across the array may result in deviations from

the slowness vector prediction (Gibbons et al., 2008). Source complexity could lead

to unusual waveforms recorded at the array, but should not affect the slowness vector

measurement as source complexity should introduce consistent waveform complexity

across the array. The local structure may deform the wavefield as it moves across

the array such that the arrival times at the stations will deviate from the prediction

(Gibbons et al., 2018). This may lead to slowness vector deviations depending on the

geometry of stations distribution and local velocity and topography structure.

The predicted backazimuth of the arrival is assumed along the great circle path

between the event and the mean station location assuming a spherical Earth. The

predicted horizontal slowness of the arrival is taken from ray-tracing through a 1-D

velocity model in a spherical Earth. Any structures local to the array or deeper with

properties that differ from the 1-D velocity model may result in deviations from this

prediction. It is difficult if not impossible to separate out these different contributions

using just a single array measurement, let alone determine their relative contributions.

Automating the identification of arrivals and measuring their slowness vector prop-

erties would remove the time consuming and subjective process of visually inspecting

each observation and could allow for larger data sets to be analysed. Estimating the

uncertainty of these measurements allow for better interpretation of the observations,

and the ability to rigorously accept or reject scientific hypotheses on Earth structure

or its processes.

Previous efforts have been made in automating standard seismic processing tech-

niques such as shear wave splitting (Teanby et al., 2004) and H − κ stacking (Ogden

et al., 2019). Methods also exist to estimate uncertainties in the beamforming method-

ology (Bear and Pavlis, 1997; Lin and Roecker, 1996; Ritsema et al., 2020) and to

improve the detection of one or multiple arrivals (Gal et al., 2016; Gal et al., 2014;

Schmidt, 1986). The method we propose differs from these by automatically identifying

the number of arrivals with their slowness vector properties and uncertainties. To our

knowledge, no method has been proposed that does all of these at once. The method we

present later uses a linear relative beamforming process; however, this method can be

applied with other techniques such as phase weighted stacking (Schimmel and Paulssen,

1997) or cross-correlation beamforming (Ruigrok et al., 2017).
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Machine learning methodologies are becoming more prevalent in the geosciences

(for a review see: Bower et al., 2013) and seismology (for a review see: Kong et al.,

2019) with methods used to automate data selection (e.g. Thorne et al., 2020; Valentine

and Woodhouse, 2010) and extracting properties from data by mapping seismograms to

lower dimensional space using autoencoders (Valentine and Trampert, 2012) or sequence

seismograms and identify features such as the presence of seismic scatterers (Kim et

al., 2020). Here we use an unsupervised learning algorithm as part of our automation

technique.

In the approach we present in this paper, we create subsets of waveforms using

bootstrap sampling (Efron, 1992). For each sample, beamforming (Rost and Thomas,

2002) corrected for a curved wavefront (Ward et al., 2020) is used to search over a

range of slowness vectors and recover the slowness vectors of potential seismic arrivals.

The slowness vector measurements of all the individual bootstrap samples are collected

and we use the DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

algorithm (Ester et al., 1996a) to identify clusters of slowness vectors as seismic arrivals.

DBSCAN is an unsupervised learning algorithm that uses the density of points to

classify them as part of a cluster or as noise. For further details, see Section 3.2.

By bootstrapping the traces, and therefore creating random subsets of the stations

in the array, the scatter of the measurements in each cluster can give an estimate of

the combination of some of the previously mentioned uncertainties. The uncertainty

estimate will account for the following phenomena which cause different subsets of

stations to have different slowness vector measurements:

• signal aberration where the arrival time of the wave at stations deviates from the

prediction due to local array structure;

• incoherent or coherent noise;

• the horizontal slowness of the wave changing as it moves over the array, due to

the size of the array, or unaccounted for velocity variations within the array;

• heterogeneous distribution of the stations causing heterogeneous sampling of the

wavefield;

• slowness resolution limitations of the array aperture; and

• wavelet shape changing over the array.

All of these can relate to local structure or effects within the array and the uncer-

tainty estimate describes the combination of all effects on the wavefield. If a measured

slowness vector deviates from the 1-D Earth model prediction and is not within the

uncertainty estimate, then the cause of this deviation must be external to the array

and local structure. Determining the cause of these deviations to structures such as
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a dipping Moho, or deeper structure requires additional information and might be re-

solvable through e.g. forward modelling. We do not try to measure the uncertainties

of that aspect, only those listed above.

We tune the parameters of the DBSCAN algorithm on a visually inspected dataset

where each observation is labelled as having either 0, 1, or 2 arrivals. More arrivals

are possible, but in this dataset the maximum number confidently observed is 2. In

this dataset, observations with more than one arrival are hypothesised to be caused by

multipathing, one of many phenomena which can cause multiple arrivals. Multipathing

occurs when the wavefront is incident of a sufficiently large velocity gradient causing

different parts of the wavefield to move at different velocities, diffract and refract.

Multipathing results in 2 arrivals arriving at the station at different times and different

slowness vector properties. The predictions made by the method are compared to

the labels given from visual inspection to find the best parameters for the DBSCAN

algorithm. Following this, we show the effectiveness of this automated method on

finding the slowness properties of short-period PKP scattering and long-period surface

wave arrivals. Guidance on using the method is given in Section 3.5. We find the

parameters work well for our example applications with a minor change needed for the

surface wave example. Tuning the algorithm can be done for specific applications.

3.2 Method Overview

This section outlines the method to automatically measure the slowness vector prop-

erties with uncertainty estimates. The process can be roughly broken down into the

following steps with more detail given below and a summary figure in Figure 3.1.

1. Create a number of bootstrap sub-samples (1000 here) through random sampling

with replacement of a set of waveforms recorded at the seismic array in question.

2. For each bootstrap sample, use beamforming (Rost and Thomas, 2002) correcting

for a curved wavefront (Ward et al., 2020) to search over a grid of slowness vectors

and find how the power of coherent energy varies with backazimuth and horizontal

slowness. Therefore, each bootstrap sample will have its own grid of power values.

3. Calculate a noise estimate for the bootstrap sample by shifting each trace in the

bootstrap sample with a randomly generated time. These scrambled traces are

then stacked and the power of the beam is measured. This is repeated 1000 times

and the mean power is taken as the noise estimate.

4. Set all power values in the slowness grid below the noise estimate to zero.

5. From the resultant power distribution, take up to X peaks (in this study we take

up to 3 peaks), which describe the slowness vectors of possible arrivals.
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6. Gather the locations for these peaks of all the bootstrap samples.

7. Use DBSCAN, a density-based clustering algorithm, to identify the arrivals and

measure their slowness properties with uncertainties.

a) b)

c) d)

Figure 3.1: Cartoon illustrating the method to automatically identify arrivals in slowness space
and measuring their slowness vector properties with uncertainty estimates. First bootstrap
sample the traces recorded at an array N times creating N random sub arrays (a). Then,
for each bootstrap sample, perform linear beamforming grid search and recover the top peaks
(b). Once this is done, collect all the points from all N samples (c). Finally, apply clustering
algorithm DBSCAN (Ester et al., 1996b) to identify regions dense enough to form clusters and,
from their location, measure their slowness vector properties.



§3.2 Method Overview 79

3.2.1 Bootstrapping and peak recovery

One advantage of the bootstrap sampling process is that bootstrap samples of the sta-

tions in the array are used. Beamforming subsets of the array lead to different peak

power in the beams which leads to variations in the recovered slowness vectors for each

arrival. When all of the slowness vectors are taken into account, using all of the boot-

strap sampled arrays, we obtain uncertainty estimates in the slowness vector. These

uncertainty estimates will include the effect that array geometry and local structure

has on the slowness vector measurements. For each bootstrap sample, we use a relative

beamforming method where the traces are aligned on a target slowness before search-

ing over the slowness vectors. After the beamforming, we calculate a noise estimate

using the traces in the bootstrap sample with a similar method to Korenaga (2013).

The traces are aligned using the slowness vector with the highest power. Then, they

are randomly shifted in time, stacked and the power of the stack calculated. This is

repeated 1000 times and the mean of all power estimates is used for the noise power

estimate. All power values in the beamforming plot (Fig 3.2) below three times this

noise estimate are set to zero. Multiplying the estimate by three was determined by ex-

ploratory analysis and found to give the most satisfactory result. This can be changed

depending on the application. To remove local power maxima, the power distribution

is smoothed using a 2-D Gaussian filter. The 2-D Gaussian is formed by the product of

two 1-D Gaussians. The standard deviation of the 1-D Gaussians is equal to the grid

spacing (0.05 s/◦), therefore will have a full width at half maximum of 0.12 s/◦.

The 2-D Gaussian acts as a point spread function and is convolved with the power

plot to smooth it and remove local maxima. After this, the top X peaks are taken

from the power distribution. The peaks are found with a maximum neighbourhood

filter which identifies points with higher power values than those in the surrounding

neighbourhood. Fig 3.2 shows how the peaks are found for each bootstrap sample.

3.2.2 Identifying arrivals with cluster analysis

The peaks recovered for each bootstrap sample are then collected and the clustering

algorithm DBSCAN (Ester et al., 1996a) is used to find clusters. DBSCAN is an

unsupervised learning algorithm that uses the density of points to identify clusters and

noise. The algorithm takes a radius ε and a minimum number of points (MinPts)

to define a minimum density for points to be a cluster. Here, we define MinPts as

a fraction of the number of bootstrap samples. DBSCAN sorts the data into three

categories as visualised in Fig 3.3.

1. Core point: A point with at least MinPts points within its neighbourhood (i.e.

within radius ε).

2. Boundary point: A point within the neighbourhood of a core point, but without
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Figure 3.2: Example of recovery of peaks from a bootstrap sample of traces. The left figure
shows a record section of data from the 05, April 1999 event recorded at the Kaapvaal array in
Southern Africa (event metadata in the supplementary material). The traces are coloured by
the number of times they have been sampled. The data had the instrument response removed
and are filtered between 0.10 and 0.40 Hz before beamforming. The right figure shows the
power distribution at each slowness vector with powers lower than the noise estimate set to
zero and the 2-D Gaussian smoothing filter applied. Here each point on the grid represents a
slowness vector described with their x (px) and y (py) components. In this example, two peaks
have been recovered.

MinPts points in its own neighbourhood.

3. Noise: Points that are not within ε of a core point and does not have MinPts

points within its neighbourhood.

The DBSCAN algorithm begins at a random point and measures its density by

the number of points within the radius ε (Fig 3.3). If the density is lower than the

threshold defined by ε and MinPts, the point is classified as noise (yellow points in

Fig 3.3) and the algorithm moves on to another random point. If the density is higher

than the defined threshold, the point is classified as a core point and cluster formation

begins (red points in Fig 3.3). Points within ε of the core points then have the number

of points in their neighbourhood measured. Those which do not have MinPts points

within their neighbourhood are boundary points and are still part of the cluster (blue

points in Fig 3.3). The points which do have MinPts points in their neighbourhood

are classified as core points and added to the cluster. The points within ε of these new

core points are also searched and the cluster expands until it finds no new core points

to add to the cluster. Once no new core points can be added, an unexamined point is

chosen at random and the process begins again. This process continues until all points

have been examined. In this manner, DBSCAN can separate high-density clusters from

low-density noise. Fig 3.4 shows the result of DBSCAN applied to the peaks recovered

after the bootstrapping process.



§3.2 Method Overview 81

Core point

Boundary point

Noise

ε

Figure 3.3: Cartoon illustrating what classifies as a core point, boundary point or noise. The
neighbourhoods of the points are shown as a lighter colour of the point itself. The minimum
number of points needed for a core point is 4 in this example. The red points all have at least
4 points in their neighbourhood, so are defined as core points. The blue points are within the
neighbourhood of the core (red) points, but do not have 4 points in their own neighbourhood and
are classified as boundary points. The yellow points are classified as noise because they are not
in the neighbourhood of a core point and do not have 4 points within their own neighbourhood.

Figure 3.4: Cluster retrieval from points recovered through bootstrap sampling the traces (Fig
3.2). The left figure shows all the power peaks (blue dots) recovered using data from the 05
April 1999 event. The right image shows the clusters found by the DBSCAN algorithm (Ester
et al., 1996a) where MinPts is 0.25 and ε is 0.2 s/◦. The red and yellow points are classified as
clusters 1 and 2 respectively and the black points are noise. The background power distribution
is the mean of all the power distributions found from bootstrap sampling.
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DBSCAN has advantages over other clustering algorithms such as k-means (Mac-

Queen et al., 1967) for this application such as:

1. It does not take the number of clusters as input so visual inspection before the

clustering is not required.

2. Not all points need to be part of a cluster allowing for noise.

3. If clusters are not well separated or the data is noisy, clusters of non-hyperspherical

shape can still be recovered unlike k-means (Celebi et al., 2013; Ertöz et al., 2003).

There are also disadvantages to DBSCAN:

1. If the range and data are not well understood, choosing the parameters can be

challenging.

2. Clustering data with large variations in density is challenging because there may

be no combination of ε and MinPts which will find all of the clusters.

3. Clusters separated by a distance smaller than ε will be combined into one cluster.

We tested other density-based clustering algorithms such as HDBSCAN (Campello

et al., 2013; Campello et al., 2015) and OPTICS (Ankerst et al., 1999) but found that

both techniques have issues for this application. HDBSCAN (Hierarchical DBSCAN)

searches over a range of ε values and measures over what length scales a cluster “per-

sists” while containing a minimum number of points to form a cluster. Using how long

each cluster survives and how many points it contains at each ε, clusters are extracted

with the excess of mass algorithm (EOM) (McInnes and Healy, 2017). HDBSCAN will

preferentially return a large, single cluster because one large cluster will usually contain

more “mass” (for a detailed explanation, see McInnes and Healy, 2017). To avoid one

large cluster being returned when multiple clusters exist, HDBSCAN by default will not

return a single cluster as an output. If this default is kept, instances with one arrival

(cluster) will be misidentified. Changing the default and allowing HDBSCAN to return

one cluster will mean phenomena causing multiple arrivals (such as multipathing) may

not be identified as EOM will preferentially return a single cluster.

OPTICS (Ordering Points To Identify the Clustering Structure) (Ankerst et al.,

1999) is another density-based algorithm that specialises in identifying clusters of vary-

ing density. OPTICS orders the points to represent the clustering structure. From

this, clusters can be extracted. When using OPTICS, we found the size of the clusters

retrieved was too inconsistent to estimate the uncertainties of slowness vector proper-

ties. Because of these considerations, we decide to use DBSCAN instead of OPTICS

or HDBSCAN.
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Figure 3.5: Example of error ellipses for 1,2 and 3 standard deviations. The data are the
same as used in Figs 3.2 and 3.4. The background power plot is the mean of the power plots
searching over a range of slowness vectors from each bootstrap sample.

3.2.3 Slowness Vector Uncertainty Estimates

We estimate the uncertainty with the standard deviation of backazimuths and horizon-

tal slownesses in each cluster and also use the area of error ellipse of the clusters as

a relative measure of uncertainty of each observation. The error ellipses are found by

calculating the eigenvectors and eigenvalues of the covariance matrix for each cluster.

These eigenvectors and eigenvalues give the directions and magnitudes of the maximum

variances in the cluster which is used to determine the width, length and orientation

of the ellipse. Fig 3.5 shows clusters plotted with their error ellipses for 1, 2 and 3

standard deviations. We would like to highlight the importance of the slowness grid

dimensions; if the slowness grid is too small, the arrivals may be truncated at the edge

leading to a smaller cluster and underestimate the uncertainty.

3.3 Parameter Tuning

To find the best parameters to use with the DBSCAN algorithm (ε and MinPts), we

compare the number of arrivals predicted by the algorithm to the number of arrivals

identified from visual inspection. We use the same dataset as Ward et al. (2020) which

used SKS and SKKS data recorded at the Kaapvaal array in southern Africa. Ward
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et al. (2020) make observations at a range of frequency bands (Table 3.1) using the

whole Kaapvaal array and several sub-arrays. The data which have been labeled as

having zero arrivals are where an SKS arrival is not observable due to noise. This is

due to the frequency dependence of SKS amplitude. In the data where a human cannot

identify a clear arrival, there will still be coherent signal in there which is a limitation

of this test. We test the method on data with no coherent signal later in Section 3.3.1.

The traces are first aligned on the predicted slowness of SKS or SKKS depending on

the arrival of interest. The beamforming is conducted in a time window that is 20s

before and 40s after the predicted arrival.

The dataset provides a good test for the algorithm since it has clear single arrivals,

multipathed arrivals (2 arrivals) and observations that are too noisy to identify any ar-

rivals (0 arrivals). Each observation is labelled from visual inspection of the distribution

and density of the points collected from all the bootstrap samples and the mean power

distribution of all the bootstrap samples. If the algorithm predicts a higher number of

arrivals than the human given labels, we assume here the algorithm has identified noise

as arrivals. If the algorithm predicts a lower number of arrivals, the density threshold

is too high for arrivals to be identified. Due to the subjective nature of the labelling,

this may not always be the case, but for the tuning process, we assume the human

labels are a ground truth. Observations, where it was not clear whether there are one

or two arrivals, are labelled as “1-2 arrivals” and excluded from this tuning process.

We searched over a range of ε and MinPts values and predict the number of arrivals

in each observation. This is compared to the human labels in Table 3.1 and an accuracy

score is calculated. The accuracy score is defined as the number of instances where

the method correctly predicts the number of arrivals relative to the total number of

instances (No. correct predictionsTotal instances ). Values of ε range from 0.05 to 1.0 s/◦ and MinPts is

given as a fraction of the bootstrap samples (1000 here) and varies from 0.05 to 1.0. Fig

3.6 shows how the accuracy varies in the parameter space. The grid search shows the

sensitivity of our method to the DBSCAN parameters chosen. With some parameters,

the accuracy can exceed 90% while with others it can be less than 20%. The method

performs the worst with small ε and high MinPts meaning the minimum density criteria

will be very high and very few arrivals will be found.

We test how well the algorithm generalises using cross-validation. Cross-validation

involves splitting the dataset into N representative subsets (5 here). One of the subsets

is removed and the grid search is conducted on the remaining N − 1 subsets and the

best set of parameters recorded. The removed subset acts as a validation set. Then we

take these best parameters and make predictions on the validation set. The accuracy of

the predictions for the validation subset is measured and gives an indication of how well

the algorithm generalises. The process is repeated by sequentially removing one subset

and tuning the parameters on the remaining N − 1 subsets. After the cross-validation
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Table 3.1: The number of labels in each frequency band. Labels indicate the number of
arrivals in that observation and 1-2 could be either 1 or 2. In total, there are 2628 labels with
2489 used in the tuning.

Frequency (Hz) Number of Arrivals

1 2 1-2 0

0.07 - 0.28 403 18 10 7

0.10 - 0.40 378 21 20 19

0.13 - 0.52 326 33 25 54

0.15 - 0.60 308 28 23 73

0.18 - 0.72 280 27 27 104

0.20 - 0.80 253 35 28 122

Total 1948 162 133 379
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Figure 3.6: Grid search of DBSCAN parameters ε and MinPts (given as a fraction of bootstrap
samples). For each combination, the number of arrivals in each observation are predicted,
compared to the true labels (Table 3.1) and the accuracy calculated. The location of the
highest accuracy value is plotted as a red cross where ε = 0.20 s/◦ and MinPts = 0.25.
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Figure 3.7: F1 scores for combinations of DBSCAN parameters ε and MinPts where each
plot represents a different target labels of 0 arrivals (left) one arrival (centre) and two arrivals
(right). The location of the highest F1 score is plotted as a red cross, which has parameters of
ε = 0.20 s/◦ and MinPts = 0.25 for 1 and 2 arrivals and ε = 0.25 s/◦ and MinPts = 0.35.

process, there are N estimates indicating how well the algorithm performs on unseen

data. Here we split the data into 5 subsets because of the low number of multipathed

(2 arrivals) and 0 arrivals samples. Cross-validation and measuring the accuracy gave a

mean accuracy of 0.939 with a standard deviation of 0.0090. In all the cross-validation

samples, the best parameters were ε = 0.20 s/◦ and MinPts = 0.25.

As there are many more instances of observations with one arrival, we also analyse

each of the target labels (0,1 or 2 arrivals) individually using the precision, recall and

F1 measures (defined below). These measures all depend on the number of true positive

(TP), true negative (TN), false positive (FP) and false-negative (FN) instances. These

are best understood with an example. If the target label is “2”, true positives are

instances where the algorithm correctly identifies 2 arrivals in an observation. True

negatives are instances correctly identified as not having 2 arrivals (1 or 0 arrivals).

False positives are those incorrectly identified as having 2 arrivals. False negatives are

instances where 2 arrivals have not been identified when they should have been.

From these measures, the precision is defined by P = TP
TP+FP . This is essentially

the proportion of the target labels which have been correctly identified. The recall,

R = TP
TP+FN , is a measure of how many of the target labels has been recovered by the

algorithm. The F1 score is the harmonic mean of the precision and recall and can be

described as F1 = 2
1
P

+ 1
R

. The F1 score is only large if both the recall and precision

are high. We only present the F1 score as it shows which parameters have both high

precision and recall. Fig 3.7 shows how the F1 score varies with different parameter

combinations for each target label.

Figures 3.6 and 3.7 show that the method is capable of greater than 90% agreement

with the observations of a human. This is mainly from observations with one clear

arrival, which makes up the majority of the observations. The algorithm also performs

well with more complex observations of multipathing with a F1 score of over 0.75. This
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Table 3.2: Table of the cross-validation result for each of the labels (0,1 or 2 arrivals) where
the F1 score is the measure of success. Notice the standard deviation is an order of magnitude
higher for labels 0 and 2, most likely because of the significantly fewer instances of those labels
in the subsets created during cross-validation.

No. Arrivals Mean F1 score Standard Deviation Best Parameters

0 0.86 0.030
ε = 0.35 s/◦

MinPts = 0.25

1 0.97 0.0063
ε = 0.20 s/◦

MinPts = 0.25

2 0.78 0.035
ε = 0.20 s/◦

MinPts = 0.25

method is quite insensitive to noise as it does not regularly incorrectly identify noisy

observations as shown by a F1 score of over 0.85 for observations with 0 arrivals. As

with the accuracy, we use cross-validation to see how well the parameters generalise

with new data. Table 3.2 shows the mean F1 scores for the individual labels. As

in Figure 3.6, there are DBSCAN parameters that perform very poorly showing the

importance of the parameters used.

The cross-validation analysis of all the labels and F1 score on the individual labels

show the parameters ε = 0.20 s/◦ and MinPts = 0.25 are consistently found to be the

best. Inferring how well the parameters generalise from this analysis is limited because

of the low number of cross-validation samples (5 here). The low sample number was

necessary because of the small number of observations with 2 and 0 arrivals. Despite

this, the mean values obtained for the accuracy score and F1 scores from the cross-

validation are very similar to that obtained by tuning with all the data (Figs 3.6 and

3.7). The standard deviations from the cross-validation are low suggesting similar

performance on similar datasets.

Due to the subjective nature of labelling each observation with the number of ar-

rivals, some difference between the method’s prediction and the human labels is ac-

ceptable. To analyse how reasonable the predictions are when the technique disagrees

with the human labels, we create a confusion matrix using the predictions with param-

eters of ε = 0.20 s/◦ and MinPts = 0.25 (Fig 3.8). In the confusion matrix, each row

represents a true label (number of arrivals in this case) and each column the predicted

arrivals. The values at each point in the matrix indicates how many times that true

label is identified as the corresponding predicted labels. For example, for all instances

with the true label of 1 arrival, the confusion matrix will show how many are correctly

classified as having one arrival and how many are incorrectly identified with 0, 2 or 3

arrivals. We normalise the values along each row of the confusion matrix so for each

true label, the columns show the proportion of the predictions given to that label. For

example, for the instances with a true label of ‘0 arrivals’, 80 % of the predictions are
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Figure 3.8: Confusion matrix for predictions made with ε = 0.20 s/◦ and MinPts = 0.25.
Each row represents a true label (number of arrivals) and each column the predicted arrivals.
The values on the diagonal of the matrix show the percentage of correct predictions for the true
label.

correctly identified as having 0 arrivals, 18 % are identified as having 1 arrival and so

on.

The confusion matrix shows that when the method prediction differs from the hu-

man labels, the predictions it makes are not radically unreasonable. It is worth remem-

bering the labelling process is quite subjective and just because the algorithm predicts

a different number of arrivals to that labelled by a human, does not mean it is wrong.

It is possible that some of the human labels with two arrivals only have one arrival

or some have three arrivals. Equally, it is possible some instances labelled with no

arrivals do have one arrival but a human could not confidently identify it above the

noise. Fig 3.8 shows the algorithm makes reasonable predictions in the vast major-

ity of the cases for this data set using the parameters found from the tuning process

and cross-validation. Analysis of the uncertainty estimates shows the slowness vector

measurements have small variation with the mean standard deviation for backazimuth

measurements of 1.2◦ and horizontal slowness of 0.14 s/◦. The mean area bounded by

the 95% confidence ellipse is 0.14 s2/◦
2
.

Analysis of the confusion matrix in addition to the findings from the cross-validation

process shows the parameters ε= 0.20 s/◦ and MinPts = 0.25 will give reasonable results

that will generalise well. We use these parameters in other applications with a minor

change for applications to surface waves (Section 3.4).
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3.3.1 Test with incoherent data

As mentioned previously, the data used for the parameter tuning was analysed in several

frequency bands and, after the analysis, labeled with the number of coherent arrivals.

Where the observation was too noisy to identify, coherent arrivals is labeled as having

zero arrivals. It should be restated; the lack of a clear arrivals is because at the higher

frequencies the SKS arrival may have too low an amplitude to be observed. At lower

frequencies, the same data may have a coherent arrival observable to a human. At

higher frequencies, while the data may be too noisy for a human to identify coherent

arrivals, there will be coherent signal in the traces. Therefore, it is not a true test of

how the method will perform when there is no coherent signal to be found. In this

section, we outline how we evaluate the performance of the method when applied to

random data.

Using SKS data recorded at the Kaapvaal array from the 25 May 1997 event, we

take a random 40 second time window from each of the traces. This is the random

data used to test the method. We keep the array geometry the same and use the same

parameters as outlined in the previous sections. Once the peaks have been collected, we

apply DBSCAN to find the number of arrivals. The DBSCAN parameters we choose

to use are those which performed best after the parameter tuning (Section 3.3). This

then gives the number of arrivals found when given random noise. We repeated this

process 500 times, each with different random data, and the method found 0 arrivals

in total. This shows the effectiveness of this method in not finding arrivals when none

are present.

3.4 Applications to PKP scattering and Rayleigh wave

multipathing

This section provides two example applications of this method to study Earth structure.

First, we show an example identifying a PKP precursor in the high-frequency teleseismic

wavefield (0.5 to 2 Hz). Coherent precursors are indicative of scattering caused by small

scale structures and our method can constrain uncertainties on their location. Then,

we show an example of low frequency (0.04 to 0.06 Hz) Rayleigh wave multipathing.

Using our method to identify Rayleigh wave multipathing, we can interpret possible

causes of multipathing and provide uncertainties for phase velocity measurements. All

measurements of backazimuth and horizontal slowness are shown with one standard

deviation describing the uncertainties.
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3.4.1 PKP precursors

Analysing the slowness vectors of PKP precursors is indicative of their location and

whether they are caused by source or receiver side structure (Haddon and Cleary, 1974).

We use PKP data from Thomas et al. (1999) who observe several scatterers beneath

Europe and Eastern Asia. Of the data used in Thomas et al. (1999), we focus on a

single event occurring on 15 September, 1992 which shows clear PKP precursors. We

only use data recorded at the Gräfenberg array and not the larger GRSN array to avoid

spatial aliasing. In this example, the PKP precursors appear to be coherent from visual

inspection of the seismograms (Fig 3.9). Coherent precursors suggest they probably

originate from localised scatterers such as an Ultra Low Velocity Zone (ULVZ) (Ma

and Thomas, 2020).

Fig3.9 shows the traces used for this example and the clusters found by our algo-

rithm. The data have the instrument response removed and are filtered between 0.5

and 2 Hz before the beamforming process. We used a time window of 10 s before the

predicted PKIKP arrival and the same DBSCAN parameters found from the tuning (ε

= 0.20 s/◦ and MinPts = 0.25). The method identifies a single precursor arriving with

a backazimuth of 58.6◦ ± 2.3◦ and a horizontal slowness of 2.93 s/◦ ± 0.32 s/◦. This

is similar to the slowness vector properties of the dominant arrival found by Thomas

et al. (1999) arriving 6.5 s before PKIKP with a horizontal slowness of 2.8 s/◦ and

backazimuth of 53.6◦. Unlike Thomas et al. (1999), we only identify one precursor

rather than three. We believe this is because our time window encompasses all precur-

sors meaning if one precursor has a significantly higher amplitude it may be the only

one recovered. Furthermore, visual inspection of waveforms suggests a single dominant

precursor (Fig 3.9). The range of possible horizontal slowness of this PKP precursor

inferred from the uncertainty of the measurement (2.93 s/◦ ± 0.32 s/◦) at a distance

of approximately 140◦ means this precursor could originate from either source side or

receiver side structure (Haddon and Cleary, 1974).

3.4.2 Rayleigh wave multipathing

The second example shows the identification of multipathed Rayleigh waves. From

this observation, the phase velocities and backazimuths of the multipathed arrivals

can be measured and analysed with uncertainty bounds. Xia et al. (2018) identify

multipathing in Rayleigh waves in the western US and suggest this is caused by the

transition from continental to coastal to oceanic structure each with unique velocity

profiles. We analyse Rayleigh waves from an event on 05 January 2013 recorded at the

Southern California Seismic Array (CI) to identify multipathing and hypothesise some

potential causes. The instrument response is removed and traces are filtered between

0.04 and 0.06 Hz. The time window used in the relative beamforming is 200 s before

and after the predicted arrival time assuming a velocity of 3.5 km/s. In this example,
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Figure 3.9: Example application of the method on PKP precursors. This example uses data
from the 15 September, 1992 event recorded at the Gräfenberg array in Germany (GR) filtered
between 0.5 and 2.0 Hz. The left subfigure shows the traces used in the example which are
aligned on the predicted PKIKP arrival time and the time window for the analysis shown in
red. On the right, the result of the algorithm with parameters of ε = 0.2 s/◦ and MinPts =
0.25.

the points in each cluster are distributed over a different slowness-space scale that is

an order of magnitude lower than in the body wave examples. The difference is due

to the Rayleigh wave velocity and the change in units. px/py for body waves will vary

on the order of 100, whereas for Rayleigh waves px/py vary on the order of 10−1, an

order of magnitude lower. Because of this, the ε parameter is also lowered by an order

of magnitude from 0.20 s/◦ found from tuning to 0.02 s/km.

Fig 3.10 shows the result of the clustering method, which identifies three multi-

pathed arrivals with backazimuths of 319◦ ± 0.7◦, 344◦ ± 1.3◦ and 299◦ ± 1.4◦ and

velocities of 3.6±0.025, 3.5±0.032 and 3.8±0.093 km/s respectively. For each arrival,

we mark the path from the mean station location along the mean backazimuth (dashed

white line in Fig 3.10) to determine a possible cause for the multipathing. Also shown

are the paths showing the backazimuth uncertainty bounds (solid white lines in Fig

3.10), which suggest it is reasonable to hypothesise possible causes of the measure-

ments. We investigate dispersion in the wave velocities by repeating the analysis in

three frequency bands of 0.035 – 0.045, 0.045 – 0.055 and 0.055 – 0.065 Hz, finding

differences in the number of arrivals and their backazimuths, but no absolute slowness

variation between frequencies (See appendix Figure B.1). We argue this is a result of

the different scale lengths of the structures which cause the observed multipathing, and

not because of a property of the material the wave is travelling through.

The top and middle paths may come from interactions with the boundary between

the continental and coastal regions, which agrees with the interpretation of Xia et

al. (2018). The direction of the westernmost arrival suggests it could be caused by



92

Chapter 3: Automatic Slowness Vector Measurements of Seismic Arrivals with
Uncertainty Estimates using Bootstrap Sampling, Array Methods and Unsupervised

Learning

−150°

−150°

−140°

−140°

−130°

−130°

−120°

−120°

−110°

−110°

30° 30°

40° 40°

50° 50°

60° 60°

−8000

−6000

−4000

−2000

0

2000

4000

Elevation (m)

Figure 3.10: Example application of the method for identifying multipathing in surface waves.
The left subfigure shows the raypaths (red lines) from the 05 January, 2013 event (white star) to
the Southern California Seismic Array (CI) stations (green triangles). Before the beamforming,
the data were filtered between 0.04 and 0.06 Hz. In this example, three arrivals have been
identified by the algorithm (right subfigure). For each arrival, a path is marked from the mean
station location along the mean backazimuth to a point with the same epicentral distance as the
event (dashed white lines and circles). The solid white lines indicate the uncertainty bounds of
the backazimuth for the measurement.

interacting with a coastal-ocean velocity transition or possibly due to more localised

velocity variations. Further modelling is beyond the scope of this work, but our results

demonstrate the potential of the method to investigate such phenomena efficiently.

The phase velocities of the arrivals may be indicative of azimuthal anisotropy be-

neath the array. The phase velocities of the central and easternmost arrival are the

same within the uncertainties (3.6 ± 0.025 km/s and 3.5 ± 0.032 km/s respectively).

The westernmost arrival moves with a significantly higher phase velocity over the ar-

ray (3.8 ± 0.093 km/s) along a backazimuth of 299◦ ± 1.4◦. While we do not have

enough measurements to fully explore the nature of this azimuthal anisotropy beneath

the array, our observation of a faster arrival from 299◦ is in line with that found by

Alvizuri and Tanimoto (2011) who report a fast direction of approximately 290◦. Fur-

ther analysis would be needed to recover the anisotropic properties, but this example

shows how our technique can be used to identify statistically significant differences in

phase velocity measurements.

3.5 Code guidelines

This section outlines some guidance to use this technique in terms of parameter selection

and computation time. There are many potential aspects of a study that can influence

the method’s effectiveness such as frequency bands, array size and configuration or

local receiver side structure. The tuning process (Section 3.3) shows we cover a range
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of frequency bands (Table 3.1) and array sizes (10 − 50 stations) and the sub-arrays

have a wide range of configurations. For applications analysing body waves in similar

frequency bands (0.1 − 1 Hz) with a similar array size (10 − 50), we recommend the

parameters (MinPts = 0.25, ε = 0.2 s/◦) used here as a starting point and adjusted if

necessary.

The number of peaks above the noise threshold should be equal to the maximum

number of arrivals of interest or expect to be possible. The noise threshold was deter-

mined to be three times the noise estimate through exploratory analysis and found to

give satisfactory results, but this can be changed depending on the application. DB-

SCAN parameters ε and MinPts of 0.20 s/◦ and 0.25 respectively will work well for

identifying single arrivals and is relatively intolerant to noise. If the study is searching

for multipathing, changing MinPts to 0.15 and keeping ε as 0.20 s/◦ increases the ac-

curacy of the multipathed arrivals from 66 % to 75 % but decreases the accuracy of the

noisy arrivals from 80 % to 44 %. These alternative parameters would require visual

inspection of those identified as multipathing by the algorithm but would significantly

reduce the amount of visual inspection as observations with one arrival need not be

visually inspected.

For surface waves, the algorithm also works well after changing ε to 0.02 s/km. For

applications with significantly different frequency bands or array sizes or searching for a

very specific phenomenon, the DBSCAN parameters may need to be tuned to optimise

performance (Section 3.3). The remaining parameters can be kept the same.

Sensible beamforming practice still applies when using this method and determining

the cause of the deviation is up to the user. The effects of spatial aliasing should be

taken into account and, if required, the effects of station elevation accounted for as it

has been shown to affect slowness vector measurements (Jacobeit et al., 2013).

The computationally intensive part of the method is the bootstrap sampling and

the beamforming on each sample, which must be performed for each observation; the

cluster analysis is comparatively quick. However, the code is trivially parallelisable

over observations since each is independent of all the others. The code is written

in Python, is easily editable and freely available (https://github.com/eejwa/Array

Seis Circle). The code has been parallelised so the bootstrap sampling can be spread

over several cores and uses Numba (Lam et al., 2015) to compile the functions into

machine code before execution. Further efficiency improvements could be made by

rewriting the algorithm in more efficient languages such as Julia, C++ or Fortran, and

investigating further performance improvements possible with the existing codebase.

For an example array with 20 stations, a time window of 30 seconds, sampling rate

of 0.05s and searching over a grid of slowness vector properties with 14641 vectors (a

grid where each axis covers 6 s/◦ in increments of 0.05 s/◦), each bootstrap sample

https://github.com/eejwa/Array_Seis_Circle
https://github.com/eejwa/Array_Seis_Circle
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takes approximately 1.6 seconds to process. This makes tens of observations viable

on a handful of cores such as on a desktop machine. Larger datasets (thousands of

observations) can be processed on the order of hours using hundreds of cores.

3.6 Conclusions

Slowness vector measurements have been used to understand a variety of Earth struc-

tures and phenomena. They are typically used to identify wavefield perturbations,

scattering and event/noise source localisation. While this analysis is a common tool

used by seismologists, studies are limited because of the necessary and subjective visual

inspection of observations. Interpretation of the measurements is limited by uncertain-

ties such as the contribution of array geometry, noise and local structure. These may

result in different slowness vector measurements depending on which stations are used

in the analysis.

In this study, we described a method to automate slowness vector measurement,

estimate the uncertainties and identify the number of possible arrivals. To do this,

we bootstrap sample the waveforms and in each sample using a relative beamform-

ing process to measure the coherent power and recover slowness vector properties of

potential arrivals. These slowness vector properties are collected and the clustering

algorithm DBSCAN is used to identify arrivals. The mean of the clusters gives the

backazimuth and horizontal slowness and the spread of the cluster gives uncertainty

estimates of phenomena that may vary the slowness vector measurement depending on

which subset of stations are used. We use a linear beamforming approach but other

beamforming methods such as phase weighted stacking (Schimmel and Paulssen, 1997)

and cross-correlation beamforming (Ruigrok et al., 2017) can be used.

We tuned the DBSCAN parameters on a data set with 0, 1 and 2 arrivals and

achieved > 90% accuracy in recovering these arrivals. We present examples of analy-

sis of scattered P wave energy and Rayleigh wave multipathing. The advantage this

method brings to these applications is the ability to automatically identify the arrivals

and measure the slowness vectors with uncertainty estimates. The difference in spatial

scale and wavelengths used in these examples shows that our approach is applicable to

studying Earth properties at a wide variety of spatial scales. Using this method, it may

be possible to analyse slowness vector properties on larger data sets with a reduced

need for subjective visual inspection. In addition, uncertainties can also be quantified

and used alongside the measurements. This technique makes 1000s of observations

feasible in a matter of hours and allows for global-scale slowness vector observations to

be made.
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Chapter 4

Towards a Global Map of

Multipathing and Slowness

Vector Perturbations from Array

Analysis of SKS Arrivals

Abstract

Global-scale observations of seismic reflections, scattered waves, waveform complexity

and seismic tomography have provided multi-scale constraints of the seismic proper-

ties of heterogeneities in the Earth’s interior. Of the seismic properties analysed on

a global scale, inferences on the location, strength and geometry of lateral velocity

gradients have yet to be made. Multipathing is a direct consequence of a wave in-

teracting with strong lateral velocity gradients, therefore observing this phenomenon

and replicating it through forward modelling can be used to constrain the properties

of the lateral velocity gradients. Multipathing occurs when a seismic wave is incident

on a sufficiently strong lateral velocity gradient which results in two arrivals that ar-

rive at the surface with different slowness vector properties (direction and horizontal

speed) and times. Array seismology can identify multipathed arrivals by their differ-

ing slowness vector properties, therefore locating strong lateral velocity gradients and

quantifying the extent the heterogeneity may have perturbed the wavefield. Further-

more, the relative slowness vector properties of the multipathed arrivals and arrivals

diffracted by the velocity gradient can constrain the geometry of the velocity gradient

causing them. As the slowness vector measurements of multipathing and diffraction

have not been analysed on a global scale, we apply an automated analysis technique

for array data to identify regions of multipathing and diffraction from slowness vector

103
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deviation measurements in a global dataset of SKS arrivals.

We conduct this analysis in three frequency bands (0.10 – 0.20, 0.15 – 0.30, 0.20

– 0.40 Hz), therefore varying the spatial scale lengths of velocity gradients we are

sensitive to. The analysis results in a large dataset (>10,000 observations in total)

sampling mainly beneath North America and Europe. We showcase the dataset by

suggesting what heterogeneities could be causing the observations after some initial

ray tracing modelling.

Each of the heterogeneities observed here shows its own unique combination of slow-

ness vector patterns, slowness vector magnitudes and whether it causes multipathing.

This shows the value of these measurements, in separating the different properties of

these heterogeneities such as morphology, velocity perturbation and those of the lateral

velocity gradients. This work is the beginning of the process towards a global map

of multipathing and locations of heterogeneities with strong lateral velocity gradients.

Our observations reported here and future maps of multipathing can be used in com-

bination with forward modelling or statistical studies to constrain the properties of

velocity gradients in the mantle. By mapping out the locations and strengths of lat-

eral velocity gradients, different hypothetical Earth models will have more constraints

to define the structures present and improve our overall understanding of the Earth’s

mantle system.
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4.1 Introduction

Global or multi-regional scale observations of anomalous seismic phenomena give insight

to the large- and small-scale processes of the mantle and improve our understanding of

whole-Earth dynamics. Such global studies have analysed reflectors in the mid mantle

(e.g. Bentham et al., 2017; Deuss, 2009; Deuss et al., 2006; Waszek et al., 2018), small-

scale heterogeneity from scattering observed as PKP precursors (Hedlin and Shearer,

2000; Ma and Thomas, 2020; Waszek et al., 2015) and from waveform complexity

(Thorne et al., 2021; Thorne et al., 2020), and travel times and waveforms through

seismic tomography (Chang et al., 2015; French and Romanowicz, 2014; Koelemeijer

et al., 2015; Lu et al., 2019; Ritsema et al., 2011; Simmons et al., 2010). While these

studies have given many observations of heterogeneities in the Earth on spatial scales

from 1000s to 10s of kilometres, global information about lateral velocity gradients and

their effect on the wavefield through diffraction and multipathing are yet to be analysed.

Multipathing occurs when a wavefield is incident on a sufficiently strong lateral velocity

gradient such that, over a short lateral distance (100s km), the wave travels at different

speeds and the lateral velocity gradient diffracts the wave. This results in multiple

distinct arrivals at the seismic station each with different arrival times and, because

of the diffraction, with different horizontal velocities and directions (backazimuths and

horizontal slownesses). Observing multipathing is clear evidence for a strong velocity

gradient indicative of mantle thermal or thermochemical heterogeneity and has been

observed from wavefield interactions with subducting slabs (Silver and Chan, 1986; Sun

et al., 2017), Large Low-Velocity Provinces (LLVPs) (Ni et al., 2002; Sun et al., 2010;

Sun and Miller, 2013; Ward et al., 2020) and ancient slab–plume–ultra low-velocity

zone (ULVZ) interactions (Sun et al., 2019). Observations of the velocity gradients by

making slowness vector measurements of multipathing quantifying the effects of the

gradients on the wavefield can give estimates of the properties of velocity gradients

which could be translated to inferences on the thermal gradients, perturbations or

chemical nature of the structures. If these observations are of a global scale, they can

be used to evaluate conceptual Earth models of present-day structure which can then

be used to understand the origin and history of many of the mantle structures.

In this study, we begin the process towards a global map of lateral velocity gradient

properties by applying the automated array technique of Ward et al. (2021) to the

global SKS dataset of Thorne et al. (2020) to constrain where strong lateral velocity

gradients are and constrain the location and morphology of boundary structure of man-

tle heterogeneities such as mantle plumes and subducted slab material. We make 11829

observations over three frequency bands (Table 4.1) to identify velocity gradients of dif-

ferent spatial scales. There are many ways to analyse such a large dataset which may

the base of further studies. Here, we provide a geological interpretation of what het-

erogeneities may be causing the observations and perform initial ray tracing modelling
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to facilitate our qualitative interpretations. We find evidence for mantle heterogeneity

everywhere we sample and use statistical analysis to constrain the depths of these struc-

tures. We find each of the heterogeneities has a unique slowness vector spatial pattern

and whether they are in regions of high multipathing proportion. Each heterogeneity

causing unique slowness vector and multipathing observations allows properties such

as the geometry, and strength of the boundaries to be well constrained and differences

between these structures analysed. Constraining the unique properties of the hetero-

geneities then give inferences on their different boundary structure and thermochemical

properties. This dataset represents the beginning of a project to a map of where mul-

tipathing occurs and possibly velocity gradients strengths which then could translate

into thermal gradients or regions of chemical heterogeneity.

4.2 Methods

4.2.1 Data and Sub Arrays

We use the global SKS dataset from Thorne et al. (2020) where events between 1990

and 2017 with magnitudes greater than 5.8, deeper than 75 km and with epicentral

distances between 90◦ and 130◦ are collected. The raw data were processed by removing

the mean, trend and instrument response. Low-quality data are removed first with an

ensemble of neural networks each trained on the amplitude spectra of 10,000 traces and

their respective labels of high or low quality following the approach of Valentine and

Woodhouse (2010). Following this, all traces were visually inspected for quality and the

high-quality traces were kept for analysis, for details of pre-processing, see Thorne et al.

(2020). For each event, the high-quality data were divided into sub-arrays following

the approach below.

To ensure high-quality observations, we require a sub-array to have a minimum of

15 stations with a maximum aperture of 400 km. To ensure all sub-arrays will meet

this criterion, we first use DBSCAN (Ester et al., 1996) to identify stations that meet

the criteria of having 15 stations within a 200 km radius of it and identify stations that

do not meet the criteria. For the sake of ease of explanation, we describe how DBSCAN

works in this specific application rather than in general terms. DBSCAN (Ester et al.,

1996) is a density-based clustering algorithm that will classify the stations into ‘core’

stations, which have at least 15 other stations within 200 km of it, ‘boundary’ stations

which do not meet the density criteria but are within the neighbourhood of a core

station and ‘outlier’ stations which do not meet the density criteria and are not in the

neighbourhood of a core station. The outlier stations can then be removed and not used

to make sub-arrays. We spatially resample the core stations such that none are within

200 km of each other. The remaining stations will be centroids for the sub-arrays. For

each of the centroid stations, we create a sub-array made up of all stations within 200
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km of it. Figure 4.1 illustrates the steps to form sub-arrays and Figure 4.3 shows the

resulting sub-array locations with the events and sampling of SKS in the lower mantle.

c)

e)

d)

b)

Stations

Core
Boundary

Centroid
Other
stations

Core
Boundary
Outlier

Centroid

a)

Figure 4.1: Cartoon describing the steps to automatically form a distribution of stations
(a) into sub-arrays (e). (b) apply DBSCAN (Ester et al., 1996) to classify the stations into
core, boundary and outlier stations. In the cartoon, a station needs 4 other stations in the
neighbourhood to be a core station. (c) remove outlier stations. (d) from the core stations,
resample them so none are within the desired spacing of each other, here the spacing is the
same as the neighbourhood radius. (e) form sub-arrays by collecting the stations within the
neighbourhood of the centroid stations.
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4.2.2 Automatic multipathing and slowness vector measurements

For each event-sub array combination, we use the method of Ward et al. (2021) to

automatically identify multipathed and single arrivals in slowness space and measure

their slowness vector properties. Here, we provide a brief summary of the method

but for details, such as searching for optimal parameters, see Ward et al. (2021). The

waveforms recorded at a seismic array from which the measurement is to be made

are bootstrap sampled (Efron, 1992) into N (1000 here) sub-samples. For each of the

N bootstrap samples, we use beamforming (Rost and Thomas, 2002) corrected for a

curved wavefront (Ward et al., 2020) to calculate the coherent power at a range of

slowness vector properties. From this power distribution in slowness-space, take the

top N power maxima (3 here) above a noise estimate. The location of the maxima in

slowness space give their slowness vector properties. For the sake of ease of explanation,

we describe these as points in a 2-D slowness-space. Each bootstrap sample will have

its own power distribution and respective points. Gather all points from each of the

bootstrap samples and use DBSCAN (Ester et al., 1996), a density-based clustering

algorithm, to identify arrivals as dense clusters of the points. DBSCAN parameters ε

and MinPts define the density threshold to find the clusters where at least MinPts

points need to be within a radius ε for a region to be defined as a cluster. We set the

DBSCAN parameters ε and MinPts as 0.20 s/◦ and 250 points respectively in line

with the tuning from Ward et al. (2021). The number of clusters found is taken as

the number of arrivals, the mean of the location of the points in the cluster gives the

slowness vector properties of the arrival and the scatter of the points in the cluster give

the uncertainty estimates of the slowness vector measurement. Figure 4.2 illustrates

the method.

By using this method, we can confidently make slowness vector measurements of

a large dataset and identify multipathing. Observations classified as multipathed are

visually inspected to check the classification and if necessary relabeled. Multipathing

has been observed to be frequency-dependent (Ward et al., 2020) suggesting the Fres-

nel zone size relative to the velocity gradient sharpness of the boundary may impact

whether multipathing is observable or not. Therefore, constraining which frequency

band multipathing is observable in may give an indication of the velocity gradient

sharpness or depths due to the sensitivity of the Fresnel zone with depth as well as fre-

quency. To identify velocity gradients of different sharpness and strength, we conduct

this analysis in three frequency bands (0.10 – 0.20 Hz, 0.15 – 0.30 Hz, 0.20 – 0.40 Hz).

In total there are 11829 observations with the breakdown of the number of multipathed

and single arrivals in each frequency band shown in Table 4.1.
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a) b)

c) d)

Figure 4.2: Same as Figure 3.1 in Chapter 3. Cartoon describing the steps to automatically
identify arrivals in slowness space and measuring their slowness vector properties. First boot-
strap sample the traces recorded at an array 1000 times creating 1000 random sub arrays (a).
Then, for each bootstrap sample, perform linear beamforming grid search and recover the top
peaks (b). Once this is done, collect all the points from all 1000 samples (c). Finally, apply
clustering algorithm DBSCAN (Ester et al., 1996) to identify regions dense enough to form
clusters and, from their location, measure their slowness vector properties.
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Figure 4.3: Top: Event (orange stars) and sub-array (green triangles) coverage of the usable
observations after applying the method from Ward et al. (2021). Middle: map of SKS pierce
point coverage at 2800 km depth for the observations after applying the method of Ward et al.
(2021). Blue and red circles show the pierce point location on the receiver- and source-side,
respectively. Bottom: great circle paths from event to stations.
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Frequency Band (Hz) Number of Arrivals Observed

1 2 3

0.10 – 0.20 4376 49 0

0.15 – 0.30 3580 269 0

0.20 – 0.40 3015 495 45

Table 4.1: Number of observations labelled as having 1,2 or 3 arrivals in each frequency band.

4.3 Forward modelling of slowness vector deviations

Before interpreting the observations of Section 4.4, we use the LLNL-Earth3D 3-D ray-

tracing software (Simmons et al., 2011; Simmons et al., 2012; Zhao et al., 1992) to infer

the expected pattern of slowness vector deviations of mantle heterogeneity on the scale

of 100s of kilometres depending on whether they are fast or slow anomalies. Slowness

vector deviation patterns may be able to discern whether the heterogeneity is fast or

slow, something the observation of multipathing in slowness space alone may not be

able to constrain.

We use two models to determine the qualitative pattern of the slowness vector

measurements when the wave interacts with fast or slow heterogeneity. The modelling

cannot be directly compared to the observations but can be used to determine the

qualitative pattern of a seismically fast or slow structure. Inferring the properties of

the heterogeneities may require finite frequency modelling to account for the full 3-D

effect of the structure which, due to its computational expense, is unnecessary for this

application. Figure 4.4 shows the setup of the modelling with the event and station

distributions and two anomaly locations. The fast anomaly has a width and length of

1000 km and a height of 500 km above the CMB with a velocity perturbation of 5% δVS

and the slow anomaly is a cylinder with a diameter of 1000 km, height of 500 km above

the CMB and a velocity perturbation of −5% δVS relative to PREM (Dziewonski and

Anderson, 1981). For the rest of the model, we assume the 1-D Earth model PREM

(Dziewonski and Anderson, 1981).

We calculate the arrival times at each station using ray-tracing and insert a Ricker

wavelet (Ricker, 1943; Ricker, 1944) with a frequency of 0.15 Hz at the arrival times

creating synthetic seismograms. Using the synthetic data, a beamforming grid search is

conducted over a range of slowness vectors for each sub-array. We record the slowness

vector properties with the highest power value and calculate the deviation from PREM

(Dziewonski and Anderson, 1981) predicted slowness vector properties. The differential

slowness vector is plotted at the great circle path pierce points between the event and

sub-array centre at the CMB. In addition to marking the slowness vector residuals at the

great circle path pierce points, the vectors are relocated so the path they travel through

a 1-D Earth is the same as a wave with the observed slowness vector properties. This
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Figure 4.4: Model setups for the 3-D ray-tracing through a fast box (top) with length and
width of 1000 km, a height of 500km and a velocity perturbation of +5%δVS and a slow cylinder
with a diameter of 1000 km, height of 500 km and a velocity perturbation of −5% δVS . Also
shown are the event location (red star) at −97◦ longitude, 0◦ latitude and the mean station
locations of the sub-arrays (green triangles).
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is identical to the slowness vector plots in Section 4.4. The slowness vector deviations

for both model setups with the relocated locations and the great circle path points

plotted are shown in Figure 4.5. The modelling results clearly show a diverging pattern

for the slow anomaly and a converging pattern for the fast anomaly. In both models,

the slowness vector azimuths are perpendicular to the orientation of the boundary and

are large at the edges of the structure and have a low magnitude in the centre of

them. This suggests travelling through the centre of the heterogeneity does not refract

the wave enough to cause slowness vector deviations. The magnitudes and azimuths

cannot be directly compared to the observed slowness vectors without comparison to

finite frequency forward modelling to determine whether the assumptions made by ray-

tracing, such as the infinite frequency assumption, significantly affect the magnitudes

and azimuths of the slowness vectors. Nonetheless, the ray-tracing results do allow for

qualitative interpretation of the observations, which we discuss in the next section.

4.4 Spatial observations of slowness vectors and multi-

pathing

Using the theoretical modelling results of Section 4.3, we now present the results of

the dataset by analysing the slowness vector deviations and multipathing spatially

and provide a geological interpretation. As the sampling of the dataset is heavily

concentrated on paths sampling the mantle beneath North America and Europe, we

focus our analysis there.

A challenge with interpreting SKS slowness vector measurements and multipathing

locations is determining the depth of the structure causing the wavefield perturbations

and whether the dominant signal is caused by source- or receiver-side structure. Fur-

thermore, interpretation becomes more complex as there could be multiple structures

affecting the wavefield at different depths and locations. Because of the dense sam-

pling in this dataset, we try to determine the most likely depth and location (source or

receiver) with the following approach.

For this analysis, we assume waves that sample similar regions should arrive with

similar slowness vector properties if there is one dominant structure causing the per-

turbation. Essentially, we are assuming one structure for each region is the cause of

a dominant pattern in our observations. When quantifying the coherence of slowness

vector measurements in particular regions and depths, we relocate the pierce point such

that it would arrive at the array with the same backazimuth and horizontal slowness

as the observation. We calculate the relocated pierce points at 100 km depth intervals.

At each depth, we create bins around each pierce point collecting all other slowness

vector measurements within 100 km of that pierce point. Then the variance (σ2) of the

slowness vector measurements in each bin is calculated as the mean square distance
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Figure 4.5: Slowness vector residuals for both model setups shown in Figure 4.4 with the
fast box shown in subfigures (a) and (b) and the slow cylinder shown in (c) and (d). Slowness
vectors shown in subfigures (a) and (c) plot the slowness vectors at their great circle path
pierce points between the event and sub-array locations. Slowness vectors in subfigures (b) and
(d) are marked at their relocated locations. Notice, the slowness vector patterns for the slow
cylinder show a diverging pattern and for the fast box a converging pattern. In all instances,
the slowness vector azimuth is orthogonal to the boundary of the structure.
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between all the slowness vectors and the mean the slowness vector measurements in

the bin as,

σ2 =

∑N
i (
√

(p̄x − pix)2 + (p̄y − piy)2)2

N
, (4.1)

where N is the number of vectors in the bin, p̄ is the mean of slowness vectors in the bin

and pix/piy are the east and north component respectively of the ith slowness vector

measurement in the bin. The distances between the mean slowness vector and each of

the slowness vector measurement is illustrated in Figure 4.6.

To infer which variances are statistically significantly low, we randomly take 20

slowness vector measurements from the whole dataset and calculate the variance. This

is repeated 1000 times and the 5th percentile of these 1000 random variance estimates is

recorded. Variances lower than the 5th percentile estimate are labelled as significantly

low and included in the analysis. The depths where pierce points have a variance lower

than the significant variance estimate are recorded and histograms of these depths

are made. This process could be repeated with observations of the orientation of the

multipathed arrivals in slowness space. We do not do this as most regions show few

multipathed arrivals.

We now analyse the slowness vectors and multipathing locations at different depths

and frequencies using the results of the modelling in Section 4.3 to suggest possible

heterogeneities causing the observations. Multipathing and slowness vector deviation

methods can constrain different information about the heterogeneity and, when com-

bined, provide even more constraints. The presence or lack of multipathing in one

or multiple frequency bands constrains the sharpness of the velocity gradient. The

relative location of the multipathed arrivals in slowness space may give the orienta-

tion of the velocity gradient. It is challenging to recover the velocity anomaly of the

heterogeneity through slowness space observations of multipathing alone. Slowness vec-

tor measurements on the other hand can give inferences on whether the heterogeneity

is anomalously fast or slow and the azimuth of the vectors can be used to infer the

orientation of the boundary also. As this dataset provides measurements of both mul-

tipathing and slowness vector deviations, the properties of velocity gradients sampled

may be able to be well constrained in future forward modelling studies.

In our analysis, the vector deviations have been relocated so the ray path is the

same as an arrival with the same slowness vector properties as the observation. We

only analyse slowness vector measurements that have a variance lower than the signif-

icant variance estimate and are then binned in 200 km radius bins. The bin size was

chosen to maximise clarity while retaining as much detail as possible. The multipathing

observations are shown as the proportion of multipathing within 200 km bins with a

minimum of 10 observations required to form a bin. We also plot the mean of the loci

in each bin, again requiring 10 observations to form a bin. The locus is taken as the
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Figure 4.6: Cartoon of how from a cluster of slowness vector points in slowness space (a), the
mean is measured (b) and the distances in slowness space are found (c). From these distances
the RMS is calculated.



§4.4 Spatial observations of slowness vectors and multipathing 117

angle orthogonal to the segment connecting the multipathed arrivals in slowness space.

The locus gives approximate information about the orientation of the velocity gradient

causing the arrivals. Where multipathing is observed, we can estimate the maximum

scale of the velocity gradient given the depth and frequency band it is observed in by

taking the approach outlined in Section 4.4.1.

4.4.1 Estimating velocity gradient length scales

Without computationally expensive finite frequency forward modelling the exact strength,

height and geometry of lateral velocity gradients cannot be inferred. We can, however,

give an upper bound of the length scale of the transition from the ambient mantle to

the interior of the heterogeneity by calculating the Fresnel zone diameter using

d = 2

√
zλ

2
, (4.2)

where d is the Fresnel zone diameter at depth z. The wavelength λ is calculated from

the lower end of the frequency band in which multipathing has been observed (0.10,

0.15, or 0.20 Hz) and the PREM (Dziewonski and Anderson, 1981) velocity value at

depth z. To find the upper bound of the velocity gradient length scale this needs to

be added to the diameter of the sub-array used for the recording, which we set as 400

km (Section 4.2.1). The diameter the sub-array is sampling will change with depth,

for example, a region spanning 400 km at the surface will become approximately 220

km when projected to the CMB. Therefore, this is accounted for before adding to the

diameter of the Fresnel zone. With this, we propose maximum length scales for the

lateral velocity gradients of heterogeneity observed.
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4.4.2 Europe

Figure 4.7 shows the histograms of the number of receiver-side paths which have a

significantly low variance at each depth for paths sampling the mantle beneath Europe.

In all frequency bands, there is evidence for lower-mantle structure causing slowness

vector deviation in our observations with the strongest evidence in the highest frequency

band (0.20 – 0.40 Hz). This is shown by the trend of the number of low-variance

observations increasing with depth in the bottom 500 km of the mantle.
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Figure 4.7: Histograms of the number of bins with a low variance slowness vector measure-
ments. The different histograms represent the different frequency bands used. Top left is the
lowest frequency band (0.10 – 0.20 Hz, top right is the central frequency band (0.15 – 0.30 Hz)
and the bottom histogram is the highest frequency band (0.20 – 0.40 Hz). Receiver-side paths
beneath Europe are used for this analysis for these histograms.

Other than this pattern in the lower mantle, each frequency band shows different

depths with a high number of low variance slowness vector bins, suggesting different

frequencies may be sensitive to heterogeneity at different depths. Based on these his-

tograms, we select the depths to analyse in each frequency band. These are shown in

Table 4.2.

We visually inspect the slowness vector deviation patterns, multipathing propor-
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Frequency band (Hz) Depths analysed

0.10 – 0.20 500 km, 2891 km

0.15 – 0.30 500 km, 800 km, 1000 km, 2891 km

0.20 – 0.40 1100 km, 1800 km, 2000 km, 2891 km

Table 4.2: Depths with possible mantle heterogeneity inferred from the slowness vector vari-
ances for the mantle beneath Europe.

tions and loci orientations at depths and frequency bands in Table 4.2 and in the

following subsections describe our interpretations of the structures causing them. We

selectively choose which depth slices of the results to show to avoid confusion or re-

peating similar observations (such as depth slices at 1800 km and 2000 km which show

similar results). Those not presented in this chapter are shown in Appendix Section C.
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4.4.2.1 Deep roots of European plumes

Evidence for mantle upwellings beneath Europe comes from a variety of observations

such as geochemical evidence (Bell et al., 2004; Buikin et al., 2005; Cadoux et al., 2007;

Wedepohl and Baumann, 1999), seismic tomography (Rickers et al., 2013; Ritter et al.,

2001), and geodesy (Kreemer et al., 2020) and there is evidence that these upwellings

have deep origins (Buikin et al., 2005; Goes et al., 1999). We have observed several

radially diverging slowness vector patterns throughout the lower and upper mantle

which, from inferences provided in Section 4.3, are evidence for low-velocity anomalies

from structures such as mantle plumes.

In the lower mantle, we observe a clear radially diverging pattern of slowness vector

residuals (P1 in Figure 4.8) with slowness vector magnitudes of up to 1.5 s/◦. This,

combined with the approximately circular pattern of the mean loci, a moderate pro-

portion of multipathing (35%) in the region at the core-mantle boundary (G1 in Figure

4.9) and mid mantle suggests a structure with sharp velocity gradients at its boundaries

rising 100s of kilometres through the mantle. Using the method outlined in Section 4.4,

we estimate the maximum length scale for this velocity gradient at the CMB to cause

multipathing in the highest frequency band (0.20–0.40 Hz) to be approximately 676

km.
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Figure 4.8: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 2891 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.

The diverging slowness vector anomaly P1 begins at the CMB (Figure 4.8) and is

present 1000 km above the CMB (Figure 4.10) and continues to migrate eastwards until
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Figure 4.9: Binned multipathed arrival loci (top) and multipathing proportion (bottom)
showing regions which may have strong lateral velocity gradients. The data used are from the
0.20 – 0.40 Hz frequency band and plotted at 2891 km depth. The bins have a radius of 200km
with a spacing of 100 km.
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it is beneath the Eifel region (Figure 4.13. We interpret the eastward migration of the

radial pattern beginning at the CMB and its termination beneath the Eifel region as

evidence that the Eifel plume has a lowermost mantle origin. There is little multipathing

in the Eifel region in the upper mantle (Figure 4.12) which suggests the Eifel plume

has strong enough gradients and perturbations to cause slowness vector deviation of

approximately 0.6 s/◦ in the upper mantle, but the gradients are not strong enough to

cause multipathing. The presence of an Eifel plume in the upper mantle and to depths

of over 2000 km are supported by several studies (Buikin et al., 2005; Goes et al., 1999;

Kreemer et al., 2020; Mathar et al., 2006; Rickers et al., 2013; Ritter et al., 2001) and

shown by low-velocity anomalies in tomography models (Chang et al., 2015; French

and Romanowicz, 2014; Lu et al., 2019; Ritsema et al., 2011; Simmons et al., 2010),

although in the upper mantle the plume is not always resolved in tomography studies.
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Figure 4.10: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 1800 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.

In addition to the P1 heterogeneity, we observed clear radially diverging patterns

south-east of Italy in the lower mantle (P2 in Figures 4.10 and 4.8) with large magni-

tudes (>2 s/◦) and a high proportion of multipathing (60%) in this region (G2 in Fig-

ure 4.9), although, the same paths also have high multipathing proportion at shallower
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Figure 4.11: Binned multipathed arrival loci (top) and multipathing proportion (bottom)
showing regions which may have strong lateral velocity gradients. The data used are from the
0.20 – 0.40 Hz frequency band and plotted at 1800 km depth. The bins have a radius of 200km
with a spacing of 100 km.
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depths (G4 in Figure 4.12). We interpret these observations as another low-velocity

anomaly, possibly a mantle plume, extending from the CMB to the mid-mantle. The

radial pattern does not reach the surface and could suggest the structure is impeded or

may become more complex if it is present near slab structure. The possible interaction

with a stagnating subducted slab has been suggested from geochemical studies (Bell

et al., 2004), but we cannot confidently say if this is the case. The region shows high

multipathing proportions in both the high and central frequency bands which, at the

CMB, suggests the anomaly has velocity gradients over a maximum length of 747 km

and at a depth of 1800 km suggest a maximum length of 686 km.

4.4.2.2 Wavefield perturbation from the Perm anomaly?

We observe large slowness vector deviations beneath northeastern Europe (40◦ longi-

tude, 60◦ latitude) which is part of a broadly divergent pattern labelled as P3 in Figure

4.8). This region also shows a high proportion of multipathing (≈50%) at the CMB

(G3 in Figure 4.9). At shallower depths (≈1800 km depth) there is a high proportion

of multipathing (≈60%, G3 in Figure 4.11), a clear northwest-southeast trend in the

mean loci in this region (Figure 4.11) and a diverging slowness vector pattern labeled

as P3 in Figure 4.10. This is indicative of an anomaly rising more than 1000 km above

the CMB. We find no evidence this anomaly is present at depths shallower than 1800

km suggesting it is being impeded by another structure, or, if it is an upwelling, may be

in the process of making its way to the surface. Depending on the tomography chosen

for comparison, this structure may be related to the Perm anomaly.

Depending on which tomography model is analysed, the exact location of the Perm

anomaly varies. If following the interpretations of other regional studies (He et al., 2021;

Long and Lynner, 2015) and compare our observations to GyPSuM (Simmons et al.,

2010), the observations of the P3 anomaly align well (Figure 4.8) and we have measured

the extent to which the Perm anomaly perturbs the wavefield and causes multipathing.

On the other hand, many other tomography models locate the Perm anomaly further

east (Chang et al., 2015; French and Romanowicz, 2015; Ritsema et al., 2011). Without

sampling further eastwards to where most tomography models place the Perm anomaly

(Lekic et al., 2012), we cannot determine whether we have observed the Perm anomaly

or a different structure that causes slowness vector perturbations, multipathing and

rises 1000 km into the mantle.

Regardless of whether this is the Perm anomaly or not, the potential Perm anomaly

we have identified causes significant slowness vector deviations, multipathing and may

extend to at least 1000 km above the CMB. We interpret these observations as a slow

anomaly with velocity gradients of a maximum spatial scale of 676 to 747 km, possibly

a mantle upwelling. This interpretation is in line with observations of discrepant SKS-

SKKS anisotropy observations in the region (Grund and Ritter, 2019; Long and Lynner,
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Figure 4.12: Binned multipathed arrival loci (top) and multipathing proportion (bottom)
plotted at 500 km depth using data from the 0.15 – 0.30 Hz frequency band. The bins have a
radius of 200km with a spacing of 100 km.



126
Chapter 4: Towards a Global Map of Multipathing and Slowness Vector Perturbations

from Array Analysis of SKS Arrivals

2015) which could indicate mantle flow around this anomaly.

4.4.2.3 Mid mantle slabs

We observe several converging slowness vector patterns throughout the mantle beneath

Europe which, from the modelling in Section 4.3, are indicative of fast material. We

interpret the converging vectors as fast, cold slab material.

The majority of the converging slowness vector patterns we observe beneath Europe

are in the mid to upper mantle. We observe converging slowness vector pattern beneath

the Alps (S3 in Figure 4.13) which also shows some multipathing suggesting that, while

the structure has sufficient velocity gradients to cause strong slowness vector deviations

of up to 1.5 s/◦ and some multipathing (40%, G5 in Figure 4.12). This complex pattern

(S3 in Figure 4.13) has some converging aspect to it but the azimuths of the vectors

are not perfectly reversed and have some offset to them (i.e. the vector azimuths

are not separated by 180◦). As the modelling in Section 4.3 suggested, the slowness

vectors may be orientated orthogonal to the velocity gradient orientation. Having a

convergence pattern where the slowness vectors are not pointing in opposite directions,

suggests the velocity gradients are not parallel and may indicate the boundaries of one

structure are deformed or the slowness vector pattern is caused by multiple structures.

The region does show some evidence for multipathing, but it is unclear if it is from the

S3 structure or the deeper P2 structure. If this presumed slab does cause multipathing,

a transition from the mantle to heterogeneity may occur on a scale of up to 575 km. Our

interpretation of slab material is supported by tomography (Wortel and Spakman, 2000;

Zhu et al., 2012) and receiver function studies (Cottaar and Deuss, 2016). Future work

could focus on recreating this unique slowness vector pattern and determine whether

one structure can produce it or multiple anomalies are needed.

Southeast of S3 is a clear converging vector pattern (S4 in Figure 4.13) which, be-

cause of its location, we interpret as the Hellenic slab perturbing the wavefield. The

Hellenic slab is shown in several P and S wave tomography models has been observed to

descend from the upper 200 km to approximately 700 km depth (Bijwaard and Spak-

man, 2000; Hansen et al., 2019; Spakman et al., 1988; Wei et al., 2019). Like the Alpine

anomaly, this region shows high proportion of high-frequency multipathing (55%, G4 in

Figure 4.12), but smaller slowness vector magnitudes (approximately 0.5 s/◦). Again,

it is unclear if the multipathing in this region may be due to lower mantle contributions

from the P2 anomaly. If the Hellenic slab is causing the multipathing it suggests the

velocity gradient may be on the scale of up to 575 km at 800 km depth and 493 km

at 200 km depth. The depth range for the structure was determined by the depths

with the highest binned variances for this region (Figure 4.7). Comparing the slowness

vector magnitudes of the Hellenic slab (1 s/◦) to the magnitudes of the Alpine slab

(relatively large > 2 s/◦) suggests some discrepancy in seismic velocity perturbation,
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Figure 4.13: Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using pierce
points at 500 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.
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lateral velocity gradients, depth extent or morphology. Further extensive forward mod-

elling studies would be needed to determine the differences in the subduction regimes

but could infer differences in temperature or possible compositional differences.

While not showing a complete converging or diverging pattern, we observe a dis-

tinct change with slowness vectors with magnitudes of approximately 1 s/◦ pointing

eastwards to a transition to very low slowness vector magnitudes (S2 in Figure 4.13)

and a very low proportion of multipathing (Figure 4.12). Due to the location of this

pattern we suggest the observations could be caused by the Cyprus slab. The sharp

transition in slowness vector magnitude may be due to limited sampling of the struc-

ture, or velocity gradient strengths being different on different sides of the slab. If the

latter is true, the eastern boundary has stronger velocity gradients suggesting it could

be more intact or colder and the western boundary may have been deformed up or

is closer to the temperature of the ambient mantle. Our observations of the Cyprus

slab present in the mid mantle are also in agreement with P and S wave tomography

(Berk Biryol et al., 2011; Wei et al., 2019) and receiver function studies (Taylor et al.,

2019). With observations of differing lateral velocity gradients, P to S conversions from

Taylor et al. (2019) and broad morphology from tomography (Berk Biryol et al., 2011;

Wei et al., 2019) a forward modelling study could constrain the velocity structure in

this region well, which in turn can be used to infer the thermal structure of the region

and inform the interpretation of the evolution of the subduction zone.

In the lowermost mantle, we observe a very broad converging vector pattern (S1 in

Figure 4.8) with magnitudes of up to 2 s/◦, although the magnitude differs between the

sides of the convergent pattern, and there are low magnitude vectors between them.

The region has a low (10%) proportion of multipathing which could be due to relatively

weak lateral velocity gradients unable to cause multipathing, one of the multipathed

arrivals does not arrive with enough amplitude to be observed, or the gradient is not

sampled for long enough. We interpret this as the location of the Balkan slab and

suggest the slab has different velocity gradients on the east and west sides. The western

side may have weaker velocity gradients possibly from interaction with the P1 and P2

structures causing weaker thermal gradients. How nearby slab and plume structures

would appear in this analysis is unclear and possible geodynamic and seismological

forward modelling studies would be needed.

4.4.2.4 Source side structure

We perform the same variance analysis on the source-side paths of the data recorded

in Europe (Figure 4.14). For higher frequencies, there are very few bins that have a

significantly low variance (<100), therefore we do not think source-side structure is

contributing much to the slowness vector deviation for these frequencies along these

paths. For the lowest frequency band (0.10 – 0.20 Hz), many bins have significantly
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low variance and the number increases with depth. The trend suggests that likely only

the lowermost mantle structure on the source-side is contributing to the perturbations.
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Figure 4.14: Histograms in different frequency bands of the number of bins with a low variance
between the slowness vector measurement and slowness vector measurements within 200 km of
it. Source-side paths for data recorded in Europe are used for this analysis for these histograms.

Visual inspection of the source-side slowness vector bins with low variance only

shows a distinct pattern beneath South America (Figure 4.15). The vectors vary

smoothly with a slight convergence in the north of the area and then generally trending

south-east to the south with large slowness vector deviation magnitudes (>1.5 s/◦). A

very similar pattern is observed on the source-side when analysing the North American

data (Section 4.4.3), where there is also fast upper mantle structure. This indicates

this slowness vector pattern may be an artefact of upper mantle structure, but further

analysis would be needed to determine the cause of this pattern.

4.4.2.5 Summary of findings for Europe mantle structure

To summarise, we find three diverging slowness vector patterns indicative of low ve-

locity anomalies which we interpret to be the possible CMB roots of the Eifel and

Italian plume and a third upwelling possibly related to the Perm anomaly (Lekic et al.,
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Figure 4.15: Map of slowness vector bins on the source-side beneath South America travelling
to Europe. The bins used pierce points at 2891 km depth and use data from the 0.10 – 0.20 Hz
frequency band.
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2012). The Italian and Perm related anomaly show a high proportion of multipathing

suggesting they have sufficiently strong velocity gradients at their boundaries, quanti-

fying this requires further forward modelling. Also in the lowermost mantle, we find

a large converging slowness vector pattern in a region with very little multipathing.

The converging pattern suggests a fast anomaly is present in the region but the lack

of multipathing suggests either the velocity gradients are not strong enough or not

sampled for long enough to cause observable multipathing. Our interpretation is this

is the remains of the Balkan slab and inferring the velocity perturbation required to

produce the slowness vector deviations may give inferences to the thermal properties of

the slab and possibly its age. Our interpretation of the lower mantle velocity structure

beneath Europe broadly agrees with global tomography models, but we disagree with

the morphology of the heterogeneities (Figure 4.16). Depending on the tomography

model chosen, our interpretation of the Perm anomaly changes. Inline with previous

studies analysing the Perm anomaly, if GyPSuM (Simmons et al., 2010) is chosen our

observations agree well but this is not the case for all tomography models (Figure 4.16).

The upper mantle has several complex converging slowness vector patterns which we

infer may be a result of the Alpine, Hellenic and Cyprus slab. The pattern we associate

with the Cyprus slab has distinct change between large slowness vector deviations and

negligible slowness vector magnitudes. This may be due to limited sampling of the

Cyprus slab or there are differences in the velocity gradient magnitude between the

edges of the slab. In addition to these converging patterns, there is a diverging pattern

beneath the Eifel region which we infer to be the upper mantle signal of the Eifel plume

and suggests the plume may extend from the CMB to the surface. In the upper mantle

our observations broadly agree with the tomography but disagree with the morphology

of the structures (Figure 4.17), which is to be expected from the differing resolutions of

the observations. Figure 4.18 summarises the observations and interpretations of the

heterogeneities in the region.



132
Chapter 4: Towards a Global Map of Multipathing and Slowness Vector Perturbations

from Array Analysis of SKS Arrivals

V s
(%
)

4

3

2

1

0

1

2

3

4

15 0 15 30 45 60

30

45

60

75

Binned Vectors1 s/

15 0 15 30 45 60

30

45

60

75

Binned Vectors1 s/

P2

P1

S1

S1 P3

P2

P1

P3

Figure 4.16: Slowness vector bins in the 0.20 – 0.40 Hz frequency band at 2891 km depth.
The bins have a radius of 200 km with a spacing of 100 km. In the background, we show
tomography models, S40RTS (Ritsema et al., 2011) (top) and GyPSuM (Simmons et al., 2010)
(bottom) to highlight the difference in the possible locations of the Perm anomaly. Scale for
slowness vector magnitude is given in top left.
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Figure 4.17: Slowness vector bins in the 0.10 – 0.20 Hz frequency band at 500 km depth. The
bins have a radius of 200 km with a spacing of 100 km. In the background, we show tomography
model S40RTS (Ritsema et al., 2011). Scale for slowness vector magnitude is given in top left.
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Figure 4.18: Cartoon summarising the interpretations of the spatial distribution of slowness
vector deviation observations beneath Europe.
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4.4.3 North America

Figure 4.19 shows the results of the variance-depth analysis of the sub-dataset sampling

North America (NA). Unlike the European dataset, there is little evidence for lower-

mantle structure causing slowness vector deviation in our observations in the low and

central frequency bands (0.10 – 0.20 and 0.15 – 0.30 Hz). However, as observed in

Section 4.4.2, the highest frequency band (0.20 – 0.40 Hz) appears to be most sensitive

to lowermost mantle structure and the different frequency bands appear to be sensitive

to structures at different depths. Table 4.3 shows which depths we think may have

mantle heterogeneities beneath North America affecting the respective frequency bands.
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Figure 4.19: Histograms for the receiver-side paths beneath NA in different frequency bands of
the number of bins with a low variance between the slowness vector measurement and slowness
vector measurements within 200 km of it.

Frequency band (Hz) Depths analysed

0.10 – 0.20 200 km, 1000 km, 1800 km, 2000 km

0.15 – 0.30 200 km, 500 km, 800 km, 1000 km, 1800 km

0.20 – 0.40 300 km, 1400 km, 1800 km, 2000 km, 2891 km

Table 4.3: Depths with possible mantle heterogeneity inferred from the slowness vector vari-
ances.
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Like in Section 4.4.2 we visually inspect the slowness vector deviation patterns,

multipathing proportions and loci orientations at depths and frequency bands in Table

4.3. In the following subsections we present our interpretations of the structures that

may be causing them. We are selective with which depth slices to present with the rest

presented in Appendix Section C.

4.4.3.1 Plumes and slabs of western US

The upper mantle of the western US is complex. It is broadly characterised by multi-

scale low-velocity anomalies with high-velocity structures protruding through (Fichtner

et al., 2018; Grand, 1994; Porritt et al., 2014; Schmandt and Lin, 2014). This, alongside

observations of a thin low-velocity zone above the mantle transition zone at 410 km

depth (Gao et al., 2006; Schmandt et al., 2011; Song et al., 2004; Vinnik et al., 2010), is

interpreted as the Farallon slab subducting into the upper mantle, releasing water and

causing partial melt and small scale upwellings in the upper mantle (Cao and Levander,

2010; Schmandt et al., 2012; Schmandt and Humphreys, 2010; Tian et al., 2009). The

partial melt and plumes in the upper mantle are widely hypothesised to cause volcanic

regions such as Yellowstone, Snake Valley Plane and Clear Lake volcanic field (Eagar

et al., 2010; Obrebski et al., 2010; Pierce and Morgan, 2009; Smith et al., 2009). The

Yellowstone plume is even speculated to affect the Farallon slab by causing tears and

gaps in the slab observed as patches of high-velocity regions (Leonard and Liu, 2016;

Obrebski et al., 2010; Pierce and Morgan, 2009; Sigloch et al., 2008; Tian et al., 2011;

Xue and Allen, 2007). Furthermore, the Yellowstone plume is hypothesised to descend

into the mid mantle with some recent studies imaging the plume from its core-mantle

boundary root to the surface (Nelson and Grand, 2018).

In our observations, we find a large magnitude (>1 s/◦) divergent slowness vector

pattern (D1 in Figure 4.20) and moderately high multipathing proportion (40% M5 in

Figure 4.21) in the upper mantle beneath the Yellowstone region. The slowness vector

deviations are somewhat present in the mid mantle (D1 in Figure C.23), but with lower

slowness vector magnitude suggesting the structure may extend into the mantle beneath

Yellowstone, but this could be an artefact of some of the slowness vector measurements

having similar paths through the mid and upper mantle. We interpret this diverging

pattern (D1 in Figure 4.20) and moderately high multipathing proportion as evidence of

a slow anomaly in the mantle, possibly the Yellowstone plume itself. The multipathing

may be due to the depth extent of the Yellowstone anomaly, but if it is occurring in the

upper mantle (300 km depth) suggests velocity gradients over at most 483 km. Some

argue the Yellowstone plume may extend to the lowermost mantle and recently Nelson

and Grand (2018) suggest the location of the Yellowstone plume lower mantle root

at approximately -120◦ longitude and 35◦ latitude, in agreement with the diverging

slowness vector pattern D6 in Figure C.25.
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Figure 4.20: Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using pierce
points at 200 km depth beneath the US. The bins have a radius of 200km with a spacing of 100
km.

In addition to the Yellowstone anomaly, we find evidence for several smaller scale

low-velocity anomalies confined to the upper mantle as observed in previous studies

(Eagar et al., 2010; Gilbert et al., 2003; Schmandt and Humphreys, 2010; Xue and

Allen, 2007) as small diverging slowness vector patterns D2 and D3 in Figure 4.20. The

D2 labelled diverging pattern is located east of where previous studies have identified

a ‘slab window’ (Porritt et al., 2014; Sigloch et al., 2008; Tian et al., 2011). The slab

window may be where the Farallon slab has broken apart possibly initiating small scale

upwelling from the partial melt generated by hydration melting (Cao and Levander,

2010; Schmandt et al., 2012; Schmandt and Humphreys, 2010; Tian et al., 2009). In

addition, we observe a divergent slowness vector pattern possibly an upwelling to the

east of the slab window labelled as D3 in Figure 4.20. Despite the clear slowness vector

patterns, there is a low multipathing proportion in this region (Figure 4.21). The

difference in multipathing proportion and slowness vector magnitudes between these

structures and the Yellowstone anomaly could be due to differences in velocity gradients

or depth extents of the structures.

As mentioned, the western US is characterised by several high-velocity anomalies

disconnected with each other which some interpret as the subduction of the Farallon

slab being segmented into multiple different slab structures (Obrebski et al., 2010;

Pierce and Morgan, 2009; Sigloch et al., 2008; Tian et al., 2009). We observe several

converging patterns in the western upper mantle (C1 and C2 in Figure 4.20), which

we interpret these converging patterns as clear fast anomalies in the upper mantle.
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Figure 4.21: Figure summarising multipathing observations using data in the 0.20 – 0.40 Hz
frequency band and pierce points at 300 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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The magnitudes of the slowness vectors around C1 vary depending on location with

small magnitudes of < 0.5 s/◦ to the west of the pattern but other regions show large

magnitudes of up to 1.5 s/◦. This region also has high multipathing proportions in

the high-frequency band (M4 in Figure 4.21) and in the central frequency band (M4 in

Figure 4.22). The discrepancy in slowness vector magnitude may be a result of slowness

vector deviations from the nearby diverging pattern (D1) being included in the binning

process, or it could give some indication of the differing properties of the boundary

structure of the heterogeneity. The multipathing proportions also may be influenced by

the nearby Yellowstone anomaly where the change from one heterogeneity to another

could cause the multipathing or the structure’s velocity gradients and depth extent

could be the cause. The C2 anomaly shows more consistent slowness vector magnitudes

of approximately 1 s/◦ at all azimuths and is also near a region of high multipathing

proportion in the central frequency band (M6 in Figure 4.22). The M6 region of high

multipathing (50%) in the central frequency band has its highest proportion at depths

shallower than 500 km and has a much lower proportion deeper in the mantle (Figure

4.23). The M6 feature lies between the C2 and D2 anomalies where a transition from

fast to slow anomalies may exist which could create a sharp velocity gradient and cause

multipathing. At this depth (200–300 km) and frequency band (0.15 – 0.30 Hz), we

estimate the maximum transition length would be 482 km.

In the lowermost mantle beneath the western US, there is a broad diverging slowness

vector pattern with magnitudes of up to 1.5 s/◦ (D7 in Figure 4.24) with relatively low

multipathing proportion (Figure 4.25). This pattern is indicative of a slow anomaly at

the CMB beneath the western US disagreeing with global seismic tomography models

which often have a fast anomaly at this location (Chang et al., 2015; French and

Romanowicz, 2014; Ritsema et al., 2011; Simmons et al., 2010).

4.4.3.2 Plumes and slabs of central end eastern US

The mantle beneath central and eastern US is characterised by a large cratonic struc-

ture with some studies suggesting the existence of upper mantle plumes beneath the

Appalachian mountains (Menke et al., 2016; Schmandt and Lin, 2014; Tao et al., 2020)

and potential Farallon slab and Kula slab remnants at depth (Bunge and Grand, 2000;

Grand et al., 1997; Li et al., 2008; Sigloch et al., 2008; van der Lee and Nolet, 1997).

We observe converging and diverging slowness vector patterns and high multipathing

proportions in the eastern US indicative of mantle heterogeneity with slow and fast

seismic velocities and strong lateral velocity gradients. Here, we discuss the possible

heterogeneities we have observed in comparison to other studies.

We observe only one radially diverging pattern in the eastern US (D5 in Figure

4.20), which is indicative of a slow cylindrical anomaly beneath the Appalachians.

Slowness vector magnitudes vary from 0.3 s/◦ at backazimuths of approximately 315◦
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Figure 4.22: Figure summarising multipathing observations using data in the 0.15 – 0.30 Hz
frequency band and pierce points at 300 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure 4.23: Figure summarising multipathing observations using data in the 0.15 – 0.30 Hz
frequency band and pierce points at 1800 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure 4.24: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 2891 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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to >1 s/◦ at a backazimuth of 0◦ in all frequency bands. This pattern extends deep

into the mantle, but we believe this is because the same slowness vectors are being

binned as shown by a near-constant variance and not because the potential plume is

deeply rooted. Our interpretation of a cylindrical slow anomaly is compatible with

many studies who suggest the Appalachian plume is present in this region (Menke et

al., 2016; Schmandt and Lin, 2014; Tao et al., 2020). The region does not show a high

multipathing proportion, which may be due to the plume only existing in the upper

mantle or it has weak velocity gradients.

East of the D5 anomaly, we observe a sharp change in slowness vector magnitudes

from approximately 1 s/◦ to very small deviations and with no clear convergent or

divergent pattern (C3 Figure 4.20). These large slowness vector magnitudes indicate

a lateral velocity gradient or heterogeneity but, as there is a distinct transition to

negligible magnitudes, only one strong velocity gradient may be present. The region

does show some multipathing in the highest frequency band (M2 in Figure 4.21), which

has been suggested to be Farallon slab remnants by some (Burdick et al., 2008; Porritt

et al., 2014; Sigloch et al., 2008). If a single heterogeneity is causing the observations,

there must be s significant discrepancy in the sharpness of the velocity gradients on

either side of the structure to only cause large slowness vector magnitudes on one side.

Such discrepancy could give insight into the thermal, chemical or relative deformation

of the boundaries.

Southeast of the C3 feature, we observe a clear converging slowness vector pattern

with magnitudes >1 s/◦ (C4 Figure 4.20). The azimuths of the vectors in the converg-

ing pattern are not completely opposite and are unique to any observations we have

made here. Furthermore, there are no low magnitude slowness vectors in the pattern

between the high magnitude vectors, which may suggest this is a relatively small struc-

ture. The pattern of the slowness vectors is not necessary linear and is somewhat radial

suggesting the structure is more circular or cylindrical. In the same region, we observe a

high proportion of multipathing in both the central and upper frequency bands labelled

as M3 in Figures 4.22 and 4.21. The M3 multipathing anomaly is present at a range of

depths, it is challenging to constrain the radial length scales of the velocity gradient.

We interpret these observations as a fast anomaly with sufficiently sharp velocity gra-

dients and perturbation difference over the velocity gradient to cause multipathing in

multiple frequency bands. This interpretation is in line with previous studies suggesting

a remnant of the Farallon slab in the mid mantle is present in the same region (Grand

et al., 1997; Li et al., 2008; Sigloch et al., 2008; van der Lee and Nolet, 1997) which may

be causing mantle downwelling in this region (Forte et al., 2007; Forte et al., 2010).

Forward modelling would be needed to constrain the unique observations of this and

other anomalies observed in this study, which shows the value of interrogating mantle

structure in this way.
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4.4.3.3 Distribution of multipathing

The spatial distribution of multipathing proportion is significantly different in the upper

mantle between frequency bands. For the highest frequency band (0.20 – 0.40 Hz,

Figure 4.21), there is a broad distribution of high multipathing proportion whereas, in

the central frequency band (0.15 – 0.30 Hz, Figure 4.22), the high proportion regions

are much more localised. We interpret the difference as the different frequency bands

are sensitive to the different spatial and depth extents of the lateral velocity gradients.

The wide distribution of high multipathing proportion in the upper mantle in the

higher frequencies only (Figure 4.21), suggests the heterogeneity causing the multi-

pathing is sufficiently small scale to only be imaged by these short-wavelength obser-

vations. Not all multipathing will be caused at this depth, but we argue a significant

proportion will be because of the high number of low variance bins in the upper mantle

(Figure 4.19). We suggest this multipathing may be caused by structures not individu-

ally resolvable by seismic tomography or cause multipathing in lower frequency bands.

We interpret these structures to have velocity gradients with scales of at most 483

km, which may be larger than some of the heterogeneities, but it is the best estimate

we can make with the information available. The wide distribution of high frequency

multipathing is also present throughout the lowermost mantle beneath North America

although at a slightly lower proportion (Figure 4.25), but we do not observe large slow-

ness vector magnitudes or patterns in this region. We suggest most of the multipathing

observed is caused by structure in the upper and mid mantle, but some lower mantle

structures may cause multipathing but it is challenging to discern the origin. Lower

mantle anomalies may be contributing to some slowness vector deviations, but these

may have been filtered out through the variance analysis and other, more regionally

specific, studies would need to be conducted to infer the lower mantle structure on this

length scale.

Alongside the broad distribution of multipathing, many depths and frequency bands

show a very high proportion of multipathing at approximately -85◦ longitude and 45◦

latitude (M1 in Figures C.26, C.20, C.19 and 4.21), but very little slowness vector

deviation in either the binned or the unbinned data. At present, we do not know

what could be causing such high multipathing proportions with small slowness vector

magnitudes and further work on a detailed regional analysis using forward modelling to

investigate different mantle structures or investigating the region with different seismic

phases is needed.

4.4.3.4 Gulf of Mexico anomaly

The highest magnitude slowness vectors (up to 2 s/◦) were observed near the Gulf of

Mexico (D4 in Figures 4.20), but with a very low proportion of multipathing (Figure
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Figure 4.25: Figure summarising multipathing observations using data in the 0.20 – 0.40 Hz
frequency band and pierce points at 2891 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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4.21). It is not clear whether shallow structures could cause such significant slowness

vector deviations or whether a deeper structure needs to be sampled. We are not certain

what could be the cause of such an anomaly and have not found an extensive discussion

of this region in the literature. As with several other regions of interest identified in

this study, further detailed analysis via forward modelling or a dedicated regional study

is needed.

4.4.3.5 Source side structure

For source-side structure, while many bins have significantly low variance (Figure 4.26),

most are low magnitude slowness vectors (< 0.5 s/◦) and are not indicative of sampling

mantle heterogeneity. We do observe a distinct slowness vector pattern very similar to

that observed in Section 4.4.2 shown in Figure 4.27. As the slowness vector pattern

on the source-side is very similar to that of data recorded in Europe (Figure 4.15), we

hypothesise this is an artefact, possibly due to sampling subducted slab structure near

the surface. Investigation with finite-frequency forward modelling would be needed to

further investigate the cause of this slowness vector pattern.

4.4.3.6 Summary of findings for North America mantle structure

In summary, we find the heterogeneities in the upper and mid mantle beneath North

America cause the majority of our observations of slowness vector deviations beneath

the US. We observe several diverging slowness vector patterns which we interpret as low

velocity anomalies and as evidence for the Yellowstone and possibly Appalachian plume

in the upper mantle as well as small-scale upwellings in the western US. We observe

several converging slowness vector patterns in the upper mantle which we interpret

at fast anomalies caused by possible Farallon slab remnants. Our interpretations of

the velocity structure agrees well with tomography model from Fichtner et al. (2018)

(Figure 4.28).

There is a broad scattering of moderate multipathing proportion in the high fre-

quency band which we suggest are caused by gradients on the spatial scale of up to 483

km, but we are not certain what structures may be causing it. Whether the hetero-

geneities identified through slowness vector deviation pattern cause multipathing varies

depending on the heterogeneity. This, like the observations beneath Europe, highlights

the unique slowness vector deviation observations and multipathing observations for

each heterogeneity and the heterogeneities’ properties can be greatly constrained if the

observations can be replicated. The lower mantle offers fewer patterns but has a large

diverging pattern west of the US possibly from low velocity anomalies, but this does

not necessarily agree with global tomography models (e.g. Figure 4.29). Figure 4.30

summarises the interpretations and the observations made in this region.
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Figure 4.26: Histograms of source-side paths beneath NA in different frequency bands of the
number of bins with a low variance between the slowness vector measurement and slowness
vector measurements within 200 km of it for data recorded in NA.
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Figure 4.27: Map of slowness vector bins on the source-side beneath the southwest Pacific
traveling to stations in North America. The bins use pierce points at 2891 km depth and use
data from the 0.10 – 0.20 Hz frequency band.
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Figure 4.28: Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using pierce
points at 200 km depth beneath the US. The bins have a radius of 200km with a spacing of 100
km. The vectors are plotted on top of the collaborative seismic earth model (Fichtner et al.,
2018)
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Figure 4.29: Map of slowness vector bins using observations in the the 0.20 – 0.40 frequency
band. The bins have a radius of 200km with a spacing of 100 km. The pierce points are at
2891 km depth (CMB) plotted on top of tomography model is S40RTS (Ritsema et al., 2011).
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Figure 4.30: Cartoon summarising the interpretations of the spatial distribution of slowness
vector deviation observations beneath North America. Note for the Yellowstone plume, we do
not advocate for a linear feature from the CMB to the surface but this is to simply show the
diverging pattern in the lower mantle may be related to the Yellowstone anomaly.
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4.4.4 Future work

The results presented in this study are the beginning of a process to create a global map

of multipathing and wavefield perturbation in the mantle which can then show regions

where strong lateral velocity gradients exist. Future work building on this study will

use other phases such as Sdiff, ScS and S wave arrivals with similar methodology and

possibly expand to P, Pdiff and PcP wave arrivals also. Each of the heterogeneities

has a unique combination of slowness vector patterns, slowness vector magnitude and

whether they cause multipathing. These unique observations show the value of array

analysis of waves sampling velocity gradients.

This work motivates future forward modelling studies to investigate the effect of

sampling length, velocity gradient strength and velocity perturbation on the detectabil-

ity of multipathing. This analysis can be expanded to infer what conditions cause mul-

tipathing in one or multiple frequency bands. Replicating the slowness vector patterns

of the various heterogeneities would be able to constrain the geometry and strength of

the velocity gradients as well as possibly the perturbation of the structure. Combining

the inferences from modelling efforts investigating multipathing and slowness vector

patterns, constraints on the possible depths, velocity gradients, velocity perturbations

and morphologies of the heterogeneities observed in this study and future studies can

be made. As the slowness vector and multipathing observations are unique for each

structure, so to would be the properties recovered by the modelling. These estimates

quantifying the perturbation and sharpness of the velocity gradients, and the global

coverage of where lateral velocity gradients are, can be used in conjunction with concep-

tual Earth models to determine their accuracy and for parameterisation of tomographic

inversions.

4.4.5 Limitations

This work is partly limited by the decisions made to automate the sub-array creation

step and in the cluster analysis parameters used in the method of Ward et al. (2021).

When breaking up the distribution of stations into different sub-arrays, the maximum

size of the sub-arrays, the minimum number of stations needed for a sub-array and how

closely spaced the sub-arrays are will affect the number and distribution of the sub-

arrays. The parameters to create the sub-arrays were chosen to have sufficient stations

in each sub-array to provide reliable observations while maximising the coverage of the

mantle without such heavy sampling that some observations are nearly redundant.

The parameters given to the automated method of Ward et al. (2021) to make the

slowness vector measurements and identify multipathing is another limitation. The

method uses DBSCAN (Ester et al., 1996) to find clusters based on the density of

the points (in this application points are the slowness vector estimates). The user
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sets a minimum density for a cluster to exist as a minimum number of points needed

within a radius of the point. In the context of identifying seismic arrivals, the lower

the minimum density threshold, the more low amplitude arrivals may be recovered, but

more noise may be misidentified as arrivals. On the other hand, if the density criterion

is set very high, less noise will be identified as an arrival, however, the consequence

of this is fewer low amplitude arrivals, such as multipathed arrivals, may be found.

Choosing the DBSCAN parameters for the automation task of identifying multipathed

arrivals requires a balance between finding as many low amplitude arrivals as possible

while minimising the misclassification of noise as arrivals. The parameters used in this

study were taken from the tuning in Ward et al. (2021) which performed well in both

identifying multiple arrivals and limited the misidentification of noise as an arrival.

Unfortunately, some multipathed arrivals will not be identified by the method, but this

is a consequence of applying an automated method to a large dataset.

Another limitation is produced by the size of the bins chosen for the variance anal-

ysis and plotting. The variance analysis itself removes data from the analysis and is,

therefore, a limitation as it removes data that could be interpreted. However, the vari-

ance analysis is necessary to remove incoherent measurements and allow the dataset

to be interpreted at all. For the variance analysis, the size of the bin should be on

the spatial scale expected for coherent slowness vector values to exist. A bin size that

is too large may include many slowness vector values and may result in high variance

and the removal of those observations. A bin size too small may not include enough

slowness vectors to make a measurement as we impose the requirement of at least 10

observations in each bin. For plotting, too large a bin size or spacing would lose spatial

resolution of the slowness vector measurements losing the effect of small scale structures

on the slowness vector measurement. Like with the variance analysis, if the bin size is

too small, then there may be too few measurements to form a bin limiting the spatial

coverage of measurements making it difficult to interpret. To choose the bin size for

the variance analysis and the plotting, the smallest bin size was chosen which retained

enough coverage of measurements to be interpretable while providing as much detail

as possible.

A further limitation includes using a constant time window of 20 s before and

after the PREM (Dziewonski and Anderson, 1981) predicted arrival time. This value

was chosen to avoid contamination by other arrivals, such as SKKS, but may suppress

information about multipathed arrivals arriving much later or earlier than the predicted

arrival time.

The outputs of the ray-tracing for our forward modelling holds no information

about the amplitudes of the arrivals and are limited to travel times. Even if there are

arrivals with the slowness vector perturbations arriving at the array, it is unclear if the

arrivals will arrive with enough power to be observed. This motivates the need for finite
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frequency modelling to compare the modelling results of the ray-tracing and determine

if it is valid to use to investigate slowness vector perturbations. For the purpose of the

modelling in this study, we assume the arrivals are observable and only want to infer

the slowness vector pattern produced by fast and slow mantle heterogeneity.

4.5 Conclusions

Global observations of small-scale scatterers, mantle reflectors and 3-D velocity pertur-

bations have helped to constrain the seismic velocity structure of the mantle and provide

multi-scale constraints on seismic Earth models. Of the seismic phenomena analysed

on a global scale, information on the lateral velocity gradients of mantle heterogeneity

has been missing. Lateral velocity gradients at the boundaries of mantle heterogene-

ity can provide constraints about the length over which the transition between the

ambient mantle and the heterogeneity occurs. Regional-scale studies analysing lateral

velocity gradients use the presence of multipathing to locate the gradients and infer

their properties. Multipathing results from an interaction between a strong lateral

velocity gradient and an incident seismic wave. The wave moves at different speeds

depending on whether it is inside the structure or stays in the surrounding mantle.

The result of this interaction is two or more waves arriving at the station at different

times and, due to diffraction at the boundary, with different slowness vector properties.

Analysing multipathing and the slowness vector deviations from diffraction at lateral

velocity gradients can provide information about the location and properties of bound-

ary structure of mantle heterogeneity. The method from Ward et al. (2021) can be

used to identify one or more arrivals in slowness space automatically and therefore can

identify multipathing with slowness vector deviation measurement. This allows for the

first multi-regional scale observations of multipathing and slowness vector deviation to

be made giving information about strong velocity gradients in the mantle.

In this study, we applied the array method of Ward et al. (2021) to the global SKS

dataset of Thorne et al. (2020) to create a dataset of multipathing and slowness vector

deviation in multiple frequency bands. We then analyse the dataset spatially using 3-D

ray tracing to interpret the observations. Due to the dense station coverage beneath

North America and Europe, we focus our analysis there using statistical analysis of

the slowness vector measurements to constrain the depths of structures affecting the

wavefield. We also analyse the multipathing proportion spatially to infer which struc-

tures may have sufficiently sharp velocity gradients to cause observable multipathing

and estimate what the upper bound of those length scales may be depending on the

frequency band multipathing is observed in.

We find evidence for lowermost mantle roots for the Yellowstone, Italian, Eifel

plumes from diverging slowness vector patterns indicative of a slow anomaly. We ob-
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serve evidence for a low-velocity anomaly causing multipathing and strong slowness

vector deviations (≈1.5 s/◦) in northern Europe where some studies have interpreted

as the Perm anomaly (Lekic et al., 2012). This region has been observed to have dis-

crepant SKS-SKKS anisotropy (Long and Lynner, 2015) and coherent scattering (Ma

and Thomas, 2020). This, with our observations suggesting the structure extends ap-

proximately 1000 km above the CMB, leads us to suggest this is a mantle upwelling

rooted at the CMB. Our slowness vector and multipathing measurements show evi-

dence for subducted slab material throughout the mantle. What we interpret as the

Alpine, Cyprus and Hellenic slabs all show convergent slowness vector patterns and the

Hellenic slab possibly shows multipathing but some multipathing may be caused by

the Italian plume in the lower mantle. The lowermost mantle beneath Europe shows

evidence for a large high-velocity anomaly from a converging slowness vector pattern

with relatively little multipathing which we interpret as the Balkan slab.

Beneath the US, we find heterogeneities in the upper mantle may the the cause

of the majority of multipathing and slowness vector deviation. We observe several

converging slowness vector patterns in the upper mantle beneath the US which we

interpret as possible subducted slabs. We find some of these cause multipathing in the

central frequency band including in a location where previous studies have suggested

a Farallon slab fragment exists (Bunge and Grand, 2000; Forte et al., 2007; Sigloch et

al., 2008). Alongside these patterns we observe several smaller scale diverging slowness

vector patterns indicative of a slow anomaly which we infer to be evidence for the

Yellowstone plume and possibly the Appalachian plume and small scale upwellings

beneath the western US. We find a broad spread of high proportion multipathing regions

in the highest frequency band in the US upper mantle, which we interpret as smaller

scale heterogeneities unresolvable to tomography with a maximum scale for the lateral

gradients of 469 km.

This study provides the first steps towards global-scale observations of multipathing,

slowness vector deviations and therefore global observations of the properties of the

boundaries of mantle heterogeneity. Despite not being a fully global dataset, locations

of strong lateral velocity gradients made in this study can be used in comparison with

proposed Earth models, geodynamic simulation results and tomographic inversions.

The resulting dataset facilitates forward modelling studies to determine what conditions

are needed to produce observable multipathing, produce the frequency dependence of

multipathing observations and produce similar slowness vector perturbations observed

here. These observations begin to provide some constraints of the ‘sharp’ velocity

gradients of structures in the mantle, a property not yet analysed on a global scale and

which provides more constraints to the seismic velocity structure of the Earth.
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Chapter 5

Discussion and Conclusions

The aim of my thesis is to analyse lateral velocity gradients in the Earth’s mantle by

observing and quantifying their effect on the seismic wavefield. I quantify this effect

by measuring the slowness vector properties of multipathing and diffraction of waves

caused by lateral velocity gradients at the boundaries of mantle heterogeneity with array

seismology methods. Then, I work to expand the analysis to a global scale. The global

observations can then be used to differentiate the unique properties of lateral velocity

gradients at the boundaries of heterogeneity which give information about the differing

thermal or chemical anomalies. The maps of lateral velocity gradient properties can

be used in comparison to hypothetical Earth models and further our understanding of

whole Earth dynamics. In this section, I give a brief overview of the chapters (Section

5.1), discuss the key findings of my work (Section 5.2), indicate directions for future

work in Section 5.3, discuss the wider impact and contribution of this work (Section

1.3.3), and conclude in Section 5.4.

5.1 Overview of research

5.1.1 Chapter 2

In Chapter 2, I analyse SKS and SKKS multipathing and diffraction from the African

LLVP using a beamforming grid search approach to recover the full slowness vectors

of the teleseismic wavefield. This allowed areas where multipathing and slowness vec-

tor perturbation produced by the interaction of the wave and strong lateral velocity

gradients to be identified. I found the first evidence for multipathing being dependent

on the frequency which suggests there is a relationship between the velocity gradient

length scale and Fresnel zone size to observe multipathing. The frequency multipathing

is observed in may be used to constrain the properties of the lateral velocity gradients.

The relative slowness vector properties of the multipathed arrivals may give some

163
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indication of the orientation of the velocity gradient causing them. When plotting the

locus separating the multipathed arrivals in slowness space onto a map in comparison

to contours from seismic tomography, I find they correlate well (see Section 2.3.2 and

Figure 2.8). This shows seismic tomography, while limited in resolution, does constrain

the morphology of the African LLVP well in some instances. Through finite frequency

forward modelling, the strength of the lateral velocity gradients needed to produce

multipathing similar to my observations were estimated. Observations of multipathing

from the boundaries of the African LLVPs are extensive (e.g. Ni and Helmberger, 2003a;

Ni et al., 2002; Sun and Miller, 2013) which estimate the boundaries have a velocity

gradient of −3% δVS per 50 km or similar which some use as evidence to argue for

chemical heterogeneity of the LLVPs. Using finite frequency modelling, we suggest

the velocity gradients of the African LLVP may be an order of magnitude lower than

previous estimates and is possible from purely thermal or thermochemical structures.

Therefore, observation of multipathing is not necessarily evidence for chemical hetero-

geneity. The main takeaways from this work are multipathing can be observed using

array processing and may be able to constrain the spatial properties of the velocity

gradient causing the multipathing.

5.1.2 Chapter 3

Chapter 3 outlined the method to automatically identify seismic arrivals in slowness

space and measure their slowness vector properties with uncertainty bounds. To my

knowledge, there is no other method to identify multiple arrivals automatically and

measure slowness vector properties with uncertainties. The method bootstrap samples

(Efron, 1992) the seismograms of the array in question. This bootstrap sampling means

the stations in the array are also bootstrapped and allows for uncertainties from un-

accounted effects of local geology and waveform deformation to be accounted for. For

each bootstrap sample, the beamforming is conducted creating a power distribution in

slowness space. From the power distributions, the top N peaks are recovered which are

the estimated slowness vector measurements of the arrivals in that bootstrap sample.

Peaks from all bootstrap samples are collected and clustering algorithm DBSCAN (Es-

ter et al., 1996b) to identify clusters of similar slowness vector properties as arrivals.

The location of the cluster gives the slowness vector measurement of the arrival and

the scatter of the slowness vectors in the cluster gives uncertainty estimates. This

method makes global-scale observations of phenomena identifiable by their slowness

vector properties more feasible and uncertainty bounds on slowness vector measure-

ments can now be quantified. The uncertainties quantify the effect of local geology

causing waveform complexity, scatter in the arrival time of the wave and the effect of

heterogeneous station spacing on the slowness vector measurement. The uncertainties

can be translated into uncertainties of the locations of scatterers, reflectors or other

structures which cause slowness vector deviation.
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5.1.3 Chapter 4

Work presented in Chapter 4 applied the automated technique outlined in Chapter 3 to

a global SKS dataset from Thorne et al. (2020) to make slowness vector measurements of

multipathed and non-multipathed arrivals. Then, using statistical analysis of variance

of slowness vector measurements spatially, I interpret the observations and identify

many structures from lower mantle plumes to upper mantle subducted slabs to what

may be the Perm anomaly (Lekic et al., 2012). The outcome of this chapter is a

multi-regional scale set of observations of multipathing locations and slowness vector

perturbations of SKS arrivals in multiple frequency bands. As in Chapter 2 I observe

clear frequency dependence of multipathing with low frequencies observing very little

and higher frequencies observing much more. Analysing this frequency dependence of

multipathing and replicating it with forward modelling studies may allow for general

observations of lateral velocity gradients of mantle heterogeneity in the Earth to be

made for the first time.

Each of the heterogeneities we interpret to be causing the observations has its own

unique slowness vector pattern, whether multipathing is observed and which frequency

band multipathing is observable in. The value of analysing the slowness vector prop-

erties of waves interacting with mantle heterogeneity is shown here as the differing

properties, such as geometry and sharpness of velocity gradients can be constrained.

These can then be used to determine the relative difference between the heterogeneities

in terms of thermal and chemical characteristics or origins.

This chapter begins the process towards a global map of multipathing and slowness

vector deviation which then translate to a map of where strong velocity gradients exist.

This map can be used to determine which conceptual Earth models are compatible

with the seismic observations.

5.2 Discussion of key findings and outcomes

This section discusses the different key outcomes of the work presented earlier in this

thesis. Many of these have been observed over more than one chapter or were not fully

discussed in the chapters themselves.

5.2.1 Frequency dependence of multipathing

In Chapters 2 and 4, I conduct the array analysis in multiple frequency bands to vary

the length scale the method is sensitive to. In doing so, the possible length scales of

the velocity gradients can be constrained and I can investigate a potential relationship

between the Fresnel zone size and velocity gradient length scale.

I observe clear frequency dependence of observable multipathing in slowness space.
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In some cases, multipathing is observed in a specific frequency band (such as in Figure

2.6 in Chapter 2) and in other cases, multipathing may be observed in several frequency

bands. The frequency dependence of multipathing suggests the multipathing is only

possible when there is a sufficient proportion of the Fresnel zone perturbed so that

multiple regions are moving with different slowness vector properties. By replicating

the frequency dependence, one can constrain the spatial scale of the velocity gradient.

When analysing the waveforms individually, there appears to be a discrepancy in the

amplitude spectra between those which show clear multipathing and those which do not

(see Appendix Section A.6). The different amplitude spectra may represent the differing

effect the velocity gradient has on the different frequencies where some frequencies may

be focused and others defocused depending on the spatial scale of the velocity gradient.

Analysing the amplitude spectra could be used to identify multipathing or constrain

the spatial properties of the velocity gradients.

A limitation of identifying the frequency dependence of multipathing in slowness

space, as done in Chapters 2 and 4, is that for higher frequency bands (>0.15–0.60

Hz and 0.20 – 0.80 Hz in Chapter 2) observations could not be made as a result of

the noise conditions. Therefore, for some observations, I could not determine whether

multipathing is present or not. This is not the case in all instances, but it is important

when interpreting the frequency dependence of multipathing and comparing that to

forward modelling efforts.

To my knowledge, the frequency dependence of detectable multipathing has not

been observed before, and further study of the frequency dependence of multipathing

could constrain the velocity gradient sharpness, velocity perturbations and depths of

mantle heterogeneity boundary structure. Investigation of the frequency dependence

of multipathing and what conditions are needed to observe it at all is an essential next

step in investigating lateral velocity gradients in the mantle. I discuss this further in

Section 5.3.1.

5.2.2 Constraining lateral velocity gradient properties

Once the observations in Chapter 2 were made, I used the finite frequency modelling

code SPECFEM3D Globe (Komatitsch and Tromp, 2002a; Komatitsch and Tromp,

2002b) to model the full wavefield propagating through a seismic Earth model (for

details, see Section 2.5 in Chapter 2). I found observable multipathing is possible when

the wave samples structures with velocity gradients of up to −0.7% per 100 km which

is about an order of magnitude lower than the previously reported velocity gradients

of −3% per 50 km (Ni et al., 2002). I suggest the reason for the difference in velocity

gradient estimates between the work in Chapter 2 and those from studies such as Ni

et al. (2002) is the velocity gradient of the boundary is sampled for much longer when

finite frequency effects have been accounted for. When the boundary is sampled over a
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longer path, the effect of the velocity gradient can be accumulated as the wave travels

along the boundary. Therefore, a weaker gradient is sufficient to produce the same

result as a stronger gradient that is sampled over a shorter length. Questions remain

on the relationship between length sampled and gradient strength are needed to observe

multipathing and how this may vary with the depth of the gradient also. I discuss future

studies to investigate what conditions are needed to observe multipathing in Section

5.3.1. Despite this trade-off, the finite frequency modelling conducted in Chapter 2

shows the sharpness of the lateral velocity gradients can be estimated by using the

slowness space observations of multipathing. This analysis can go further than just

the magnitude of the velocity gradient. By trying to replicate the slowness vector

properties of the multipathed arrivals, one can recover information about the geometry

of the lateral velocity gradient. A limitation of using finite frequency modelling is the

computational expense. Ray tracing is much cheaper computationally and may be

able to give some information about the velocity gradient causing the slowness vector

deviation.

Modelling conducted in Chapter 4 takes a different approach to investigate the

properties of velocity gradients observed. There, I used 3-D ray tracing (Simmons et al.,

2011; Simmons et al., 2012; Zhao et al., 1992) to infer the qualitative pattern of slowness

vector measurements from a wave that has sampled a fast or slow mantle heterogeneity.

This modelling allowed the observations made using the method in Chapter 3 to be

interpreted. From the 3-D ray tracing, I found slow anomalies produced a diverging

slowness vector pattern while fast anomalies produced a converging pattern (see Figure

4.5 in Chapter 4). In both instances, the large magnitude vectors were observed near

the boundaries of the structure while negligible magnitude vectors are observed in

the centre suggesting refraction plays a small role in slowness vector deviation. This

is in line with the interpretation of a slow cylindrical structure causing the radially

diverging slowness vector pattern observed in Chapter 2. This shows how non-finite

frequency modelling can be useful for determining other properties of velocity gradients

in conjunction with slowness vector measurements. However, a comparison with finite

frequency modelling is needed to determine whether the assumptions made by ray-

tracing modelling affects the slowness vector observation. I discuss a future study

using ray tracing and slowness vector measurements to recover information about the

slowness vector gradient in Section 5.3.2.

5.2.3 Quantifying the uncertainty of slowness vector measurements

When bootstrapping the waveforms in the method presented in Chapter 3, random sub-

arrays are also created in each bootstrap sample. By creating many random sub-arrays,

the effect of local geology causing scatter in the travel times, waveform complexity and

the effect of heterogeneous station distribution can be estimated. These uncertainty
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estimates can be used to determine which observations should be included for interpre-

tation and give uncertainties on properties such as the depths of reflectors. While this is

valuable information about the measurement and could be used to provide uncertainty

limits on the location of mantle heterogeneity, the uncertainty estimate of the slowness

vector properties is affected by the ε parameter used to find the clusters in the method.

The method uses DBSCAN, a density-based clustering algorithm, to find dense

clusters of slowness vector properties, which are labelled as arrivals. From the cluster’s

location in slowness space, the slowness vector properties are measured and the scatter

of the slowness vector points give the uncertainty estimates. DBSCAN identifies the

points which meet the density criterion of having at least MinPts points within a

distance ε and labels them as core points. Points within ε of a core point, but not

meeting this density criterion themselves, are classified as a boundary point and added

to the cluster. Therefore, having a large ε value can bring in more points around the

core points of the cluster and may lead to larger uncertainty estimates. Because of

this, I describe the uncertainties as estimates because they may change with different

DBSCAN parameters. In theory, this may be an issue for the uncertainty estimates, in

practice, I have found the points for the arrivals are extremely densely packed around

the mean of the cluster with a steep drop off, therefore the uncertainty estimate is not

greatly affected by a few more boundary points being added to the edges of the cluster.

5.2.4 Structures at all depths can cause multipathing or slowness vec-

tor deviations

In this thesis, I have analysed three different regions in Chapters 2 and 4 with very

different mantle structures. The southern African mantle analysed in Chapter 2 is

characterised by the LLVP spanning 1000s of kilometres laterally and being over 1000

km high (French and Romanowicz, 2014; Koelemeijer et al., 2015; Ritsema et al., 2011;

Simmons et al., 2010) in the lower mantle with known sharp velocity gradients (e.g. Ni

and Helmberger, 2003b; Ni et al., 2002; Sun et al., 2010a) and a fast cratonic structure

beneath the array. The analysis in Chapter 4 focuses on the European mantle charac-

terised by relatively smaller scale structures such as slabs, plumes and the enigmatic

Perm anomaly (Lekic et al., 2012) and also the North American mantle which is domi-

nated by a complex upper mantle with small scale fast and slow anomalies and a large

cratonic structure in the east (Sigloch et al., 2008; van der Lee and Nolet, 1997). With

three large regional datasets of very different mantle structure, a broad discussion on

what structures are resolvable with this technique can be made.

In all three regions, I observe clear radially diverging patterns at a variety of depths

indicative of slow anomalies after interpretation of ray tracing modelling in Chapter 4.

These anomalies appear to exist in the lowermost mantle beneath Europe in the region

of the potential Italian plume and Perm anomaly (Figure 4.16), to a mid mantle cylinder
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beneath Africa (Figure 2.9 and upper mantle anomalies beneath the US (Figure 4.28).

These also show different depth extents with possible whole mantle anomalies beneath

Europe, those confined to the upper mantle beneath the US and those restricted to

the lower mantle beneath Africa. These observations show this method is capable

of identifying these slow anomalies on a scale of 100s of kilometres and can inform

about dynamics such as the potential small scale upper mantle convection in the US

or the possible whole mantle upwelling of the Eifel plume (Chapter 4). Some of these

structures have been observed in areas where I observe multipathing such as the base of

the Italian plume, the possible Perm anomaly, Yellowstone anomaly and the cylindrical

structure beneath Africa. On the other hand, some upper mantle slow anomalies such as

the upper mantle area of the Eifel plume and the potential Appalachian anomaly have

not been observed to cause multipathing. The differential multipathing observations

could be indicative of thermal gradients of the plumes, possibly their age and potentially

their thermal anomalies. Quantifying these different properties between the structures

may lead to an understanding of their relative impact on the dynamics on a regional

or global scale.

Two cratonic structures are sampled in this thesis, one beneath Africa (Chapter

2) and one sampling the eastern US (Chapter 4). The US craton is well sampled by

the data in Chapter 4 and appears to have very little effect on the slowness vector

deviations in the centre of the craton and only cause some (0.5 s/◦) slowness vector

deviation at the boundaries (Figure 4.28). The craton beneath southern Africa is less

well sampled and I suggest the boundaries are not sampled at all by the ray paths to

the Kaapvaal array. The relatively negligible effect of the craton body on the slowness

vectors observed in Chapter 4 suggests that the effect of refraction through seismic

anomalies is very small, supported by results of the ray tracing (Section 4.3). This

supports our interpretation that a mainly lower mantle signal is responsible for our

observations in Chapter 2. The minimal effect of refraction on the slowness vector

measurements suggests that, if very small slowness vector deviations are observed, it

does not necessarily mean there is no seismic anomaly, but there are no strong velocity

gradients to diffract the wavefield.

Several converging slowness vector patterns are observed in Chapter 4 beneath

Europe and the US mainly in the upper mantle but also at the CMB. I interpret

these, after the forward modelling in Chapter 4, to be fast anomalies in the mantle

and potential cold slab structure. Similar to the slow anomalies described earlier, each

heterogeneity causing the converging pattern has unique characteristics. Some fast

anomalies cause observable multipathing such as the possible Farallon and Kula slab

remnants in the eastern US (see Section 4.4.3.2). While other fast anomalies appear

in regions where no multipathing is observed such as the potential Balkan slab in

the European lowermost mantle (see Section 4.4.2.3). The slowness vector patterns
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themselves are unique like those for the possible alpine anomaly and those from the

Hellenic slab region (Figure 4.17) which indicate the geometries of the boundaries of the

structures differ. Replicating the anomalies observed for the converging slowness vector

patterns and the multipathing observations again can give inferences on the geometry

of the structures, their thermal or chemical properties or their ages. These properties

can then be used to infer the possible effect they have on the surrounding mantle in

the present day and over the history of the mantle.

The African LLVP is unique in the size of mantle heterogeneity I have analysed. It

has been shown to cause multipathing from previous studies (e.g. Ni and Helmberger,

2003a; Ni et al., 2002; Sun and Miller, 2013). It offers a different scale of structure to

analyse as it spans 1000s of km laterally and 1000 km high (French and Romanowicz,

2014; Koelemeijer et al., 2015; Ritsema et al., 2011; Simmons et al., 2010), therefore I

do not expect to have two boundaries of the same structure to be spatially close to each

other like for mantle plumes or slabs observed in Chapter 4. This structure then acted

as a good test of locating a velocity gradient transitioning from the ambient mantle

to the heterogeneity and a velocity gradient that extends for hundreds to thousands of

kilometres laterally. My observations of multipathing and the locus of the multipathed

arrivals are consistent with each other with a strike of approximately 340◦ and align well

with the velocity contours of tomography model S40RTS (Figure 2.8) for the western

boundary striking northwest-southeast. This result shows the geometrical properties

of a single lateral velocity gradient or boundary of heterogeneity can be recovered in

addition to the relatively small scale structures analysed in Chapter 4.

These results show analysing slowness vector properties of waves sampling lateral

velocity gradients can be used to analyse structure on a variety of spatial scales, velocity

perturbations and boundary sharpnesses. Future work should focus on linking these

observations with the seismic properties of the heterogeneities which can then constrain

the thermal or chemical properties of the structures, which in turn allows inferences of

their influence on the local and global mantle system.

5.2.5 Implications for constraining Earth models

In Chapter 1, I outlined how seismic phenomena such as scattering and reflections have

been analysed to constrain the properties of mantle heterogeneities and how these have

been used to discriminate between hypothetical Earth models. In this subsection, I

discuss the geodynamic implications my work has with a focus on LLVPs.

Determining whether LLVPs are of a purely thermal nature or are home to some

form of chemical heterogeneity has been heavily discussed since their discovery in the

1980s. A commonly used argument in favour of chemical heterogeneity are the ‘sharp’

velocity gradients at the boundaries of LLVPs (e.g. Ni et al., 2002; Sun and Miller,
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2013; To et al., 2005). A significant contribution from the work presented in Chapter

2 are my estimates for the velocity gradients at the boundary of the African LLVP are

an order of magnitude lower than those commonly cited. This is significant as these

gradients are possible with purely thermal LLVP structures (Davies et al., 2012). The

weaker estimate suggests the velocity gradients may be the result of a thermal anomaly

either a cluster of plumes, superplume or the majority of the LLVP anomaly is caused

by thermal anomalies.

Currently, global scale observations of mantle heterogeneity are available for on the

broadest scale lengths of 1000s of kilometres from global seismic tomography models

(e.g. French and Romanowicz, 2014; Koelemeijer et al., 2015; Ritsema et al., 2011;

Simmons et al., 2010) and observations sensitive to some of the smallest structures on

scales of 10s of kilometres (Ma and Thomas, 2020). The observations I have made are on

the scale of 100s of kilometres. By providing a method that can make these observations

automatically in Chapter 3, global-scale observations of structures on the length scale

of 100s of kilometres are now possible. These global-scale observations, or maps, such

as those in Chapter 4, which locate strong lateral velocity gradients and constrain

properties such as morphology or velocity gradient strength. These maps can then be

compared with outputs of the location, morphology and velocity gradient strength of

heterogeneities in geodynamic simulations therefore providing more constraints to the

hypothetical Earth models.

5.3 Future work

It is said a PhD is never finished, only submitted, and I think this is partly because of

the abundance of ideas that are inspired by the research undertaken. In this section, I

discuss what further investigation would complement work in this thesis.

5.3.1 The frequency dependence and visibility of multipathing

A low proportion (< 20%) of all observations in Chapters 2 and 4 show multipathed

arrivals. This highlights the specific criteria that are needed for multipathing to be

observed with array methods. The multipathed arrival needs to arrive with sufficiently

different slowness vector properties and arrive with enough power relative to the main

arrival to be observed in the beamforming power distributions. Factors such as the

proportion of the Fresnel zone sampling the velocity gradient, the length over which

the wave samples the velocity gradient, the dipping angle of the velocity gradient, the

incidence angle of the wave on the velocity gradient, the velocity perturbation of the

heterogeneity and the strength of the velocity gradient are all likely to affect whether

multipathing is observable with array methods.

In Chapters 2 and 4, there is evidence for observable multipathing to be frequency-
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dependent with some multipathing observed in a range of frequency bands and other

multipathing observed in just one. A study could analyse the frequency dependence of

multipathing and what properties would be needed to observe multipathing in either a

single frequency band or in a range of frequencies.

To investigate how observable multipathing is and its frequency dependence, finite

frequency modelling is essential but also computationally expensive. The computa-

tional cost of finite frequency modelling limits how much of the parameter space can

be explored, so investigating all the factors which may influence the visibility of mul-

tipathing is not feasible. The goal, therefore, would not be to explore all possible

scenarios which may or may not lead to observable multipathing. Instead, the aim

would be to determine the weakest velocity gradients and perturbations needed to

observe multipathing.

The model setup would aim to create an ideal scenario to observe multipathing with

a structure of a certain velocity gradient and perturbation. The parameters to search

over would be the velocity gradient strength, velocity perturbation of heterogeneity

and length sampled by the wave. The structure would be rooted at the CMB to limit

the parameter space to search over as only height above the CMB would need to be

explored rather than the depth and length of the structure. The angle of the boundary

at each depth would match the angle of the SKS ray path sampling it. If multipathing

is not observed under these conditions with the velocity gradient and perturbation and

lengths, multipathing will not be observable at all when other factors are included. To

reduce the computational cost and allow more of the parameter space to be searched, I

would use an axisymmetric seismic modelling code such as AxiSEM (Nissen-Meyer et

al., 2014) for most of the investigation. The limitations of the axisymmetric approach

are that it will not be able to fully account for the 3-D nature of the problem and

possibly overestimate the velocity gradients needed for multipathing at a given sampling

length. Therefore, for specific parameters where the observable multipathing to non-

observable multipathing transition occurs, I would use a 3D code such as SPECFEM3D

Globe (Komatitsch and Tromp, 2002a; Komatitsch and Tromp, 2002b) to validate the

results of the axisymmetric modelling.

The results of this would quantify what conditions are needed for lower mantle

structure to cause observable multipathing. While this would not necessarily give the

velocity gradients which are producing multipathing observed in real data, this study

would provide a lower bound for the conditions which could produce the multipathing.

Information such as the magnitude of the slowness vector deviation could be used to

further quantify the velocity gradient.
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5.3.2 Slowness vector magnitudes and velocity gradient

While multipathing has been challenging to observe, there are many observations of

slowness vector deviations which I have interpreted to be caused by structures such

as LLVPs, plumes or slabs. The next step of using these measurements is to infer

the velocity gradients, perturbations, depth extents and morphology of the mantle

structure. Like analysing multipathing and its relationship with mantle heterogeneity,

ideally, the modelling would use full 3-D finite frequency modelling. To reduce the

computational cost, I would use 3-D ray tracing (Simmons et al., 2011; Simmons et

al., 2012; Zhao et al., 1992) to search over the majority of the parameter space. Ray

tracing assumes the wave has an infinite frequency such that it can be approximated as

a ray. In reality, the wave does not have an infinite frequency and at a given depth and

frequency is sensitive to an area known as the Fresnel zone. As the wave is sensitive

to an area at each depth, and not a point, the velocity gradient will be sampled over

a greater length in full wavefield simulations than if the wave is approximated as a

ray. Ray tracing may overestimate the velocity perturbations and gradients capable of

producing the observed slowness vector deviations.

To validate the observations of the ray tracing, finite frequency modelling code

SPECFEM3D Globe (Komatitsch and Tromp, 2002a; Komatitsch and Tromp, 2002b)

should be used for models of interest. The finite frequency modelling would show how

accurate the 3-D ray-tracing results are in determining the relationship between the

parameters and slowness vector deviation. Furthermore, the comparison between ray

tracing and finite frequency modelling results would show the viability of ray tracing

for inferring the properties of structures causing slowness vector deviation.

5.3.3 Improving the automated method to guard against misidentifi-

cation of noise

The limitations of the automated method presented in Chapter 3 come from the sen-

sitivity of the output to the parameters chosen for DBSCAN (Ester et al., 1996a).

DBSCAN essentially defines a density threshold where a core point in a cluster needs

to have MinPts within a radius ε to exist. If the density threshold is very low, noise

may be misclassified as an arrival, but weaker seismic arrivals may also be identified.

On the other hand, if the density threshold is high, noise is less likely to be classified

as an arrival, but weaker arrivals are also less likely to be recovered. This limitation

highlights the importance of tuning the parameters of DBSCAN to a labelled dataset

as I did in Chapter 3 if using the method for automated purposes. If the algorithm is

changed to use other information to constrain whether the cluster is an arrival or noise,

the density criteria could be lowered allowing weaker arrivals to be identified.

The information which could aid the discrimination of arrivals over noise is the
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power values in the grid at the points recovered from each bootstrap sample and travel

time estimates using the slowness vector values of each point. The arrival times for each

point in the cluster could be estimated by forming the beam using the slowness vector

property of the point and then measure the arrival time from the highest amplitude of

the beam. The power of each point could be found by integrating along the beam or

measured on the power grid directly when the peak is taken.

Once these properties are measured for each point in the cluster, the cluster will

have a distribution of power and travel times for the arrival. This could be analysed to

investigate what the wavefield has sampled on its path to the array. The distribution of

these properties could be used to constrain whether the cluster is noise or an arrival. If

the uncertainty of these properties is too high, they could be removed and classified as

noise or as too uncertain to use. What limits to put on the uncertainty is challenging

to determine and would be up to the user to determine. Preliminary results of this

improvement suggest that arrival time uncertainties are often on the order of seconds

or lower and uncertainties greater than ten seconds may be too uncertain to use.

5.3.4 Correcting for a curved wavefront

To make observations on a very large seismic array, I developed a method to correct for

the curvature of the wavefront as the plane wavefront assumption began to break down

and add error to the slowness vector measurements. Our synthetic tests in Chapter 2

showed assuming a plane wavefront causes a backazimuth error of 2.37◦ and horizon-

tal slowness error of 0.20 s/◦. Figure A.1 in Section A.1 illustrates the effect of the

correction on the slowness vector measurement.

The curved wavefront correction presented in Chapter 2 changes the assumed back-

azimuth of the wave arriving at each station (see Section 1.2.4.1 for details), but it

does not account for the changing horizontal slowness of the wave due to the spher-

ical Earth. The assumption of a constant horizontal slowness across the array may

contribute to some of the remaining errors of 0.40◦ and 0.03 s/◦ for backazimuth and

horizontal slowness respectively. However, correcting for the backazimuth only reduces

the error by an order of magnitude suggesting it is the backazimuth assumption that

has a greater effect on the slowness vector measurement.

It is not clear what combination of array size, station spacing, phase and wavefront-

curvature (i.e. how far the wave is from the source or antipode) the plane wave as-

sumption is no longer valid and how large an error it contributes. To quantify this, ray

tracing through a spherical Earth with a 1-D velocity model using PREM (Dziewonski

and Anderson, 1981) to a global distribution of arrays of varying apertures and station

spacing with different phases such as S, P, ScS, PcP, SKS, Pdiff can be applied. From

these travel times, the slowness vector can be estimated using the plane wavefront ap-
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proximation and with curved wavefront correction and compare then to the predicted

slowness vector from the ray tracing. The result of this analysis should constrain un-

der what conditions the plane wavefront assumption contributes error to the slowness

vector measurement and quantify the slowness vector error.

5.4 Conclusion

Lateral velocity gradients in the Earth’s mantle can give information about the bound-

aries of mantle heterogeneity and the length scale of the transition from the ambient

mantle to the heterogeneity itself. Multipathing and diffraction occur when a wave

is incident on a sufficiently strong lateral velocity gradient, therefore identifying and

studying the phenomena may give information about the gradient the wave has sam-

pled. The velocity gradients at the boundaries of different mantle heterogeneities may

give some indication of the fundamental differences between them such as the thermal,

chemical natures or origin of the anomalies. Furthermore, by understanding the loca-

tion, morphology and strength of the gradients the observations on a global scale can

be used for comparison with hypothetical Earth models, geodynamical modelling in-

vestigations and used by tomographic studies. Analysis of multipathing and diffraction

caused by boundary structure of mantle heterogeneities has focused on the waveform

complexity it creates and trying to replicate it (e.g Ni and Helmberger, 2003c; Ni et al.,

2005; Sun et al., 2017; Sun et al., 2010b; Zhao et al., 2015). Analysing the slowness

vector properties of the multipathed arrivals can give quantifiable constraints on what

the boundary properties of the heterogeneity are. In this thesis, I analyse the slowness

vector properties of arrivals sampling lateral velocity gradients to quantify their effect

on the wavefield, identify multipathing and work to expand the analysis to a global

scale.

I first analyse SKS and SKKS data sampling the African LLVP using beamforming

correcting for a curved wavefront to understand the feasibility of observing multipathing

in slowness space and determine what information could be recovered by analysing it in

this way. I showed observing multipathed arrivals appears to be frequency-dependent

which suggests specific criteria between the size of Fresnel zone and velocity gradient

spatial scale is needed for multipathing to be observed. Using finite frequency forward

modelling I estimated the velocity gradients at the boundary of the African LLVP

which were approximately an order of magnitude lower than previous estimates. These

gradients were able to be produced by thermal or thermochemical structures (Davies et

al., 2012), which suggest observing multipathing is not necessarily evidence for chemical

heterogeneity.

Chapter 3 aims to develop a method to automate the measurement of slowness

vector properties with uncertainty estimates and identify multipathing. Automating
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the measurement means global-scale studies of phenomena such as coherent scattering,

surface wave multipathing or mantle reflectors are now more feasible. The uncertainty

estimates can quantify the effect of heterogeneous distribution and local geology on

the slowness vector measurement, which can then be used to provide estimates on the

location of mantle heterogeneity or the source of the wavefield perturbation.

In the final study, the automated method was used to make global-scale observa-

tions of SKS multipathing and slowness vector deviation. Using statistical analysis of

the variance of slowness vectors, I constrained the depth of mantle heterogeneities and,

with comparison to 3-D ray-tracing modelling results, hypothesised their origin. I inter-

pret many different structures beneath Europe and the US from whole mantle plumes,

subducted slab material in the upper and mid mantle. Each of these heterogeneities

has a unique slowness vector pattern, magnitude, whether they cause multipathing

and what frequency band the multipathing is observed in. These differing observations

for each heterogeneity show the value in analysing the seismic wavefield with slowness

vector measurements. Combined with forward modelling properties such as geometry,

velocity perturbation, velocity gradient sharpness can be constrained for each of the

structures. This would then create a map of lateral velocity gradient properties which

can then give inferences on the thermal anomalies, chemical heterogeneities or ages of

the structure and contribute to evaluating different conceptual Earth models.
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Appendix A

Supplementary material for

Chapter 2

A.1 Plane Circular wavefront comparison

To quantify the effect of the plane wavefront approximation and our correction for

a circular wavefront, we placed a Ricker wavelet with a frequency of 0.15 Hz at the

PREM Dziewonski and Anderson, 1981 predicted SKS arrival time for each station in

the Kaapvaal array for an event on 29 June 1997 and set the amplitude to zero elsewhere.

The only arrival with any amplitude arrives at the predicted backazimuth and horizontal

slowness, so the observed maximum should be aligned with the prediction in the θ− p
plot. Figure A.1. For the plane wavefront approximation, the observed maximum

deviates from the prediction by 2.37◦ for the backazimuth and 0.20 s/◦ for the horizontal

slowness. After correcting for a circular wavefront using the method outlined above,

the deviation from the prediction is reduced to 0.40◦ for the backazimuth and 0.03 s/◦

for the horizontal slowness.

A.2 SKKS and S3SK comparison

Most synthetic observations show observable power for the SKKS arrival and S3KS

with less than 10 % of the SKKS power with some showing no observable power for

S3KS (Figure A.2). We interpret this as SKKS being the dominant signal for these

observations, therefore observations with only one observable arrival are interpreted as

SKKS. Observations that potentially show other phases such as S3KS arriving in both

the time window and any power in the θ − p plot in both the synthetic and recorded

data are labeled as possibly having multipathing. Observations with multiple arrivals

in θ− p plots for recorded data and only SKKS arrivals are observable in the synthetic

data are interpreted as multipathing and not S3KS.

179
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Figure A.1: A comparison of the effect of (a) plane and (b) circular wavefront approximation
on the grid search over slowness vectors. The observed maximum for the plane wavefront
approximation has a backazimuth deviation of 2.37◦ and an horizontal slowness deviation of
0.20 s/◦. The circular wavefront approximation reduces these deviations to 0.4◦ for backazimuth
and 0.03 s/◦ for horizontal slowness. The data are generated by inserting a Ricker wavelet of
frequency 0.15 Hz at the PREM predicted arrival time for all stations in the Kaapvaal array.
Correcting for a circular wavefront significantly reduces the deviation of the observed arrival
from the prediction.

Figure A.2: A comparison of results for synthetic data generated from Syngine using model
prem i 2s Hutko et al., 2017 (a) and the recorded data (b) from an event on 25 May, 1995.
These examples have had the array response function deconvolved. The high power S2KS
arrival in the synthetics (a) and no visible S3KS power suggest the observation (b) shows
multipathing and not phases of SmKS reverberations arriving in the time window.
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A.3 Noise reduction equations

Phase weighted stacking Schimmel and Paulssen, 1997a weights each time in the linear

stack by an amplitude independent weighting and is expressed by

c(t) =
1

N

N∑
j=1

sj(t)

∣∣∣∣∣ 1

N

N∑
n=1

e(iΦn(t))

∣∣∣∣∣
v

, (A.1)

where c(t) is the phase weight stack amplitude at time t, N is the number of traces,

sj(t) is the jth real trace, Φn(t) is the nth instantaneous phase at time t and v is

the weighting power. A weighting power value of 2 is used as a compromise between

reducing noise and visibility of multipathed arrivals.

The F-statistic Blandford, 1974 is applied to the power value of the linear stack to

reduce noise. The F statistic is calculated by dividing the power of the beam by the

power of the difference between the beam and the individual traces

Fθ,p = (N − 1)
N
∑T

t=1 Sb(θ,p)(t)
2∑T

t=1

∑N
n=1[Sn(θ,p)(t)− Sb(θ,p)(t)]2

, (A.2)

where Fθ,p is the F statistic at a particular backazimuth (θ) and horizontal slowness

(p), N is the number of traces that form the beam, Sb(θ,p)(t) is the beam at time t for

a given backazimuth and horizontal slowness and Sn(θ,p)(t) is trace n at time t shifted

by the time calculated for a particular backazimuth and horizontal slowness.

The array geometry limits our ability to precisely constrain the slowness vectors

of the incoming energy. The array response function (ARF) provides a theoretical

estimate of the effect of array aperture, inter-station spacing and shape on the power

of the arrival Rost and Thomas, 2002. We deconvolve the array response function

from the linear θ − p plot to increase slowness resolution using the Richardson-Lucy

algorithm Lucy, 1974; Richardson, 1972. This algorithm iterates towards the most

likely deblurred image (in this case the θ−p plot) taking into account the point spread

function (the ARF and therefore the array configuration). The algorithm assumes the

starting image is described by

g = p ∗ δ + µ , (A.3)

where g is the observed image (θ− p plot), p is the matrix describing the point spread

function (the ARF in this case), δ is the unblurred image and µ is noise. From this,

the deblurred image at iteration i is expressed by

δi = αδi−1(pT
g

pδi−1
) , (A.4)

where δi is the deblurred image at iteration i, δi−1 is the deblurred image of the previous
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iteration, α is the inverse of the sum of the columns of the point spread matrix p and

acts as a normalising vector, p is the point spreading function (ARF) and g is the

original observed image (θ − p plot). For all of our observations, we used 5 iterations

to balance between reducing the noise in the plot and losing the multipathed arrival,

which could be removed at higher iterations if it is low amplitude. Figure A.3 shows

the effect of each of these techniques.

Figure A.3: A comparison of the techniques used to improve the signal-noise ratio and reso-
lution of the θ−p plots. These examples use all data from an event on the 29 May, 1997. (a)
uses a linear stack and shows the most background noise. (b) uses phase weighted stacking
Schimmel and Paulssen, 1997a and shows significant noise reduction. (c) is the result of decon-
volving the linear plot with the array response function using Richardson-Lucy deconvolution
Richardson, 1972 showing significant noise reduction after 5 iterations. (d) shows the linear
stack with the F-statistic Blandford, 1974 applied showing a reduction in noise.

A.4 Slowness vector descriptions

Figures A.5 to A.8 show the distribution of residuals within the frequency bands.
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A.4.1 Backazimuth Residuals

Spatial analysis of backazimuth deviations (Figure A.4) reveals several patterns in-

dicative of structures perturbing the wavefield. The most distinct pattern is to the

southeast of Africa (35◦S, 27◦W) where positive backazimuth residuals (blue, arriv-

ing from more clockwise direction than predicted) to negative backazimuth residuals

(red, arriving from more anticlockwise direction than predicted) then moving northeast

(25◦S, 40◦W) to negligible backazimuth residuals (white, arriving as predicted).

The transition from positive to negative residuals implies there are two boundaries

being sampled causing diffraction in opposite directions. We interpret this as the circu-

lar structure southeast of Africa marked by the −1.5% δVs velocity contours in Figure

A.4

We detect more negative backazimuth residuals than positive (Figure A.5) with the

negative residuals also spread over a larger area. Some of the negative residuals could be

caused by the same circular feature described above, but as the pierce point locations

move northeast, the LLVP boundary trending in a northwest-southeast orientation

could be contributing. Further north, the negative deviations sharply transition to

negligible residuals implying they are not sampling a structure or boundary that would

cause the wavefront to change direction.

Either a boundary orthogonal to wave propagation or structures causing the wave to

vertically refract with no change to the horizontal propagation direction are possibilities.

A.4.2 Horizontal Slowness Residuals

The spatial distribution of horizontal slowness residuals in Figure A.6 offers a less clear

picture than the backazimuth residuals. The circular feature defined by −1.5% δ Vs

contours to the southeast of Africa (35◦S, 30◦W) does show some pattern with the

negative residuals lying on the northwest side of the feature, closer to the array, and the

positive residuals on the southeast side. Negative residuals mean the wave is arriving

more steeply and positive residuals more shallowly, which is expected if the circular

feature diffracts the waves.

Residuals west of Africa (25◦S, 15◦W) are mainly positive, so arrive at a shallower

angle, and travel through the body of the LLVP causing the waves to refract. However,

there are also several multipathed arrivals in this region with scattered loci (Figure )

suggesting the waves also sample a boundary but, because the loci are scattered, it is

difficult to constrain exactly what is causing these observations.
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Figure A.4: Pierce points for sub array observations (frequency band 0.13 Hz to 0.52 Hz)
at 2400 km depth coloured by backazimuth deviations relative to the great circle path. Blue
colours show paths that arrive from a more clockwise direction and red show paths arriving from
a more anticlockwise direction than predicted. Contours from S40RTS Ritsema et al., 2011 at a
depth of 2400 km are shown to represent potential structures causing the observations. Pierce
points are corrected to the measured horizontal slowness and backazimuth.
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Figure A.5: Histograms of the backazimuth deviations of all observations in each frequency
band. The majority of the observations lie close to 0◦ with maximum observed values of 10◦ to
−22◦.
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Figure A.6: Pierce points for sub array observations (frequency band 0.13 Hz to 0.52 Hz) at
2400 km depth, coloured by horizontal slowness deviations relative to the PREM predicted ray
parameter Dziewonski and Anderson, 1981. Contours from S40RTS Ritsema et al., 2011 at a
depth of 2400 km are marked to outline structures potentially contributing to the observations.
Pierce points are corrected to match the observed horizontal slowness and backazimuth.



§A.4 Slowness vector descriptions 187

Figure A.7: Histograms of the horizontal slowness deviations of all observations in individual
frequency bands. Maximum deviations of 1.2 s/◦ and −1.0 s/◦ are observed. More positive
than negative deviations are expected due to the dominantly negative velocity mantle structure
beneath Africa.
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Figure A.8: Histograms of slowness vector deviation magnitude with frequency. Distributions
are very similar with frequency, with arguably slightly more high magnitude vectors at higher
frequency bands. The smallest slowness vector magnitudes vary from less than 0.1 s/◦ to 2.1
s/◦.
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A.5 Effects of crust and mantle models

Figure A.9 shows example θ−p plots of our tests on the effects of 3-D upper mantle and

crustal velocity structure. All runs have the velocity perturbations in S40RTS Ritsema

et al., 2011 doubled. Each plot has has the array response function deconvolved and

the frequency band used is between 0.13 and 0.18 Hz.

Figure A.9: Three θ-p plots showing synthetic observations with velocity perturbations dou-
bled at depths greater than 1000 km and tapered to a 1-D model at 660 km depth. Left plot
is data when using a 1-D upper mantle velocity model and no crustal model. Centre plot uses
data when a 1-D upper mantle is used but a crustal model is included. Right plot uses a 3-D
upper mantle velocity model from S40RTS Ritsema et al., 2011 and no crustal model. There is
very little difference made from adding 3-D crustal structure but a large difference from adding
upper mantle structure. Because of this, we include 3-D velocity structure in the upper mantle
for all our modelling runs.

A.6 Frequency content multipathed waveforms

We analyse the power spectra of the waveforms for several events to analyse the effects

of multipathing. We find evidence for an increase in the power of higher frequencies

where multipathing is observed. Figures A.10 to A.12 show examples of waveforms

with and without multipathing and their power spectra. Identifying clear evidence of

multipathing in the waveforms over background noise is challenging and limiting for

expanding the analysis to many other events we use. For event on the 25 May 1997 and

05 April 1999 enough waveforms clearly show either no or clear multipathing to analyse

several examples and show the change in power spectra is consistent at least within

these events (Figure A.13 and A.14). We hypothesise this could be caused by different

frequencies diffracting by different amounts depending on the velocity gradients they

sample, leading to some combination of focusing of high frequencies and defocusing

of lower frequencies. This is consistent with our interpretation of the slowness vector

deviations we observe. Further work is required to fully constrain the effects of velocity

gradient on the frequency content of the arrivals and how this relates to the frequencies

multipathing is observable in slowness space. This is not the focus of this study so we
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do not explore this further.

Figure A.10: Top: power spectra of a multipathed (orange) and non multipathed (blue)
arrival for data from the 21 May 1997 event. The power spectra are calculated using Welch’s
method Welch, 1967. Bottom: the waveforms used to calculate power spectra.

A.7 SPdiffKS in synthetics data

Figure A.15 shows the θ − p plots using waveforms at distances greater than 119◦

where there is potentially SPdKS in the synthetic waveforms using model M3 (Figure

13 in main document). The θ − p plots use time windows which, for the plots in the

left column, include both SKS and SPdKS and, for the plots in the right column,

isolate SPdKS. We find evidence for SPdKS in the synthetics generated using PREM
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Figure A.11: Top: power spectra of a multipathed (orange) and non multipathed (blue)
arrival for data from the 25 May 1997 event. The power spectra are calculated using Welch’s
method Welch, 1967. Bottom: the waveforms used to calculate power spectra.
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Figure A.12: Top: power spectra of a multipathed (orange) and non multipathed (blue)
arrival for data from the 05 April 1999 event. The power spectra are calculated using Welch’s
method Welch, 1967. Bottom: the waveforms used to calculate power spectra.
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Figure A.13: Power spectra of waveforms recorded by several stations (shown in the legend)
which show (top) no multipathing and (bottom) clear multipathing. Data used was recorded
from the 25 May 1997 event. Power spectra were calculated using Welch’s method Welch, 1967.
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Figure A.14: Power spectra of waveforms recorded by several stations (shown in the legend)
which show (top) no multipathing and (bottom) clear multipathing. Data used was recorded
from the 05 April 1999 event. Power spectra were calculated using Welch’s method Welch,
1967.
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Dziewonski and Anderson, 1981 using SYNGINE Hutko et al., 2017; Krischer et al.,

2017 only and only when not including SKS. Whenever SKS is included, SPdKS is not

observed because of the lower amplitude it arrives with. Because of this, we interpret

the second arrival in Figure 11 (in main document) as multipathing and not SPdKS.

In the θ − p plots using real data there is evidence for multipathing but not in the

plots using data from model M3. The multipathed arrival location is different to that

observed in the whole array observation suggesting a different structure was sampled.

The observation in Figure A.15 uses a small subset of the waveforms recorded at the

array, therefore is sensitive to a smaller area. As model M3 is based on the long-

wavelength structure in tomography, the structure causing this multipathed arrival

may not have been resolved.
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Figure A.15: A comparison of θ-p plots using the observed data (top row), synthetic data
from model M3 (middle row) and PREM Dziewonski and Anderson, 1981. The waveforms used
have epicentral distances larger than 119◦ because there is evidence for SPdKS in the waveforms
(Figure 13 in main text). These use phase weighted stacking with degree 2.
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A.8 Event Metadata Information for Chapter 2

date time evlo evla evdp

1997-04-23 19:44:29 144.941 13.9319 114.3

1997-05-03 16:45:55 -179.337 -31.6399 47.8

1997-05-12 13:45:26 121.712 10.2353 33.0

1997-05-21 14:10:28 169.23 -20.3924 69.0

1997-05-25 23:22:32 179.819 -32.1148 322.9

1997-05-29 17:02:38 -102.496 -35.9445 10.0

1997-06-10 21:53:55 -108.096 -35.7475 10.0

1997-06-24 23:04:53 127.934 -1.8877 41.5

1997-06-26 19:21:08 -114.652 -49.761 10.0

1997-07-09 19:24:10 -63.5453 10.5045 3.0

1997-07-20 10:14:19 -66.2225 -22.845 221.7

1997-07-21 23:19:38 -71.912 -30.3136 24.0

1997-07-25 06:47:02 -71.8801 -30.4795 37.05

1997-08-10 09:20:31 124.423 -16.0503 10.0

1997-09-02 12:13:23 -75.6984 3.8794 196.4

1997-09-03 06:22:43 -128.968 -55.267 10.0

1997-09-04 04:23:35 178.319 -26.4997 608.0

1997-09-12 14:09:03 -164.39 -63.1323 10.0

1997-09-15 13:05:44 126.589 8.0938 69.0

1997-09-17 14:50:36 126.61 2.0994 45.2

1997-09-20 16:11:29 -177.575 -28.7375 11.4

1997-09-26 15:48:34 128.984 -5.3669 253.6

1997-09-30 06:27:24 141.99 31.9763 4.7

1997-10-06 12:30:07 125.804 9.7616 124.0

1997-10-15 01:03:33 -71.139 -30.8907 54.1

1997-10-28 06:15:19 -76.6751 -4.3507 127.5

1997-11-10 23:06:43 140.477 31.1512 78.5

1997-11-15 18:59:25 167.344 -15.1272 129.3

1997-11-25 12:14:36 122.562 1.2086 46.3

1997-11-28 22:53:42 -68.7982 -13.772 599.8

1997-11-29 03:42:02 126.657 2.2238 50.9

1997-12-05 18:48:20 161.721 53.7222 16.7

1997-12-07 17:56:17 162.832 54.6374 22.0

1997-12-09 14:23:40 -68.3092 -20.2492 92.3

1997-12-11 07:56:29 -75.7653 3.9729 182.4

1997-12-22 02:05:51 147.838 -5.5589 190.0

1998-01-01 06:11:22 142.02 23.9404 91.3
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1998-01-04 06:11:56 170.909 -22.2306 75.6

1998-01-10 04:54:25 -72.0638 -12.0264 33.0

1998-01-10 08:20:10 -91.5739 14.4023 70.5

1998-01-26 23:05:58 165.494 -47.354 12.0

1998-01-30 12:16:09 -70.1614 -23.838 44.16

1998-02-07 01:19:02 141.84 24.7801 556.1

1998-02-16 23:53:19 -33.6622 52.6815 10.0

1998-02-19 14:14:51 129.055 -4.507 38.6

1998-02-25 19:05:51 -35.2276 53.9275 10.0

1998-03-08 00:35:43 122.156 20.6077 170.1

1998-03-20 21:08:09 162.95 -50.0552 10.0

1998-03-21 16:33:12 2.5307 80.1089 10.0

1998-03-29 19:48:12 -178.99 -17.6585 499.6

1998-04-03 22:01:51 -74.9182 -8.0835 170.1

1998-05-06 01:53:11 120.938 18.8314 45.4

1998-05-21 05:34:23 119.566 0.1811 20.4

1998-05-23 17:44:46 123.788 8.1778 646.0

1998-07-09 14:45:34 -178.97 -30.4781 82.0

1998-07-16 11:56:36 166.173 -11.0892 109.5

1998-07-29 18:00:31 138.966 -2.7226 43.8

1998-08-04 18:59:22 -80.3153 -0.5539 46.6

1998-08-20 06:40:56 139.357 28.9326 442.8

1998-09-02 08:37:31 126.719 5.4038 67.3

1998-09-28 19:23:24 126.41 3.8321 45.1

1998-10-08 04:51:40 -71.3472 -16.0485 111.6

1998-10-28 16:25:04 125.957 0.8201 46.0

1998-11-08 07:25:49 121.45 -9.1338 46.9

1998-11-09 05:30:14 128.994 -6.9466 35.05

1998-11-25 18:05:25 158.663 -7.8883 43.1

1998-11-29 14:10:26 124.882 -1.9808 0.2

1998-12-06 00:47:14 126.272 1.2952 42.9

1998-12-14 19:35:26 167.315 -15.0776 144.2

1998-12-16 17:45:06 126.126 1.1145 51.8

1999-01-24 00:37:06 131.136 30.61 48.2

1999-01-25 18:19:18 -75.682 4.469 24.3

1999-02-22 01:00:32 169.651 -21.383 23.4

1999-02-23 07:27:58 119.483 0.145 50.4

1999-03-01 08:51:00 126.568 -2.925 33.0

1999-03-04 08:51:59 121.923 5.394 15.0

1999-03-05 00:33:41 -68.837 -20.337 62.7
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1999-04-05 11:08:04 149.625 -5.632 152.4

1999-04-06 08:22:15 147.026 -6.532 47.8

1999-04-08 13:10:34 130.413 43.609 564.1

1999-04-13 10:38:39 -176.426 -21.435 85.3

1999-06-06 07:08:11 -90.913 13.927 86.5

1999-06-18 10:55:29 126.69 5.457 66.5

A.9 Fresnel Zone and Nyquist Criteria

The range of Fresnel zones for each frequency band along with the range of Nyquist

criteria to avoid spatial aliasing in the method. The minimum inter-station spacing

usable is approximately 80 km.

Frequency Band (Hz) Fresnel Zone Range (km) Nyquist Distance Range (km)

0.07 - 0.28 780 - 390 230 - 60

0.10 - 0.40 650 - 320 160 - 40

0.13 - 0.52 570 - 280 120 - 31

0.15 - 0.60 530 - 260 110 - 27

0.18 - 0.72 480 - 240 90 - 22

0.20 - 0.80 460 - 230 80 - 20

A.10 Example anisotropy correction

Figure A.16 gives an example of how removing anisotropy affects multipathing

observations. Once anisotropy is removed, the multipathed arrivals align better and

stack more coherently making them easier to observe. For observations with lower

signal-noise ratios, correcting for anisotropy makes the observations worse or in some

cases unusable.
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Figure A.16: Example θ-p plots showing how correcting for anisotropy affects multipathing
observations. In this example we use data from the 25 May 1997 event recorded at the Kaapvaal
array. Plots on the left use a linear stack only and the right hand plots use phase weighted
stacking (Schimmel and Paulssen, 1997b).
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Figure B.1: Three results when using the automated method on Rayleigh wave data in three
different frequency bands do investigate the effect of dispersion. Data is from the 05 January
2013 event recorded at the Southern California Seismic Array (CI).
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The following subsections show the depth slices for slowness vector and multipathing

observations. They are presented in order of frequency band.

C.0.1 Europe

C.0.2 0.10 – 0.20 Hz band

15 0 15 30 45 60

30

45

60

75

Binned Vectors1 s/

P1

S1

Figure C.1: Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using pierce
points at 2891 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.
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C.0.3 0.15 – 0.30 Hz band
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Figure C.2: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 500 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.3: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 800 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.4: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 1000 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.5: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 2891 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.6: Figure summarising multipathing observations using data in the 0.15 – 0.30 Hz
frequency band and pierce points at 800 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.7: Figure summarising multipathing observations using data in the 0.15 – 0.30 Hz
frequency band and pierce points at 1000 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.8: Figure summarising multipathing observations using data in the 0.15 – 0.30 Hz
frequency band and pierce points at 2891 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.9: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 2000 km depth beneath Europe. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.10: Figure summarising multipathing observations using data in the 0.20 – 0.40 Hz
frequency band and pierce points at 2000 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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C.0.5 North America

C.0.6 0.10 – 0.20 Hz band

120 105 90 75

30

45

60

Binned Vectors1 s/

C1

D1

C4D2 D3

D4

C3
D5

Figure C.11: Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using pierce
points at 1000 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.12: Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using pierce
points at 1800 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.13: Map of slowness vector bins in the 0.10 – 0.20 Hz frequency band using pierce
points at 2000 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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C.0.7 0.15 – 0.30 Hz band
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Figure C.14: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 200 km depth beneath the US. The bins have a radius of 200km with a spacing of 100
km.

120 105 90 75

30

45

60
Binned Vectors1 s/

C1

D1
C2

C4
C5

D2 D3

D4

C3

D5

Figure C.15: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 500 km depth beneath the US. The bins have a radius of 200km with a spacing of 100
km.
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Figure C.16: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 800 km depth beneath the US. The bins have a radius of 200km with a spacing of 100
km.
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Figure C.17: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 1000 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.18: Map of slowness vector bins in the 0.15 – 0.30 Hz frequency band using pierce
points at 1800 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.19: Figure summarising multipathing observations using data in the 0.15 – 0.30
Hz frequency band and pierce points at 500 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.20: Figure summarising multipathing observations using data in the 0.15 – 0.30
Hz frequency band and pierce points at 800 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.21: Figure summarising multipathing observations using data in the 0.15 – 0.30 Hz
frequency band and pierce points at 1000 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.22: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 300 km depth beneath the US. The bins have a radius of 200km with a spacing of 100
km.

135 120 105 90 75

30

45

60

Binned Vectors1 s/

C1

D1

C2

C4
D3

C3 D5

Figure C.23: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 1400 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.24: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 1800 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.25: Map of slowness vector bins in the 0.20 – 0.40 Hz frequency band using pierce
points at 2000 km depth beneath the US. The bins have a radius of 200km with a spacing of
100 km.
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Figure C.26: Figure summarising multipathing observations using data in the 0.20 – 0.40 Hz
frequency band and pierce points at 1400 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.27: Figure summarising multipathing observations using data in the 0.20 – 0.40 Hz
frequency band and pierce points at 1800 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Figure C.28: Figure summarising multipathing observations using data in the 0.20 – 0.40 Hz
frequency band and pierce points at 2000 km depth. The top figure shows the mean loci in
bins of 200 km radius in increments of 100 km. The bottom figure shows the proportion of
multipathing relative to the total number of observations in the bin. Bins for the multipathing
proportion measurements are 200 km radius spaced with increments of 100 km.
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Summary of chapters for non

experts

D.1 General Premise

The inner workings of the Earth can directly impact the surface we live on. The con-

vection of the Earth’s rocky mantle, which is the layer between the crust and the core,

drives plate tectonics leading to earthquakes, tsunamis and the convection of mantle

plumes or hotspots can lead to volcanism on continents and create island arcs. Under-

standing how the Earth’s interior operates in terms of the structures that are inside

it and how they influence the wider convection of the mantle can therefore aid us in

answering wider spread questions about how plate tectonics may facilitate life, how

the Earth evolved to its current state or is there an adverse effect of glacial rebound

on the surrounding oceans? Seismology, particularly the study of waves generated by

earthquakes, is crucial in analysing the Earth’s interior as it can make observations of

structures 1000s of km below the surface. Analysing the properties of waves travelling

from an earthquake to a recording station like the time taken for it to arrive, or even

if it arrives at all has lead to discoveries such as the inner and outer core and the

crust’s varying depths. As more recording stations have become available and tech-

niques have improved, seismologists have made maps of the whole Earth at various

depths of whether the material will speed up or slow down the wave. Knowing whether

material speeds up or slows down waves can give an indication about it’s temperature

and what it’s made of in comparison to laboratory experiments. Seismic observations

of what the Earth looks like and the properties of the structures within it, such as

their temperature, density or composition, can then be used to discriminate between

proposed models/cartoons of what the interior workings of the Earth are.

While this has really pushed forward our understanding of the Earth greatly, there,
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as always, is more information waiting to be analysed. One property I am interested

in is the transition length from the rocky mantle to the structure itself which can be

translated to temperature gradients or again give inferences of the make-up of the

structure. Fortunately, some weird stuff happens when a wave hits a sharp enough

boundary. When I say ‘sharp’ i mean a big change in wave speed over a relatively short

distance. Like when you move into a really warm room you immediately notice the

temperature change.

When a wave moves past or hits the boundary of a structure with a sharp transition

from the rocky mantle to the structure it begins to diffract (change direction) and

arrive at the recording station from a direction different to that travelled from the

earthquake to the receiver. Sometimes, you can observe multiple arrivals when this

happens, one which is outside the structure and diffracts/changes direction and another

which just goes through the structure. Previous studies have yet to analyse the direction

or horizontal speeds of the waves arriving at the surface, which can give inferences

on how ‘sharp’ the boundary is, its orientation (angle from north) or how much the

structure speeds up or slows down the wave. This is where I swoop in with this

thesis. I use commonly used seismological techniques to measure the direction and

speeds of waves at the surface and then map the measurements to structures in the

Earth. Ideally, this would be done on a global scale so maps of where boundaries of

structures are and how ‘sharp’ they are can be made. So, I also try to semi-automate

the measurements (automate just means I don’t have to look at each measurement

to tell if it is awful or usable). The next sections outline how I try to make these

measurements, estimate the properties of structures causing the observations and then

try to expand the observations to a global scale and begin the process of making this

map.

D.2 Chapter 2

We begin our adventure in southern Africa, not like I actually went there but that’s

where my data samples...

So, in the 80s, the first maps of where the material speeds up/slows down waves are

were made. In these maps, seismologists noticed a giant blob of slow material beneath

Africa. Since this discovery, many, many, many papers and different approaches have

tried to figure out what the slow material is and where it came from. Because of its size,

it undoubtedly affects the convection of the mantle and the surface. This structure is

of particular interest to me because many studies have observed evidence for multiple

arrivals caused by ‘sharp’ changes in material properties. This structure, therefore, acts

as the perfect laboratory to test whether measurements of the directions and horizontal

speeds of waves are useful for analysing the properties of the ‘sharp’ boundaries.
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To make the measurements, seismologists decide which paths they want the waves

to approximately take to make their lives easier. I decided to use waves that travel

through the core and out the other side (Figure 1.10). This path was chosen because

it makes interpretation of what structures may be causing the measurements easier. It

is easier because you assume only structures between where the wave emerges from the

core and the stations will affect the wave.

Anyway, I made a bunch of observations changing the frequency band of the waves

to vary what length of boundaries I am sensitive to. When I say frequency, think

more about the pitch of a sound wave, the higher the pitch of a sound, the higher

the frequency. Higher frequencies are more sensitive to smaller structures or sharper

boundaries. If our measurements change with frequency, it could be used to infer the

spatial properties of the boundary (how sharp it is basically).

Incredibly, I observe a frequency dependence and observe multiple arrivals. The

benefit of using direction and horizontal speed measurements is they can give some

idea of the orientation of the boundary structure causing them, which I somewhat

confirm in later chapters.

To round off this study, I investigate what structures could reproduce some of

my observations by simulating a wave travelling through the Earth and changed the

structures inside it. This is very computationally expensive (it takes 5000 computers 1

hour to do the simulation for 1 Earth), so I couldn’t do many tests. What I did find was

a relatively smooth transition from the rocky mantle to the anomalous structure can

produce multiple arrivals which previous studies suggested only very sharp transitions

are capable of it.

These observations show the African anomaly could still really be anything, but

these observations can give real constraints to the shape of the anomaly and the sharp-

ness of its boundaries. The results motivate similar analysis to be conducted on other

mantle heterogeneities such as hotspots or ancient crust material near the core.

D.3 Chapter 3

Now that the value of these measurements has some support, I begin the journey to

make these measurements without the need for a person to look at each measurement.

To do this, I bootstrap sample the seismograms. Bootstrap sampling is essentially

sampling your data a certain number of times, usually 500 or 1000. The important

thing is that when you randomly sample the data, you do not remove the thing you

sampled. Easier to explain with an example. So, let’s say we have 5 letters A, B, C,

D, E and I bootstrap sample the letters 10 times. I could end up with 10 As because

after each random sample I put the letter back into the pile so it can be sampled again.
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Hopefully, that makes sense.

I’ve deliberately avoided exactly explaining how you make the direction and hori-

zontal speeds measurements because it would be long and arduous. I still won’t explain

the details but I will say you essentially make the measurements from a 2-D graph. If

you imagine this graph is of some mountains like an OS map and the peaks of the

mountains give the measurements of direction and horizontal velocity. For each ran-

dom sample, you conduct the standard analysis to create the graphs and take the peaks.

I randomly sampled the data 1000 times so I ended up with 1000 graphs and thousands

of peaks representing the direction and horizontal speed measurements. I collected the

peaks and made the assumption that if there is a seismic arrival, the peaks in each

random sample should roughly be in the same place. When collecting the peaks, these

should be regions where there are loads of peaks in a small area. In other words, these

are ‘dense’ regions of peaks.

To find these dense regions of peaks, which we assume are caused by seismic waves

arriving from a particular direction and horizontal speed, I use a clustering algorithm.

Specifically, I use the DBSCAN algorithm which has won awards like the ‘test of time’

award for being so good. Essentially you, the user, define a minimum number of points

that need to be in a certain area for a region to be a cluster. i.e. if a region is dense

enough it will be a cluster. If there are multiple regions dense enough and separated

well enough then multiple clusters will be found.

From the cluster’s location on the graph, the direction and horizontal speed mea-

surements can be made from the average location of the peaks. The distribution of

the peaks in the cluster gives an estimate of the uncertainty of the measurement. For

example, the direction measurement could be a wave arriving 30◦ from North, give or

take 5◦ so I think it is 30◦, but it could be between 25◦ and 35◦.

This method could be used to automatically measure the direction and horizontal

speeds of any waves really. Sound waves, waves generated by ice fractures, waves from

volcanic activity just to name a few. My application would be to understand the inner

workings of the Earth, but who knows maybe I’ll expand it to analyse other things like

storms or icequakes.

D.4 Chapter 4

This chapter is somewhat straightforward in its strategy. I have the first method to

automatically measure the direction and horizontal speeds of a wave and Mike Thorne

at the University of Utah has a very big dataset... So I applied the method to the big

dataset.

This resulted in a lot of measurements, like >11,000. Essentially, with such a large
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dataset, you can have different branches of analysis and more than is really necessary

for a study. As a result of this, I only tried to interpret what could be the cause of the

measurements focusing on the structures beneath North America and Europe as that

is where there are the majority of the observations and it reduces my workload.

Analysing the observations revealed a whole variety of mantle structures. I interpret

several mantle plume/upwellings/hotspots beneath Europe all of which have a base on

the top of the core. I find that some of these actually may share the same lower mantle

origin location. There is a plume/hotspot beneath the Eifel region which has made

its way from the top of the core to the surface. I locate its lower mantle origin and

several other studies found the same location may produce a plume that is connected

to the Icelandic plume. The Iceland plume is typically shown as a vertical structure

extending beneath Iceland to the core. The structure I propose as a second plume

fueling Iceland actually migrates northwards from west of Spain (at the core) under

the UK and eventually to Iceland at the surface. I think it’s really cool.

Beneath the US, the mantle structure has been heavily analysed through a variety

of techniques so most of what I find has already been imaged by other means. The

contribution of my observations, other than recovering information about the ‘sharp-

ness’ of the boundaries of these structures, is how different the measurements are for

each anomalous region. I believe the differences are because of the sensitivity of the

measurements to the shape of the structures and the length over which the boundaries

‘diffuse’ to the surrounding Earth (how sharp the boundary is). Anyway, the many

unique measurements of different anomalies show the potential power of analysing the

Earth in this way. While this is not the end result of a global map of where ‘sharp’

boundaries are and what their shape is, it’s the initial step towards it and motivates

future studies to build upon it.

D.5 Final thoughts

Well there you have it, 3–4 years worth of work using waves from earthquakes to analyse

the edges of blobs in the Earth. I hope the above made some sense to you and thank

you for being interested at all in what I have accomplished. This may be the beginning

of a career working on this and similar stuff or maybe I will go off into a totally different

field and leave academia. Irrespective of what the future holds, I am glad I did this

PhD it has been incredibly interesting and enjoyable. I’ll be interested to see where I

am in 10 years and may open this thesis and read these words. Until then, have a good

one reader!
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