
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Dynamic Causal Effects Evaluation in A/B Testing
with a Reinforcement Learning Framework

Chengchun Shi, Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye & Rui Song

To cite this article: Chengchun Shi, Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye & Rui
Song (2022): Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement Learning
Framework, Journal of the American Statistical Association, DOI: 10.1080/01621459.2022.2027776

To link to this article:  https://doi.org/10.1080/01621459.2022.2027776

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 14 Mar 2022.

Submit your article to this journal 

Article views: 544

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2022.2027776
https://doi.org/10.1080/01621459.2022.2027776
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2027776
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2027776
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2027776
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2027776
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2027776&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2027776&domain=pdf&date_stamp=2022-03-14


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2022, VOL. 00, NO. 0, 1–13
https://doi.org/10.1080/01621459.2022.2027776

Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement Learning
Framework

Chengchun Shia∗, Xiaoyu Wangb∗, Shikai Luoc, Hongtu Zhud, Jieping Yee, and Rui Songf

aLondon School of Economics and Political Science, London, UK; bKey Laboratory of Systems and Control, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, China; cByteDance, Peking, China; dThe Univeristy of North Carolina at Chapell Hill, Chapel Hill, NC; eUniversity of
Michigan, Ann Arbor, MI; fNorth Carolina State University, Raleigh, NC

ABSTRACT
A/B testing, or online experiment is a standard business strategy to compare a new product with an old one
in pharmaceutical, technological, and traditional industries. Major challenges arise in online experiments
of two-sided marketplace platforms (e.g., Uber) where there is only one unit that receives a sequence of
treatments over time. In those experiments, the treatment at a given time impacts current outcome as well
as future outcomes. The aim of this article is to introduce a reinforcement learning framework for carrying
A/B testing in these experiments, while characterizing the long-term treatment effects. Our proposed
testing procedure allows for sequential monitoring and online updating. It is generally applicable to a
variety of treatment designs in different industries. In addition, we systematically investigate the theoretical
properties (e.g., size and power) of our testing procedure. Finally, we apply our framework to both simulated
data and a real-world data example obtained from a technological company to illustrate its advantage over
the current practice. A Python implementation of our test is available at https://github.com/callmespring/
CausalRL. Supplementary materials for this article are available online.
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1. Introduction

A/B testing, or online experiment is a business strategy to com-
pare a new product with an old one in pharmaceutical, tech-
nological, and traditional industries (e.g., google, Amazon, or
Facebook). It has become the gold standard to make data-driven
decisions on a new service, feature, or product. For example,
in web analytics, it is common to compare two variants of the
same webpage (denote by A and B) by randomly splitting visitors
into A and B and then contrasting metrics of interest (e.g., click-
through rate) on each of the splits. There is a growing literature
on developing A/B testing methods (see e.g., Kharitonov et al.
2015; Johari et al. 2017; Yang et al. 2017, and the references
therein). The key idea of these approaches is to apply causal
inference methods to estimating the treatment effect of a new
change under the assumption of the stable unit treatment value
assumption (SUTVA, Rubin 1980; Imbens and Rubin 2015;
Wager and Athey 2018, and the references therein). SUTVA
precludes the existence of the interference effect such that the
response of each subject in the experiment depends only on
their own treatment and is independent of others’ treatments.
Despite its ubiquitousness, however, the standard A/B testing is
not directly applicable for causal inference under interference
(Zhou et al. 2020).

In this article, we focus on the setting where there is only
one unit (or system) in the experiment that receives a sequence
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of treatments over time. In many applications, the treatment
at a given time can impact future outcomes, leading SUTVA
being invalid. These studies frequently occur in the two-sided
markets (intermediary economic platforms having two distinct
user groups that provide each other with network benefits) that
involve sequential decision making over time. As an illustration,
we consider evaluating the effects of different order dispatching
strategies in ride-sharing companies (e.g., Uber) for large-scale
fleet management. See our real data analysis in Section 5 for
details. These companies form a typical two-sided market that
enables efficient interactions between passengers and drivers
(Rysman 2009). With the rapid development of smart mobile
phones and internet of things, they have substantially trans-
formed the transportation landscape of human beings (Jin et al.
2018). Order dispatching is one of the most critical problems
in online ride-sharing platforms to adapt the operation and
management strategy to the dynamics in demand and supply. At
a given time, an order dispatching strategy not only affects the
platform’s immediate outcome (e.g., passengers’ answer time,
drivers’ income), but also impacts the spatial distribution of
drivers in the future. This in turn affects the platform’s future
outcome. The no interference assumption is thus, violated.

A fundamental question of interest that we consider here is
how to develop valid A/B testing methods in the presence of
interference. Solving this fundamental question faces at least
three major challenges. (i) The first one lies in establishing causal
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Figure 1. Causal diagram for MDP under settings where treatments depend on current states only. (St , At , Yt) represents the state-treatment-outcome triplet. Solid lines
represent causal relationships.

relationship between treatments and outcomes over time, by
taking the carryover effect into consideration. Most of the exist-
ing A/B testing methods are ineffective. They fail to identify the
carryover effect, leading the subsequent inference being invalid.
See Section 3.1 for details. (ii) The second one is that running
each experiment takes a considerable time. The company wishes
to terminate the experiment as early as possible in order to
save both time and budget. As such, the testing hypothesis
needs to be sequentially evaluated online as the data are being
collected, and the experiment shall be stopped in accordance
with a predefined stopping rule as soon as significant results are
observed. (iii) The third one is that treatments are desired to be
allocated in a manner to maximize the cumulative outcomes or
to detect the alternative more efficiently. The testing procedure
shall allow the treatment to be adaptively assigned. Addressing
these challenges requires the development of new tools and
theory for A/B testing and causal effects evaluation.

1.1. Contributions

We summarize our contributions as follows. First, to address the
challenge mentioned in (i), we introduce a reinforcement learn-
ing (RL, see, e.g., Sutton and Barto 2018, for an overview) frame-
work for A/B testing. RL is suitable framework to handle the car-
ryover effects over time. In addition to the treatment-outcome
pairs, it is assumed that there is a set of time-varying state
confounding variables. We model the state-treatment-outcome
triplet by using the Markov decision process (MDP, see, e.g., Put-
erman 1994) to characterize the association between treatments
and outcomes across time. Specifically, at each time point, the
decision maker selects a treatment based on the observed state
variables. The system responds by giving the decision maker
a corresponding outcome and moving into a new state in the
next time step. In this way, past treatments will have an indirect
influence on future rewards through its effect on future state
variables. See Figure 1 for an illustration. In addition, the long-
term treatment effects can be characterized by the value func-
tions (see Section 2.1 for details) that measure the discounted
cumulative gain from a given initial state. Under this framework,
it suffices to evaluate the difference between two value functions
to compare different treatments. Our proposal gives an example
of how to utilize some state-of-the-art machine learning tools,
such as reinforcement learning, to address a challenging statis-
tical inference problem for making business decisions.

Second, to address the challenges mentioned in (ii) and (iii),
we propose a novel sequential testing procedure for detecting
the difference between two value functions. Our proposed test

integrates reinforcement learning and sequential analysis (see
e.g., Jennison and Turnbull 1999, and the references therein) to
allows for sequential monitoring and online updating.1 Mean-
while, our proposal contributes to each of these two areas as
well.

• To the best of our knowledge, this is the first work on devel-
oping valid sequential tests in the RL framework. Our work
is built upon the temporal-difference learning method based
on function approximation (see e.g., Sutton, Szepesvári, and
Maei 2008). In the computer science literature, convergence
guarantees of temporal difference learning have been derived
by Sutton, Szepesvári, and Maei (2008) under the setting of
independent noise and by Bhandari, Russo, and Singal (2018)
for Markovian noise. However, uncertainty quantification
and asymptotic distribution of the resulting value function
estimators have been less studied. Such results are critical
for carrying out A/B testing. Recently, Luckett et al. (2020)
outlined a procedure for estimating the value under a given
policy. Shi et al. (2021) developed a confidence interval for
the value function. However, these method do not allow for
sequential monitoring or online updating.

• Our proposal is built upon the α-spending approach (Lan
and DeMets 1983) for sequential testing. We note that most
test statistics in classical sequential analysis have the canon-
ical joint distribution (see eq. (3.1) in Jennison and Turn-
bull 1999) and their associated stopping boundary can be
recursively updated via numerical integration. However, in
our setup, test statistics no longer have the canonical joint
distribution. This is due to the existence of the carryover
effects in time. We discuss this in detail in Section 3.4. As
such, the numerical integration approach is not applicable
to our setting. To resolve this issue, we propose a bootstrap-
assisted procedure to determine the stopping boundary. It is
much more computationally efficient than the classical wild
bootstrap algorithm (Wu 1986, see Section 3.4 for details).
The resulting test is generally applicable to a variety of treat-
ment designs, including the Markov design, the alternating-
time-interval design and the adaptive design (see Section 3.3
for details).

Third, we systematically investigate the asymptotic proper-
ties of our testing procedure. We show that our test not only
maintains the nominal Type I error rate, but also has nonneg-

1Our test statistic and its stopping boundary are updated as batches of new
observations arrive without storing historical data.
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ligible powers against local alternatives. In particular, we show
that when the sieve method is used for function approximation
in temporal difference learning, undersmoothing is not needed
to guarantee that the resulting value estimator has a tractable
limiting distribution. This occurs because sieve estimators of
conditional expectations are idempotent (Newey, Hsieh, and
Robins 1998). It implies that the proposed test will not be
overly sensitive to the choice of the number of basis func-
tions. To our knowledge, these results have not been estab-
lished in the existing RL framework. Please see Section 3.3 for
details.

Finally, our proposal addresses an important business ques-
tion in ride-sharing companies. In particular, our methodology
allows the company to evaluate different policies more accu-
rately in the presence of carryover effects. It also allows the
company to terminate the online experiment earlier and to eval-
uate more policies within the same time frame. These policies
have the potential to improve drivers’ salary and meet more
customer requests, providing a more efficient transportation
network. Please see Section 5 for details.

1.2. Related Work

There is a huge literature on RL in the computer science com-
munity such that various algorithms are proposed for an agent
to learn an optimal policy and interact with an environment.
Recently, a few methods have been developed in the statistics
literature on learning the optimal policy in mobile health appli-
cations (Ertefaie 2014; Luckett et al. 2020; Hu et al. 2020; Liao,
Qi, and Murphy 2020). In addition, there is a growing literature
on adapting reinforcement learning to develop dynamic treat-
ment regimes in precision medicine, to recommend treatment
decisions based on individual patients’ information (Murphy
2003; Chakraborty, Murphy, and Strecher 2010; Qian and Mur-
phy 2011; Zhao et al. 2012; Zhang et al. 2013; Song et al. 2015;
Zhao et al. 2015; Zhu et al. 2017; Zhang et al. 2018; Wang et al.
2018; Shi et al. 2018a, 2018b; Mo, Qi, and Liu 2020; Meng et al.
2020).

Our work is closely related to the literature on off-policy
evaluation, whose objective is to estimate the value of a new
policy based on data collected by a different policy. Existing lit-
erature can be cast into model-based methods, importance sam-
pling (IS)-based and doubly-robust procedures. Model-based
methods first fit an MDP model from data and then com-
pute the resulting value function. The estimated value function
might suffer from a large bias due to potential misspecifica-
tion of the model. Popular IS based methods include Thomas,
Theocharous, and Ghavamzadeh (2015), Thomas and Brun-
skill (2016), and Liu et al. (2018). These methods reweight
the observed rewards with the density ratio of the target and
behavior policies. The value estimate might suffer from a large
variance, due to the use of importance sampling. Doubly-robust
methods (see, e.g., Jiang and Li 2016; Kallus and Uehara 2019)
learn the Q-function as well as the probability density ratio and
combine these estimates properly for more robust and efficient
value evaluation. However, both IS and doubly-robust meth-
ods required the treatment assignment probability (propensity
score) to be bounded away from 0 and 1. As such, they are
inapplicable to the alternating-time-interval design, which is the

treatment allocation strategy in our real data application (see,
Section 5 for details).

In addition to the literature on RL, our work is also related to
a line of research on causal inference with interference. Most of
the works studied the interference effect across different subjects
(see e.g., Hudgens and Halloran 2008; Pouget-Abadie et al. 2019;
Li et al. 2019; Zhou et al. 2020; Reich et al. 2020). That is, the
outcome for one subject depends on the treatment assigned to
other subjects as well. To the contrary, our work focuses on the
interference effect over time. We also remark that most of the
aforementioned methods were primarily motivated by research
questions in psychological, environmental and epidemiological
studies, so their generalization to infer time dependent causal
effects in two-sided markets remains unknown.

Finally, we remark that there is a growing literature on eval-
uating time-varying causal effects (see e.g., Robins 1986; Sobel
and Lindquist 2014; Boruvka et al. 2018; Ning, Ghosal, and
Thomas 2019; Rambachan and Shephard 2019; Viviano and
Bradic 2019; Bojinov and Shephard 2020). However, none of
the above cited works used a RL framework to characterize the
treatment effects. In particular, Bojinov and Shephard (2020)
proposed to use IS based methods to test the null hypothesis
of no (average) temporal causal effects in time series experi-
ments. Their causal estimand is different from ours since they
focused on p lag treatment effects, whereas we consider the long-
term effects characterized by the value function. Moreover, their
method requires the propensity score to be bounded away from
0 and 1, and thus, it is not valid for our applications. In addition,
these method do not allow for sequential monitoring.

1.3. Organization of the Article

The rest of the article is organized as follows. In Section 2, we
introduce a potential outcome framework to MDP and describe
the causal estimand. Our testing procedure is introduced in
Section 3. In Section 4, we demonstrate the effectiveness of our
test via simulations. In Section 5, we apply the proposed test
to a data from an online ride-hailing platform to illustrate its
usefulness. Finally, we conclude our article in Section 6.

2. Problem Formulation

2.1. A Potential Outcome Framework for MDP

For simplicity, we assume that there are only two treatments
(actions, products), coded as 0 and 1, respectively. For any t ≥ 0,
let āt = (a0, a1, . . . , at)� ∈ {0, 1}t+1 denote a treatment history
vector up to time t. Let S denote the support of state variables
and S0 denote the initial state variable. We assumeS is a compact
subset of Rd. For any (āt−1, āt), let S∗

t (āt−1) and Y∗
t (āt) be the

counterfactual state and counterfactual outcome, respectively,
that would occur at time t had the agent followed the treatment
history āt . The set of potential outcomes up to time t is given by

W∗
t (āt) = {S0, Y∗

0 (a0), S∗
1(a0), . . . , S∗

t (āt−1), Y∗
t (āt)}.

Let W∗ = ∪t≥0,āt∈{0,1}t+1 W∗
t (āt) be the set of all potential

outcomes.
A deterministic policy π is a time-homogeneous function

that maps the space of state variables to the set of available
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actions. Following π , the agent will assign actions according to
π at each time. We use S∗

t (π) and Y∗
t (π) to denote the associated

potential state and outcome that would occur at time t had the
agent followed π . The goodness of a policy π is measured by its
(state) value function,

V(π ; s) =
∑
t≥0

γ t
E{Y∗

t (π)|S0 = s},

where 0 < γ < 1 is a discount factor that reflects the tradeoff
between immediate and future outcomes. The value function
measures the discounted cumulative outcome that the agent
would receive had they followed π . Note that our definition of
the value function is slightly different from those in the existing
literature (see, e.g., Sutton and Barto 2018). Specifically, V(π ; s)
is defined through potential outcomes rather than the observed
data.

Similarly, we define the Q function by

Q(π ; a, s) =
∑
t≥0

γ t
E{Y∗

t (π(a))|S0 = s},

where π(a) denotes a time-varying policy where the initial
action equals to a and all other actions are assigned according
to π .

The goal of A/B testing is to compare the difference between
the two treatments. Toward that end, we focus on two nondy-
namic (state-agnostic) policies that assign the same treatment
at each time point. We remark that this is nontraditional in RL
where the goal is to build a policy that depends on the state.
For these two nondynamic policies, we use their value functions
(denote by V(1; ·) and V(0; ·)) to measure their long-term treat-
ment effects. Meanwhile, our proposed method is equally appli-
cable to the dynamic policy scenario as well. To quantitatively
compare the two policies, we introduce the Conditional Average
Treatment Effect (CATE) and Average Treatment Effect (ATE)
based on their value functions in the following definitions.
These two definitions relate RL to causal inference.

Definition 1. Conditional on the initial state S0 = s, CATE is
defined by the difference between two value functions, that is,
CATE(s) = V(1; s) − V(0; s).

Definition 2. For a given reference distribution function G that
has a bounded density function on S, ATE is defined by the
integrated difference between two value function, that is, ATE =∫

s{V(1; s) − V(0; s)}G(ds).

The focus of this paper is to test the following hypotheses:

H0 : τ0 = ATE ≤ 0 versus H1 : τ0 = ATE > 0.

When H0 holds, the new product is no better than the old one
on average and is not of practical interest.

2.2. Identifiability of ATE

One of the most important question in causal inference is the
identifiability of causal effects. In this section, we present suf-
ficient conditions that guarantee the identifiability of the value
function.

We first introduce two conditions that are commonly
assumed in multi-stage decision making problems (see e.g.,
Murphy 2003; Robins 2004; Zhang et al. 2013). We need to
use the notation Z1 ⊥⊥ Z2|Z3 to indicate that Z1 and Z2 are
independent conditional on Z3. In practice, with the exception
of S0, the set W∗ cannot be observed, whereas at time t, we
observe the state-action-outcome triplet (St , At , Yt). For any
t ≥ 0, let Āt = (A0, A1, . . . , At)� denote the observed treatment
history.

(CA) Consistency assumption: St+1 = S∗
t+1(Āt) and Yt =

Y∗
t (Āt) for all t ≥ 0.

(SRA) Sequential randomization assumption: At ⊥⊥ W∗|St ,
{Sj, Aj, Yj}0≤j<t .

The CA requires that the observed state and outcome corre-
spond to the potential state and outcome whose treatments are
assigned according to the observed treatment history. It gener-
alizes SUTVA to our setting, allowing the potential outcomes to
depend on past treatments. The SRA implies that there are no
unmeasured confounders and it automatically holds in online
randomized experiments, in which the treatment assignment
mechanism is prespecified. In SRA, we allows At to depend
on the observed data history St , {Sj, Aj, Yj}0≤j<t and thus, the
treatments can be adaptively chosen.

We next introduce two conditions that are unique to the
reinforcement learning setting.
(MA) Markov assumption: there exists a Markov transition
kernel P such that for any t ≥ 0, āt ∈ {0, 1}t+1 and S ⊆ R

d, we
have Pr{S∗

t+1(āt) ∈ S|W∗
t (āt)} = P(S ; at , S∗

t (āt−1)).
(CMIA) Conditional mean independence assumption: there
exists a function r such that for any t ≥ 0, āt ∈ {0, 1}t+1, we
have E{Y∗

t (āt)|S∗
t (āt−1), W∗

t−1(āt−1)} = r(at , S∗
t (āt−1)).

We make a few remarks. First, these two conditions are
central to the empirical validity of reinforcement learning (RL).
Specifically, under these two conditions, one can show that there
exists an optimal time-homogenous stationary policy whose
value is no worse than any history-dependent policy (Puterman
1994). This observation forms the foundation of most of the
existing state-of-the-art RL algorithms.

Second, when CA and SRA hold, it implies that the Markov
assumption and the conditional mean independence assump-
tion hold on the observed data as well,

Pr(St+1 ∈ S|At , St , {Sj, Aj, Yj}0≤j<t) = P(S ; At , St), (1)
E(Yt|At , St , {Sj, Aj, Yj}0≤j<t) = r(At , St). (2)

As such, P corresponds to the transition function that defines
the next state distribution conditional on the current state-
action pair and r corresponds to the conditional expectation of
the immediate reward as a function of the state-action pair.

Assumption (1) is commonly assumed in the existing rein-
forcement learning literature (see e.g., Ertefaie 2014; Luckett
et al. 2020). It is testable based on the observed data. See the
goodness-of-fit test developed by Shi et al. (2020). In practice,
to ensure the Markov property is satisfied, we can construct
the state by concatenating measurements over multiple decision
points till the Markovian property is satisfied.

Assumption (2) implies that past treatments will affect future
response only through its impact on the future state variables.
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In other words, the state variables shall be chosen to include
those that serve as important mediators between past treatments
and current outcomes. By Assumption (1), this assumption is
automatically satisfied when Yt is a deterministic function of
(St , At , St+1) that measures the system’s status at time t + 1.
The latter condition is commonly imposed in the reinforcement
learning literature and is stronger than (2).

To conclude this section, we derive a version of Bellman
equation for the Q function under the potential outcome frame-
work. Specifically, for a′, a ∈ {0, 1}, let Q(a′; a, ·) denote the Q
function where treatment a is assigned at the initial decision
point and treatment a′ is repeatedly assigned afterwards. By
definition, we have V(a; s) = Q(a; a, s) for any (a, s).

Lemma 1. Under MA, CMIA, CA, and SRA, for any t ≥ 0,
a′ ∈ {0, 1} and any function ϕ : S × {0, 1} → R, we have
E[{Q(a′; At , St) − Yt − γ Q(a′; a′, St+1)}ϕ(St , At)] = 0.

Lemma 1 implies that the Q-function is estimable from
the observed data. Specifically, an estimating equation can be
constructed based on Lemma 1 and the Q-function can be
learned by solving this estimating equation. Note that V(a, s) =
Q(a; a, s) and τ0 is completely determined by the value function
V . As a result, τ0 =ATE is identifiable.

Note that the positivity assumption is not needed in
Lemma 1. Our procedure can thus, handle the case where
treatments are deterministically assigned. This is due to MA
and CMIA that assume the system dynamics are invariant
across time. To elaborate this, note that the discounted value
function is completely determined by the transition kernel P
and the reward function r. These quantities can be consistently
estimated under certain conditions, regardless of whether the
treatments are deterministically assigned or not. Consequently,
the value can be consistently estimated even when the treatment
assignments are deterministic. We formally introduce our
testing procedure in the next section.

3. Testing Procedure

We first introduce a toy example to illustrate the limitations
of existing A/B testing methods. We next present our method
and prove its consistency under a variety of different treatment
designs.

3.1. Toy Examples

Existing A/B testing methods can only detect short-term treat-
ment effects, but fail to identify any long-term effects. To elabo-
rate this, we introduce two examples below.

Example 1. St = 0.5εt , Yt = St + δAt for any t ≥ 1 and S0 =
0.5ε0.

Example 2. St = 0.5St−1 + δAt + 0.5εt , Yt = St for any t ≥ 1
and S0 = 0.5ε0.

In both examples, the random errors {εt}t≥0 follow inde-
pendent standard normal distributions and the parameter δ

describes the degree of treatment effects. When δ = 0, H0 holds.

Table 1. Powers of t-test, DML-based test and the proposed test under Examples 1
and 2, with T = 500, δ = 0.1. {At}t follow iid Bernoulli distribution with success
probability 0.5.

Example 1 Example 2

t-test 0.76 DML-based
test 1

Our test 0.98 t-test 0.04 DML-based
test 0.06

Our test 0.73

Suppose δ > 0. Then H1 holds. In Example 1, the observations
are independent and there are no carryover effects at all. In this
case, both the existing A/B tests and the proposed test are able
to discriminate H1 from H0. In Example 2, however, treatments
have delayed effects on the outcomes. Specifically, Yt does not
depend on At , but is affected by At−1 through St . Existing
tests will fail to detect H1 as the short-term conditional average
treatment effects E(Yt|At = 1, St) − E(Yt|At = 0, St) = 0 in
this example. As an illustration, we conduct a small experiment
by assuming the decision is made once at T = 500, and report
the empirical rejection probability of the classical two-sample
t-test that is commonly used in online experiments, a more
complicated test based on the double machine learning method
(Chernozhukov et al. DML, 2017) that is widely employed for
inferring causal effects, and the proposed test. It can be seen the
competing methods do not have any power under Example 2.

3.2. An Overview of the Proposal

We present an overview of our proposal in this section. As
commented before, we adopt a reinforcement learning frame-
work to address the limitations of existing A/B testing meth-
ods and characterize the long-term treatment effects. First, we
estimate τ0 based on a version of temporal difference learning.
The idea is to apply basis function approximations to solve
an estimating equation derived from Lemma 1. Specifically, let
Q = {	�(s)βa : βa ∈ R

q} be a large linear approximation
space for Q(a; a, s) = V(a, s), where 	(·) is a vector containing
q basis functions on S. The dimension q is allowed to grow
with the number of samples T to alleviate the effects of model
misspecification. Let us suppose Q ∈ Q for a moment. Set the
function ψ(s, a) in Lemma 1 to 	(s)I(a = a′) for a′ = 0, 1,
there exists some β∗ = (β∗�

0 , β∗�
1 )� such that

E[{	�(St)β
∗
a − Yt − γ	�(St+1)β

∗
a }	(St)I(At = a)] = 0,

∀a ∈ {0, 1},

where I(·) denotes the indicator function. The above equations
can be rewritten as E(�tβ

∗) = Eηt , where �t is a block
diagonal matrix given by

�t =

⎡⎢⎢⎣
	(St)I(At = 0)

{	(St) − γ	(St+1)}�
	(St)I(At = 1)

{	(St) − γ	(St+1)}�

⎤⎥⎥⎦
and ηt = {	(St)

�
I(At = 0)Yt , 	(St)

�

I(At = 1)Yt}�.

Let �̂(t) = t−1 ∑
j<t �j and η̂(t) = t−1 ∑

j<t ηj. It follows that
E{�̂(t)β∗} = E{̂η(t)}. This motivates us to estimate β∗ by

β̂(t) = {β̂�
0 (t), β̂�

1 (t)}� = �̂
−1

(t)̂η(t).
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ATE can thus, be estimated by the plug-in estimator τ̂ (t) =∫
s 	�(s){β̂1(t)− β̂0(t)}G(ds). We remark that there is no guar-

antee that �̂(t) is always invertible. However, its population
limit, �(t) is invertible for any t (see Lemma 3 in the supple-
mentary materials). Consequently, for sufficiently large t, �̂(t)
is invertible with large probability. In cases where �̂(t) is not
invertible, we may add a ridge penalty to compute the resulting
estimator. See Appendix D.4 of Shi et al. (2021) for details.

Second, we use τ̂ (t) to construct our test statistic at time t.
Let

U =
{
−

∫
s∈S

	(s)�G(ds),
∫

s∈S
	(s)�G(ds)

}�
. (3)

It follows that τ̂ (t) = Uβ̂(t). We will show that
√

t{β̂(t)−β∗} is
multivariate normal. This implies that

√
t{̂τ(t) − τ0} is asymp-

totically normal. Its variance can be consistently estimated by

σ̂ 2(t) = U��̂
−1

(t)�̂(t){�̂−1
(t)}�U ,

as t grows to infinity, where �̂
−1

(t)�̂(t){�̂−1
(t)}� is the sand-

wich estimator for the variance of
√

t{β̂(t) − β∗}, and that

�̂(t) = 1
t

t−1∑
j=0

{
	(Sj)(1 − Aj)̂εj,0
	(Sj)Aĵεj,1

} {
	(Sj)(1 − Aj)̂εj,0
	(Sj)Aĵεj,1

}�
,

where ε̂j,a is the temporal difference error Yj + γ	�(Sj+1)β̂a −
	�(Sj)β̂a whose conditional expectation given (Aj = a, Sj) is
zero asymptotically (see Lemma 1). This yields our test statistic√

tτ̂ (t)/σ̂ (t), at time t. For a given significance level α > 0, we
reject H0 when

√
tτ̂ (t)/σ̂ (t) > zα , where zα is the upper α-th

quantile of a standard normal distribution.
Third, we integrate the α-spending approach with bootstrap

to sequentially implement our test (see Section 3.4). The idea is
to generate bootstrap samples that mimic the distribution of our
test statistics, to specify the stopping boundary at each interim
stage. Suppose that the interim analyses are conducted at time
points T1 < · · · < TK = T. We focus on the setting where
both K and {Tk}k are predetermined, as in our application (see
Section 5 for details). To simplify the presentation, for each 1 ≤
k < K, we assume Tk/T → ck for some constants 0 < c1 <

c2 < · · · < cK−1 < 1. To better understand our algorithm, we
investigate the limiting distribution of our test statistics at these
interim stages in the next section.

Finally, we remark that for simplicity, we use the same Q-
function model at each interim stage. This works when {Tk}k are
of the same order of magnitude, which is the case in our real data
application where T1 = TK/2. Alternatively, one could allow q
to grow with k. The testing procedure can be similarly derived.

3.3. Asymptotic Properties Under Different Treatment
Designs

We consider three treatment allocation designs that can be
handled by our procedure as follows:

D1. Markov design: Pr(At = 1|St , {Sj, Aj, Yj}0≤j<t) = b(0)(St)

for some function b(0)(·) uniformly bounded away from 0
and 1.

D2. Alternating-time-interval design: A2j = 0, A2j+1 = 1 for
all j ≥ 0.

D3. Adaptive design: For Tk ≤ t < Tk+1 for some k ≥
0, Pr(At = 1|St , {Sj, Aj, Yj}0≤j<t) = b(k)(St) for some
b(k)(·) that depends on {Sj, Aj, Yj}0≤j<Tk and is uniformly
bounded away from 0 and 1 almost surely. We set T0 = 0.

Here, D2 is a deterministic design and is widely used in
industry (see our real data example and this technical report2).
D1 and D3 are random designs. D1 is commonly assumed
in the literature on reinforcement learning (Sutton and Barto
2018). D3 is widely employed in the contextual bandit setting
to balance the tradeoff between exploration and exploitation.
These three settings cover a variety of scenarios in practice.

In D3, we require b(k) to be strictly bounded between 0
and 1. Suppose an ε-greedy policy is used, that is, b(k)(s) =
ε/2+(1−ε)π̂ (k)(s), where π̂ (k) denotes some estimated optimal
policy. It follows that ε/2 ≤ b(k)(s) ≤ 1 − ε/2 for any s.
Such a requirement is automatically satisfied. Meanwhile, other
adaptive strategies are equally applicable (see e.g., Zhang et al.
2007; Hu, Zhu, and Hu 2015; Metelkina and Pronzato 2017).

For any behavior policy b in D1–D3, define S∗
t (b̄t−1) and

Y∗
t (b̄t) as the potential outcomes at time t, where b̄t denotes

the action history assigned according to b. When b is a random
policy as in D1 or D3, definitions of these potential outcomes
are more complicated than those under a deterministic policy
(see Appendix S3, supplementary materials for details). When
b is a stationary policy, it follows from MA that {S∗

t+1(b̄t)}t≥−1
forms a time-homogeneous Markov chain. When b follows
the alternating-time-interval design, both {S∗

2t(b̄2t−1)}t≥0 and
{S∗

2t+1(b̄2t)}t≥0 form time-homogeneous Markov chains.
To study the asymptotic properties of our test, we need to

introduce assumptions C1–C3 and move them and their corre-
sponding detailed discussions to Appendix S4, supplementary
materials. In C1, we require the above mentioned Markov chains
to be geometrically ergodic. Geometric ergodicity is weaker
than the uniform ergodicity condition imposed in the exist-
ing reinforcement learning literature (see e.g., Bhandari, Russo,
and Singal 2018; Zou, Xu, and Liang 2019). In C2, we impose
conditions on the set of basis functions 	(·) such that 	(·) is
chosen to yield a good approximation for the Q function. It
is worth mentioning that we only require the approximation
error to decay at a rate of o(T−1/4) instead of o(T−1/2). In
other words, “undersmoothing” is not required and the value
estimator has a well-tabulated limiting distribution even when
the bias of the Q-estimator decays at a rate that is slower than
O(T−1/2). This result has a number of importation implications.
First, it suggests the proposed test will not be overly sensitive
to the choice of the number of basis functions. Such a theo-
retical finding is consistent with our empirical observations in
Section 4.3. Second, the number of basis functions could be
potentially selected by minimizing the prediction loss of the
Q-estimator via cross-validation. We also present examples of
basis functions that satisfy C2 in Appendix S4.2, supplementary
materials. In C3, we impose some mild conditions on the action

2https://eng.lyft.com/experimentation-in-a-ridesharing-marketplace-
b39db027a66e

https://eng.lyft.com/experimentation-in-a-ridesharing-marketplace-b39db027a66e
https://eng.lyft.com/experimentation-in-a-ridesharing-marketplace-b39db027a66e
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value temporal-difference error, requiring their variances to be
nondegenerate.

Let {Z1, . . . , ZK} denote the sequence of our test statistics,
where Zk = √

Tkτ̂ (Tk)/σ̂ (Tk). In the following, we study their
joint asymptotic distributions. We also present an estimator of
their covariance matrix that is consistent under all designs.

Theorem 1 (Limiting distributions). Assume C1–C3, MA,
CMIA, CA, and SRA hold. Assume all immediate rewards
are uniformly bounded variables, the density function of S0
is uniformly bounded on S and q satisfies q = o(

√
T/ log T).

Then under D1, D2 or D3, we have

• {Zk}1≤k≤K are jointly asymptotically normal;
• their asymptotic means are nonpositive under H0;
• their covariance matrix can be consistently estimated by

some �̂, whose (k1, k2)-th element �̂k1,k2 equals√
Tk1

Tk2

U��̂
−1

(Tk1)�̂(Tk1){�̂−1
(Tk2)}�U

σ̂ (Tk1 )̂σ (Tk2)
.

This theorem forms the basis of our sequential testing proce-
dure, which we elaborate in the next section.

3.4. Sequential Monitoring and Online Updating

To sequentially monitor our test, we need to specify the stopping
boundary {bk}1≤k≤K such that the experiment is terminated and
H0 is rejected when Zk > bk for some k.

First, we use the α spending function approach to guarantee
the validity of our test. It requires to specify a monotonically
increasing function α(·) that satisfies α(0) = 0 and α(T) = α.
Some popular choices of the α spending function include

α1(t) = 2 − 2�{�−1(1 − α/2)
√

T/t} and
α2(t) = α(t/T)θ for θ > 0, (4)

where �(·) denotes the normal cumulative distribution func-
tion. Adopting the α spending approach, we require bk’s to
satisfy

Pr(∪k
j=1{Zj > bj}) = α(Tk) + o(1), ∀1 ≤ k ≤ K. (5)

Suppose there exist a sequence of information levels {Ik}1≤k≤K
such that

cov(Zk1 , Zk2) = √
Ik1/Ik2 + o(1), (6)

for all 1 ≤ k1 ≤ k2. Then the sequence {Zk}1≤k≤K satisfies
the Markov property. The stopping boundary can be efficiently
computed based on the numerical integration method detailed
in Section 19.2 of Jennison and Turnbull (1999). However, in
our setup, condition (6) might not hold when adaptive design
is used. As commented in the introduction, this is due to
the existence of carryover effects in time. Specifically, when
treatment effects are adaptively generated, the behavior policy
at difference stages are likely to vary. Due to the carryover effects
in time, the state vectors at difference stages have different
distribution functions. As such, the asymptotic distribution
of the test statistic at each interim stage depends on the
behavior policy. Consequently, the covariance cov(Zk1 , Zk2)

is a very complicated function of k1 and k2 (see e.g., the
form of �̂k1,k2 in Theorem 1) that cannot be represented by
(6). Consequently, the numerical integration method is not
applicable.

Next, we outline a method based on the wild bootstrap
(Wu 1986). Then we discuss its limitation and present our
proposal, a scalable bootstrap algorithm to determine the
stopping boundary. The idea is to generate bootstrap samples
{̂ZMB(t)}t that have asymptotically the same joint distribution
as {√tσ̂−1(t)(̂τ (t) − τ0)}t . By the requirement on {bk}k in (5),
we obtain

Pr
{

Zk > bk| max
1≤j<k

(Zj − bj) ≤ 0
}

= α(Tk) − α(Tk−1)

1 − α(Tk−1)
+ o(1).

To implement the test, we thus, recursively calculate the thresh-
old b̂k as follows,

Pr∗
{

ẐMB(tk) > b̂k| max
1≤j<k

(̂ZMB(tj) − b̂j) ≤ 0
}

= α(Tk) − α(Tk−1)

1 − α(Tk−1)
, (7)

where Pr∗ denotes the probability conditional on the data, and
reject H0 when Z∗

k > b̂k for some k. In practice, the above
conditional probability can be approximated via Monte Carlo
simulations. This forms the basis of the bootstrap algorithm.

Specifically, let {ζt}t≥0 be a sequence of iid mean-zero, unit
variance random variables independent of the observed data.
Define

β̂
MB

(t) = �̂
−1

(t)

⎡⎣1
t

∑
j<t

ζj

{
	(Sj)(1 − Aj)̂εj,0

	(Sj)Aĵεj,1

}⎤⎦ , (8)

where ε̂t,a is the temporal difference error defined. Based
on β̂

MB
(t), one can define the bootstrap sample ẐMB(t) =√

tσ̂−1(t)U�β̂
MB

(t). Based on the definition of σ̂ (t), it is
immediate to see that each ẐMB(t) follows a standard normal
distribution conditional on the data.

We remark that although the wild bootstrap method is devel-
oped under the iid settings, it is valid under our setup as well.
This is due to that under CMIA, β̂(t) − β∗ forms a martingale
sequence with respect to the filtration {(Sj, Aj, Yj) : j < t}. It
guarantees that the covariance matrices of β̂

MB
(t) and β̂(t) are

asymptotically equivalent. As such, the bootstrap approxima-
tion is valid.

However, calculating β̂
MB

(Tk) requires O(Tk) operations.
The time complexity of the resulting bootstrap algorithm is
O(BTk) up to the k-th interim stage, where B is the total number
of bootstrap samples. This can be time consuming when {Tk −
Tk−1}K

k=1 are large. To facilitate the computation, we observe
that in the calculation of β̂

MB, the random noise ζt is generated
upon the arrival of each observation. This is unnecessary as we
aim to approximate the distribution of β̂(·) only at finitely many
time points T1, T2, . . . , TK .

Finally, we present our bootstrap algorithm to determine
{bk}1≤k≤K , based on Theorem 1. Let {ek}1≤k≤K be a sequence of
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iid N(0, I4q) random vectors, where IJ stands for a J × J identity
matrix for any J. Let �̂(T0) be a zero matrix. At the k-th stage,
we compute the bootstrap sample

Ẑ∗
k = U��̂

−1
(Tk)√

Tkσ̂ (Tk)

k∑
j=1

{Tj�̂(Tj) − Tj−1�̂(Tj−1)}1/2ej.

A key observation is that, conditional on the observed
dataset, the covariance of Ẑ∗

k1
and Ẑ∗

k2
equals

U��̂
−1

(Tk1)√
Tk1 Tk2 σ̂ (Tk1 )̂σ (Tk2)

⎡⎣ k1∑
j=1

{
Tj�̂(Tj) − Tj−1�̂(Tj−1)

}⎤⎦
×{�̂−1

(Tk2)}−1U = �̂k1,k2 .

By Theorem 1, the covariance matrices of {Zk}k and {Z∗
k }k

are asymptotically equivalent. In addition, the limiting distri-
butions of {Zk}k and {Z∗

k }k are multivariate normal with zero
means. As such, the joint distribution of {Zk}1≤k≤K can be well
approximated by that of {Z∗

k }1≤k≤K conditional on the data. The
rejection boundary can thus, be computed in a similar fashion
as in (7).

Theorem 2 (Type-I error). Suppose that the conditions of The-
orem 1 hold and α(·) is continuous. Then the proposed thresh-
olds satisfy Pr(

⋃k
j=1{Zj > b̂j}) ≤ α(Tk) + o(1), for all 1 ≤ k ≤

K under H0. The equality holds when τ0 = 0.

Theorem 2 implies that the Type-I error rate of the proposed
test is well controlled. When ATE = 0, the equality in Theo-
rem 2 holds. The rejection probability achieves the nominal level
under H0. We next investigate the power property of our test.

Theorem 3 (Power). Suppose that the conditions of The-
orem 2 hold. Assume τ0 � T−1/2, then Pr(

⋃k
j=1{Zj >

b̂j}) → 1. Assume τ0 = T−1/2h for some h > 0. Then
limT→∞[Pr(∪k

j=1{Zj > b̂j}) − α(Tk)] > 0.

Combining Theorems 2 and 3 yields the consistency of our
test. The second assertion in Theorem 3 implies that our test
has nonnegligible powers against local alternatives converging
to H0 at the T−1/2 rate. When the signal decays at a slower rate,
the power of our test approaches 1.

Since we use a linear basis function to approximate the Q-
function, the regression coefficients β̂(t) as well as their covari-
ance estimator can be online updated as batches of observations
arrive at the end of each interim stage. As such, our test can
be implemented online. We summarize our procedure in Algo-
rithm 1. Recall that q is the number of basis functions. As the kth
interim stage, the time complexities of Steps 1–3 in Algorithm 1
are dominated by O{q2(Tk −Tk−1)+q3}, O{q2(Tk −Tk−1)+q3}
and O(Bq2 + q3), respectively. As such, the time complexity of
Algorithm 1 is dominated by O(BKq2 +Tq2 +Kq3). In contrast,
one can show that the classical wild bootstrap algorithm would
take at least �(BTq2 + Kq3) number of flops and is much more
computationally intensive when T � K, which is case in phase
3 clinical trials and our real data application.

To conclude this section, we remark that a few bootstrap
algorithms have been developed in the RL literature for policy

Algorithm 1 The testing procedure
Input: number of basis functions q, number of bootstrap
samples B, an α spending function α(·).
Initialize: T0 = 0, I = {1, 2, . . . , B}. Set �̂, �̂

∗, �̂0, �̂1 to
zero matrices, and η̂, Ŝ1, . . . , ŜB to zero vectors.
Compute U according to (3), using either Monte Carlo meth-
ods or numerical integration, where 0q denotes a zero vector
of length q.
For k = 1 to K:

Step 1. Online update of ATE.
For t = Tk−1 to Tk − 1:

�̂a = (1 − t−1)�̂a + t−1	(St)I(At = a){	(St) −
γ	(St+1)I(At+1 = a)}�, a = 0, 1;

η̂a = (1 − t−1)̂ηa + t−1	(St)I(At = a)Yt .
Set β̂a = �̂

−1
a η̂a for a ∈ {0, 1} and τ̂ = U�β̂ .

Step 2. Online update of the variance estimator.
Initialize �̂

∗ to a zero matrix.
For t = Tk−1 to Tk − 1:

ε̂t,a = Yt +γ	�(St+1)β̂a −	�(St)β̂a for a = 0, 1;
�̂

∗ = �̂
∗ + {	(St)�(1 −

At )̂εt,0, 	(St)�At̂εt,1}�{	(St)�(1 − At )̂εt,0, 	(St)�At̂εt,1}.
Set �̂ to a block diagonal matrix by aligning �̂0 and �̂1

along the diagonal of �̂;
Set �̂ = T−1

k (Tk−1�̂ + �̂
∗
) and the variance estimator

σ̂ 2 = U��̂
−1

�̂{�̂−1}�U .
Step 3. Bootstrap test statistic.

For b = 1 to B:
Generate e(b)

k ∼ N(0, I4q);
Ŝb = Ŝb + �̂

∗1/2e(b)

k ;
Ẑ∗

b = T−1/2
k σ̂−1U��̂

−1̂Sb;
Set z to be the upper {α(t) − |Ic|/B}/(1 − |Ic|/B)-th

percentile of {̂Z∗
b}b∈I .

Update I as I ← {b ∈ I : Ẑ∗
b ≤ z};

Step 4. Reject or not?
Reject the null if

√
Tkσ̂

−1τ̂ > z.

evaluation. Specifically, Hanna, Stone, and Niekum (2017) and
Hao et al. (2021) proposed to use bootstrap for uncertainty
quantification in off-policy evaluation. These algorithms require
the number of trajectories to diverge to infinity to be consistent
and are thus, not applicable to our setting where there is only one
trajectory in the experiment. In addition, they are developed in
offline settings and do not allow online updating. Ramprasad
et al. (2021) developed a bootstrap algorithm for policy eval-
uation in online settings. Their algorithm generates bootstrap
samples upon the arrival of each observation and is thus, more
computationally intensive than the proposed algorithm.

4. Simulation Study
4.1. Settings and Implementation

Simulated data of states and rewards was generated as follows,

S1,t = (2At−1 − 1)S1,(t−1)/2 + S2,(t−1)/4 + δAt−1 + ε1,t ,
S2,t = (2At−1 − 1)S2,(t−1)/2 + S1,(t−1)/4 + δAt−1 + ε2,t ,
Yt = 1 + (S1,t + S2,t)/2 + ε3,t ,
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Figure 2. Empirical rejection probabilities of our test and the two-sample t-test with α(·) = α1(·) and of the O’Brien and Fleming sequential test developed by Kharitonov
et al. (2015). The left panels depicts the empirical Type-I error and the right panels depicts the empirical power. Settings correspond to alternating-time-interval, adaptive
and Markov designs, from top to bottom plots.

where the random errors {εj,t}j=1,2,0≤t≤T are iid N(0, 0.52) and
{ε3,t}0≤t≤T are iid N(0, 0.32). Let St = (S1,t , S2,t)� denote the
state at time t. Under this model, treatments have delayed effects
on the outcomes, as in Example 2. The parameter δ characterizes
the degree of such carryover effects. When δ = 0, τ0 = 0 and
H0 holds. When δ > 0, H1 holds. Moreover, τ0 increases as δ

increases.
We set K = 5 and (T1, T2, T3, T4, T5) = (300, 375, 450,

525, 600). The discounted factor γ is set to 0.6 and G is chosen
as the initial state distribution. We consider three behavior
policies, according to the designs D1–D3, respectively. For the
behavior policy in D1, we set b(0)(s) = 0.5 for any s ∈ S. For
the behavior policy in D3, we use an ε-greedy policy and set
b(k)(s) = ε/2 + (1 − ε)I(	(s)�(β̂1(Tk) − β̂0(Tk)) > 0), with
ε = 0.1, for any k ≥ 1 and s ∈ S.

For each design, we further consider five choices of δ, cor-
responding to 0, 0.05, 0.1, 0.15 and 0.2. The significance level α

is set to 0.05 in all cases. To implement our test, we choose two
α-spending functions, corresponding to α1(·) and α2(·) given
in (4). The hyperparameter θ in α2(·) is set to 3. The number
of bootstrap sample is set to 1000. In addition, we consider
the following polynomial basis function, 	(s) = 	(s1, s2) =
(1, s1, s2

1, . . . , sJ
1, s2, s2

2, . . . , sJ
2)

�, with J = 4.
All experiments run on a MacBook Pro with a dual-core

2.7 GHz processor. Implementing a single test takes one sec-
ond. Figures 2(a) and S1(a) (see Appendix S1, supplementary
materials) depict the empirical rejection probabilities of our test
statistics at different interim stages under H0 and H1 with dif-
ferent combinations of δ, α(·) and the designs. These rejection
probabilities are aggregated over 500 simulations. We also plot
α1(·) and α2(·) under H0. Based on the results, it can be seen that
under H0, the Type-I error rate of our test is well-controlled and
close to the nominal level at each interim stage in most cases.
Under H1, the power of our test increases as δ increases, showing
the consistency of our test procedure.

4.2. Comparison with Baseline Methods

To further evaluate our method, we first compare it with the
classical two-sample t-test and a modified version of modified
versions of the O’Brien and Fleming sequential test developed
by Kharitonov et al. (2015). We remark that the current practice
of policy evaluation in most two-sided marketplace platforms
is to employ classical two-sample t-test. Specifically, for each
Tk, we apply the t-test to the data {At , Yt}0≤t≤Tk and plot the
corresponding empirical rejection probabilities in Figures 2(b)
and S1(b). Figure 2(c) depicts the empirical rejection proba-
bilities of the modified version of the O’Brien and Fleming
sequential test. We remark that such a test requires equal sample
size T1 = Tk − Tk−1 for k = 2, . . . , K and is not directly
applicable to our setting with unequal sample size. To apply such
a test, we modify the decision time and set (T1, T2, T3, T4, T5) =
(120, 240, 360, 480, 600). As shown in these figures, all these
tests fail to detect carryover effects and do not have power at all.

We next compare the proposed test with the test based on
the V-learning method developed by Luckett et al. (2020). As we
have commented, V-learning does not allow sequential testing.
So we focus on settings where the decision is made once at T =
600. In addition, V-learning requires the propensity score to be
bounded away from 0 and 1. To meet the positivity assumption,
we generate the actions according to the Markov design where
Pr(At = 1|St) = sigmoid(θS1,t + θS2,t). Both tests require to
specify the discounted factor γ . We fix γ = 0.8. Results are
reported in Figure 3(a), aggregated over 500 simulations. It can
be seen for large θ , the test based on V-learning cannot control
the Type-I error and has smaller power than our test when δ is
large. This is because V-learning uses inverse propensity score
weighting. In cases where θ is large, the propensity score can be
close to zero or one for some sample values, making the resulting
test statistic unstable.

Finally, we compare the proposed test with a t-test based on
analysis of crossover trials (see e.g., Jones and Kenward 1989).
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Figure 3. (a) Empirical rejection probabilities of the proposed test and the test based on V-learning. (b) Empirical rejection probabilities of the proposed test and the test
derived based on analysis of crossover trials. The shaded area corresponds to the interval [0.05 − 1.96MCE, 0.05 + 1.96MCE] where MCE denotes the Monte Carlo error√

0.05 × 0.95/500.

We remark that such a test requires the data to be generated
from crossover designs and cannot be applied under D1, D2
or D3. In addition, most crossover trials require to recruit
multiple subjects/patients to estimate the carryover effect. The
resulting tests are not directly applicable to our setting where
only one subject receives a sequence of treatments over time. In
Appendix S1, supplementary materials, we develop a t-test for
the carryover effect under our setting, based on analysis of 2×2
crossover trials. For simplicity, we focus on settings where the
decision is made once at T = 600. In Figure 3(b), we report the
empirical rejection probabilities of such a test and the proposed
test under several crossover designs with different number of
blocks. Please refer to Appendix S1, supplementary materials for
more details about the design and the test. It can be seen that the
proposed test is more powerful in most cases.

4.3. Sensitivity Analysis

In Section 4.1, we set the number of polynomial basis function
J to 4. We also tried some other values of J by setting J to
3 and 5. Results are reported in Figure S2 (see Appendix S1,
supplementary materials). It can be seen that the resulting tests
have very similar performance and is not sensitive to the choice
of J. In Appendix S1, supplementary materials, we fixed J to 4
and tried some other values of γ ∈ (0.1, 0.3, 0.5, 0.9). Results are
reported in Figure S3, supplementary materials. It can be seen
that our test controls the Type-I error in most cases. In addition,
its power increases with γ . This is consistent with the following
observation: γ characterizes the balance between the short-
term and long-term treatment effects. Under the current setup,
there is no short-term treatment effects. The value difference
increases with γ . It is thus, expected that our test has better
power properties for large values of γ .

5. Real Data Application

We apply the proposed test to a real dataset from a large-scale
ride-sharing platform. The purpose of this study is to compare

the performance of a newly developed order dispatching strat-
egy with a standard control strategy used in the platform. For a
given order, the new strategy will dispatch it to a nearby driver
that has not yet finished their previous ride request, but almost.
In comparison, the standard control assigns orders to drivers
that have completed their ride requests. The new strategy is
expected to reduce the chance that the customer will cancel an
order in regions with only a few available drivers. It is expected
to meet more call orders and increase drivers’ income on aver-
age.

The experiment is conducted at a given city from December 3
to December 16. Dispatch strategies are executed based on alter-
nating half-hourly time intervals. We also apply our test to a data
from an A/A experiment (which compares the baseline strategy
against itself), conducted from November 12 to November 25.
Note that it is conducted at a different time period from the
A/B experiment. The A/A experiment is employed as a sanity
check for the validity of the proposed test. We expect that our
test will not reject H0 when applied to this dataset, since the two
strategies used are essentially the same.

Both experiments last for two weeks. Thirty-minutes is
defined as one time unit. We set K = 8 and Tk = 48 × (k + 6)

for k = 1, . . . , 8. That is, the first interim analysis is performed
at the end of the first week, followed by seven more at the end
of each day during the second week. We discuss more about the
experimental design in Appendix S2.2. We choose the overall
drivers’ income in each time unit as the response. The new
strategy is expected to reduce the answer time of passengers
and increase drivers’ income. Three time-varying variables are
used to construct the state. The first two correspond to the
number of requests (demand) and drivers’ online time (supply)
during each 30-minute time interval. These factors are known to
have large impact on drivers’ income. The last one is the supply
and demand equilibrium metric. This variable characterizes the
degree that supply meets the demand and serves as an important
mediator between past treatments and future outcomes.

To implement our test, we set γ = 0.6, B = 1000 and use
a fourth-degree polynomial basis for 	(·), as in simulations.
We use α1(·) as the spending function for interim analysis and
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Figure 4. Our test statistic (the orange line) and the rejection boundary (the blue line) in the A/A (left plot) and A/B (right plot) experiments.

set α = 0.05. The test statistic and its corresponding rejection
boundary at each interim stage are plotted in Figure 4. It can
be seen that our test is able to conclude, at the end of the
12th day, that the new order dispatch strategy can significantly
increase drivers’ income. When applied to the data from the A/A
experiment, we fail to reject H0, as expected. We remark that
early termination of the A/B experiment is beneficial to both the
platform and the society. First, take this particular experiment
as an example, we find that the new strategy reduces the answer
time of orders by 2%, leading to almost 2% increment of drivers’
income. If we were to wait until Day 14, drivers would lose
2% income and customers would have to wait longer on two
days. The benefits are considerable by taking the total number
of drivers and customers in the city into account. In addition,
the platform can benefit a lot from the increase in the driver
income, as they take a fixed proportion of the driving fee from
all completed trips. Second, the platform needs to conduct a lot
of A/B experiments to investigate various policies. A reduction
in the experiment duration facilitates the process, allowing the
platform to evaluate more policies within the same time frame.
These policies have the potential to further improve the driver
income and the customer satisfaction, providing safer, quicker
and more convenient transportation.

For comparison, we also apply the two-sample t-test to the
data collected from the A/B experiment. The corresponding p-
value is 0.18. This result is consistent with our findings. Specifi-
cally, the treatment effect at a given time affects the distribution
of drivers in the future, inducing interference in time. As shown
in the toy example (see Section 3.1), the t-test cannot detect
such carryover effects, leading to a low power. Our procedure,
according to Theorem 2, has enough powers to discriminate H1
from H0.

6. Discussion

First, we remark that our focus is to compare the long-term
treatment effects between two nondynamic policies. Meanwhile,
the proposed method can be easily extended to handle dynamic
policies as well. We discuss this further in Appendix S2.1, sup-
plementary materials.

Second, in our real data application, the design of experiment
is determined by the company and we are in the position to
analyze the data collected based on such a design. It is important
and interesting to design experiments to identity the treatment
effect efficiently, but it is beyond the scope of the current paper.
In addition, it is worth mentioning that the 30-minute-interval
design is adopted by the company to optimize the performance

of the resulting A/B test. We consider a few toy examples to
elaborate in Appendix S2.2, supplementary materials.

Third, in the current setup, we assume the dimension of the
state is fixed whereas the number of basis functions diverges
to infinity at a rate that is slower than T. In Appendix S2.3,
supplementary materials, we extend our proposal to settings
with high-dimensional state information. In that case, we rec-
ommend to include a rich class of basis functions to ensure
that the Q-function can be well-approximated. The number of
basis functions is allowed to be much larger than T. To handle
high-dimensionality, we first adopt the Dantzig selector (Candes
and Tao 2007) which directly penalizes the Bellman equation
to compute an initial estimator. We next develop a decorrelated
estimator to reduce the bias of the initial estimator and outline
the corresponding testing statistic.

Finally, we focus on causal effects evaluation in online exper-
iments where the treatment generating mechanism is prede-
termined. Under these settings, there are no unmeasured con-
founders that confound the action-outcome or the action-next
state relationship. Another equally important problem is to
study off-policy evaluation in our application. We discuss this
further in Appendix S2.4, supplementary materials.

Supplementary Materials

The supplementary materials contain technical assumptions, proofs,
additional simulation results, extensions to high-dimensional models and
dynamic policies, and discussions on the experimental design, off-policy
evaluation and some related works.
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