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Abstract9

Session subtyping is a cornerstone of refinement of communicating processes: a process implementing a10

session type (i.e., a communication protocol) T can be safely used whenever a process implementing11

one of its supertypes T ′ is expected, in any context, without introducing deadlocks nor other12

communication errors. This paper presents the first formalisation of the precise subtyping relation13

for asynchronous multiparty sessions: we show that the relation is sound (i.e., guarantees safe process14

replacement, as outlined above) and also complete: any extension of the relation is unsound. Previous15

work studies precise subtyping for binary sessions (with two participants), or multiparty sessions16

(with any number of participants) and synchronous interaction. Here, we cover multiparty sessions17

with asynchronous interaction, where messages are transmitted via FIFO queues (as in the TCP/IP18

protocol). In this setting, the subtyping relation becomes highly complex: under some conditions,19

participants can permute the order of their inputs and outputs, by sending some messages earlier, or20

receiving some later, without causing errors; the precise subtyping relation must capture all such21

valid permutations, and consequently, its formalisation and proofs become challenging. Our key22

discovery is a methdology to decompose session types into single input/output session trees, and23

then express the subtyping relation as a composition of refinement relations between such trees.24

1 Introduction25

Modern software systems are routinely designed and developed as ensembles of concurrent26

and distributed components, interacting via message-passing according to pre-determined27

communication protocols. In this setting, a key challenge is ensuring that each component28

abides by the desired protocol, thus avoiding run-time failures due to, e.g., communication29

errors and deadlocks. One of the most successful approaches to this problem are session types30

[35, 22, 23, 24], which allow to formalise multiparty protocols as types, and verify whether31

processes correctly implement them. Beyond their theoretical developments, session types32

have been implemented in many practical programming languages [1, 20].33

One of the key features of session types is the notion of subtyping, which can be interpreted34

as protocol refinement: given two types/protocols T and T ′, if T ′ is a subtype (or refinement)35

of T , then a process that implements T ′ can be used whenever a process implementing36

T is needed. Subtyping allows to safely replace typed software components, and makes37

session types-based verification more flexible. For this reason, several papers have tackled38

the problem of finding the largest, precise subtyping relations [11, 21]. A subtyping relation39

6 is precise when it is both sound and complete: soundness means that, if we have a40

context C expecting some process P of type T , then T ′ 6 T implies that any process P ′41

of type T ′ can be placed into C without causing “bad behaviours” (e.g., communication42

errors or deadlocks); completeness means that 6 cannot be extended without becoming43

unsound. More precisely: if T ′ 66 T , then we can find a process P ′ of type T ′, and a context44

C expecting a process of type T , such that if we place P ′ in C, it will cause “bad behaviours.”45
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The problem of finding the precise subtyping relation 6 is greatly complicated when it46

combines asynchrony and multiparty interactions, i.e., the communication channels’ capability47

to buffer messages after they are sent, and before they are received — as in the TCP/IP48

protocol. For example, suppose we are using an asynchronous message transport where49

the sending is non-blocking, and message order is preserved; consider a scenario where a50

participant r waits for the outcome of a distributed computation from p, and notifies q on51

whether to continue the calculation:52

r / Pr | p / Pp | q / Pq | · · ·

where Pr =
∑{

p?success(x).if (x > 42) then q!cont〈x〉.0 else q!stop〈〉.0
p?error(fatal).if (¬fatal) then q!cont〈43〉.0 else q!stop〈〉.0

}
Above, r /Pr denotes a process Pr executed by participant r, p?`(x) is an input of message53

` with payload value x from participant p, and q!`〈5〉 is an output of message ` with payload54

5 to participant q. In the example, r waits to receive either success or error from p. In case55

of success, r checks whether the message payload x is greater than 42, and tells q to either56

continue (forwarding the payload x) or stop, then terminates (0); in case of error , r checks57

whether the error is non-fatal, and then tells q to either continue (with a constant value 43),58

or stop. Note that r is blocked until a message is sent by p, and correspondingly, q is waiting59

for r, who is waiting for p. Yet, depending on the application, r might be locally optimised,60

by replacing Pr above with the following process:61

P ′r = if (. . .) then q!cont〈43〉.
∑{

p?success(x).0
p?error(y).0

}
else q!stop〈〉.

∑{
p?success(x).0
p?error(y).0

}
Process P ′r internally decides (with an omitted condition “. . .”) whether to tell q to continue62

with a constant value 43, or stop. Then, r receives the success/error message from p, and63

does nothing with it. As a result, q can start its computation immediately, without waiting64

for p. Intuitively, this optimisation that swaps the order of inputs and outputs should not65

introduce any deadlock nor communication error in the system; consequently, it may seem66

that a subtyping relation should allow it: i.e., if T ′ is the type of P ′r , and T is the type of67

Pr, we should have T ′ 6 T (we illustrate such types later on, in Example 3.5) — hence, the68

type system should let P ′r be used in place of Pr. Due to practical needs, similar program69

optimisations have been implemented for various programming languages, e.g., [32, 31, 25, 10].70

Yet, this optimisation is not allowed by synchronous multiparty session subtyping [21]: in71

fact, under synchrony, there are cases where allowing T ′ 6 T would introduce deadlocks.72

However, most real-world distributed and concurrent systems use asynchronous multiparty73

communication: is the optimisation above always safe in these settings, and should the74

subtyping allow for it? If we prove that such an optimisation (and others) are indeed sound,75

it would be possible to check them locally, at the type-level, for each participant.76

Formulating the largest, precise subtyping relation is technically challenging, as it must77

consider type-level asynchrony, multiple participants, choices, and recursion. We solve this78

problem by introducing a novel methodology, a session decomposition, from branching79

and selection types into single input / output trees, and then express the subtyping relation80

as a composition of refinement relations between such trees. For our development, we adopt81

a recent advancement of the multiparty session type theory [34]: this way, we achieve not82

only the largest, precise subtyping relation, but also a simpler formulation, and more general83

results, than [11, 29, 21], by typing a larger set of concurrent and distributed processes.84

Outline. Section 2 formalises the asynchronous multiparty session calculus. Section 385

presents our asynchronous multiparty session subtyping relation, with its decomposition86

technique. Section 4 introduces the typing system, and Section 5 proves the preciseness of87

our subtyping. Related work is in Section 6. Due to space limits, proofs are in appendices.88
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M ::= Sessions
p / P | p / h individual participant

|| M | M parallel
|| error error

h ::= Message queues
∅ empty queue

|| (q, `(v)) message
|| h · h concatenation

P,Q ::= Processes∑
i∈I p?`i(xi).Pi ext. choice

|| p!`〈e〉.P output
|| if e then P else Q conditional
|| X variable
|| µX.P recursion
|| 0 inaction

Table 1 Syntax of sessions, processes and queues. We assume that in recursive processes, recursion
variables are guarded by external choices and/or outputs.

[r-send] p / q!`〈e〉.P | p / hp | M −→ p / P | p / hp · (q, `(v)) | M (e ↓ v)
[r-rcv] p /

∑
i∈I q?`i(xi).Pi | p / hp | q / Q | q / (p, `k(v)) · h | M (k ∈ I)

−→ p / Pk{v/xk} | p / hp | q / Q | q / h | M
[r-cond-T] p / if e then P else Q | p / h | M −→ p / P | p / h | M (e ↓ true)
[r-struct] M1 ≡M′1, M′1 −→M′2, M′2 ≡M2 =⇒ M1 −→M2

[err-mism] p /
∑
i∈I q?`i(xi).Pi | p / hp | q / Q | q / (p, `(v)) · h | M −→ error (∀i ∈ I.`i 6= `)

[err-ophn] p / P | p / hp | q / Q | q / (p, `(v)) · h | M −→ error (q? 6∈ act(P ))
[err-strv] p /

∑
i∈I q?`i(xi).Pi | q / Q | q / hq | M −→ error (p! 6∈ act(Q), hq 6≡ (p,−(−)) · h′q)

[err-eval] p / if e then P else Q | p / h | M −→ error ( 6 ∃v : e ↓ v)
[err-eval2] p / q!`〈e〉.P | p / h | M −→ error ( 6 ∃v : e ↓ v)
[err-dlock]

∏
j∈J(pj /

∑
ij∈Ij

qj?`ij (xij ).Pij | pj / hpj ) −→ error (∀j ∈ J : hqj 6≡ (pj ,−(−)) · h′qj
)

Table 2 Reduction relation on sessions ([r-cond-F] is similar to [r-cond-T], and is omitted).

2 Asynchronous Multiparty Session Calculus89

This section presents the syntax and operational semantics of an asynchronous multiparty90

session calculus. Our formulation extends the synchronous calculus in [21].91

Syntax. An asynchronous multiparty session (ranged over byM,M′, . . .), defined in Table 1,92

is a parallel composition of individual participants (ranged over by p, q, . . .) associated with93

their own process P and queue h (notation: p / P | p / h), also defined in Table 1. In the94

processes syntax, the external choice
∑
i∈I p?`i(xi).Pi denotes the input from participant p of95

a message with label `i carrying value xi, for any i ∈ I; instead, p!`〈e〉.P denotes the output96

towards participant p of a message with label ` carrying the value returned by expression e.97

The conditional if e then P else Q is standard. The term p / h states that h is the message98

queue of participant p; if a message (q, `(v)) is in the queue of participant p, it means that99

p has sent `(v) to q. Messages are consumed by their recipients on a FIFO (first in, first100

out) basis. The rest of the syntax is standard [21]. The set act(P ) contains the input101

and output actions of P , and is defined as: act(0) = ∅; act(p!`〈e〉.P ) = {p!} ∪ act(P );102

act(
∑
i∈I p?`i(xi).Pi) = {p?} ∪

⋃
i∈I act(Pi) (other cases are homomorphic).103

Reductions and errors. The operational semantics is defined in Table 2. By [r-send], a104

participant p sends `〈e〉 to a participant q, enqueuing the message (q, `(v)), where “e ↓ v”105

means that expression e evaluates to v. Rule [r-rcv] lets participant p receive a message106

from q: if one of the input labels `k matches a queued message (p, `k(v)) previously sent107

by q (for some k ∈ I), the message is dequeued, and the continuation Pi proceeds with108

value v substituting xk. The rules for conditionals are standard. Rule [r-struct] defines109
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the reduction modulo a standard structural congruence ≡, with rules to unfold recursions110

(µX.P ≡ P{µX.P/X}), erase an inact participant (p / 0 | p /∅ | M ≡M) and rearrange111

queued messages. (Full definition in Appendix A.2)112

h1 · (q1, `1(v1)) · (q2, `2(v2)) · h2 ≡ h1 · (q2, `2(v2)) · (q1, `1(v1)) · h2 (if q1 6= q2)
Table 2 also formalises error reductions, modelling the following scenarios: in [err-mism], a113

process tries to read a queued message with an unsupported label; in [err-orph], there is a114

buffered message from q to p, but p’s process does not contain any input from q, hence the115

message is orphan; in [err-strv], p is waiting for a message from q, but no such message is116

queued, and q’s process does not contain any output for p, hence p will starve; in [err-eval] and117

[err-eval2], an expression like “succ(true)” cannot reduce to any value; and in [err-dlock], the118

session cannot reduce further, but there is some participant with a non-terminated process119

or a non-empty queue. (Example A.2 shows the reduction rules in action.)120

3 Asynchronous Multiparty Session Subtyping121

This section introduces our asynchronous session subtyping relation, in two phases:122

1. we introduce a refinement relation for session trees (defined below) having only singleton123

choices in all branchings and selections, called single-input-single-output (SISO) trees;124

2. then, we consider trees that have only singleton choices in branchings (called single-input125

(SI) trees), or in selections (single-output (SO) trees), and we define the session subtyping126

over all session types by considering their decomposition into SI, SO, and SISO trees.127

This two-phases approach is crucial to capture all input/output reorderings needed by the128

precise subtyping relation, while taming the technical complexity of its formulation.129

We begin with the standard definition of (local) session types.130

I Definition 3.1. The sorts S and session types T defined as follows:131

S ::= nat || int || bool T ::= &i∈I p?`i(Si).Ti ||
⊕

i∈I p!`i(Si).Ti || end || µt.T || t
where for all i, j∈I: i 6=j ⇒ `i 6=`j. We assume guarded recursion. We define ≡ as the least132

congruence such that µt.T ≡ T{µt.T/t}. We define pt(T) as the set of participants in T.133

Sorts are the types of values (naturals, integers, booleans). A session type T describes the134

behaviour of a participant in a multiparty session. The branching type (or external choice)135

&i∈I p?`i(Si).Ti denotes waiting for a message from participant p, where (for some i ∈ I)136

the message has label `i and carries a payload value of sort Si; then, the interaction continues137

by following Ti. The selection type (or internal choice)
⊕

i∈I p!`i(Si).Ti denotes an output138

toward participant p of a message with label `i and payload of sort Si, after which the139

interaction follows Ti (for some i ∈ I). Type µt.T provides recursion, binding the recursion140

variable t in T; the guarded recursion assumption means: in µt.T, we have T 6= t′ for any141

t′ (which ensures contractiveness). Type end denotes that the participant has concluded142

its interactions. For brevity, we often omit branch/selection symbols in case of singleton143

inputs/outputs, unnecessary parentheses, and ends.144

Session trees and their refinement145

&p`P
1
`C

1 `P
2

`C
2

bool end
⊕q`P

3

`C
3

`P
4

`C
4

nat
int end

...
&p...

real

To define our subtyping relation, we use (finite or infinite) ses-146

sion trees with the standard formulation of [21, Appendix A.2],147

based on Pierce [33]. The diagram on the right depicts a ses-148

sion tree: its internal nodes represent branching (&p) or selection (⊕q) from/to a par-149

ticipant; leaf nodes are either payload sorts or end; edge annotations are either `P
150
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or `C, respectively linking an internal node to the payload or continuation for mes-151

sage `. A type T yields a tree T (T): the diagram above shows the (infinite) tree of152

µt.&
{

p?`1(bool).
⊕
{q!`3(int).t, q!`4(real).end, } , p?`2(nat).end

}
. Notably, the trees153

of a recursive type µt.T and its unfolding T{µt.T/t} coincide. We will write T to denote a154

session tree, and we will represent it using the coinductive syntax:155

T ::= end || &i∈I p?`i(Si).Ti ||
⊕

i∈I p!`i(Si).Ti
SISO trees. A SISO tree W only has singleton choices (i.e., one pair of payload+continuation156

edges) in all its branchings and selections. We represent W with the coinductive syntax:157

W ::= end || p?`(S).W || p!`(S).W
We will write W to denote a SISO session type (i.e., having singleton choice in both branching158

and selection), such that T (W) yields a SISO tree. We coinductively define the set act(W)159

over a tree W as the set of participant names together with actions ? (input) or ! (output), as:160

act(end) = ∅; act(p?`(S).W′) = {p?} ∪ {act(W′)}; and act(p!`(S).W′) = {p!} ∪ {act(W′)}.161

We also define act(W) = act(T (W)).162

SISO trees refinement. As discussed in Section 1, the asynchronous subtyping should163

allow to reorder the input/output actions of a session type: this is crucial to achieve the164

largest, most flexible, and precise subtyping. Such reorderings should allow anticipating a165

selection toward participant p before a finite number of branchings, and also before other166

selections which are not toward participant p. Dually, the subtyping should allow anticipating167

a branching from participant p before a finite number of branchings which are not from p.168

To characterise such reordering of actions we define two kinds of finite sequences of inputs169

and outputs: A(p) contains only inputs from participants distinct from p, while the sequence170

B(p) contains inputs from any participant and/or outputs to participants distinct from p:171

A(p) ::= q?`(S) || q?`(S).A(p) B(p) ::= r?`(S) || q!`(S) || r?`(S).B(p) || q!`(S).B(p) (q 6= p)

I Definition 3.2. The SISO tree refinement relation . is coinductively defined as:172

S′ ≤: S W .W′

p?`(S).W . p?`(S′).W′
[ref-in]

S′ ≤: S W 6(2) A(p).W′ act(W) = act(A(p).W′)
p?`(S).W . A(p).p?`(S′).W′

[ref-A]

S ≤: S′ W .W′

p!`(S).W . p!`(S′).W′
[ref-out]

S ≤: S′ W 6(2) B(p).W′ act(W) = act(B(p).W′)
p!`(S).W . B(p).p!`(S′).W′

[ref-B] [ref-end]

end . end

173

Rule [ref-in] relates inputs from a same participant with equal message labels; the subtyping174

between carried sorts must be contravariant, and the continuations must be related. Rule175

[ref-out] relates outputs from a same participant with equal message labels; the subtyping176

between carried sorts must be covariant, and the continuations must be related. Rule [ref-A]177

allows anticipating an input from participant p before a finite number of inputs from any178

other participant; the two payload sorts and the rest of the trees satisfy the same conditions as179

in rule [ref-in], while “act(W) = act(A(p).W′)” ensures soundness: without such a condition180

we could “forget” some inputs, and derive, e.g., T (µt.p?`(S).t) . T (q?`1(S1).µt.p?`(S).t) by181

taking A(p) = q?`1(S1). Rule [ref-B] enables anticipating an output to participant p before182

a finite number of inputs from any participant and/or outputs from any other participant;183

the payload types and the rest of the two trees are related similarly to rule [ref-out], while184

“act(W) = act(B(p).W′)” ensures that inputs or outputs are not “forgotten” (as rule [ref-A].)185

The refinement . is reflexive and transitive (Lemma B.6). See also Example B.10.186

I Remark 3.3 (Prefixes vs. n-hole contexts). The binary asynchronous subtyping in [12, 11]187

uses the n-hole branching type context A ::= [ ]n || &i∈I?`i(Si).Ai, which complicates the188

rules and reasoning (see Fig.2, Fig.3 in [11]). Our A(p) and B(p) have a similar purpose, but189

they are simpler (just sequences of inputs or outputs), and cater for multiple participants.190
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SO trees and SI trees. We need two more kinds of session trees: single-output (SO) trees,191

denoted U, have only singleton choices in their selections; dually, single-input (SI) trees,192

denoted V, have only singleton branchings. We represent them with a coinductive syntax:193

U ::= end || &i∈I p?`i(Si).Ui || p!`(S).U V ::= end || p?`(S).V ||
⊕

i∈I p!`i(Si).Vi
We will write U (resp. V) to denote a SO (resp. SI) session type, i.e., with only singleton194

selections (resp. branchings), such that T (U) (resp. T (V)) yields a SO (resp. SI) tree.195

We decompose session trees into their SO/SI subtrees, with the functions J·KSO / J·KSI:196

JendKSO = {end} J
⊕

i∈I p!`i(Si).TiKSO = {p!`(Si).U : U ∈ JTiKSO, i ∈ I}
J&i∈I p?`i(Si).TiKSO = {&i∈I p?`i(Si).U : U ∈ JTiKSO}

JendKSI = {end} J
⊕

i∈I p!`i(Si).TiKSI = {
⊕

i∈I p!`i(Si).V : V ∈ JTiKSI}
J&i∈I p?`i(Si).TiKSI = {p?`(Si).V : V ∈ JTiKSI, i ∈ I}

Hence, when J·KSO is applied to a session tree T, it gives the set of all SO trees obtained by197

taking only a single choice from each selection in T (i.e., we take a single continuation edge198

and the corresponding payload edge starting in a selection node.) The function J·KSI is dual.199

Notice that for any SO tree U, and SI tree V, both JUKSI and JVKSO yield SISO trees.200

Asynchronous session subtyping201

We can now define our asynchronous session subtyping relation: it relates two session types202

by decomposing them into their SI, SO, and SISO trees, and checking their refinements.203

I Definition 3.4. The asynchronous subtyping relation 6 over session trees is defined as:204

∀U ∈ JTKSO ∀V′ ∈ JT′KSI ∃W ∈ JUKSI ∃W′ ∈ JV′KSO W .W′

T 6 T′

The subtyping relation for session types is defined as T 6 T′ iff T (T) 6 T (T′).205

Definition 3.4 says that a session tree T is subtype of T′ if, for all SO decompositions of206

T and all SI decompositions of T′, there are paths (i.e., SISO decompositions) related by ..207

The asynchronous subtyping relation 6 over trees is reflexive and transitive (Lemma B.9).208

We now illustrate the relation with two examples: we reprise the scenario in the intro-209

duction, and we discuss a case from [3, 4]. More examples are available in Appendix B.1210

I Example 3.5. Consider the opening example in Section 1. The following types describe211

the interactions of P ′r and Pr, respectively:212

T′ =
⊕

q!


cont(int).& p?

{
success(int).end
error(bool).end

stop(unit).& p?
{

success(int).end
error(bool).end

T = & p?


success(int).

⊕
q!
{

cont(int).end
stop(unit).end

error(bool).
⊕

q!
{

cont(int).end
stop(unit).end

213

In order to derive T′ 6 T, we first show the two SO trees such that JT (T′)KSO = {U1,U2}:214

U1 = q!cont(int).& p?
{

success(int).end
error(bool).end

U2 = q!stop(unit).& p?
{

success(int).end
error(bool).end

215

and these are the two SI trees such that JT (T)KSI = {V1,V2}:216

V1 = p?success(int).
⊕

q!
{

cont(int).end
stop(unit).end

V2 = p?error(bool).
⊕

q!
{

cont(int).end
stop(unit).end

217

Therefore, for all i, j ∈ {1, 2}, we can find W′ ∈ JUiKSI and W ∈ JVjKSO such that W′ .W218

can be derived using [ref-B]. Hence, T′ 6 T holds.219
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` ∅ : ε
[t-nul] ` v : S

` (q, `(v)) : q!`(S)
[t-elm]

` hi : σi (i = 1, 2)

` h1 · h2 : σ1 · σ2
[t-queue]

Θ ` 0 : end
[t-0]

Θ, X : T ` X : T
[t-var]

Θ, X : T ` P : T
Θ ` µX.P : T

[t-rec] Θ ` e : S Θ ` P : T
Θ ` q!`〈e〉.P : q!`(S).T

[t-out]

∀i ∈ I Θ, xi : Si ` Pi : Ti
Θ `

∑
i∈I q?`i(xi).Pi : &i∈I q?`i(Si).Ti

[t-ext]
Θ ` e : bool Θ ` Pi : T (i = 1, 2)

Θ ` if e then P1 else P2 : T
[t-cond]

Θ ` P : T T 6 T′

Θ ` P : T′
[t-sub]

Γ = {pi: (σi,Ti) | i ∈ I} ∀i ∈ I ` Pi : Ti ` hi : σi
Γ `

∏
i∈I(pi / Pi | pi / hi)

[t-sess]

Table 3 Typing rules for queues, processes and a session.

I Example 3.6. For the following types T,T′, we have T6T′ (proof: Appendix B.1). Notably,220

this relation cannot be proved by the binary asynchronous subtyping algorithm in [3, 4].221

T = µt1.& p?
{
`1 (S1).p!`3(S3).p!`3(S3).p!`3(S3).t1

`2 (S2).µt2.p!`3(S3).t2
T′ = µt1.& p?

{
`1 (S1).p!`3(S3).t1

`2 (S2).µt2.p!`3(S3).t2

4 Typing System and Type Safety222

Our multiparty session typing system blends [21] with [34, Section 7]: like the latter, we223

type multiparty sessions without need for global types, thus simplifying our formalism and224

generalising our results. The key differences are our asynchronous subtyping (Def. 3.4) and225

our choice of typing environment liveness (Def. 4.4): their interplay yields our preciseness226

results. Before proceeding, we need queue types for message queues, extending Def. 3.1:227

σ ::= ε || p!`(S) || σ · σ
Type ε denotes an empty queue; p!`(S) denotes a queued message with recipient p, label `,228

and payload of sort S; they are concatenated as σ · σ′.229

I Definition 4.1 (Type system). The type system uses 4 judgments: (1) for expressions,230

Θ ` e : S; (2) for queues, ` h : σ; (3) for processes, Θ ` P : T; and (4) for sessions,231

Γ ` M. They are inductively defined in Table 3, with typing environments defined as:232

Γ ::= ∅ || Γ, p : (σ,T) Θ ::= ∅ || Θ, X : T || Θ, x : S

The judgment for expressions is standard (see Appendix C, Table 7). The judgment for233

queues means that queue h has queue type σ. The judgment for processes states that, given234

the types of the variables in Θ, process P behaves as prescribed by T. The judgment for235

sessions states that multiple participants and queues behave as prescribed by Γ, which maps236

each participant p to the pairing of a queue type (for p’s message queue) and a session type237

(for p’s process). If Θ = ∅ we write ` e : S and ` P : T.238

We now comment the rules for processes and sessions (other rules are self-explanatory).239

Rule [t-0] types a terminated process. Rule [t-var] types a process variable with the assumption240

in the environment. By [t-rec], a recursive process is typed with T if the process variable241

body have the same type T. By [t-out], an output process is typed with a singleton selection242

type, if the message being sent is of the correct sort, and the process continuation has the243

continuation type. By [t-ext], a process external choice is typed as a branching type with244

matching participant p and labels `i (for all i∈ I); in the rule premise, each continuation245

process Pi must be typed with the corresponding continuation type Ti, assuming the bound246

variable xi is of sort Si (for all i∈I). By [t-cond], a conditional has type T if its expression247
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has sort bool, and its “then” and “else” branches have type T. Rule [t-sub] is the subsumption248

rule: it states that a process of type T is also typed by any supertype of T (and since 6249

relates types up-to unfolding, this rule makes our type system equi-recursive [33]). By [t-sess],250

a session M is typed by environment Γ if all the participants in M have processes and251

queues typed by the session and queue types pairs in Γ.252

I Example 4.2. The processes Pr and its optimised version P ′r in Section 1 are typable using253

the rules in Def. 4.1, and the types T,T′ in Example 3.5. And since T′ 6 T, by rule [t-sub]254

our type system allows to use P ′r whenever a process of type T (such as Pr) is expected.255

Typing environment evolutions. To formulate the soundness result for our type system,256

we define typing environment reductions. The reductions rely on a standard structural257

congruence relation over queue types, that is the least congruence satisfying:258

σ · ε ≡ ε · σ ≡ σ σ1 · (σ2 · σ3) ≡ (σ1 · σ2) · σ3

σ · p1!`1(S1) · p2!`2(S2) · σ′ ≡ σ · p2!`2(S2) · p1!`1(S1) · σ′ (if p1 6= p2)
For pairs of queue/session types, we define structural congruence as (σ1,T1) ≡ (σ2,T2) iff259

σ1 ≡ σ2 and T1 ≡ T2, and subtyping as (σ1,T1) 6 (σ2,T2) iff σ1 ≡ σ2 and T1 6 T2.260

By extension, we write Γ ≡ Γ′ (resp. Γ 6 Γ′) iff ∀p ∈ dom(Γ∩Γ′): Γ(p)≡ Γ′(p) (resp.261

Γ(p) 6 Γ′(p)) and ∀p∈dom(Γ\Γ′), q∈dom(Γ′\Γ): Γ(p)≡(ε, end)≡Γ′(q).262

I Definition 4.3 (Typing environment reduction). The reduction α−−→ of asynchronous session263

typing environments Γ is inductively defined as follows:264

[e-rcv] p: (q!`k(S′k)·σ,Tp), q: (σq,&i∈I p?`i(Si).Ti),Γ
q:p?`k−−−−→ p: (σ,Tp), q: (σq,Tk),Γ (k∈I, S′k≤:Sk)

[e-send] p : (σ,
⊕

i∈I q!`i(Si).Ti),Γ
p:q!`k−−−→ p : (σ·q!`k(Sk)·ε,Tk),Γ (k ∈ I)

[e-struct] Γ ≡ Γ1
α−−→ Γ′1 ≡ Γ′ =⇒ Γ α−−→ Γ′

265

We often write Γ −→ Γ′ instead of Γ α−−→ Γ′, when α is not important.266

Rule [e-rcv] says that an environment can take a reduction step if participant p has a message267

toward q with label `k and payload sort S′k at the head of its queue, while q’s type is a268

branching from p including label `k and a corresponding sort Sk being supertype of S′k; the269

environment evolves with a reduction labelled q:p?`k, by consuming q’s queued message and270

activating the continuation Tk in q’s type. In rule [e-send] the environment evolves by letting271

participant p (having a selection type) send a message toward q; the reduction is labelled272

p:q!`k (with `k being a selection label), and it places the message at the end of p’s queue.273

Rule [e-struct] closes the reduction under structural congruence.274

Similarly to [34], we define a behavioral property of typing environments (and their275

evolutions) called liveness1: we will use it as a precondition for typing, to ensure that typed276

processes cannot reduce to any error in Table 2.277

I Definition 4.4 (Live typing environment). A typing environment path is a finite or infinite278

sequence of typing environments (Γi)i∈I , where I = {0, 1, 2, . . .} is a set of consecutive natural279

numbers, and, ∀i ∈ I, Γi −→ Γi+1. We say that a path (Γi)i∈I is fair iff, ∀i ∈ I:280

(F1) whenever Γi
p:q!`−−−→ Γ′, then ∃k, `′ such that I 3 k+1 > i, and Γk

p:q!`′

−−−→ Γk+1281

(F2) whenever Γi
p:q?`−−−→ Γ′, then ∃k such that I 3 k+1 > i, and Γk

p:q?`−−−→ Γk+1282

We say that a path (Γi)i∈I is live iff, ∀i ∈ I:283

1 Notably, our definition of liveness is stronger than the “liveness” in [34, Fig. 5], and is closer to “liveness+”
therein: we adopt it because a weaker “liveness” would not allow to achieve Theorem 5.15 later on.
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(L1) if Γi(p) ≡ (q!`(S) · σ , T), then ∃k: I 3 k+1 > i and Γk
q:p?`−−−→ Γk+1284

(L2) if Γi(p) ≡
(
σp , &j∈J q?`j(Sj).Tj

)
, then ∃k, `′: I 3 k+1 > i and Γk

p:q?`′

−−−→ Γk+1285

We say that a typing environment Γ is live iff all fair paths beginning with Γ are live.286

By Def. 4.4, a path is a (possibly infinite) sequence of reductions of a typing environment.287

Intuitively, a fair path represents a “fair scheduling:” along its reductions, every pending288

internal choice eventually enqueues a message (F1), and every pending message reception is289

eventually performed (F2). A path is live if, along its reductions, every queued message is290

eventually consumed (L1), and every waiting external choice eventually consumes a queued291

message (L2). A typing environment is live if, under “fair scheduling,” it yields a live path.292

Liveness is preserved by environment reductions and subtyping, i.e., if Γ is live and Γ −→ Γ′,293

then Γ′ is live (Proposition C.2); and if Γ is live and Γ′ 6 Γ, then Γ′ is live (Lemma C.13).294

Our Theorem 4.5 below says: if sessionM is typed by a live Γ, andM−→M′, thenM295

might anticipate some inputs/outputs prescribed by Γ, as allowed by subtyping 6. Hence,M296

reduces by following some Γ′′6Γ, which evolves to Γ′ that typesM′. (Proofs: Appendix C.3).297

I Theorem 4.5 (Subject Reduction). Assume Γ ` M with Γ live. If M −→ M′, then298

there are live type environments Γ′,Γ′′ such that Γ′′ 6 Γ, Γ′′ −→∗ Γ′ and Γ′ ` M′.299

I Corollary 4.6 (Type Safety and Progress). Let Γ ` M with Γ live. Then, M −→∗M′300

implies M′ 6= error; also, either M′ ≡ p/0 | p/∅, or ∃M′′ such thatM′ −→M′′ 6= error.301

Notably, since our errors (Table 2) include orphan messages, deadlocks, and starvation,302

Corollary 4.6 implies session liveness: a typed session will never deadlock, all its external303

choices will be eventually activated, all its queued messages will be eventually consumed.304

5 Preciseness of Asynchronous Multiparty Session Subtyping305

We now present our main results. Our asynchronous multiparty subtyping 6 (Def. 3.4) is pre-306

cise, with two meanings: it is the largest sound subtyping for our type system (Theorem 5.14),307

and it is the largest liveness-preserving refinement (Theorem 5.15).308

A subtyping relation 6 is sound if it satisfies the Liskov and Wing’s substitution principle309

[28]: if T 6 T′, then a process of type T′ engaged in a well-typed session may be safely310

replaced with a process of type T. If 6 is the largest relation with such a property, then 6 is311

precise; in this case, the implication in the soundness statement is also true when reversed312

— and the reversed implication is called completeness. This is formalised in Def. 5.1 below313

(where we use the contrapositive of the completeness implication).314

I Definition 5.1 (Preciseness). Let 4 be a preorder over session types. We say that 4 is:315

(1) a sound subtyping if T 4 T′ implies that, for all r 6∈ pt(T′),M, P , the following holds:316

a. if
(
∀Q : ` Q : T′ =⇒ Γ ` r / Q | r /∅ | M for some live Γ

)
then317 (

` P : T =⇒ (r / P | r /∅ | M −→∗M′ implies M′ 6= error)
)

318

(2) a complete subtyping if T 64 T′ implies that there are r 6∈ pt(T′),M, P such that:319

a.
(
∀Q : ` Q : T′ =⇒ Γ ` r / Q | r /∅ | M for some live Γ

)
320

b. ` P : T321

c. r / P | r /∅ | M −→∗ error.322

(3) a precise subtyping if it is both sound and complete.323

As customary, our subtyping relation is embedded in the type system via a subsumption324

rule, giving soundness as an immediate consequence of the subject reduction property.325
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p! 6∈ act(W′)
p!`(S).W 6.W′

[n-out]
p? 6∈ act(W′)

p?`(S).W 6.W′
[n-inp]

p! 6∈ act(W)
W 6. p!`(S).W′

[n-out-R]
p? 6∈ act(W)

W 6. p?`(S).W′
[n-inp-R]

` 6= `′

p?`(S).W 6. p?`′(S′).W′
[n-inp-`]

S′ 6≤: S
p?`(S).W 6. p?`(S′).W′

[n-inp-S]
S′ ≤: S W 6.W′

p?`(S).W 6. p?`(S′).W′
[n-inp-W]

` 6= `′

p?`(S).W 6. A(p).p?`′(S′).W′
[n-A-`]

S′ 6≤: S
p?`(S).W 6. A(p).p?`(S′).W′

[n-A-S]

S′ ≤: S W 6. A(p).W′

p?`(S).W 6. A(p).p?`(S′).W′
[n-A-W]

p?`(S).W 6. q!`′(S′).W′
[n-i-o-1]

p?`(S).W 6. A(p).q!`′(S′).W′
[n-i-o-2]

` 6= `′

p!`(S).W 6. p!`′(S′).W′
[n-out-`]

S 6≤: S′

p!`(S).W 6. p!`(S′).W′
[n-out-S]

S ≤: S′ W 66.W′

p!`(S).W 6. p!`(S′).W′
[n-out-W]

` 6= `′

p!`(S).W 6. B(p).p!`′(S′).W′
[n-B-`]

S 6≤: S′

p!`(S).W 6. B(p).p!`(S′).W′
[n-B-S]

S ≤: S′ W 6. B(p).W′

p!`(S).W 6. B(p).p!`(S′).W′
[n-B-W]

Table 4 The relation 6. between SISO trees.

I Theorem 5.2 (Soundness). The asynchronous multiparty session subtyping 6 is sound.326

Proof. Take any T,T′ such that T 6 T′, and r,M satisfying the following condition:327

∀Q : ` Q : T′ =⇒ Γ ` r / Q | r /∅ | M for some live Γ (1)328
329

If ` P : T, we derive by [t-sub] that ` P : T′ holds. By (1), Γ ` r / P | r /∅ | M for some330

live Γ. Hence, by Corollary 4.6, r / P | r /∅ | M −→∗M′ implies M′ 6= error. J331

To prove the completeness of 6, we show that it satisfies item (2) of Def. 5.1, in 4 steps:332

[Step 1] We define the negation 6. of the SISO trees refinement relation by an inductive333

definition, thus getting a perspicuous characterisation of the complement 66 of the334

subtyping relation. In addition, for every pair T,T′ with T 66 T′ we choose a pair U,V′335

satisfying U 66 V′ and T (U) ∈ JT (T)KSO and T (V′) ∈ JT (T′)KSI.336

[Step 2] We define for every U a characteristic process P(U). If T (U) ∈ JT (T)KSO, we prove337

that ` P(U) : T.338

[Step 3] For every V′ with T (V′) ∈ JT (T′)KSI, and for every participant r 6∈ pt(V′), we define339

a characteristic sessionMr,V′ , which is typable if composed with a process Q of type T′:340

∀Q : ` Q : T′ =⇒ Γ ` r / Q | r /∅ | Mr,V′ for some live Γ.

[Step 4] Finally, we show that for all U,V′ such that U 66 V′, the characteristic session341

Mr,V′ (Step 3) reduces to error if composed with the characteristic process of U (Step 2):342

r / P(U) | r /∅ | Mr,V′ −→∗ error.

Hence, we prove the completeness of 6 by showing that, for all T,T′ such that T 66T′, we343

can find r 6∈ pt(T′), P = P(U) (Steps 1,2), andM =Mr,V′ (Step 3) satisfying Def. 5.1(2)344

(Step 4). We now illustrate each step in more detail.345

Step 1: subtyping negation346

In Table 4 we inductively define the relation 6. over SISO trees. It contains all pairs of SISO347

trees that are not related by ., as stated in Lemma 5.3 below. (Proof in Appendix D).348
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The first category of rules checks a direct syntactic mismatch: whether their sets of349

actions are disjunctive ([n-out], [n-inp], [n-out-R], [n-inp-R]); the label of the LHS is not equal to350

the label of the RHS ([n-inp-`], [n-out-`]); or matching labels followed by mismatching sorts or351

continuations ([n-inp-S], [n-out-S], [n-inp-W], [n-out-W]).352

The second category checks more subtle cases related to asynchronous permutations; rule353

[n-A-`] checks a label mismatch when the input on the RHS is preceded by a finite number of354

inputs from other participant; similarly rules [n-A-S] and [n-A-W] check mismatching sorts or355

continuations. Rules [n-i-o-1] and [n-i-o-2] formulate the cases such that the top prefix on the356

LHS is input and the top sequence of prefixes on the RHS consists of a finite number of inputs357

from other participants and/or outputs. Finally, rules [N-B-`], [n-B-S] and [n-B-W] check the358

cases of label mismatch, or matching labels followed by mismatching sorts or continuations of359

the two types with output prefixes targeting a same participant, where the RHS is prefixed360

by a finite number of outputs to other participants and/or inputs. (Details: Appendix D).361

I Lemma 5.3. Let W and W′ be SISO trees. If ¬(W .W′) then W 6.W′ is derivable.362

It is immediate from Def. 3.4 that T is not a subtype of T′, written T 66 T′, if and only if:363

∃U ∈ JT (T)KSO ∃V′ ∈ JT (T′)KSI ∀W ∈ JUKSI ∀W′ ∈ JV′KSO W 6.W′ (2)364

Moreover, we prove that whenever T 66 T′, we can find regular, syntax-derived SO/SI trees365

usable as the witnesses U,V′ in (2) (Appendix, page 50). Thus, T 66 T′ implies:366

∃U,V′ : T (U)∈JT (T)KSO T (V′)∈JT (T′)KSI ∀W∈JT (U)KSI ∀W′∈JT (V′)KSO W 6.W′ (3)367

I Example 5.4. Consider the example in Section 1, and its types T′ and T in Example 3.5:368

T′ =
⊕

q!


cont(int).& p?

{
success(int).end
error(bool).end

stop(unit).& p?
{

success(int).end
error(bool).end

T = & p?


success(int).

⊕
q!
{

cont(int).end
stop(unit).end

error(bool).
⊕

q!
{

cont(int).end
stop(unit).end

369

We have seen that T′ 6 T holds (Example 3.5), and thus, by subsumption, our type system370

allows to use the optimised process P ′r in place of Pr (Example 4.2). We now show that371

the inverse relation does not hold, i.e., T 66 T′, hence the inverse process replacement is372

disallowed. Take, e.g., U,V′ as follows, noticing that T (U)∈JT (T)KSO and T (V′)∈JT (T′)KSI:373

U = & p?
{

success(int).q!cont(int).end
error(bool).q!stop(unit).end

V′ =
⊕

q!
{

cont(int).p?success(int).end
stop(int).p?error(bool).end

For all W ∈ JT (U)KSI = {p?success(int).q!cont(int).end , p?error(bool).q!stop(unit).end}374

and all W′ ∈ JT (V′)KSO = {q!cont(int).p?success(int).end , q!stop(unit).p?error(bool).end}375

we get by [n-i-o-1] that W 6.W′. Therefore, we conclude T 66 T′.376

Step 2: characteristic processes377

For any SO type U, we define a characteristic process P(U) (Def. 5.5): intuitively, it is a378

process constructed to communicate as prescribed by U, and to be typable by U.379

I Definition 5.5. The characteristic process P(U) of type U is defined inductively as follows:380

P(end) = 0 P(t) = Xt P(µt.U) = µXt.P(U) P(p!`(S).U) = p!`〈valLSM〉.P(U)
P
(
&i∈I p?`i(Si).Ui

)
=
∑
i∈I p?`i(xi).if exprLxi, SiM then P(Ui) else P(Ui)

where:
{

valLnatM = 1 valLintM = −1 valLboolM = true
exprLe, boolM = (¬e) exprLe, natM = (succ(e) > 0) exprLe, intM = (inv(e) > 0)
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By Def. 5.5, for every output in U, P(U) sends a value valLSM of the right sort S; and for381

every external choice in U, P(U) performs a branching, and uses any received value xi of382

sort Si in a boolean expression exprLxi,SiM.383

Crucially, for all T and U such that T (U) ∈ JT (T)KSO (e.g., from (3) above), we have384

U 6 T: therefore, P(U) is also typable by T, as per Prop. 5.6 below. (Proof: Appendix D)385

I Proposition 5.6. For all closed types T and U, if T (U)∈JT (T)KSO then ` P(U) : T.386

Step 3: characteristic session387

The next step to prove completeness is to define for each session type V′ and participant388

r 6∈ pt(V′) a characteristic sessionMr,V′ , that is well typed (with a live typing environment)389

when composed with participant r associated with a process of type V′ and empty queue.390

For a SI type V′ and r 6∈ pt(V′) = {p1, . . . , pm}, we define m characteristic SO session391

types where participants p1, . . . , pm are engaged in a live multiparty interaction with r,392

and with each other. Def. 5.7 ensures that after each communication between r and some393

p∈pt(V′), there is a cyclic sequence of communications starting with p, involving all other394

q∈pt(V′), and ending with p — with each participant acting both as receiver, and as sender.395

I Definition 5.7. Let V′ be a SI session type and r 6∈ pt(V′) = {p1, ..., pm}. For every396

k∈{1, ...,m}, if m≥2 we define a characteristic SO session type cyclic(V′, pk, r) as follows:397

cyclic(end, pk, r) = end
cyclic(t, pk, r) = t
cyclic(µt.V′′1 , pk, r) = µt.cyclic(V′′1 , pk, r)
cyclic(pk?`(S).V′, pk, r) = r!`(S).pk+1!`(bool).pk−1?`(bool).cyclic(V′, pk, r)
cyclic(q?`(S).V′, pk, r) = pk−1?`(bool).pk+1!`(bool).cyclic(V′, pk, r) (if q 6=pk)
cyclic(

⊕
j∈J pk!`j(Sj).V′j , pk, r) = &j∈J r?`j(Sj).pk+1!`j(bool).pk−1?`j(bool).cyclic(V′j , pk, r)

cyclic(
⊕

j∈J q!`j(Sj).V′j , pk, r) = &j∈J pk−1?`j(bool).pk+1!`j(bool).cyclic(V′j , pk, r) (if q 6=pk)

398

399

If m=1 (i.e., if there is only one participant in V′) we define cyclic(V′, p1, r) as above, but400

we omit the (highlighted) cyclic communications, and the cases with q 6=pk do not apply.401

I Example 5.8 (Characteristic session types). Consider the following SI type:402

V′ = µt.
⊕{

q!`2(nat).p?`1(nat).t , q!`3(nat).p?`4(nat).t
}

Let r 6∈ pt(V′). The characteristic session types for participants p, q∈pt(V′) are:403

cyclic(V′, p, r) = µt.&
{

q?`2(bool).q!`2(bool).r!`1(nat).q!`1(bool).q?`1(bool).t
q?`3(bool).q!`3(bool).r!`4(nat).q!`4(bool).q?`4(bool).t

cyclic(V′, q, r) = µt.&
{

r?`2(nat).p!`2(bool).p?`2(bool).p?`1(bool).p!`1(bool).t
r?`3(nat).p!`3(bool).p?`3(bool).p?`4(bool).p!`4(bool).t

Note that if r follows type V′, then it must select and send to q one message between `2404

and `3; correspondingly, the characteristic session type for q receives the message (with a405

branching), and propagates it to p, who sends it back to q (cyclic communication). Then, r406

waits for a message from p (either `1 or `4, depending on the previous selection): p will send407

such a message, and also propagate it to q with a cyclic communication. �408

Given an SI type V′, we can use Def. 5.7 to construct the following typing environment:409

Γ = {r: (ε,V′)} ∪ {p: (ε,Up) | p∈pt(V′)} where ∀p∈pt(V′):Up = cyclic(V′, p, r) (4)410
411

i.e., we compose V′ with the characteristic session types of all its participants. The cyclic412

communications of Def. 5.7 ensure that Γ is live. We can use Γ to type the composition of413

a process for r, of type V′, together with the characteristic processes of the characteristic414
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session types of each participants in V′: we call such processes the characteristic session415

Mr,V′ . This is formalised in Def. 5.9 and Prop. 5.10 below.416

I Definition 5.9. For any SI type V′ and r 6∈pt(V′), we define the characteristic session:417

Mr,V′ =
∏

p∈pt(V′)

(
p / P(Up) | p /∅

)
where ∀p∈pt(V′) : Up = cyclic(V′, p, r)

I Proposition 5.10. Let V′ be a SI type and r 6∈pt(V′). Let Q be a process such that ` Q : V′.418

Then, there is a live typing environment Γ (see (4)) such that Γ ` r / Q | r /∅ | Mr,V′ .419

Crucially, for all T′ and V′ such that T (V′)∈ JT (T′)KSI (e.g., from (3) above), we have420

T′ 6 V′. Thus, by subsumption,Mr,V′ is also typable with a process of type T′ (Prop. 5.11).421

I Proposition 5.11. Take any T′, r 6∈pt(T′), SI type V′ such that T (V′)∈JT (T′)KSI, and Q422

such that ` Q : T′. Then, there is a live Γ (see (4)) such that Γ ` r / Q | r /∅ | Mr,V′ .423

Step 4: completeness424

This final step of our completeness proof encompasses all elements introduced thus far.425

(Proofs in Appendix D)426

I Proposition 5.12. Let T and T′ be session types such that T 66 T′. Take any r 6∈T′. Then,427

there are U and V′ with T (U)∈JT (T)KSO and T (V′)∈JT (T′)KSI and U 66 V′ such that:428

1. ∀Q : ` Q : T′ =⇒ Γ ` r / Q | r /∅ | Mr,V′ for some live Γ; (by (4) and Prop. 5.11)429

2. ` P(U) : T; (by Prop. 5.6)430

3. r / P(U) | r /∅ | Mr,V′ −→∗ error.431

Intuitively, we obtain item 3 of Prop. 5.12 because the characteristic sessionMr,V′ expects432

to interact with a process of type V′ (or a subtype, like T′); however, when a process that433

behaves like U is inserted, the cyclic communications and/or the expressions ofMr,V′ (given434

by Def. 5.5 and 5.7) are disrupted: this is because U 66 V′, and the (incorrect) message435

reorderings and mutations allowed by 6. (Table 4) cause the errors in Table 2.436

We now conclude with our main results.437

I Theorem 5.13. The asynchronous multiparty session subtyping 6 is complete.438

Proof. Direct consequence of Prop. 5.12: by taking r and lettingM =Mr,V′ and P = P(U)439

from its statement, we satisfy item (2) of Def. 5.1. J440

I Theorem 5.14. The asynchronous multiparty session subtyping 6 is precise.441

Proof. Direct consequence of Theorems 5.2 and 5.13, which satisfy item (3) of Def. 5.1. J442

Our results also provide a proof that our multiparty asynchronous subtyping is precise443

wrt. liveness, as formalised below — where Γ{p 7→ (σ,T)} is the typing environment obtained444

from Γ by replacing the entry for p with (σ,T).445

I Theorem 5.15. For all session types T and T′, multiparty asynchronous subtyping 6 is:446

sound wrt. liveness: if T6T′, then ∀Γ with Γ(r)=(ε,T′), if Γ is live, Γ{r 7→(ε,T)} is live;447

complete wrt. liveness: if T66T′, then ∃Γ live with Γ(r)=(ε,T′), but Γ{r 7→(ε,T)} is not live.448

Proof. Soundness of 6 is a result used to prove subject reduction (Lemma C.12). Complete-449

ness, instead, descends from Prop. 5.12: for any T,T′ such that T 66T′, it builds live a typing450

context Γ (see (4)) with Γ(r)=(ε,T′) and cyclic communications (item 1). Observe that the451

environment Γ{r 7→ (ε,T)} types the session of Prop. 5.12(3), that reduces to error. Hence,452

by the contrapositive of Corollary 4.6, we conclude that Γ{r 7→ (ε,T)} is not live. J453
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6 Related Work and Conclusion454

The preciseness of subtyping relations has been adopted to justify the canonicity of refinement,455

in the context of both functional and concurrent calculi. Operational preciseness of subtyping456

was first introduced in [2] (and later published in [27]), and applied to λ-calculus with457

iso-recursive types. Later, [17] adapts the idea of [2] to the setting of the concurrent λ-458

calculus with intersection and union types by [16]. In the context of the λ-calculus, a459

similar framework, semantic subtyping, is proposed in [9]: each type T is interpreted as460

the set of values having type T , and subtyping is defined as subset inclusion between type461

interpretations. This gives a precise subtyping as long as the calculus allows to operationally462

distinguish values of different types. Semantic subtyping is also studied in [7] (for a π-calculus463

with a patterned input and IO-types), and in [8] (for a π-calculus with binary session types);464

in both works, types are built using type constructors including union, intersection and465

negation. Semantic subtyping is precise for the calculi of [7, 8, 18]: this is due to the type466

case constructor in [18], and to the blocking of inputs for values of “wrong” types in [7, 8].467

In the context of binary session types, the first general formulation of precise subtyping468

(synchronous and asynchronous) is given in [12, 11], for a π-calculus where processes are469

typed by giving session types to channels (as in [22]). The first result by [12, 11] is that the470

well-known branching-selection subtyping [19, 13] is sound and complete for the synchronous471

binary session π- calculus. [12, 11] also examine an asynchronous binary session π-calculus,472

and introduce a subtyping relation (restricting the subtyping for the higher-order π-calculus473

by [29]) that is also proved precise.474

In the context of multiparty session types, an asynchronous subtyping relation was475

proposed in [30] (and claimed to be decidable — a claim later disproved in [6]). Following an476

approach similar to [12, 11], [21] shows that the synchronous multiparty extension of binary477

session subtyping [19] is sound and complete, hence precise.478

Asynchronous session subtyping was shown to be undecidable, even for binary sessions,479

in [26, 5], using a link between session types and communicating automata theories [14, 15].480

Various proposals of limited decidable subsets of binary session automata are in [3, 26, 6]. The481

aim of our paper is not finding a decidable approximation of asynchronous multiparty session482

subtyping, but defining a canonical, precise subtyping. Interestingly, our SISO decomposition483

technique leads to: (1) intuitive but general refinement rules (see Example 3.6, where 6484

proves an example not supported by the algorithm in [3]); and (2) preciseness of 6 wrt.485

liveness (Theorem 5.15) which is directly usable to define the largest multiparty asynchronous486

refinement relation wrt. liveness in communicating session automata [14, 15].487

Conclusion. Unlike this paper, no other published work addresses precise asynchronous488

multiparty session subtyping. A main challenge was the exact formalisation of the subtyping489

itself, which must satisfy many desiderata: it must capture a wide variety of input/output490

reorderings performed by different participants, without being too strict (otherwise, com-491

pleteness is lost) nor too lax (otherwise, soundness is lost); moreover, its definition must not492

be overly complex to understand, and tractable in proofs. We achieved these desiderata with493

our novel approach, based on SISO tree decomposition and refinement, which yeilds a simpler494

subtyping relation than [12, 11] (see Remark 3.3). Moreover, our results are much more495

general than [21]: by using live typing environments (Def. 4.4), we are not limited to sessions496

that match some global type; our results are also stronger, as we prove soundness wrt. a497

wider range of errors (see Table 2). Our future work includes the study of precise subtyping498

for richer multiparty session π-calculi, with multiple session initiations and delegation.499
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A Appendix of Section 2577

We list an example of processes from Section 1 and omitted definitions from Section 2.578

A.1 Syntax579

Multiparty sessions are ranged over byM,M′, . . . ; session participants by p, q, . . .; processes580

by P,Q, . . .; queues by h, h′, . . .; message labels by `, `′, . . . ; values, by v, v′, . . .; expressions581

by e, e′, . . .; expression variables by x, y, z . . . ; and process variables by X,Y, Z, . . . .582

We give a full definition of act(P ) below:583

act(P ) =


{p?} ∪ {act(Pi) : i ∈ I} P =

∑
i∈I p?`i(xi).Pi

{p!} ∪ {act(P ′)} P = p!`〈e〉.P ′
act(P1) ∪ act(P2) P = if e then P1 else P2
act(P ′) P = µX.P ′

∅ P = 0

584

A.2 Operational semantics585

We give the operational semantics of expressions. A value v can be a natural number n, an586

integer i, or a boolean true / false. An expression e can be a variable, a value, or a term built587

from expressions by applying the operators succ, inv,¬, or the relation = . An evaluation588

context E is an expression with exactly one hole. The value v of expression e (notation e ↓ v)589

is computed as defined in Table 5. The successor operation succ is defined only on natural590

numbers, the inverse operation inv is defined on integers, and negation ¬ is defined only on591

boolean values.

succ(n) ↓ (n + 1) inv(i) ↓ (−i) ¬true ↓ false ¬false ↓ true v ↓ v

e1 ↓ v1 e2 ↓ v2 v1 = v2

(e1 = e2) ↓ true
e1 ↓ v1 e2 ↓ v2 v1 6= v2

(e1 = e2) ↓ false
e ↓ v E(v) ↓ v′

E(e) ↓ v′

Table 5 Expression evaluation

592

Table 6 defines structural congruence rules.593

I Remark A.1. Some error rules in Table 2 partially overlap: e.g., a deadlocked session may594

reduce to error via [err-deadlock], and possibly also via [err-orph-msg] and [err-starv].595

I Example A.2 (Reduction relations). We now exemplify the operational semantics using596

the running example from the Introduction. The session597

r/
∑{

p?success(x).if (x > 42) then q!cont〈x〉.0 else q!stop〈〉.0
p?error(fatal).if (¬fatal) then q!cont〈43〉.0 else q!stop〈〉.0

}
| p/· · · | q/· · · | . . .598

cannot reduce further since r is blocked until a message is sent by p to r. If this does not599

happen, the session will reduce to error by [err-starv]. However, the optimised session600

r / if (. . .) then q!cont〈43〉.
∑{

p?success(x).0
p?error(y).0

}
else q!stop〈〉.

∑{
p?success(x).0
p?error(y).0

}
601
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h1 · (q1, `1(v1)) · (q2, `2(v2)) · h2 ≡ h1 · (q2, `2(v2)) · (q1, `1(v1)) · h2 if q1 6= q2

∅ · h ≡ h h ·∅ ≡ h h1 · (h2 · h3) ≡ (h1 · h2) · h3

µX.P ≡ P{µX.P/X}

p / 0 | p /∅ | M ≡M M1 | M2 ≡M2 | M1 (M1 | M2) | M3 ≡M1 | (M2 | M3)
P ≡ Q and h1 ≡ h2 ⇒ p / P | p / h1 | M ≡ p / Q | p / h2 | M

Table 6 Structural congruence rules for queues, processes and sessions

can reduce since r internally decides whether to reduce, either to602

r /
∑{

p?success(x).0
p?error(y).0

}
| r / (q, cont(43)) | p / · · · | q / · · · | . . .603

or to604

r /
∑{

p?success(x).0
p?error(y).0

}
| r / (q, stop()) | p / · · · | q / · · · | . . .605

by the rule [r-send] and then q to continue the reduction with the rule [r-rcv]. Further, r reduces606

to 0 if it receives the success/error message from p. This kind of desirable optimisation will607

be achieved by means of subtyping in the following section.608

B Appendix of Section 3609

We say that a binary relation R over single-input-single-output trees is a type simulation if610

it complies with the rules given in Definition 3.2, i.e., if for every (W1,W2) ∈ R there is a611

rule with W1 . W2 in its conclusion and it holds (W′1,W′2) ∈ R if W′1 . W′2 is in the premise612

of the rule. It is required that all other premises hold as well.613

I Example B.1. In this example, we present some basic cases when inputs and/or outputs614

can be swapped. We give three simple examples and prove that W1 .W2 by constructing615

in each case a suitable tree simulation for T (W1) . T (W2) (denoted as W1 .W2):616

if W1 = µt.p!`(S).q?`′(S′).t, W2 = µt.q?`′(S′).p!`(S).t, the tree simulation is617

R = {(W1,W2), (q?`′(S′).W1, q?`′(S′).W2)}618

if W1 = µt.p!`(S).p?`′(S′).t, W2 = µt.p?`′(S′).p!`(S).t, the tree simulation is619

R = {(W1,W2), (p?`′(S′).W1, p?`′(S′).W2)}620

I Lemma B.2. If R ⊆. is a tree simulation and (W,W′) ∈ R then act(W) = act(W′).621

I Lemma B.3. 1. If B(p) 6= B(q) and there are W1 and W2 such that W = B(p).W1 and622

W = B(q).W2, then one of the following holds:623

a. W = B(p).B(q)
1 .W2, where B(q) = B(p).B(q)

1 and W1 = B(q)
1 .W2;624

b. W = B(q).B(p)
1 .W1, where B(p) = B(q).B(p)

1 and W2 = B(p)
1 .W1.625

2. If A(p) 6= A(q) and there are W1 and W2 such that W = A(p).W1 and W = A(q).W2, then626

one of the following holds:627

a. W = A(p).A(q)
1 .W2, where A(q) = A(p).A(q)

1 and W1 = A(q)
1 .W2;628

b. W = A(q).A(p)
1 .W1, where A(p) = A(q).A(p)

1 and W2 = A(p)
1 .W1.629
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3. If W = B(p).W1 and W = A(q).W2, for some W1 and W2, where B(p) is not an I-sequence,630

then W = A(q).B(p)
1 .W1, where B(p) = A(q).B(p)

1 and W2 = B(p)
1 .W1.631

I Lemma B.4. Let R ⊆. be a tree simulation.632

1. If (B(p).p!`(S).W,W′) ∈ R then633

W′ = B(p)
1 .p!`(S1).W1 or W′ = p!`(S1).W1, where S ≤: S1.634

2. If (A(p).p?`(S).W,W′) ∈ R then635

W′ = A(p)
1 .p?`(S1).W1 or W′ = p?`(S1).W1, where S1 ≤: S.636

Proof. 1. The proof is by induction on the structure of context B(p). The basis step is637

included in the induction step if we notice that the lemma holds by definition of . for638

(p!`(S).W,W′) ∈ R. For the inductive step, we distinguish two cases:639

a. Let B(p) = q!`′(S′).B(p)
2 and p 6= q.640

Then, (q!`′(S′).B(p)
2 .p!`(S).W,W′) ∈ R could be derived by rules [ref-out] or [ref-B].641

i. If the rule applied is [ref-out] then we have642

W′ = q!`′(S′′).W′′ and S′ ≤: S′′ and (B(p)
2 .p!`(S).W,W′′) ∈ R.643

By induction hypothesis644

W′′ = B(p)
1 .p!`(S1).W1 or W′′ = p!`(S1).W1, where S ≤: S1.645

Both cases follow directly.646

ii. If the rule applied is [ref-B] then we have647

W′ = B(q)
1 .q!`′(S′′).W′′ and S′ ≤: S′′ and (B(p)

2 .p!`(S).W,B(q)
1 .W′′) ∈ R.648

By induction hypothesis one of the following holds:649

A. If B(q)
1 .W′′ = B(p)

1 .p!`(S1).W1 then,650

either B(q)
1 = B(p)

1 and W′′ = p!`(S1).W1 and651

W′ = B(q)
1 .q!`′(S′′).p!`(S1).W1,652

or, if B(q)
1 6= B(p)

1 , by Lemma B.3653

B(q)
1 .W′′ = B(q)

2 .B(p)
3 .p!`(S1).W1, where B(q)

2 .B(p)
3 = B(p)

1 and
W′ = B(q)

2 .B(p)
3 .p!`(S1).W1, or

B(q)
1 .W′′ = B(p)

1 .p!`(S1).B(q)
3 .W′′, where B(q)

1 = B(p)
1 .p!`(S1).B(q)

3 and
W′ = B(p)

1 .p!`(S1).B(q)
3 .q!`′(S′′).W′′.

654

B. If B(q)
1 .W′′ = p!`(S1).W1, where S ≤: S1, then, either B(q)

1 = p!`(S1) and W′′ =655

W1, or by Lemma B.3656

B(q)
1 .W′′ = p!`(S1).B(q)

2 .W′′, where B(q)
1 = p!`(S1).B(q)

2 .657

In both cases the proof follows directly.658

b. Let B(p) = q?`′(S′).B(p)
2 . Then, (q?`′(S′).B(p)

2 .p!`(S).W,W′) ∈ R could be derived by659

rules [ref-in] or [ref-A].660

i. If [ref-in] is applied then we get this case by the same reasoning as in the first part661

of the proof.662
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ii. If the rule applied is [ref-A] then663

W′ = A(q)
1 .q?`′(S′′).W′′ and S′′ ≤: S′ and (B(p)

2 .p!`(S).W,A(q)
1 .W′′) ∈ R.664

By induction hypothesis we have only the case A(q)
1 .W′′ = B(p)

1 .p!`(S1).W1, where665

S ≤: S1, since the case A(q)
1 .W′′ = p!`(S1).W1 is not possible. By Lemma B.3 we666

have A(q)
1 .W′′ = A(q)

1 .B(p)
3 .p!`(S1).W1, where A(q)

1 .B(p)
3 = B(p)

1 .667

2. The proof is by induction on the structure of context A(p) and follows by similar reasoning.668

J669

By definition of . we consider related pairs by peeling left-hand side trees from left to right,670

i.e. by matching and eliminating always the leftmost tree. The proof of transitivity requires671

also to consider actions that are somewhere in the middle of the left-hand side tree. For672

that purpose, we associate each binary relation R over SISO trees with its extension R+ as673

follows:674

R+ = R ∪ {(B(p).W,B(p)
1 .W1) : (B(p).p!`(S).W,B(p)

1 .p!`(S1).W1) ∈ R}
∪ {(A(p).W,A(p)

1 .W1) : (A(p).p?`(S).W,A(p)
1 .p?`(S1).W1) ∈ R}

∪ {(B(p).W,W1) : (B(p).p!`(S).W, p!`(S1).W1) ∈ R}
∪ {(A(p).W,W1) : (A(p).p?`(S).W, p?`(S1).W1) ∈ R}.

675

I Lemma B.5. If R ⊆. is a tree simulation then R+ is a tree simulation.676

Proof. We discuss some interesting cases. Let (B(p).W,B(p)
1 .W1) ∈ R+ \ R.677

1. If B(p) = q!`′(S′).B(p)
2 , then,678

(q!`′(S′).B(p)
2 .p!`(S).W,B(p)

1 .p!`(S1).W1) ∈ R679

could be derived by two rules:680

a. if the rule applied is [ref-out] then681

B(p)
1 = q!`′(S′′).B(p)

3 and (B(p)
2 .p!`(S).W,B(p)

3 .p!`(S1).W1) ∈ R, where S′ ≤: S′′.682

By definition of R+, we get (B(p)
2 .W,B(p)

3 .W1) ∈ R+.683

b. if the rule applied is [ref-B] then B(p)
1 .p!`(S1).W1 = B(q).q!`′(S′′).W′′ and by Lemma B.3684

we distinguish two cases685

i.

B(p)
1 .p!`(S1).W1 = B(q).q!`′(S′′).B(p)

3 .p!`(S1).W1, where B(p)
1 = B(q).q!`′(S′′).B(p)

3686

Then, by [ref-B] we get (B(p)
2 .p!`(S).W,B(q).B(p)

3 .p!`(S1).W1) ∈ R and S′ ≤: S′′. By687

definition of R+, we have (B(p)
2 .W,B(q).B(p)

3 .W1) ∈ R+.688

ii.

B(p)
1 .p!`(S1).W1 = B(p)

1 .p!`(S1).B(q)
2 .q!`′(S′′).W′′, where B(p)

1 .p!`(S1).B(q)
2 = B(q).689

Then, we apply similar reasoning as in the first case.690

2. if B(p) = q?`′(S′).B(p)
2 and (q?`′(S′).B(p)

2 .p!`(S).W,B(p)
1 .p!`(S1).W1) ∈ R, then by Lemma B.4691

we have B(p)
1 .p!`(S1).W1 = A(q)

1 .q?`′(S′′).W′′ and S′′ ≤: S′. By Lemma B.3692

B(p)
1 .p!`(S1).W1 = A(q)

1 .q?`′(S′′).B(p)
3 .p!`(S1).W1, where B(p)

1 = A(q)
1 .q?`′(S′′).B(p)

3 .693

Then, by [ref-A] we get (B(p)
2 .p!`(S).W,A(q)

1 .B(p)
3 .p!`(S1).W1) ∈ R, and consequently694

(B(p)
2 .W,A(q)

1 .B(p)
3 .W1) ∈ R+.695



Ghilezan, Pantović, Prokić, Scalas, Yoshida XX:21

J696

I Lemma B.6. The refinement relation . over SISO trees is reflexive and transitive.697

Proof. Reflexivity is straightforward: any SISO tree W is related to itself by a coinductive698

derivation which only uses rules [ref-in], [ref-out], and [ref-end] in Def. 3.2.699

We now focus on the proof of transitivity. If W1 .W2 and W2 .W3 then there are tree700

simulations R1 and R2 such that (W1,W2) ∈ R1 and (W2,W3) ∈ R2. We shall prove that701

relation702

R = R1 ◦ R+
2703

is a tree simulation that contains (W1,W3). It follows directly from definition of R+
704

that (W1,W3) ∈ R and it remains to prove that R is a tree simulation. Assuming that705

(W′1,W′3) ∈ R we consider the following possible cases for W′1 :706

1. W′1 = end : By definition of R there is W′2 such that (end,W′2) ∈ R1 and (W′2,W′3) ∈ R+
2 .707

Since R1 and R+
2 are tree simulations, it holds by [ref-end] that W′2 = end and also708

W′3 = end.709

2. W′1 = p!`(S).W : By definition of R there is W′2 such that (p!`(S).W,W′2) ∈ R1 and710

(W′2,W′3) ∈ R+
2 . Since R1 is tree simulation, using definition of B-sequence and applying711

[ref-out] or [ref-B], we get three possibilities for W′2:712

a. W′2 = p!`(S1).W′ with S ≤: S1 and (W,W′) ∈ R1 : Since R+
2 is tree simulation and713

(W′2,W′3) ∈ R+
2 , there are two possibilities for W′3 (by [ref-out] or [ref-B]):714

i. W′3 = p!`(S2).W′′ and S1 ≤: S2 and (W′,W′′) ∈ R+
2 : Then, by transitivity of ≤:715

and definition of R we get716

S ≤: S2 and (W,W′′) ∈ R1 ◦ R+
2 = R.717

ii. W′3 = B(p).p!`(S2).W′′ and S1 ≤: S2 and (W′,B(p).W′′) ∈ R2 : Then, by transitivity718

of ≤: and definition of R we get719

S ≤: S2 and (W,B(p).W′′) ∈ R1 ◦ R+
2 = R.720

b. W′2 = q!`′(S′).B(p).p!`(S1).W′ with S ≤: S1 and721

(W, q!`′(S′).B(p).W′) ∈ R1 and act(W) = act(q!`′(S′).B(p).W′) : (5)722

Since (W′2,W′3) ∈ R+
2 , we have two cases (by [ref-out] or [ref-B]):723

i. W′3 = B(q)
11 .q!`′(S′′).W′′ with S′ ≤: S′′ and (B(p).p!`(S1).W′,B(q)

11 .W′′) ∈ R+
2 . By724

Lemma B.4, we have that725

W′3 = B(p)
1 .p!`(S2).W′′′ and S1 ≤: S2.726

By Lemma B.3, there are two possibilities:727

A. W′3 = B(q)
11 .q!`′(S′′).B(p)

2 .p!`(S2).W′′′ and p! 6∈ act(B(q)
11 ) :728

(q!`′(S′).B(p).W′,B(q)
11 .q!`′(S′′).B(p)

2 .W′′′) ∈ R+
2 and

act(q!`′(S′).B(p).W′) = act(B(q)
11 .q!`′(S′′).B(p)

2 .W′′′) (6)729

Hence, we conclude from (5) and (6) that730

(W,B(q)
11 .q!`′(S′′).B(p)

2 .W′′′) ∈ R1 ◦R+
2 and act(W) = act(B(q)

11 .q!`′(S′′).B(p)
2 .W′′′).731
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B. W′3 = B(p)
1 .p!`(S2).B(q)

12 .q!`′(S′′).W′′ and q! 6∈ act(B(p)
1 ) : The proof is similar to732

the previous case.733

ii. W′3 = q!`′(S′′).W′′ with S′ ≤: S′′ and (B(p).p!`(S1).W′,W′′) ∈ R+
2 .734

c. W′2 = q?`′(S′).B(p).p!`(S1).W′ with S ≤: S1 and735

(W, q?`′(S′).B(p).W′) ∈ R1 and act(W) = act(q?`′(S′).B(p).W′) : (7)736

Since (W′2,W′3) ∈ R+
2 , we have two cases (by [ref-in] and [ref-B]):737

i. W′3 = q?`′(S′′).W′′ and S′′ ≤: S′ and (B(p).p!`(S1).W′,W′′) ∈ R+
2 ):738

ii. W′3 = A(q).q?`′(S′′).W′′ and S′′ ≤: S′ and (B(p).p!`(S1).W′,A(q).W′′) ∈ R+
2 ):739

3. W′1 = p?`(S).W : The proof in this case follows similarly.740

J741

I Lemma B.7. Let JTKSI = {Vj : j ∈ J} and let Y = {Wj : j ∈ J}, where Wj ∈ JVjKSO for742

j ∈ J . Then, there is U ∈ JTKSO such that JUKSI ⊆ Y .743

Proof. In this proof we consider coinductive interpretation of the definition of tree T.744

1. T = end: Since JTKSI = {end}, by selecting U = Y = end the case follows.745

2. T = &i∈I p?`i(Si).Ti: Assume JTKSI = {p?`i(Si).V′ji
: V′ji

∈ JTiKSI, ji ∈ Ji, i ∈ I}. Then,746

Y = {Wj ∈ JVjKSO : j ∈ J} = {Wji
= p?`i(Si).W′ji

: W′ji
∈ JViKSO, ji ∈ Ji, i ∈ I}.747

Since for i ∈ I we have JTiKSI = {V′ji
: ji ∈ Ji} and Yi = {W′ji

∈ JV′ji
KSI : ji ∈ Ji}, we can748

apply coinductive hypothesis and obtain Ui ∈ JTiKSO, such that JUiKSI ⊆ Yi. Hence, for749

U = &i∈I p?`i(Si).Ui we have U ∈ JTKSO and JUKSI ⊆ Y .750

3. T =
⊕

i∈I p!`i(Si).Ti: Assume JTKSI = {
⊕

i∈I p!`i(Si).V′ji
: V′ji

∈ JTiKSI, ji ∈ Ji, i ∈ I}.751

Then,752

Y = {Wj ∈ JVjKSO : j ∈ J} = {Wki
= p!`i(Si).W′ki

: W′ki
∈ JViKSO, ji ∈ Ki ⊆ Ji, i ∈ N ⊆ I}753

We claim that there is i ∈ I such that for all ji ∈ Ji holds {p!`i(Si).JVji
KSO} ∩ Y 6= ∅.754

To prove the claim let us assume the opposite: for all i ∈ I there is ji ∈ Ji such that755

{p!`i(Si).JVji
KSO} ∩ Y = ∅. For such ji’s, let us consider V =

⊕
i∈I p!`i(Si).Vji

. Since756

V ∈ JTKSI and JVKSO ∩ Y = ∅ we obtain a contradiction with the definition of Y .757

Let us now fix i ∈ I for which the above claim holds. Let Y ′ = {W′ki
: p!`i(Si).W′ki

∈ Y }.758

For Ti we have JTiKSI = {V′ji
: ji ∈ Ji} and for each ji ∈ Ji there is W′ji

∈ JV′ji
KSO759

such that W′ij ∈ Y
′. Hence, we can apply coinductive hypothesis and get U′ ∈ JTiKSO760

for which JU′KSI ⊆ Y ′ holds. By taking U = p!`i(Si).U′ we can conclude U ∈ JTKSO and761

JUKSI ⊆ {p!`i(Si).W′ji
: W′ji

∈ Y ′} ⊆ Y .762

J763

I Lemma B.8. For any tree T we have764

∀U ∈ JTKSO ∀V ∈ JTKSI ∃W such that W ∈ JUKSI ∩ JVKSO.765

Proof. By coinduction on the definition of tree T.766

1. T = end: Since JTKSO = JTKSI = {end}, the proof follows directly.767
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2. T = &i∈I p?`i(Si).Ti: Then,768

U ∈ {&
i∈I

p?`i(Si).U′ : U′ ∈ JTiKSO}769

V ∈ {p?`(Si).V′ : V′ ∈ JTiKSI, i ∈ I}770
771

By coinductive hypothesis for all i ∈ I we have772

∀U′ ∈ JTiKSO ∀V′ ∈ JTiKSI ∃W′ such that W′ ∈ JU′KSI ∩ JV′KSO.773

Thus, for all U ∈ JTKSO, i ∈ I and V ∈ {p?`(Si).V′ : V′ ∈ JTiKSI} we obtain there exists774

W = p?`(Si).W′, such that775

W ∈ JUKSI ∩ JVKSO776

3. T =
⊕

i∈I p!`i(Si).Ti: Follows by a similar reasoning.777

J778

I Lemma B.9. The asynchronous subtyping relation 6 over trees is reflexive and transitive.779

Proof. Reflexivity is straightforward from Lemma B.8 and reflexivity of ..780

We now focus on the proof of transitivity. Assume that T1 6 T2 and T2 6 T3. From781

T1 6 T2, by Definition 3.4, we have782

∀U1 ∈ JT1KSO ∀V2 ∈ JT2KSI ∃W1 ∈ JU1KSI ∃W2 ∈ JV2KSO W1 .W2 (8)783

From T2 6 T3, by Definition 3.4,784

∀U2 ∈ JT2KSO ∀V3 ∈ JT3KSI ∃W′2 ∈ JU2KSI ∃W3 ∈ JV3KSO W′2 .W3 (9)785

Let us now fix one U1 ∈ JT1KSO. By (8) we have that786

∀V2 ∈ JT2KSI ∃W2 ∈ JV2KSO ∃W1 ∈ JU1KSI such that W1 .W2 (10)787

and let Y be the set of all such W2’s. By Lemma B.7, there exist U ∈ JT2KSO such that788

JUKSI ⊆ Y . Now from (9) we have ∀V3 ∈ JT3KSI ∃W2 ∈ JUKSI ∃W3 ∈ JV3KSO such that W2 . W3.789

Then, we conclude by transitivity of . that790

∀U1 ∈ JT1KSO ∀V3 ∈ JT3KSI ∃W1 ∈ JU1KSI ∃W3 ∈ JV3KSO W1 .W3.791

J792

B.1 Further Examples793

We illustrate the refinement relation with an example.794

I Example B.10. Consider W1 = µt.p!`(S).q?`′(S′).t and W2 = µt.q?`′(S′).p!`(S).t. Their795

trees are related by the following coinductive derivation:796

T (W1) . T (W2)
q?`′(S′). T (W1) . q?`′(S′). T (W2)

[ref-in]

T (W1) . T (W2) [ref-B] with B(p) = q?`′(S′)
797

Next we give a simple asynchronous subtyping example.798
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I Example B.11 (Asynchronous subtyping). Let T = p!`1(S1).& q?
{
`3(S3).end
`4(S4).end

and T′ =799

⊕
p!
{
`1(S1).q?`3(S3).end
`2(S2).end

We show that T 6 T′. Notice that T is a SO type and T′ is800

a SI type: hence, by Def. 3.4, we only need to show that there are W ∈ JT (T)KSI and801

W′ ∈ JT (T′)KSO such that W .W′. Since:802

JT (T)KSI = { p!`1(S1).q?`3(S3).end, p!`1(S1).q?`4(S4).end }
JT (T′)KSO = { p!`1(S1).q?`3(S3).end, p!`2(S2).end }803

we have that W .W′ holds for W = W′ = p!`1(S1).q?`3(S3).end, by reflexivity of ..804

Next we consider a complex example of asynchronous subtyping which contains branching,805

selection and recursion. This example is undecided by the algorithm in [3, 4] (it returns806

“unknown”) but we can reason by our rules using the SISO decomposition method as807

demonstrated below.808

I Example B.12. Consider the examples of session types M1 and M2 from [4, Example809

3.21], here denoted by T and T′, respectively, where810

T = µt1.& p?
{
`1 (S1).p!`3(S3).p!`3(S3).p!`3(S3).t1

`2 (S2).µt2.p!`3(S3).t2
T′ = µt1.& p?

{
`1 (S1).p!`3(S3).t1

`2 (S2).µt2.p!`3(S3).t2
811

p!T: p?`1(S1) p!`2(S2)
`3(S3)

p!

`3(S3)

p!

`3(S3)

`3(S3) p!T′: p?
`1(S1)

`3(S3)

p!`2(S2)
`3(S3)

812

In [3, 4], if the algorithm returns “true” (“false”), then the considered types are (are not)813

in the subtyping relation. The algorithm can return “unknown”, meaning that the algorithm814

cannot check whether the types are in the subtyping relation or not.815

For the considered types, the algorithm in [3, 4] returns “unknown” and thus it cannot816

check that T 6 T′, which is, according to the authors of [3, 4], due to the complex accumulation817

patterns of these types which cannot be recognised by their theory.818

Here our approach comes into the picture and we demonstrate that the two decomposition819

functions into SO and SI trees are sufficiently fine-grained to recognise the complex structure820

of these types and to prove that T 6 T′. We show that types T and T′ are in the subtyping821

relation T 6 T′, i.e., the corresponding session trees are in the subtyping relation822

T (T) 6 T (T′) by showing that823

∀U ∈ JTKSO ∀V′ ∈ JT′KSI ∃W ∈ JUKSI ∃W′ ∈ JV′KSO W .W′824

where T = T (T) and T′ = T (T′). For the sake of simplicity, let us use the following notations825

and abbreviations:826

W1 = T (µt.p?`1(S1).p!`3(S3).t) W2 = p?`2(S2). T (µt.p!`3(S3).t)
W3 = T (µt.p?`1(S1).p!`3(S3).p!`3(S3).p!`3(S3).t)827

828

π1 ≡ p?`1(S1).p!`3(S3) πn1 ≡ π1. . . . .π1.︸ ︷︷ ︸
n

π3 ≡ p?`1(S1).p!`3(S3).p!`3(S3).p!`3(S3) πn3 ≡ π3. . . . .π3.︸ ︷︷ ︸
n

829
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Then JTKSO = {T} since T is a SO tree, whereas830

JT′KSI = {W1,W2, π1.W2, π
2
1 .W2, . . . , π

n
1 .W2, . . . }831

then U = T and832

JUKSI = {W3,W2, π3.W2, π
2
3 .W2, . . . , π

n
3 .W2, . . . }833

Notice that all V′ ∈ JT′KSI are SISO trees hence JV′KSO = {V′} and W′ = V′.834

We show now that for all W′ ∈ JT′KSI there is a W ∈ JUKSI such that W .W′ by showing:835

1. W3 .W1836

2. πn3 .W2 . πn1 .W2, n ≥ 0837

1. The simulation tree for W3 .W1 is838

R = {(W3,W1),
((p!`3(S3))3.W3, p!`3(S3).W1),
((p!`3(S3))2.W3,W1),
(p!`3(S3).W3, p?`1(S1).W1),
(W3, (p?`1(S1).p?`1(S1))n.W1),
((p!`3(S3))3.W3, (p?`1(S1).p?`1(S1))n.p!`3(S3).W1),
((p!`3(S3))2.W3, (p?`1(S1).p?`1(S1))n.W1),
(p!`3(S3).W3, (p?`1(S1).p?`1(S1))n.p?`1(S1).W1) | n ≥ 1}

839

where (p?`1(S1).p?`1(S1))n ≡ p?`1(S1).p?`1(S1). . . . p?`1(S1).p?`1(S1).︸ ︷︷ ︸
2n

n ∈ N and (p!`3(S3))i ≡840

p!`3(S3). . . . p!`3(S3)︸ ︷︷ ︸
i

i = 1, 2, 3.841

Proof. The trees W3 and W1 are related by the following coinductive derivations:842

for n ≥ 1843

W3 . (p?`1(S1).p?`1(S1))n+1.W1

p!`3(S3).W3 . (p?`1(S1).p?`1(S1))n.p?`1(S1).W1
[ref-B], B(p) = (p?`1(S1).p?`1(S1))n+1

(p!`3(S3))2.W3 . (p?`1(S1).p?`1(S1))n.W1
[ref-B], B(p) = (p?`1(S1).p?`1(S1))np?`1(S1)

(p!`3(S3))3.W3 . (p?`1(S1).p?`1(S1))n.p!`3(S3).W1
[ref-B], B(p) = (p?`1(S1).p?`1(S1))n

W3 . (p?`1(S1).p?`1(S1))n.W1
[ref-in]

844

W3 . p?`1(S1).p?`1(S1).W1

p!`3(S3).W3 . p?`1(S1).W1
[ref-B], B(p) = p?`1(S1).p?`1(S1)

(p!`3(S3))2.W3 .W1
[ref-B], B(p) = p?`1(S1)

(p!`3(S3))3.W3 . p!`3(S3).W1
[ref-out]

W3 .W1
[ref-in]

845

2. Case πn3 .W2 . πn1 .W2, n ≥ 0.846

If n = 0, then W2 .W2 holds by reflexivity of ., Lemma B.6.847

In case n > 0, we first show that848

πn3 .W2 . π1.π
n−1
3 .W2 (11)849
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The tree simulation is850

R = {(πn3 .W2, π1.π
n−1
3 .W2),

((p!`3(S3))3.πn−1
3 .W2, p!`3(S3).πn−1

3 .W2),
((p!`3(S3))2.πn−1

3 .W2, π
n−1
3 .W2),

(p!`3(S3).πn−1
3 .W2, π1.p!`3(S3).πn−2

3 .W2),
(πn−1

3 .W2, π1.π
n−2
3 .W2),

...
(π3.W2, π1.W2),
((p!`3(S3))3.W2, p!`3(S3).W2),
((p!`3(S3))2.W2,W2),
(p!`3(S3).W2,W2),
(W2,W2)}

851

The refinement πn3 .W2 . π1.π
n−1
3 .W2 is derived by the following coinductive derivation852

W2 .W2

p!`3(S3).W2 .W2
[ref-B], B(p) = p?`1(S1)

(p!`3(S3))2.W2 .W2
[ref-B], B(p) = p?`1(S1)

(p!`3(S3))3.W2 . p!`3(S3).W2
[ref-out]

π3.W2 . π1.W2
[ref-in]

p!`3(S3).π3.W2 . π1.p!`3(S3).W2
[ref-B], B(p) = p?`1(S1)

(p!`3(S3))2.π3.W2 . π3.W2
[ref-B], B(p) = p?`1(S1)

(p!`3(S3))3.π3.W2 . p!`3(S3).π3.W2
[ref-out]

π2
3 .W2 . π1.π3.W2

[ref-in]

...
πn3 .W2 . π1.π

n−1
3 .W2

[ref-in]
853

This coinductive derivation proves all refinements854

πn−k3 .W2 . π1.π
n−k−1
3 .W2, k = 0, . . . , n− 1.855

By k consecutive application first of [ref-out] and then [ref-in], it holds that856

πk1π
n−k
3 .W2 . π

k+1
1 .πn−k−1

3 .W2, k = 0, . . . , n− 1.857

which means that858

πn3 .W2 . π1.π
n−1
3 .W2,

π1.π
n−1
3 .W2 . π2

1 .π
n−2
3 .W2,

...
πk1π

n−k
3 .W2 . π

k+1
1 .πn−k−1

3 .W2,
...
πn−1

1 π3.W2 . πn1 .W2

859

then πn3 .W2 . πn1 .W2 follows by transitivity of ., Lemma B.6.860

861

862

This concludes the proof that T 6 T′, which could not be given by the answer (Yes or863

No) by the algorithm in [4, Example 3.21].864
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Θ ` n : nat Θ ` i : int Θ ` true : bool Θ ` false : bool Θ, x : S ` x : S

Θ ` e : nat

Θ ` succ(e) : nat

Θ ` e : int

Θ ` inv(e) : int

Θ ` e : bool

Θ ` ¬e : bool

Θ ` e1 : int Θ ` e2 : int

Θ ` e1 = e2 : bool

Θ ` e : S S ≤: S′

Θ ` e : S′

Table 7 Typing rules for expressions.

C Appendix of Section 4865

C.1 Typing Rules for Expression866

Table 7 lists the typing rules for expressions.867

C.2 Proof of Theorem C.13868

The main aim of this section is to prove Theorem C.13.869

I Lemma C.1. If Γ is live and Γ ≡ Γ′ then Γ′ is also live.870

Proof. From the the definition of Γ ≡ Γ′, Γ and Γ′ perform exactly the same reductions (i.e.,871

they are strongly bisimilar). Therefore, the result follows by Definition 4.4. J872

I Proposition C.2. If Γ is live and Γ −→ Γ′, then, Γ′ is live.873

Proof. Direct consequence of Def. 4.4. J874

In the rest of this section, we will use the following alternative formulation of Def. 4.4,875

that is more handy to construct proofs by coinduction.876

I Definition C.3 (Coinductive liveness). ϕ is a p-liveness property iff, whenever ϕ(Γ):877

[LP&] Γ(p) = (σp,Tp) with Tp = &i∈I q?`i(Si).Ti implies that, for all fair paths (Γj)j∈J878

such that Γ0 = Γ, ∃h ∈ J, k ∈ I such that Γ −→∗ Γh−1 −→ Γh, with:879

1. Γh−1(p) = (σp,Tp) and Γh−1(q) = (p!`k(S) · σ′,Tq);880

2. Γh(p) = (σp,Tk) and Γh(q) = (σ′,Tq);881

[LP⊕] Γ(p) = (q!`(S) · σ,Tp) implies that, for all fair paths (Γj)j∈J such that Γ0 = Γ,882

∃h ∈ J, k ∈ I such that Γ −→∗ Γh−1 −→ Γh, with:883

1. Γh−1(p) = (q!`(S) · σ′p,T′p) and Γh−1(q) = (σq,&i∈I p?`i(Si).Ti);884

2. Γh(p) = (σ′p,T′p) and Γh(q) = (σq,Tk);885

[LP−→] Γ −→ Γ′ implies ϕ(Γ′).886

We say that Γ is p-live iff ϕ(Γ) for some p-liveness property ϕ. We say that Γ is live iff Γ is887

p-live for all p ∈ dom(Γ).888
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I Definition C.4 (SISO tree projections). The projections of a SISO tree W are SISO trees889

coinductively defined as follows:890

end �! p = end
(p!`(S).W′) �! p = p!`(S).(W′ �! p)

(q!`(S).W′) �! p =
{

W′ �! p if q 6=p ∧ p∈pt(W′)
end if q 6=p ∧ p 6∈pt(W′)

(q?`(S).W′) �! p =
{

W′ �! p if p∈pt(W′)
end if p 6∈pt(W′)

end �? p = end
(p?`(S).W′) �? p = p?`(S).(W′ �? p)

(q?`(S).W′) �? p =
{

W′ �? p if q 6=p ∧ p∈pt(W′)
end if q 6=p ∧ p 6∈pt(W′)

(q!`(S).W′) �? p =
{

W′ �? p if p∈pt(W′)
end if p 6∈pt(W′)

891

I Definition C.5. The strict refinement v between SISO trees is coinductively defined as:892

S′ ≤: S W vW′

p?`(S).W v p?`(S′).W′
[str-in]

S ≤: S′ W vW′

p!`(S).W v p!`(S′).W′
[str-out]

end v end
[str-end]

893

By Def. C.5, v is a sub-relation of . that does not allow to change the order of inputs894

nor outputs. And by Prop. C.6 below, the refinement . does not alter the order of inputs nor895

outputs from/to a given participant p: the message reorderings allowed by . can only alter896

interactions targeting different participants, or outputs wrt. inputs to a same participant.897

I Proposition C.6. For all W and W′ and p, if W . W′, then (W �! p) v (W′ �! p) and898

(W �? p) v (W′ �? p).899

Proof. By coinduction on the derivation of W .W′. J900

I Proposition C.7. Take any p-live Γ with Γ(p) = (σ,T). Take Γ′ = Γ{p 7→ (σ′,T′)} with901

σ′·T′ 6 σ·T. Then, for any fair path (Γ′j)j∈J′ with Γ′0 = Γ′:902

1. for all n, the first n inputs/outputs of p along (Γ′j)j∈J′ match the first n input/output903

actions of some W′ ∈ JU′KSI, with U′ ∈ JT′KSO;904

2. there is a fair path (Γj)j∈J with Γ0 = Γ such that, for all n, the first n inputs/outputs of905

p along (Γj)j∈J match the first n input/output actions of some W ∈ JVKSO, with V ∈ JTKSI;906

and907

3. σ′·W′ . σ·W.908

Proof. Before proceeding, with a slight abuse of notation, we “rewind” Γ and Γ′, i.e., we909

consider Γ and Γ′ in the statement to be defined such that:910

Γ(p) = (ε, σ·T) Γ′(p) = (ε, σ′·T′) (12)911
912

i.e., the outputs in σ and σ′ are not yet queued; instead, the queues of Γ(p) and Γ′(p) are913

empty, and the outputs σ and σ′ are prefixes of the respective types, and are about to be914

sent. We will “undo” this rewinding at the end of the proof, to obtain the final result.915

Since σ′·T′ 6 σ·T (by hypothesis), by Def. 3.4 we have:916

∀U′ ∈ Jσ′·T′KSO ∀V ∈ Jσ·TKSI ∃W2 ∈ JU′KSI ∃W1 ∈ JVKSO W2 .W1 (13)917
918

Observe that U′ and V in (13) are quantified over sets of session trees beginning with a919

same sequence of singleton selections (σ′ and σ, respectively). Therefore, such sequences920

of selections appear at the beginning of all SISO trees extracted from any such U′ and V′,921

which means:922

∀U′ ∈ JT′KSO ∀V ∈ JTKSI ∃Wa ∈ JU′KSI ∃Wb ∈ JVKSO σ′·Wa . σ·Wb (14)923
924
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We now define a procedure that, using the first m steps of a fair path (Γ′j)j∈J′ , constructs925

the beginning of a fair path (Γj)j∈J ; also, the procedure ensures that: (1) in the first m926

steps of (Γ′j)j∈J′ , participant p follows σ′ and then a prefix of some Wa; (2) the path (Γj)j∈J927

is constructed so that p follows σ and then some Wb such that σ′·Wa . σ·Wb; and (3) such928

Wa and Wb are quantified in (14). In particular, the procedure lets each participant in929

Γ′ \ p = Γ \ p fire the same sequences of actions along (Γ′j)j∈J′ and (Γj)j∈J . The difference is930

that some actions may be delayed in (Γj)j∈J , because p in Γ′ may anticipate some outputs931

and inputs (thanks to subtyping) wrt. Γ, and unlock some participants in Γ′ earlier than Γ:932

the procedure remembers any delayed actions (and their order), and fires them as soon as933

they become enabled, thus ensuring fairness.934

For the procedure, we use:935

p-actions′(i): sequence of input/output actions performed by p in Γ′ when it reaches Γ′i.936

We begin with p-actions′(0) = ε;937

γ(i): number of reduction steps constructed along (Γj)j∈J when Γ′ has reached Γ′i. We938

begin with γ(0) = 0;939

p-actions(i): sequence of input/output actions performed by p in Γ when Γ′ reaches Γ′i940

(note that, at this stage, Γ has reached Γγ(i)). We begin with p-actions(0) = ε;941

W(i): set of SISO tree pairs (Wa,Wb) such that, when Γ′ has reached Γ′i, and Γ has942

reached Γγ(i), the sequence p-actions′(i) matches a prefix of σ′·Wa, and the sequence943

p-actions(i) matches a prefix of σ·Wb, and σ·Wa . σ′·Wb. We begin withW(0) containing944

all pairs Wa and Wb quantified in (14);945

delayed(i): sequence of reduction labels that have been fired by Γ′ when it reaches Γ′i,946

but have not (yet) been fired by Γ when it reaches Γγ(i). Labels in this sequence will be947

fired with the highest priority. We begin with delayed(0 ) = ε.948

We also use the following function:949

tryFire(d,Γ, d′, f, s) =


if d = ε then (d′, f, s)

else if Γ head(d)−−−−−→ Γ′ then tryFire(tail(d),Γ′, d′, f ·head(d), s·Γ)
else tryFire(tail(d),Γ, d′·head(d), f, s)

950

The function tryFire(d,Γ, d′, f, s) tries to fire the environment reduction labels in the951

sequence d from Γ. The other parameters are used along recursive calls, to build the triplet952

that is returned by the function:953

d′: a sequence of labels that have not been fired. It is extended each time the topmost954

label in d cannot be fired;955

f : a sequence of labels that have been fired. It is extended each time the topmost label956

in d is fired; and957

s: a sequence of typing environments reducing from one into another through the sequence958

of labels f . It is extended each time f is extended (see above).959

When (Γ′j)j∈J′ performs a step m+ 1, with a label α such that Γ′m
α−−→ Γ′m+1, we proceed960

as follows:961

1. if α does not involve an input/output by p, i.e., α = q:r?` or α = q:r!` for some q, r 6= p:962

a. p-actions′(m+ 1) = p-actions′(m)963

2. otherwise (i.e., if α = p:q!` or α = p:q?`):964
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a. p-actions′(m+ 1) = p-actions′(m)·α;965

3. (d′, f, s) = tryFire
(
delayed(m),Γγ(m), ε, ε, ε

)
(i.e., try to fire each delayed action)966

4. Γ∗ = if |s| > 0 then last(s) else Γγ(m) (i.e., Γ∗ is the latest env. reached from Γ)967

5. ∀i = 1..|s| : Γγ(m)+i = s(i) (i.e., we extend the path of Γ to reach Γ∗)968

6. if Γ∗ α−−→ Γ′′ (for some Γ′′), we add Γ′′ to the path of Γ, as follows:969

a. Γγ(m)+|s|+1 = Γ′′970

b. γ(m+ 1) = γ(m) + |s|+ 1971

c. delayed(m + 1 ) = d′972

d. if α does not involve an input/output by p, i.e., α = q:r?` or α = q:r!` for some q, r 6= p:973

i. p-actions(m+ 1) = p-actions(m) extended with all labels in f involving p;974

e. otherwise (i.e., if α = p:q!` or α = p:q?`):975

i. p-actions(m+ 1) = p-actions(m) extended with all labels in f involving p, followed976

by α;977

7. otherwise (i.e., if there is no Γ′′ such that Γ∗ α−−→ Γ′′), we add α to the delayed actions,978

as follows:979

a. p-actions(m+ 1) = p-actions(m) extended with all labels in f involving p980

b. γ(m+ 1) = γ(m) + |s|981

c. delayed(m + 1 ) = d′·α982

8. W(m+ 1) =
{

(Wa,Wb) ∈ W(m)
∣∣∣∣ Wa matches p-actions′(m+ 1)

Wb matches p-actions(m+ 1)

}
983

The procedure has the following invariants, for all i ≥ 0:984

(i1) p-actions′(i) is the sequence if inputs/outputs of p fired along the transitions from Γ′0 = Γ′985

to Γ′i;986

(i2) p-actions(i) is the sequence if inputs/outputs of p fired along the transitions from Γ0 = Γ987

to Γγ(i);988

(i3) W(i) 6= ∅ and ∀(Wa,Wb) ∈ W(i): Wa matches p-actions′(i) and Wb matches p-actions(i).989

We now obtain our thesis, by invariants (i1)–(i3) above: by taking any fair path (Γ′j)j∈J′990

with Γ′0 = Γ′, and applying the procedure above for any n = | p-actions′(m)| for some m ≥ n991

such that m ∈ J ′ (i.e., for any number n of reductions of p that are performed along the992

path, within m steps), we find some W′ such that σ′·W′ matches p-actions′(m), and we993

construct the beginning of a fair path (Γj)j∈J where p behaves according to some W such994

that σ·W matches p-actions(m), and such that σ′·W′ . σ·W; and by increasing n and m, we995

correspondingly extend the sequences p-actions′(m) and p-actions(m).996

To conclude the proof, we need to undo the “rewinding” in (12). Consider any path997

(Γ′j)j∈J′ , and the corresponding (Γj)j∈J obtained with Γ′,Γ rewinded as in (12): we can998

undo the rewinding of σ′ and σ by:999

1. choosing a path (Γ′j)j∈J′ that fires the outputs in σ′ in its first reductions, thus reaching1000

the “original” Γ′ from the statement;1001

2. then, for such a path of Γ′, the procedure gives us the beginning of a corresponding live1002

path (Γj)j∈J that fires all outputs in σ, within k steps (for some k). By induction on k1003

and σ, we can reorder the first k actions of (Γj)j∈J so that the outputs in σ are fired1004

first, thus reaching the “original” Γ from the statement;1005

3. after the outputs in σ and σ′ are fired along such paths of Γ′ and Γ, we have that p follows1006

SISO trees Wa and Wb extracted respectively from T′ and T, and we have σ·Wa . σ′·Wb:1007

therefore, such paths satisfy the statement.1008
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J1009

I Proposition C.8. Take any p-live Γ with Γ(p) = (σ,T). Take Γ′ = Γ{p 7→ (σ′,T′)} with1010

σ′·T′ 6 σ·T. Assume that there is a fair path (Γ′j)j∈J′ with Γ′0 = Γ′ such that, for some1011

q, `,Sr:1012

∀j ∈ J ′, σr,Tr : Γ′j(r) 6= (q!`(Sr)·σr,Tr) (15)1013
1014

Then, there is a fair path (Γj)j∈J with Γ0 = Γ such that,1015

∀j ∈ J, σr,Tr : Γj(r) 6= (q!`(Sr)·σr,Tr) (16)1016
1017

Proof. Take the path (Γ′j)j∈J′ . By Prop. C.7 there is a SISO tree W′ describing the first n1018

reductions (for any n) of p in Γ′, and a corresponding SISO tree W such that σ′·W′ . σ·W1019

describing the reductions of p in Γ along a fair path (Γj)j∈J . By Prop. C.6, σ′·W′ contains1020

the same sequences of per-participant inputs and outputs of σ·W; moreover, by Def. 3.2, W′1021

can perform the outputs appearing in W, possibly earlier. And by the path construction in1022

Prop. C.7, each participant q ∈ dom(Γ) = dom(Γ′) (with q 6= p) can fire along (Γ′j)j∈J′ at1023

least the same outputs and the same inputs (in the same respective order) that it fires along1024

(Γj)j∈J . Now, observe that by hypothesis (15), along the fair path (Γ′j)j∈J′ , participant r1025

never produces an output q!`(Sr); but then, along (Γj)j∈J , participant r never produces the1026

output q!`(Sr), either. Therefore, we obtain (16). J1027

I Proposition C.9. Take any p-live Γ with Γ(p) = (σ,T). Take Γ′ = Γ{p 7→ (σ′,T′)} with1028

σ′·T′ 6 σ·T. Assume that there is a fair path (Γ′j)j∈J′ with Γ′0 = Γ such that, for some1029

q, I, `i,Sr,i,Tr,i (i ∈ I):1030

∀j ∈ J ′, σr : Γ′j(r) 6=
(
σr,&

i∈I
q?`i(Sr,i).Tr,i

)
(17)1031

1032

Then, there is a fair path (Γj)j∈J with Γ0 = Γ such that:1033

∀j ∈ J, σr : Γj(r) 6=
(
σr,&

i∈I
q?`i(Sr,i).Tr,i

)
(18)1034

1035

Proof. Similar to Prop. C.8. J1036

I Definition C.10 (Queue output prefixing). We write σ·T for the session tree obtained by1037

prefixing T with the sequence of singleton internal choices matching the sequence of outputs1038

in σ.1039

I Lemma C.11. If Γ, p:(σ,T) is p-live and σ′·T′ 6 σ·T, then Γ, p:(σ′,T′) is p-live.1040

Proof. Let L be the set of all p-live typing contexts, i.e., the largest p-liveness property by1041

Def. C.3. Consider the following property:1042

P = L ∪ L′ where L′ =

Γ{p 7→ (σ′,T′)}

∣∣∣∣∣∣
Γ ∈ L
Γ(p) = (σ,T)
σ′·T′ 6 σ·T

 (19)1043

1044

We now prove that P is a p-liveness property — i.e., we prove that each element of P1045

satisfies the clauses of Def. C.3. Since all elements of L trivially satisfy the clauses, we only1046
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need to examine the elements of L′: to this purpose, we consider each Γ′ ∈ L′, and observe1047

that, by (19), there exist Γ, σ,T, σ′,T′ such that:1048

Γ′ = Γ{p 7→ (σ′,T′)} (20)1049

Γ(p) = (σ,T) (21)1050

σ′·T′ 6 σ·T (22)1051
1052

By (22) and Def. 3.4, we also have:1053

∀U′ ∈ Jσ′·T′KSO ∀V ∈ Jσ·TKSI ∃W1 ∈ JU′KSI ∃W2 ∈ JVKSO W1 .W2 (23)1054
1055

Observe that by the definitions of J·KSO and J·KSI on page 6, and by Def. 3.2, all relations1056

W1 . W2 in (23) are yielded by a same refinement rule. We proceed by cases on such a rule.1057

Case [ref-end]. In this case, we have σ′·T′ . σ·T = end, which means σ′ = σ = ε and1058

T′ = T = end. Therefore, by (21) and (20), Γ′ = Γ ∈ L, and thus, we conclude that Γ′1059

satisfies the clauses of Def. C.3.1060

Case [ref-in]. In this case, we have:1061

σ = σ′ = ε (24)1062

∃q, I, I ′, `i,Si,S′i,Ti,T′i such that:1063

T′ = &
i∈I∪I′

q?`i(S′i).T′i and T = &
i∈I

q?`i(Si).Ti (25)1064

∀i ∈ I : Si ≤: S′i and T′i . Ti (26)1065
1066

We now show that Γ′ satisfies all clauses of Def. C.3:1067

clause [LP&]. Since Γ is p-live, we know that, for all fair paths (Γj)j∈J such that1068

Γ0 = Γ, ∃h ∈ J, k ∈ I such that Γ −→∗ Γh−1 −→ Γh, with:1069

1. Γh−1(p) = (σ,T) and Γh−1(q) = (p!`(Sq) · σq,Tq) with ` = `i and Sq 6 Si for some1070

i ∈ I1071

2. Γh(p) = (σ,Ti) and Γh(q) = (σq,Tq).1072

Now, for all such (Γj)j∈J , we can construct a path corresponding (Γ′j)j∈J′ such that:1073

∗ Γ′0 = Γ′1074

∗ ∀n ∈ 0..h− 1 : Γ′n = Γn{p 7→ (σ′,T′)};1075

∗ Γ′h = Γh{p 7→ (σ′,T′i)} (i.e., the queue of Γh(p) is preserved in Γ′h(p));1076

∗ the rest of the path after the h-th reduction is arbitrary (but fair).1077

Observe that (Γ′j)j∈J′ is fair, reproduces the first h steps of (Γj)j∈J , and triggers the1078

top-level input of Γ′(p). Also, observe that all fair paths from Γ′ eventually trigger1079

the top-level input of Γ′(p): in fact, if (by contradiction) we assume that there is a1080

fair path from Γ′ that never triggers Γ′(p)’s input, then (by inverting the construction1081

above) we would find a corresponding fair path of Γ that never triggers Γ(p)’s input —1082

i.e., we would conclude that Γ is not p-live (contradiction). Thus, we conclude that Γ′1083

satisfies clause [LP&] of Def. C.3;1084

clause [LP⊕]. The clause is vacuously satisfied;1085

clause [LP−→]. Assume Γ′ −→ Γ′′. We have two possibilities:1086

(a) the reduction does not involve p. Then, there is a corresponding reduction Γ −→ Γ′′′1087

with Γ′′ = Γ′′′{p 7→ (σ′,T′)}. Observe that Γ′′′ is p-live, and thus, Γ′′′ ∈ L; therefore,1088

by (19), we have Γ′′ ∈ L′ ⊆ P. Thus, we conclude that Γ′ satisfies clause [LP−→] of1089

Def. C.3;1090
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(b) the reduction does involve p. There are three sub-cases:1091

(i) p is enqueuing an output toward some participant r. This case is impossible, by1092

(25);1093

(ii) p is receiving an input from q, i.e., Γ′(q) = Γ(q) = (p!`i(Sq) ·σq,Tq) with Sq ≤: S′i1094

and Γ′′(p) = (σ′,T′i) (for some i ∈ I). Notice that, since Γ is p-live, the same1095

output from q can be received by p in Γ, and thus, there is a corresponding1096

reduction Γ −→ Γ′′′ where Γ′′′(p) = (σ,Ti) and Γ′′ = Γ′′′{p 7→ (σ′,T′i)}. Observe1097

that Γ′′′ is also p-live, and thus, Γ′′′ ∈ L; therefore, by (26) and (19), we have1098

Γ′′ ∈ L′ ⊆ P. Hence, we conclude that Γ′ satisfies clause [LP−→] of Def. C.3;1099

(iii) one of p’s queued outputs in σ′ is received by another participant. This case is1100

impossible, by (24).1101

Case [ref-A]. In this case, we have:1102

σ = σ′ = ε (27)1103

∃I, I ′, `i,S′i,T′i : T′ = &
i∈I∪I′

q?`i(S′i).T′i (28)1104

for all W1,W2 in (23), ∃i ∈ I,A(q), `i,Si,S′i,W,W′, such that:1105

W1 = q?`i(S′i).W′ and W2 = A(q).q?`i(Si).W (29)1106

Si ≤: S′i and W′ . A(q).W and act(W′) = act(A(q).W) (30)1107
1108

We now show that Γ′ satisfies all clauses of Def. C.3:1109

clause [LP&]. We proceed by contradiction: we show that if there is a fair path (Γ′j)j∈J′1110

(with Γ′0 = Γ′) that violates clause [LP&], then there is a corresponding fair path (Γj)j∈J1111

(with Γ0 = Γ) that violates the same clause, which would lead to the absurd conclusion1112

that Γ is not p-live. Such a hypothetical path (Γ′j)j∈J′ consists of a series of transitions1113

Γ′j−1
αj−−→ Γ′j (for j ∈ J ′) where, ∀j ∈ J ′, αj does not involve p (by (27)). This means1114

that:1115

∀j ∈ J ′ :6 ∃Tq, σq,Sq : Γ′j(q) = (p!`i(Sq)·σq,Tq) with Sq ≤: S′i (for any i ∈ I) (31)1116
1117

But then, by Prop. C.8, there is a fair path (Γj)j∈J with Γ0 = Γ where p reduces1118

according to some W2 in (29), and such that:1119

∀j ∈ J :6 ∃Tq, σq,Sq : Γj(q) = (p!`i(Sq)·σq,Tq) with Sq ≤: Si (for any i ∈ I) (32)1120
1121

Now, observe that the fair path (Γj)j∈J is constructed using Prop. C.7, and therefore,1122

will eventually attempt to fire the input q?`i(Si) of W2 in (29) — but no suitable1123

output will be available, by (32): thus, we obtain that Γ is not p-live — contradiction.1124

Therefore, we conclude that Γ′ satisfies clause [LP&] of Def. C.3;1125

clause [LP⊕]. The clause is vacuously satisfied;1126

clause [LP−→]. Assume Γ′ −→ Γ′′. We have two possibilities:1127

(a) the reduction does not involve p. The proof is similar to case [ref-in][LP−→](a) above;1128

(b) the reduction does involve p. There are three sub-cases:1129

(i) p is enqueuing an output toward some participant r. This case is impossible, by1130

(28);1131

(ii) p is receiving an input from q, i.e., for some i ∈ I:1132

Γ′(q) = Γ(q) = (p!`i(Sq) · σq,Tq) with Sq ≤: S′i (33)1133
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Γ′ p:q?`i−−−→ Γ′′ with Γ′′(p) = (σ′,T′i) (34)1134
1135

By Prop. C.7, the fair paths of Γ that match some witness W2 in (29) eventually1136

perform the reduction α above. But then, consider the session tree T∗ that only1137

has SISO trees similar to W2 in (23), except that each one performs the input1138

q?`j(S) immediately — i.e.:1139

∀U′ ∈ Jσ′·T′KSO ∀V∗ ∈ Jσ·T∗KSI

∃W1 = q?`i(S′i).W′ ∈ JU′KSI ∃W∗ = q?`i(Si).A(q).W ∈ JV∗KSO W1 .W∗ (35)1140

1141

And now, consider the typing environment Γ∗ = Γ{p 7→ (σ,T∗)}. Such Γ∗ is1142

p-live: it realises (part of) the fair paths of Γ, except that it consumes q’s1143

queued output earlier — and thus, we have Γ∗ ∈ L. Now, consider Γ′′′ such that1144

Γ∗ p:q?`i−−−→ Γ′′′: by clause [LP−→] of Def. C.3, we have Γ′′′ ∈ L. Also, we have1145

Γ′′′(p) = (σ,T∗∗) such that:1146

∀U′ ∈ Jσ′·T′iKSO ∀V∗∗ ∈ Jσ·T∗∗KSI

∃W1 = W′ ∈ JU′KSI ∃W∗ = A(q).W ∈ JV∗∗KSO W1 .W∗ (by Def. 4.3 and (30))1147
1148

Therefore, by Def. 3.4, we have Γ′′′(p) = (σ,T∗∗), and Γ′′ = Γ′′′{p 7→ (σ′,T′i)},1149

with σ′·T′i 6 σ·T∗∗ — hence, by (30) and (19), we also have Γ′′ ∈ L′ ⊆ P . Thus,1150

we conclude that Γ′ satisfies clause [LP−→] of Def. C.3;1151

(iii) one of p’s queued outputs in σ′ is received by another participant. This case is1152

impossible, by (27).1153

Case [ref-out]. In this case, we have:1154

∃q, `, σ, σ′,S,S′,T1,T2 such that:1155

σ′·T′ = q!`(S′).T1 and σ·T = q!`(S).T2 (36)1156

S′ ≤: S and T1 6 T2 (37)1157
1158

We now show that Γ′ satisfies all clauses of Def. C.3:1159

clause [LP&]. If T′ does not begin with an external choice r?`r(S′r), the clause is1160

vacuously satisfied. In the case where T′ = &i∈I r?`r,i(S′r,i).Ti, the proof is similar to1161

case [ref-A][LP&] above; Thus, we conclude that Γ′ satisfies clause [LP&] of Def. C.3;1162

clause [LP⊕]. We proceed by contradiction: we show that if there is a fair path1163

(Γ′j)j∈J′ (with Γ′0 = Γ′) that violates clause [LP⊕], then there is a corresponding fair1164

path (Γj)j∈J (with Γ0 = Γ) that violates the same clause, which would lead to the1165

absurd conclusion that Γ is not p-live. We need to consider any output at the head1166

of the queue of Γ′(p) up-to reordering via ≡: let such an output be r!`r(S′r) (for some1167

r). Consider the hypothetical non-p-live path (Γ′j)j∈J′ : it must consist of a series of1168

transitions Γ′j−1
αj−−→ Γ′j (for j ∈ J ′) where, ∀j ∈ J ′, αj 6= r:p?`. Hence:1169

∀j ∈ J ′ :6 ∃σr, I, `i,Sr,i,Tr,i(i ∈ I) : Γ′j(r) =
(
σr,&

i∈I
p?`i(Sr,i).Tr,i

)
(38)1170

with `i = `r and S′r ≤: Sr,i (for some i ∈ I)1171
1172

But then, by (38) and Prop. C.9, there is a fair path (Γj)j∈J with Γ0 = Γ such that:1173

∀j ∈ J :6 ∃σr, I, `i,Sr,i,Tr,i(i ∈ I) : Γj(r) =
(
σr,&

i∈I
p?`i(Sr,i).Tr,i

)
(39)1174
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with `i = `r and S′r ≤: Sr,i (for some i ∈ I)1175
1176

Now, observe that the path (Γj)j∈J is constructed using Prop. C.7; therefore, by (20),1177

(21), (22), and Prop. C.6, an output r!`r(Sr) (with S′r 6 Sr) occurs along (Γj)j∈J ; and1178

by (39), such an output will never be consumed: this means that Γ is not p-live —1179

contradiction. Thus, we conclude that Γ′ satisfies clause [LP⊕] of Def. C.3;1180

clause [LP−→]. Assume Γ′ −→ Γ′′. We have two possibilities:1181

(a) the reduction does not involve p. The proof is similar to case [ref-in][LP−→](a) above;1182

(b) the reduction does involve p. There are three sub-cases:1183

(i) p is enqueuing an output toward some participant r. In this case, we have:1184

T′ =
⊕
i∈I

r!`i(S′i).T′i (40)1185

Γ′ p:r!`i−−−→ Γ′′ = Γ′{p 7→ (σ′·r!`i(S′i),T′i)} (for some i ∈ I) (by Def. 4.3) (41)1186

Γ′′ = Γ′′{p 7→ (σ′·r!`i(S′i),T′i)} (by (41) and (20)) (42)1187

σ′·r!`i(S′i)·T′i 6 σ′·T′ (by induction on σ′, using (40) and Def. 3.4) (43)1188

σ′·r!`i(S′i)·T′i 6 σ·T (by (43), (22), and Lemma B.9) (44)1189

Γ′′ ∈ L′ ⊆ P (by (44) and (42)) (45)1190
1191

Therefore, by (45), we conclude that Γ′ satisfies clause [LP−→] of Def. C.3;1192

(ii) p is receiving an input from some r. In this case, we have:1193

∃I, `i,S′i,T′i : T′ = &
i∈I

r?`i(S′i).T′i (46)1194

Γ′ α−→ Γ′′ with α = p:r?`i (for some i ∈ I) (47)1195

σ = ε or head(σ) = q!`(S′) (by (36)) (48)1196
1197

Now, from (48), (36) and (37),1198

letting σ′0 such that σ′ = q!`(S′).σ′0 and σ0 =
{
ε if σ = ε

tail(σ) otherwise
1199

for all W1,W2 in (23), ∃i ∈ I,D(r), `i,Si,S′i,W,W′, such that:1200

W1 = q!`(S′).σ′0.r?`i(S′i).W′ and W2 = q!`(S).σ0.D(r).r?`i(Si).W (49)1201

Si ≤: S′i and σ′0.r?`i(S′i).W′ . σ0.D(r).r?`i(Si).W (50)1202
1203

where D(r) is a sequence of outputs to any participant, or inputs from any1204

participant except r, for which (50) can be derived with 0 or more instances of1205

[ref-A] or [ref-B]. Notice that, by induction on σ′0 and σ0.D(r), for each pair of1206

SISO trees related in (50) we prove that:1207

σ′0.r?`i(S′i).W′ . σ0.r?`i(Si).D(r).W (51)1208
1209

Now, by Prop. C.7, the fair paths of Γ that match some witness W2 in (49)1210

eventually perform the reduction α in (47). But then, consider the session tree1211

T∗ that only has SISO trees like the RHS of (51): such trees are similar to W2 in1212

(49), except that each one performs the input r?`i(Si) earlier. And now, consider1213

the typing environment Γ∗ = Γ{p 7→ (σ,T∗)}. Such Γ∗ is p-live: it realises (part1214

of) the fair paths of Γ, except that it consumes r’s queued output earlier — and1215
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thus, we have Γ∗ ∈ L. Now, consider Γ′′′ such that Γ∗ p:r?`i−−−→ Γ′′′: by clause1216

[LP−→] of Def. C.3, we have Γ′′′ ∈ L. Also, we have Γ′′′(p) = (σ,T∗∗) such that:1217

∀U′ ∈ Jσ′·T′iKSO ∀V∗∗ ∈ Jσ·T∗∗KSI

∃W1 = σ′0.W′ ∈ JU′KSI ∃W∗ = σ0.D(r).W ∈ JV∗∗KSO W1 .W∗ (by Def. 4.3 and (51))1218
1219

Therefore, by Def. 3.4, we have Γ′′′(p) = (σ,T∗∗), and Γ′′ = Γ′′′{p 7→ (σ′,T′i)},1220

with σ′·T′i 6 σ·T∗∗ — hence, by (30) and (19), we also have Γ′′ ∈ L′ ⊆ P . Thus,1221

we conclude that Γ′ satisfies clause [LP−→] of Def. C.3;1222

(iii) one of p’s queued outputs in σ′ is received by another participant. We have two1223

possibilities:1224

(c) the received output is r!`r(S′r) (for some r 6= q). In this case, we have:1225

∃I, `r,S′rσ′′ : σ′ ≡ r!`r(S′r)·σ′′ (52)1226

∃I, `r,S′r, σ′0, σ′1 : σ′ = σ′0·r!`r(S′r)·σ′1 with r! 6∈ act(σ′0) (by (52) and queue congruence)
(53)

1227

Γ′ α−→ Γ′′ with α = r:p?`r (54)1228

for all W1,W2 in (23), B(r), `r,Sr,S′r,W,W′′, such that:1229

W1 = σ′0.r!`r(S′r).σ′1.W′ and W2 = B(r).r!`r(Sr).W′′ (55)1230

S′r ≤: Sr and σ′0.r!`r(S′r).σ′1.W′ . B(r).r!`r(Sr).W′′ (56)12311232

Therefore, by (56), and by induction on σ′0 using (53),1233

r!`r(S′r).σ′0.σ′1.W′ . σ′0.r!`r(S′r).σ′1.W′ (57)1234
1235

Notice that, by induction on B(r), for each pair of SISO trees related in (56)1236

we prove that:1237

σ′0.r!`r(S′r).σ′1.W′ . r!`r(Sr).B(r).W′′ (58)1238
1239

From which we get:1240

r!`r(S′r).σ′0.σ′1.W′ . r!`r(Sr).B(r).W′′ (by (57), (58), and Lemma B.9) (59)1241

σ′0.σ
′
1.W′ . B(r).W′′ (by (59) and [ref-out]) (60)1242

1243

Now, by Prop. C.7, the fair paths of Γ that match some witness W2 in (55)1244

eventually perform the reduction α in (54). But then, consider the session1245

tree T∗ that only has SISO trees like the RHS of (58): such trees are similar1246

to (55), except that each one performs the output r!`r(Sr) earlier. And now,1247

consider the typing environment Γ∗ = Γ{p 7→ (σ,T∗)}. Such Γ∗ is p-live: it1248

realises (part of) the fair paths of Γ, except that performs the output to r1249

earlier — and thus, we have Γ∗ ∈ L. Now, consider Γ′′′ such that Γ∗ r:p?`r−−−→ Γ′′′:1250

by clause [LP−→] of Def. C.3, we have Γ′′′ ∈ L. Also, we have Γ′′′(p) = (σ,T∗∗)1251

such that:1252

∀U′ ∈ Jσ′·T′iKSO ∀V∗∗ ∈ Jσ·T∗∗KSI

∃W1 = σ′0.σ
′
1.W′ ∈ JU′KSI ∃W∗ = B(r).W′′ ∈ JV∗∗KSO W1 .W∗ (by Def. 4.3 and (60))1253

1254

Therefore, by Def. 3.4, we have Γ′′′(p) = (σ,T∗∗), and Γ′′ = Γ′′′{p 7→ (σ′,T′i)},1255

with σ′·T′i 6 σ·T∗∗ — hence, by (30) and (19), we also have Γ′′ ∈ L′ ⊆ P.1256

Thus, we conclude that Γ′ satisfies clause [LP−→] of Def. C.3;1257
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(d) the received output is q!`(S′) from (36). The proof is similar to case (c)1258

above, letting r = q — but the development is simpler, since we have σ′0 = ε,1259

and B(q) is empty;1260

case [ref-B]. In this case, we have:1261

∃I, `i,S′i,T′i : σ′·T′ =
⊕
i∈I

q!`i(S′i).T′i (61)1262

for all W1,W2 in (23), ∃i ∈ I,B(q), `i,Si,S′i,W,W′, such that:1263

W1 = q!`i(S′i).W′ and W2 = B(q).q!`i(Si).W (62)1264

S′i ≤: Si and W′ . B(q).W and act(W′) = act(B(q).W) (63)1265
1266

We now show that Γ′ satisfies all clauses of Def. C.3:1267

clause [LP&]. The proof is similar to case [ref-out][LP&] above;1268

clause [LP⊕]. The proof is similar to case [ref-out][LP⊕] above;1269

clause [LP−→]. Assume Γ′ −→ Γ′′. We have two possibilities:1270

(a) the reduction does not involve p. The proof is similar to case [ref-in][LP−→](a) above;1271

(b) the reduction does involve p. There are three sub-cases:1272

(i) p is enqueuing an output toward some participant r. In this case, we have:1273

T′ =
⊕
i∈J

r!`j(S′j).T′′j1274

1275

and the proof is similar to case [ref-out][LP−→](b)(i) above;1276

(ii) p is receiving an input from some r. The proof is similar to case [ref-out][LP−→](b)(ii)1277

above;1278

(iii) one of p’s queued outputs in σ′ is received by another participant. The proof is1279

similar to case [ref-out][LP−→](b)(iii) above.1280

Summing up: we have proved that each element of P in (19) satisfies the clauses of Def. C.31281

for participant p, which implies that P is a p-liveness property. Moreover, by (19), we have1282

that for any Γ, if Γ, p:(σ,T) is p-live and T′ 6 T, then Γ, p:(σ,T′) ∈ P ′ ⊆ P. Therefore, we1283

conclude that Γ, p:(σ,T′) is p-live. J1284

I Proposition C.12. Assume that Γ is live, and that Γ(p) = (σ,T). If σ′·T′ 6 σ·T, then1285

Γ{p 7→ (σ′,T′)} is live.1286

Proof. By Def. C.3, we need to show that Γ′ is q-live for all participants q ∈ dom(Γ′) =1287

dom(Γ). By hypothesis, we know that Γ is q-live for all participants q ∈ dom(Γ). By1288

Lemma C.11, we know that Γ′ is p-live — and in particular, Γ′ is in the p-liveness property1289

P defined in (19). We are left to prove that Γ′ is q-live for all other participants q 6= p.1290

By contradiction, assume that Γ′ is not q-live for some q ∈ dom(Γ′). This means that we1291

can find some Γ′′′ such that Γ′ −→∗ Γ′′′ and Γ′′′ is not q-live because it violates clause [LP&]1292

or [LP⊕] of Def. C.3. Now, consider the p-liveness property P in (19): since P contains Γ,1293

it also contains Γ′′′ (by iteration of clause [LP−→] of Def. C.3), and by (19), there exists a1294

corresponding p-live Γ′′ such that:1295

Γ′′′ \ p = Γ′′ \ p (64)1296

Γ′′′(p) = (σ′′′,T′′′) and Γ′′(p) = (σ′′,T′′) such that σ′′′·T′′′ 6 σ′′·T′′ (65)1297
1298

Let us examine the two (non-mutually exclusive) cases that can make Γ′′′ not q-live:1299
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Γ′′′ violates clause [LP&] of Def. C.3. This means that in Γ′′′ there is a participant r1300

with a top-level external choice from some participant q, but some fair path of Γ′′′ never1301

enqueues a corresponding output by q. In this case, similarly to the proof of Prop. C.111302

(case [ref-A][LP&]), we conclude that Γ′′ is not r-live, hence not live — contradiction;1303

Γ′′′ violates clause [LP⊕] of Def. C.3. This means that in Γ′′′ there is a participant r1304

with a top-level queued output toward participant q, but some fair path of Γ′′′ where1305

q never consumes the message. In this case, similarly to the proof of Prop. C.11 (case1306

[ref-out][LP⊕]), we conclude that Γ′′ is not r-live, hence not live — contradiction.1307

Summing up: if we assume that Γ′ is not q-live for some q ∈ dom(Γ′), then we derive a1308

contradiction. Therefore, we obtain that Γ′ is q-live for all q ∈ dom(Γ′). Thus, by Def. C.3,1309

we conclude that Γ′ is live. J1310

I Lemma C.13. If Γ is live and Γ′ 6 Γ, then Γ′ is live.1311

Proof. Assume dom(Γ) ∩ dom(Γ′) = {p1, p2, . . . , pn}. We first first show that:1312

Γi = Γ{p1 7→ Γ′(p1)} . . .{p2 7→ Γ′(p2)} . . .{pi 7→ Γ′(pi)} is live, for all i ∈ 0..n1313

We proceed by induction on i ∈ 0..n. The base case i = 0 is trivial: we apply no updates1314

to Γ, which is live by hypothesis.1315

In the inductive case i = m+ 1, we have (by the induction hypothesis) that Γm is live.1316

By Definition of Γ′ 6 Γ (see page 8), we know that Γ′(pi) 6 Γ(pi). Therefore, by Prop. C.12,1317

we obtain that Γi is live.1318

To conclude the proof, consider the set dom(Γ′) \ dom(Γn) = dom(Γ′) \ dom(Γ) =1319

{q1, q2, . . . , qk}: it contains all participants that are in Γ′, but not in Γ. By Definition of1320

Γ′ 6 Γ (see page 8) we know that ∀i ∈ 1..k : Γ′(qi) ≡ (ε, end). Therefore, if we extend Γn1321

by adding an entry qi : (ε, end) for each i ∈ 1..k, we obtain an environment Γ′′ such that1322

Γ′′ ≡ Γn and Γ′′ ≡ Γ′ — hence, Γn ≡ Γ′. Therefore, since Γn is live, by Lemma C.1 we1323

conclude that Γ′ is live. J1324

C.3 Proofs of Subject Reduction and Type Safety1325

I Lemma C.14 (Typing Inversion). Let Θ ` P : T: Then,1326

1. P = µX.P1 implies Θ, X : T1 ` P1 : T1 and T1 6 T for some T1;1327

2. P =
∑
i∈I q?`i(xi).Pi implies1328

a. &i∈I q?`i(Si).Ti 6 T and1329

b. ∀i ∈ I Θ, xi : Si ` Pi : Ti;1330

3. P = q!`〈e〉.P1 implies1331

a. q!`(S1).T1 6 T and1332

b. Θ ` e : S and S1 ≤: S and1333

c. Θ ` P1 : T1;1334

4. P = if e then P1 else P2 implies1335

a. Θ ` e : bool and1336

b. Θ ` P1 : T1337

c. Θ ` P2 : T1338

Let ` h : σ. Then:1339
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5. h = ∅ implies σ = ε1340

6. h = (q, `(v))·h1 implies ` v : S and σ ≡ q!`(S)·σ′ and ` h1 : σ′.1341

Let Γ ` M. Then:1342

7. If Γ `
∏
i∈I(pi / Pi | pi / hi) then1343

a. ∀i ∈ I : ` Pi : Ti and1344

b. ∀i ∈ I : ` hi : σi and1345

c. Γ = {pi : (Mi,Ti) : i ∈ I}1346

Proof. The proof is by induction on type derivations. J1347

I Lemma C.15 (Typing congruence). 1. If Θ ` P : T and P ≡ Q then Θ ` Q : T.1348

2. If ` h1 : σ1 and h1 ≡ h2 then there is σ2 such that σ1 ≡ σ2 and ` h2 : σ2.1349

3. If Γ′ ` M′ andM≡M′, then there is Γ such that Γ ≡ Γ′ and Γ ` M.1350

Proof. The proof is by case analysis. J1351

I Lemma C.16 (Substitution). If Θ, x : S ` P : T and Θ ` v : S, then Θ ` P{v/x} : T.1352

Proof. By structural induction on P . J1353

I Lemma C.17. If ∅ ` e : S then there is v such that e ↓ v.1354

Proof. The proof is by induction on the derivation of ∅ ` e : S. J1355

I Lemma C.18. Let ` h : σ. If h 6≡ (p,−(−)) · h′ then σ 6≡ p!− (−) · σ′.1356

Proof. The proof is by contrapositive: assume σ ≡ p!− (−) · σ′. Then, by induction on the1357

derivation of σ ≡ p!− (−) · σ′, we may show that h ≡ (p,−(−)) · h′ . J1358

I Lemma C.19. If Θ ` P : T then there is T′ such that T′ 6 T and Θ ` P : T′ and1359

act(T′) ⊆ act(P ).1360

Proof. By induction on Θ ` P : T. The only interesting case is [t-cond]. In this case, we have1361

that Θ ` if e then P1 else P2 : T is derived from Θ ` e : bool, Θ ` P1 : T and Θ ` P2 : T. By1362

induction hypothesis we derive that there exist T1 and T2 such that1363

Θ ` P1 : T1 and T1 6 T and act(T1) ⊆ act(P1) (66)1364

Θ ` P2 : T2 and T2 6 T and act(T2) ⊆ act(P2) (67)1365
1366

We will show that there is T′ such that T1 6 T′ 6 T and T2 6 T′ 6 T and1367

act(T′) ⊆ act(T1) ∪ act(T2) (⊆ act(P1) ∪ act(P1) = act(P ))1368

Let us now expand the derivations of T1 6 T and T2 6 T given in (66) and (67):1369

∀U1 ∈ JT1KSO ∀V′ ∈ JTKSI ∃W1 ∈ JU1KSI ∃W′1 ∈ JV′KSO W1 .W′1 (68)1370

∀U2 ∈ JT2KSO ∀V′ ∈ JTKSI ∃W2 ∈ JU2KSI ∃W′2 ∈ JV′KSO W1 .W′2 (69)1371
1372

Let us consider the sets:1373

A1 as the set of all actions occurring in any U1 in (68);1374

A2 as the set of all actions occurring in any U2 in (69);1375

A′ as the set of all actions occurring in any V′ in (68) (or equivalently in (69)).1376
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Notice that act(T1) = A1, act(T2) = A2 and act(T) = A′.1377

Furthermore, let us also consider the sets:1378

B1 as the set of all actions occurring in any W1 selected in (68);1379

B2 as the set of all actions occurring in any W2 selected in (69);1380

B′1 as the set of all actions occurring in any W′1 selected in (68);1381

B′2 as the set of all actions occurring in any W′2 selected in (69).1382

Now we have:1383

B1 ⊆ A1 (70)1384

B2 ⊆ A2 (71)1385

B′1 ∪B′2 ⊆ A′ (72)1386

B1 = B′1 (from W1 .W′1) (73)1387

B2 = B′2 (from W2 .W′2) (74)1388
1389

Therefore, by (73) and (74) we have1390

B1 ∪B2 = B′1 ∪B′2 (75)1391

and thus, by (70), (71), (66) and (67), we obtain1392

B′1 ∪B′2 ⊆ A1 ∪A2 ⊆ act(P1) ∪ act(P2) = act(P ) (76)1393

Now, consider the set D = A′ \ (A1 ∪ A2): it contains all actions that occur in T, but1394

not in T1 nor T2. Consider any action α ∈ D: it must belong to some SISO tree W′′ which1395

was not selected neither as W′1 in (68), nor as W′2 in (69). Therefore, it must belong to1396

some action of some SO tree in JV′KSO that is never selected by T1 nor T2. This means1397

that α belongs to some internal choice branches of T that are never selected by T1 nor T2.1398

Therefore, if we prune T (i.e., the syntactic type with tree T) by removing all such internal1399

choice branches, we get a session type T′′ with tree T′′ 6 T such that:1400

∀U1 ∈ JT1KSO ∀V′ ∈ JT′′KSI ∃W1 ∈ JU1KSI ∃W′1 ∈ JV′KSO W1 .W′1 (77)1401

∀U2 ∈ JT2KSO ∀V′ ∈ JT′′KSI ∃W2 ∈ JU2KSI ∃W′2 ∈ JV′KSO W1 .W′2 (78)1402
1403

Hence, T1 6 T′′ and T2 6 T′′.1404

Now let A′′ = act(T′′). If we compute D′ = A′′ \ (A1 ∪ A2) (i.e., the set of all actions1405

that occur in T′′, but not in T1 nor T2) using (77) and (78), we obtain D′ ⊂ D, because1406

α (and possibly some other actions in D) have been removed by the pruning. By iterating1407

the procedure (i.e., by induction on the number of actions in D), noticing that D is finite1408

(because T is syntax-derived from some T), we will eventually find some T′ with tree T′ such1409

that:1410

T′ 6 T and T1 6 T′ and T2 6 T′1411

act(T′) ⊆ act(T1) ∪ act(T2)1412

Θ ` P : T′1413

act(T′) ⊆ act(P )1414
1415

J1416

I Lemma C.20 (Error subject reduction). IfM−→ error then there is no type environment1417

Γ such that Γ is live and Γ ` M.1418
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Proof. By induction on derivationM−→ error.1419

Base cases:1420

[err-mism]: We have1421

M = p /
∑
j∈J

q?`j(xj).Pj | p / hp | q / Pq | q / (p, `(v))·h | M1 (79)1422

∀j ∈ J : ` 6= `j (80)1423

M1 =
∏
i∈I

(pi / Pi | pi / hi) (81)1424

1425

Assume to the contrary that there exists Γ such that:1426

Γ ` M (82)1427

Γ is live (83)1428
1429

By Lemma C.14.7,1430

`
∑
j∈J

q?`j(xj).Pj : T (84)1431

` hp : σp (85)1432

` Pq : Tq (86)1433

` (p, `(v))·h : σ (87)1434

∀i ∈ I : ` Pi : Ti (88)1435

∀i ∈ I : ` hi : σi (89)1436

Γ = {p : (σp,T), q : (σ,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (90)1437
1438

By Lemma C.14.2, there are T′j ,S′j (for j ∈ J) such that:1439

&
j∈J

q?`j(S′j).T′j 6 T (91)1440

∀j ∈ J : xj : S′j ` Pj : T′j (92)1441
1442

By Lemma C.14.6, there are σ′,S such that:1443

` v : S and σ ≡ p!`(S)·σ′ and ` h : σ′ (93)1444
1445

Now, let:1446

Γ′ = {p : (σp,&
j∈J

q?`j(S′j).T′j), q : (p!`(S)·σ′,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (94)1447

1448

Then, we have:1449

Γ′ 6 Γ (by (93), (91), (90), (94)) (95)1450

Γ′ is live (by (95) and Lemma C.13). (96)1451
1452

By (80), (96) and Definition 4.4 we get a contradiction.1453

1454

[err-eval]: We have1455

M = p / if e then P1 else P2 | p / h | M1 (97)1456
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6 ∃v : e ↓ v (98)1457

M1 =
∏
i∈I

(pi / Pi | pi / hi) (99)1458

1459

Assume to the contrary that there exists Γ such that:1460

Γ ` M (100)1461

Γ is live (101)1462
1463

By Lemma C.14.7,1464

` if e then P1 else P2 : T (102)1465

` h : σ (103)1466

∀i ∈ I ` Pi : Ti (104)1467

∀i ∈ I ` hi : σi (105)1468

Γ = {p : (σ,T)} ∪ {pi : (σi,Ti) : i ∈ I} (106)1469
1470

From (102) and by Lemma C.14.4:1471

` P1 : T (107)1472

` P2 : T (108)1473

` e : bool (109)1474
1475

By Lemma C.17, there is a value v such that e ↓ v, which leads to contradiction with1476

assumption (98).1477

[err-eval2]: We have1478

M = p / q!`〈e〉.P | p / h | M1 (110)1479

6 ∃v : e ↓ v (111)1480

M1 =
∏
i∈I

(pi / Pi | pi / hi) (112)1481

1482

Assume to the contrary that there exists Γ such that:1483

Γ ` M (113)1484

Γ is live (114)1485
1486

By Lemma C.14.7,1487

` p / q!`〈e〉.P : T (115)1488

` h : σ (116)1489

∀i ∈ I ` Pi : Ti (117)1490

∀i ∈ I ` hi : σi (118)1491

Γ = {p : (σ,T)} ∪ {pi : (σi,Ti) : i ∈ I} (119)1492
1493

From (115) and by Lemma C.14.3:1494

q!`(S1).T1 6 T (120)1495

` e : S (121)1496
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S1 ≤: S (122)1497
1498

By Lemma C.17, there is a value v such that e ↓ v, which leads to contradiction with1499

assumption (111).1500

[err-ophn]: We have:1501

M = p / P | p / hp | q / Pq | q / (p, `(v))·h | M1 (123)1502

q? 6∈ act(P ) (124)1503

M1 =
∏
i∈I

(pi / Pi | pi / hi) (125)1504

1505

By Lemma C.14.7,1506

` P : Tp (126)1507

` (p, `(v))·h : σq (127)1508

` Pq : Tq (128)1509

` hp : σp (129)1510

∀i ∈ I : ` Pi : Ti (130)1511

∀i ∈ I : ` hi : σi (131)1512

Γ = {p : (σp,Tp), q : (σq,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (132)1513
1514

By Lemma C.14.6, there are σ′,S′ such that:1515

` v : S′ and σq ≡ p!`k(S′)·σ′ and ` h : σ′ (133)1516
1517

Let1518

Γ′ = {p : (σp,Tp), q : (p!`k(S′)·σ′,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (134)1519

Then we have1520

Γ ≡ Γ′ (by (132) and (137)) (135)1521

Γ′ is live (by Lemma C.1) (136)1522
1523

By (126) and Lemma C.19 we have that there is T′ such that T′ 6 Tp and ` P : T′ and1524

act(T′) ⊆ act(P ). Now let1525

Γ′′ = {p : (σp,T′), q : (p!`k(S′)·σ′,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (137)1526

Then we have Γ′′ 6 Γ′, and hence, Γ′′ is live (by Lemma C.13). This gives a contradiction1527

with (124), act(T′) ⊆ act(P ) and Definition 4.4 (since q? /∈ act(T′) holds, the message in1528

the queue of q will never be received in any reduction of Γ′′).1529

[err-strv]: We have1530

M = p /
∑
j∈J

q?`j(xj).Pj | p / hp | q / Pq | q / hq | M1 (138)1531

p! 6∈ act(Pq) (139)1532

hq 6≡ (p,−(−)) · h′q (140)1533

M1 =
∏
i∈I

(pi / Pi | pi / hi) (141)1534

1535
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Assume to the contrary that there exists Γ such that:1536

Γ ` M (142)1537

Γ is live (143)1538
1539

By Lemma C.14.7,1540

`
∑
j∈J

q?`j(xj).Pj : Tp (144)1541

` hq : σq (145)1542

` Pq : Tq (146)1543

` hp : σp (147)1544

∀i ∈ I : ` Pi : Ti (148)1545

∀i ∈ I : ` hi : σi (149)1546

Γ = {p : (σp,Tp), q : (σq,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (150)1547
1548

By Lemma C.14.2, there are T′j ,S′j (for j ∈ J) such that:1549

&
j∈J

q?`j(S′j).T′j 6 Tp (151)1550

∀j ∈ J : xj : S′j ` Pj : T′j (152)1551
1552

Now, let:1553

Γ′ = {p : (σp,&
j∈J

q?`j(S′j).T′j), q : (σq,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (153)1554

1555

Then, we have:1556

Γ′ 6 Γ (by (150), (151), (153)) (154)1557

Γ′ is live (by (154) and Lemma C.13) (155)1558
1559

By (140), (145) and Lemma C.18 we have that σq 6≡ p!− (−) · σ′. By (146) and Lemma C.191560

there is T′ such that T′ 6 Tq and ` Pq : T′ and act(T′) ⊆ act(Pq). Now let1561

Γ′′ = {p : (σp,&
j∈J

q?`j(S′j).T′j), q : (σq,T′)} ∪ {pi : (σi,Ti) : i ∈ I} (156)1562

1563

Then we have Γ′′ 6 Γ′, and hence, Γ′′ is live (by Lemma C.13). This gives a contradiction1564

with (139) and act(T′) ⊆ act(Pq) and σq 6≡ p!−(−) ·σ′ and Definition 4.4 (since p! /∈ act(T′)1565

and σq 6≡ p!− (−) · σ′ hold, none of the active inputs in p will be activated in any reduction1566

of Γ′′).1567

1568

Inductive step:1569

[r-struct]. Assume thatM−→ error is derived from:1570

M≡M1 (157)1571

M1 −→ error (158)1572
1573

By the induction hypothesis, there is no live Γ1 such that Γ1 ` M1. Assume on the contrary1574

that there is live Γ such that Γ ` M. Then, by Lemma C.15.3, there is Γ2 such that Γ ≡ Γ21575

and Γ2 ` M1. Since Γ is live, by Lemma C.1 we obtain Γ2 is live, which is a contradiction1576

with the induction hypothesis. J1577
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I Lemma C.21. If Γ ≡ Γ′ then Γ 6 Γ′.1578

Proof. Directly by the definitions of Γ ≡ Γ′ and Γ 6 Γ′. J1579

I Theorem 4.5 (Subject Reduction). Assume Γ ` M with Γ live. If M −→ M′, then1580

there are live type environments Γ′,Γ′′ such that Γ′′ 6 Γ, Γ′′ −→∗ Γ′ and Γ′ ` M′.1581

Proof. Assume:1582

Θ · Γ ` M (by hypothesis) (159)1583

Γ is live (by hypothesis) (160)1584

M−→M′ (by hypothesis) (161)1585
1586

The proof is by induction on the derivation ofM−→M′.1587

Base cases:1588

[r-send]: We have1589

M = p / q!`〈e〉.P | p / h | M1 (162)1590

e ↓ v (163)1591

M′ = p / P | p / h · (q, `(v)) | M1 (164)1592

M1 =
∏
i∈I

(pi / Pi | pi / hi) (165)1593

1594

By Lemma C.14.7,1595

` q!`〈e〉.P : T (166)1596

` h : σ (167)1597

∀i ∈ I ` Pi : Ti (168)1598

∀i ∈ I ` hi : σi (169)1599

Γ = {p : (σ,T)} ∪ {pi : (σi,Ti) : i ∈ I} (170)1600
1601

By Lemma C.14.3, there are T′,S′ such that:1602

q!`(S).T′ 6 T (171)1603

` e : S′ and S′ ≤: S (172)1604

` P : T′ (173)1605
1606

Now, let:1607

Γ′′ = {p : (σ, q!`(S).T′)} ∪ {pi : (σi,Ti) : i ∈ I} (174)1608

Γ′ = {p : (σ · q!`(S),T′)} ∪ {pi : (σi,Ti) : i ∈ I} (175)1609
1610

Then, we conclude:1611

Γ′′ 6 Γ (by (174), (171), and (170)) (176)1612

Γ′′ is live (by (176) and Lemma C.13) (177)1613

Γ′′ −→ Γ′ (by (174), (175), and [e-send] of Def. 4.3) (178)1614

Γ′ is live (by (177), (178), and Proposition C.2)1615

Γ′ ` M′ ((164), (175), and Def. 4.1)1616
1617
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[r-rcv]: We have1618

M = p /
∑
j∈J

q?`j(xj).Pj | p / hp | q / Pq | q / (p, `k(v))·h | M1 (for some k ∈ J) (179)1619

M′ = p / Pk{v/xk} | p / hp | q / Pq | q / h | M1 (180)1620

M1 =
∏
i∈I

(pi / Pi | pi / hi) (181)1621

1622

By Lemma C.14.7,1623

`
∑
j∈J

q?`j(xj).Pj : T (182)1624

` (p, `k(v))·h : σ (183)1625

` Pq : Tq (184)1626

` hp : σp (185)1627

∀i ∈ I : ` Pi : Ti (186)1628

∀i ∈ I : ` hi : σi (187)1629

Γ = {p : (σp,T), q : (σ,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (188)1630
1631

By Lemma C.14.2, there are T′j ,S′j (for j ∈ J) such that:1632

&
j∈J

q?`j(S′j).T′j 6 T (189)1633

∀j ∈ J : xj : S′j ` Pj : T′j (190)1634
1635

By Lemma C.14.6, there are σ′,S′ such that:1636

` v : S′ and σ ≡ p!`k(S′)·σ′ (191)1637
1638

Now, let:1639

Γ′′ = {p : (σp,&
j∈J

q?`j(S′j).T′j), q : (p!`k(S′)·σ′,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (192)1640

1641

Then, we have:1642

Γ′′ 6 Γ (by (192), (191), (189), (188)) (193)1643

Γ′′ is live (by (193) and Lemma C.13) (194)1644
1645

Observe that we also have:1646

S′ ≤: S′k (195)1647
1648

To prove (195), assume (by contradiction) that S′ 6≤: S′k. Then, the premise of [e-rcv] in1649

Def. 4.3 does not hold, and thus, p’s external choice in Γ′′ cannot possibly synchronise with1650

q’s queue type. But then, by Def. 4.4, Γ′′ is not live, which gives a contradiction with (194).1651

Therefore, it must be the case that (195) holds.1652

Now, let:1653

Γ′ = {p : (σp,T′k), q : (σ′,Tq)} ∪ {pi : (σi,Ti) : i ∈ I} (196)1654
1655
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And we conclude:1656

Γ′′ −→ Γ′ (by (192), (195), (196), and rule [e-rcv] of Def. 4.3) (197)1657

Γ′ is live (by (194), (197), and Proposition C.2)1658

Γ′ ` M′ (by (190), (195), (180), Lemma C.16, (196), and Def. 4.1)1659
1660

1661

[r-cond-T] ([r-cond-F]): We have:1662

M = p / if e then P else Q | p / h | M1 (198)1663

M′ = p / P | p / h | M1 (M′ = p / Q | p / h | M1) (199)1664

M1 =
∏
i∈I

(pi / Pi | pi / hi) (200)1665

1666

By Lemma C.14.7,1667

` if e then P else Q : T (201)1668

` h : σ (202)1669

∀i ∈ I : ` Pi : Ti (203)1670

∀i ∈ I : ` hi : σi (204)1671

Γ = {p : (σ,T)} ∪ {pi : (σi,Ti) : i ∈ I} (205)1672
1673

By Lemma C.14.4:1674

` P : T (206)1675

` Q : T (207)1676

` e : bool (208)1677
1678

Then, letting Γ′ = Γ′′ = Γ, we have:1679

Γ′′ 6 Γ (by reflexivity of 6) (209)1680

Γ′′ −→∗ Γ′ (210)1681

Γ′ ` M′ (by (199), (202), (206) or (207), and Def. 4.1) (211)1682
1683

Inductive step:1684

[r-struct] Assume thatM−→M′ is derived from:1685

M≡M1 (212)1686

M1 −→M′1 (213)1687

M′ ≡M′1 (214)1688
1689

From (159), (212), by Lemma C.15, there is Γ1 such that1690

Γ1 ≡ Γ (215)1691

Γ1 ` M1. (216)1692
1693

By induction hypothesis, there is are live type environments Γ′1,Γ′′ such that:1694

Γ′′ 6 Γ1 and Γ′′ −→∗ Γ′1 (217)1695
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Γ′1 ` M′1 (218)1696
1697

Now, by (214) and Lemma C.15, there is a live environment Γ′ such that1698

Γ′ ≡ Γ′1 and Γ′ ` M′ (219)1699
1700

We conclude:1701

Γ′′ 6 Γ (by (217), (215), Lemma C.21 and transitivity of 6) (220)1702

Γ′′ −→∗ Γ′ (by (217), (219) and rule [e-struct] of Def. 4.3) (221)1703
1704

J1705

We may now show Type Safety and Progress results, that are both corollaries of Subject1706

Reduction and Error subject reduction results.1707

I Corollary C.22 (Type Safety and Progress). Let Γ ` M with Γ live. Then, M−→∗M′1708

implies M′ 6= error; also, either M′ ≡ p/0 | p/∅, or ∃M′′ such thatM′ −→M′′ 6= error.1709

Proof. Assume Γ ` M with Γ live, andM−→∗M′. By Theorem 4.5 (subject reduction),1710

there is some live Γ′ such that:1711

Γ′ ` M′ (222)1712
1713

This implies thatM′ cannot be an (untypable) error — which is the first part of the thesis.1714

For the “also. . . ” part of the statement, we have two possibilities:1715

1. M′ ≡ p / 0 | p /∅. This is the thesis; or,1716

2. M′ 6≡ p / 0 | p /∅. We have two sub-cases:1717

a. there isM′′ such thatM′ −→M′′ 6= error. This is the thesis; or,1718

b. there is no M′′ such that M′ −→ M′′ 6= error. This case is impossible, because it1719

means that either:1720

i. 6 ∃M′′ : M′ −→ M′′. This case is impossible. In fact, it would imply that M′1721

cannot reduce by rules [r-send], [r-rcv], [r-cond-t], or [r-cond-f] (possibly via [r-struct]) in1722

Table 2. SinceM′ 6≡ p/0 | p/∅, this can only happen becauseM′ has some process1723

stuck on an external choice without a matching message, or has some expression (in1724

conditionals or outputs) that cannot be evaluated. But then, by the rules in Table 2,1725

we haveM′ −→ error by at least one of the rules [err-mism], [err-dlock], [err-eval] or1726

[err-eval2]. This leads to case 2(b)ii below;1727

ii. M′ −→ error. This case is impossible. In fact, if we admit this case, by (222) and1728

the contrapositive of Lemma C.20, we have that Γ′ is not live, which means (by the1729

contrapositive of Proposition C.2) that Γ is not live — contradiction.1730

J1731

D Appendix of Section 51732

Step1: subtyping negation1733

The rules in Table 4 relate two SISO trees when:1734

their sets of actions are disjunctive ([n-out], [n-inp], [n-out-R], [n-inp-R]);1735
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their top prefixes are both inputs or outputs, targeting the same participant, and the1736

label of the LHS is not equal to the label of the RHS ([n-inp-`], [n-out-`]);1737

their top prefixes are both inputs or outputs, targeting the same participant, with1738

matching labels followed by mismatching sorts or mismatching continuations ([n-inp-S],1739

[n-out-S], [n-inp-W], [n-out-W]);1740

they both consider input prefixes, targeting the same participant, where the input on the1741

RHS is preceded by a finite number of inputs from other participant, and the label of the1742

LHS is not equal to the label of the RHS ([n-A-`]);1743

they both consider input prefixes, targeting the same participant, where the input on1744

the RHS is preceded by a finite number of inputs from other participants, with matching1745

labels followed by mismatching sorts or mismatching continuations ([n-A-S], [n-A-W]);1746

top prefix on the LHS is input and the top sequence of the prefixes on the RHS consists1747

of a finite number of inputs from other participants and/or outputs ([n-i-o-1], [n-i-o-2]);1748

they both consider output prefixes, targeting the same participant, where the output on1749

the RHS is preceded by a finite number of outputs to other participants and/or inputs,1750

and the label of the LHS is not equal to the label of the RHS ([N-B-`]);1751

they both consider output prefixes, targeting the same participant, where the output on1752

the RHS is preceded by a finite number of outputs to other participants and/or inputs,1753

with matching labels followed by mismatching sorts or mismatching continuations ([n-B-S],1754

[n-B-W]).1755

We aim to prove that for every pair of SISO trees that are not related by coinductevely1756

defined relation ., we can derive that they are related by inductively defined relation 6.. Let1757

us consider all possible pairs (W1,W′1) of regular SISO trees. We can undoubtedly divide1758

them in cases with act(W1) = act(W′1) and act(W1) 6= act(W′1). In the former case, we1759

make the classification taking for W1 one of the three possible forms, and list all possible1760

forms of W′1 with respect to the position of the first appearance of the top (if any) prefix of1761

W1. In what follows, we list all the pairs we get with such a reasoning.1762

1. act(W1) = act(W′1)1763

a. W1 = end and W′1 = end;1764

b. W1 = p?`(S).W′ and1765

i. W′1 = p?`′(S′).W′, or1766

ii. W′1 = A(p).p?`′(S′).W′, or1767

iii. W′1 = q!`′(S′).W′ and p? ∈ act(W′), or1768

iv. W′1 = A(p).q!`′(S′).W′ and p? ∈ act(W′);1769

c. W1 = p!`(S).W′ and1770

i. W′1 = p!`′(S′).W′, or1771

ii. W′1 = B(p).p!`′(S′).W′;1772

2. act(W1) 6= act(W′1)1773

a. p? ∈ act(W1) and p? 6∈ act(W′1), for some p, or1774

b. p! ∈ act(W1) and p! 6∈ act(W′1), for some p, or1775

c. p? 6∈ act(W1) and p? ∈ act(W′1), for some p, or1776

d. p! 6∈ act(W1) and p! ∈ act(W′1), for some p.1777

Every pair, except (end, end) is in the conclusion of at least one rule in Table 4. If we1778

know that a pair (W1,W′1) is related by 6., i.e. it can be derived by the rules in Table 41779

applying the rules downwards, then the pair can also be verified if we apply the rules upwards.1780
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In a finite number of steps, staring from (W1,W′1) and applying the rules upwards, we will1781

end by application of a base rule. Consequently, if the upward verification procedure applied1782

on some pair (W1,W′1) does not terminate, it applies in each step one of the non base rules:1783

[n-inp-W], [n-out-W], [n-A-W], [n-B-W].1784

I Lemma D.1. Let W and W′ be SISO trees. If ¬(W .W′) then W 6.W′ is derivable.1785

Proof. The proof is by contraposition: we shall prove that W 6.W′ is not derivable implies1786

W . W′. Let us assume that W 6. W′ is not derivable. The case (W,W′) = (end, end) follows1787

directly. Take (W,W′) 6= (end, end) and notice that it certainly appears in a conclusion of1788

a rule in Table 4. Consider now an algorithmic procedure that applies the rules given in1789

Table 4 upwards, starting from W 6.W′. In each step of the procedure, we can apply only1790

one of the four rules: [n-inp-W], [n-out-W], [n-A-W], or [n-B-W]. Otherwise, W 6. W′ is derivable,1791

since all other rules are base cases. Also, each premise that is reached by the procedure has1792

the form W1 6. W′1 with act(W1) = act(W′1). In case act(W1) 6= act(W′1), the procedure1793

reaches one of the forms of the conclusion of [n-out], [n-inp], [n-out-R] [n-inp-R].The procedure1794

terminates only in case it reaches in a premise end 6. end (which happens in case W and W′1795

are finite and related by .).1796

LetR(W,W′) be the minimal (possibly infinite) set of pairs of trees satisfying the following1797

properties:1798

(1) (W,W′) ∈ R(W,W′) and1799

(2) if (W1,W′1) ∈ R(W,W′) and W1 6.W′1 is the conclusion and W2 6.W′2 is in the premise1800

of one of the rules [n-inp-W], [n-out-W], [n-A-W],[n-B-W] (with all other assumptions in the premise1801

satisfied as well), then (W2,W′2) ∈ R(W,W′).1802

It follows directly that R(W,W′) complies with the rules in Definition 3.2. J1803

Regular representatives for subtyping negation1804

In the sequel, we will always consider only regular representatives of SO and SI trees that1805

appear in the definition of the negation of subtyping. Before we adopt that approach, we will1806

prove that whenever there exist a pair of (possibly irregular) representatives U ∈ JT (T)KSO and1807

V′ ∈ JT (T′)KSI with U 66 V′, there is also a pair of regular representatives T (U1) ∈ JT (T)KSO1808

and T (V′1) ∈ JT (T′)KSI such that T (U1) 66 T (V′1) .1809

We start by proving that for each irregular tree U ∈ JT (T)KSO there is a regular tree1810

U1 ∈ JT (T)KSO such that U and U1 overlap in at least top n levels, for a given n. For that1811

purpose, we introduce two auxiliary functions, regSO(U, i,T,T′) and mu−(T). The function1812

regSO(U, i,T,T′), with U ∈ JT (T)KSO, follows in the tree of T the pattern determined by top1813

i levels of U and extracts (step by step) a type U with the tree T (U) that follows the same1814

pattern. The type U might not be unique, but all such types have the same top i levels.1815

Each step of the procedure applies one of the three options that are introduced and clarified1816

along the following lines.1817

(1) If T = µt.T1, then1818

regSO(U, i, µt.T1,T′) =µt.regSO(U, i,T1, µt.T1), for every i ≥ 0;1819
1820

The function goes behind µt and in the same time the forth parameter keeps the1821

information on the form of the µ type (it might be needed later on for unfolding).1822
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(2) If T 6= µt.T1, for any t and T1, and i > 0, then1823

regSO(U, i,T,T′) =



end ,U = end
p!`j(Sj).regSO(Uj , i− 1,Tj ,T′) ,U = p!`j(Sj).Uj , j ∈ K,

T =
⊕

k∈K p!`k(Sk).Tk,
&k∈K p?`k(Sk).regSO(Uk, i− 1,Tk,T′) ,U = &k∈K p?`k(Sk).Uk,

T = &k∈K p?`k(Sk).Tk,
regSO(U, i,T1,T′) ,T = t,T′ = µt.T1

1824

1825

The function extracts from T the prefix for U that will induce the same level in its tree1826

as U. If T = t, it first applies unfolding, recovering the form for substitution from the1827

forth parameter.1828

(3) If T 6= µt.T1, for any t and T1, and i = 0, then1829

regSO(U, 0,T,T′) = U1 for some T (U1) ∈ JT (T{T′′′
/t1})KSO, where T′ = µt1.T′′ and1830

T′′′ = µt2.T′′{t2/t1} (we choose here a fresh name t2). The choice of U1 is not unique1831

and we will always choose one that satisfies act(U) ⊇ act(T (U1)).1832

One can notice that the previous procedure might create some terms of the form µt.U′1833

with t 6∈ U′. These terms are cleaned up by mu−(T), that is defined as follows:1834

mu−(T) =



end T = end⊕
k∈K p!`k(Sk).mu−(Tk) T =

⊕
k∈K p!`k(Sk).Tk

&k∈K p?`k(Sk).mu−(Tk) T = &k∈K p?`k(Sk).Tk
µt.T′ T = µt.T′, t ∈ T′
mu−(T′) T = µt.T′, t 6∈ T′

1835

I Lemma D.2. If U ∈ JT (T)KSO then there is U1 such that T (U1) ∈ JT (T)KSO and T (U1)1836

overlaps with U at top n levels.1837

Proof. If U is finite, then we choose U1 = U. If U is infinite, then we choose U1 =1838

mu−(regSO(U, n,T,T)). J1839

In the following two examples we illustrate the procedure on some interesting cases.1840

I Example D.3. Take T = µt1.(p!`1(S1).t1&p!`2(S2).µt2.p!`3(S3).t2) and choose U ∈1841

JT (T)KSO such that U = p!`1(S1).p!`2(S2).p!`3(S3) . . . We show here that the procedure1842

introduced above gives a regular U1 that overlaps with U (at least) in the top 3 levels and1843

T (U1) ∈ JT (T)KSO.1844

U′1 =regSO(U, 3,T,T)1845

=µt1.regSO(U, 3, p!`1(t)1&p!`2(S2).µt2.p!`3(S3).t2,T)1846

=µt1.p!`1(S1).regSO(p!`2(S2).p!`3(S3) . . . , 2, t1,T)1847

=µt1.p!`1(S1).regSO(p!`2(S2).p!`3(S3) . . . , 2, p!`1(S1).t1&p!`2(S2).µt2.p!`3(S3).t2,T)1848

=µt1.p!`1(S1).p!`2(S2).regSO(p!`3(S3) . . . , 1, µt2.p!`3(S3).t2,T)1849

=µt1.p!`1(S1).p!`2(S2).µt2.regSO(p!`3(S3) . . . , 1, p!`3(S3).t2, µt2.p!`3(S3).t2)1850

=µt1.p!`1(S1).p!`2(S2).µt2.p!`3(S3).regSO(p!`3(S3) . . . , 0, t2, µt2.p!`3(S3).t2)1851

=µt1.p!`1(S1).p!`2(S2).µt2.p!`3(S3).µt3.p!`3(S3).t3.1852
1853

After erasure of the meaningless µ terms, we get1854

U1 =mu−(U′) = mu−(µt1.p!`1(S1).p!`2(S2).µt2.p!`3(S3).µt3.p!`3(S3).t3)1855
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=mu−(p!`1(S1).p!`2(S2).µt2.p!`3(S3).µt3.p!`3(S3).t3)1856

=p!`1(S1).p!`2(S2).mu−(µt2.p!`3(S3).µt3.p!`3(S3).t3)1857

=p!`1(S1).p?`2(S2).p!`3(S3).mu−(µt3.p!`3(S3).t3)1858

=p!`1(S1).p?`2(S2).p!`3(S3).µt3.p!`3(S3).t3.1859
1860

I Example D.4. Take T = µt.(p!`1(S1).p?`4(S4).t&p!`2(S2).t) and choose U ∈ JT (T)KSO1861

such that U = p!`1(S1) . . . We consutruct here a regular U1 that overlaps with U at the top1862

level and T (U1) ∈ JT (T)KSO.1863

U′1 =regSO(U, 1,T,T)1864

=µt.regSO(U, 1, p!`1(S1).p?`4(S4).t&p!`2(S2).t,T)1865

=µt.p!`1(S1).regSO(U, 0, p?`4(S4).t,T)1866
1867

We can now choose any U2 such that1868

T (U2) ∈ JT (p?`4(S4).µt1.(p!`1(S1).p?`4(S4).t&p!`2(S2).t1))KSO.1869
1870

For example, with U2 = p?`4(S4).µt2.p!`2(S2).t2 we get1871

U1 =mu−(µt.p!`1(S1).U2)1872

=mu−(µt.p!`1(S1).p?`4(S4).µt2.p!`2(S2).t2)1873

=p!`1(S1).p?`4(S4).µt2.p!`2(S2).t2.1874
1875

I Lemma D.5. If V′ ∈ JT (T′)KSO then there is V′1 such that T (V′1) ∈ JT (T′)KSI and T (V′1)1876

overlaps with V′ at top n levels.1877

Proof. The construction is analogous to the one from the previous lemma. J1878

I Corollary D.6. Let U ∈ JT (T)KSO and V′ ∈ JT (T′)KSI be such that U 66 V′. Then, there are1879

U1 and V′1 such that T (U1) ∈ JT (T)KSO and T (V′1) ∈ JT (T′)KSI and T (U1) 66 T (V′1) .1880

Proof. If U 66 V′ was derived in n steps (n ≥ 1), there is k such that prefixes from top n1881

levels of U that appear in V′ are placed in the top k levels of V′ (those that are considered1882

for the negation derivation). By Lemma D.2 and Lemma D.5, there are U1 and V′1 such that1883

T (U1) ∈ JT (T)KSO and T (V′1) ∈ JT (T′)KSI such that T (U1) ovelaps with U in top n levels and1884

T (V1) ovelaps with V′ in top k levels. It can be derived in n steps that T (U1) 66 T (V′1) . J1885

Step2: characteristic process1886

The proof that characteristic process of U is typable by T (U) is exactly the same as in the1887

case of synchronous multiparty sessions (See [21]). We consider only single-output processes1888

and for such processes there is no difference in typing rules. The whole proof is replicated1889

here, adapted to single-output processes.1890

I Lemma D.7 (Strengthening). If Θ, X : U′ ` P : U and X 6∈ fv{P} then Θ ` P : U.1891

I Lemma D.8 (Weakening). If Θ ` P : U and X 6∈ dom(Θ) then Θ, X : U′ ` P : U.1892

I Lemma D.9. If Θ, Xt : U1 ` P(U) : T (Uσ) where U1 = T (U1) (for some U1), and1893

σ = {Θ(Xt′ )/t′ | t′ ∈ fv(U)}, then Θ, Xt : U2 ` P(U) : T (Uσ′) , for any U2 = T (U2) (for some1894

U2) and σ′ = (σ \ {U1/t}) ∪ {U2/t}.1895
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Proof. By induction on the structure of U. J1896

I Lemma D.10. For every (possibly open) type U, there are Θ and σ such that dom(Θ) =1897

{Xt | t ∈ fv(U)} and Θ ` P(U) : T (Uσ) , where σ is a substitution such that σ = {Ut/t | t ∈1898

fv(U) and Θ(Xt) = T (Ut)}.1899

Proof. By induction on the structure of U.1900

U ≡ end : P(end) = 0 and, by [t-0], ` P(end) : end.1901

U ≡ t : P(t) = Xt1902

By [t-var], Xt : T (U′) ` Xt : T (U′) for any U′. For σ = {U′
/t}, we have1903

Xt : T (U′) ` P(t) : T (Uσ) .1904

U ≡ &
i∈I

p?`i(Si).Ui : P(U) =
∑
i∈I

p?`i(xi).if exprLxi,SiM then P(Ui) else P(Ui)1905

By the induction hypothesis, Θi ` P(Ui) : T (Uiσi) , where σi = {Ut/t | t ∈ fv(Ui) and1906

T (Ut) = Θi(Xt)} for some Θi, and every i ∈ I. Let us denote by Θ the environment1907

consisting of assignments Xt : T (Ut) for arbitrarily chosen Ut, where Xt ∈ dom(Θi)1908

for some i ∈ I. By typing rules, Θ, xi : Si ` exprLxi,SiM : bool, for every i ∈ I. By1909

Lemma D.9, [t-cond] and weakening, for each i ∈ I, we have the judgements:1910

Θ, xi : Si ` if exprLxi,SiM then P(Ui) else P(Ui) : T (Uiσ′i)1911

where σ′i =
{

Ut/t

∣∣∣∣ t ∈ fv(Ui) and
T (Ut)=Θ(Xt)

}
. Now, by [t-ext], we have1912

Θ `
∑
i∈I

p?`(xi).if exprLxi,SiM then P(Ui) else P(Ui) : &
i∈I

p?`(Si). T (Uiσ′i) .1913

We conclude this case by remarking that &
i∈I

p?`(Si). T (Uiσ′i) = T (Uσ) for σ = ∪i∈Iσ′i =1914

{Ut/t | t ∈ fv(U) and T (Ut) = Θ(Xt)}.1915

1916

U ≡ p!`(S).U′ : P(U) = p!`〈valLSM〉.P(U′)1917

By the induction hypothesis, Θ′ ` P(U′) : T (U′σ′) , where σ′ = {Ut/t | t ∈ fv(U′)1918

and T (Ut) = Θ′(Xt)} for some Θ′. Let us denote by Θ the environment consisting of1919

assignments Xt : T (Ut) for arbitrarily chosen Ut, where Xt ∈ dom(Θ′).1920

By [t-out],1921

Θ′ ` p!`(valLSM).P(U) : p!`(S). T (U′σ′).1922

U ≡ µt.U′ : P(U) = µXt.P(U′)1923

By induction hypothesis, there is Θ′ such that1924

Θ′ ` P(U′) : T (U′σ′) where σ′ = {Ut′/t′ | t′ ∈ fv(U′) and T (Ut′) = Θ′(Xt′)}1925

We have two cases:1926

(i) t 6∈ fv(U′). In this case, Xt 6∈ fv(P(U′)) and Θ′′, Xt : T (U′′) ` P(U′) : T (U′σ′), for1927

some U′′ (either Θ′ = Θ′′, Xt : T (U′′) or it is obtained by weakening of Θ′). By [t-rec],1928

we get Θ′′ ` µXt.P(U′) : T (U′σ) with σ′ = σ.1929
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(ii) t ∈ fv(U′). In this case, Xt ∈ fv(P(U′)) and Θ′ = Θ′′, Xt : T (U′′) for some U′′. By1930

Lemma D.9,1931

Θ′′, Xt : T (U′σ′) ` P(U′) : T (U′σ′′)
where σ′′ = {Ut′/t′ | t′ ∈ fv(U′) \ {t} and T (Ut′) = Θ′′(Xt′)} ∪ {U′σ′

/t}1932

i.e., the difference between σ′ and σ′′ is that σ′′ contains U′σ′
/t instead of U′′

/t. Then,1933

by [t-rec], we conclude Θ′′ ` µXt.P(U′) : T (U′σ) where σ = {Ut/t | t ∈ fv(U) and1934

T (Ut) = Γ′′(Xt)} = σ′′ \ {U′σ′
/t}.1935

J1936

I Lemma D.11. Let T be a session type tree. Then1937

(i) ∀U ∈ JTKSO U 6 T1938

(ii) ∀V′ ∈ JT′KSI T′ 6 V′1939

Proof. Follows from the definition of decompositions. J1940

I Proposition D.12. For all closed types T and U, if T (U)∈JT (T)KSO then ` P(U) : T.1941

Proof. As a direct consequence of Lemma D.10 we get ` P(U) : U. Since by Lemma D.111942

for every U with T (U) ∈ JT (T)KSO, T (U) 6 T (T) , by [t-sub], ` P(U) : T. J1943

Step3: characteristic session1944

I Proposition D.13. Let V′ be a SI type and r 6∈pt(V′). Let Q be a process such that ` Q : V′.1945

Then, there is a live typing environment Γ (see (4)) such that Γ ` r / Q | r /∅ | Mr,V′ .1946

Proof. Follows directly from the construction of the characteristic session types and the1947

definition of the live typing environments. J1948

I Proposition D.14. Take any T′, r 6∈pt(T′), SI type V′ such that T (V′)∈JT (T′)KSI, and Q1949

such that ` Q : T′. Then, there is a live Γ (see (4)) such that Γ ` r / Q | r /∅ | Mr,V′ .1950

Proof. By Proposition 5.10, ` Q1 : V′ implies there is a live typing environment Γ′′ such1951

that1952

Γ′′ ` r / Q1 | r /∅ | Mr,V′1953

where Γ′′ = Γ′, r : (∅,V′). By Lemma D.11 we have T′ 6 V′. Since for Γ = Γ′, r : (∅,T′) we1954

have Γ 6 Γ′′, by Lemma C.13 we obtain that Γ is also live. Hence, if ` Q : T′, then we may1955

show1956

Γ ` r / Q | r /∅ | Mr,V′1957

and Γ is live. J1958

Step4: completeness1959

In order to describe the shape of V′ type when U 66 V′ is derived using cases that involve1960

context B(p) (for the corresponding projections that satisfy W 6.W′) we define context C(p)
1961

with holes, that (as V) have only single inputs, and, in which there are no outputs on p.1962
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[n-UV-out-act]
p! 6∈ act(V′)
p!`(S).U 66 V′

[n-UV-inp-act]
p? 6∈ act(V′)

&
i∈I

p?`i(Si).Ui 66 V′

[n-UV-out-act-R]
p! 6∈ act(U)

U 66
⊕
i∈I

p!`i(Si).V′i

[n-UV-inp-act-R]
p? 6∈ act(U)

U 66 p?`(S).V′

[n-UV-inp]
∀i ∈ I : `i 6= ` ∨ S 6≤: Si ∨ Ui 66 V′

&
i∈I

p?`i(Si).Ui 66 p?`(S).V′

[n-UV-A]

∀i ∈ I : `i 6= ` ∨ S 6≤: Si ∨ Ui 66 A(p).V′

&
i∈I

p?`i(Si).Ui 66 A(p).p?`(S).V′

[n-UV-in-out-1]

&
i∈I

p?`i(Si).Ui 66
⊕
j∈J

q!`j(Sj).V′j

[n-UV-in-out-2]

&
i∈I

p?`i(Si).Ui 66 A(p).
⊕
j∈J

q!`j(Sj).V′j

[n-UV-out]
∀i ∈ I : ` 6= `i ∨ S 6≤: Si ∨ U 66 V′i

p!`(S).U 66
⊕
i∈I

p!`i(Si).V′i

[n-UV-C]

∀n ∈ N ∀i ∈ In : ` 6= `i ∨ S 6≤: Si ∨ U 66 (C(p) � n)[V′i]
p!`(S).U 66 C(p)[

⊕
i∈In

p!`i(Si).V′i]n∈N

Table 8 Shapes of unrelated U and V′ type trees

C(p) ::= [ ]n || q?`(S).C(p) ||
⊕
i∈I

r!`i(Si).C(p) ⊕
⊕
i∈I′

r!`i(Si).V′i r 6= p and p! 6∈ act(V′i)1963

Note that, in case of selection, context C(p) may have holes only in some branches while1964

the rest of the branches contain no outputs on p. This allows us to determine all the “first”1965

outputs appearing in some V′ type tree. We write C(p)[ ]n∈N to denote a context with holes1966

indexed by elements of N and C(p)[V′n]n∈N to denote the same context when the hole [ ]n1967

has been filled with V′n. We index the holes in contexts in order to distinguish them. For the1968

rest of the paper we assume C(p) are nonempty, i.e., it always holds that C(p) 6= [ ].1969

Furthermore, for a context C(p)[ ]n∈N we may apply a mapping C(p) � n that produces the1970

projection of the context into the path that leads to the hole indexed with n, i.e., it produces1971

the corresponding B(p).[ ]n.1972

I Lemma D.15. If ¬(U 6 V′) then U 66 V′ can be derived by the inductive rules given in1973

Table 8.1974

Proof. If ¬(U 6 V′) then ∀W ∈ JUKSI and ∀W′ ∈ JV′KSO holds W 6. W′. Now the proof1975

continues by case analysis of the last applied rules for W 6.W′.1976

Case [n-out]: If ∀W ∈ JUKSI and ∀W′ ∈ JV′KSO W 6. W′ is derived by [n-out], then from1977

W = p!`(S).W1 we conclude U = p!`(S).U1, by the definition of J KSI. Since ∀W′ ∈ JV′KSO1978

holds p! 6∈ act(W′), we may conclude p! 6∈ act(V′) (by definition of J KSO). Hence, we get1979

that U and V′ satisfy the clauses of [n-UV-out-act].1980

Cases [n-inp], [n-out-R] and [n-inp-R]: By a similar reasoning as in the previous case we may1981

show that U and V′ satisfy the clauses of [n-UV-inp-act], [u-UV-out-act-R] and [n-UV-inp-act-R],1982

respectively.1983

Cases [n-inp-`], [n-inp-S] and [n-inp-W]: Assume ∃W ∈ JUKSI and ∃W′ ∈ JV′KSO such that W 6. W′1984

is derived by [n-inp-`], [n-inp-S] or [n-inp-W]. Then, from W = p?`(S).W1 and definition of J KSI1985

we may conclude U = &i∈I p?`i(Si).Ui. Also, from W′ = p?`′(S′).W′1 and definition of1986
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J KSO, we conclude V′ = p?`′(S′).V′1. Since ∀W ∈ JUKSI and ∀W′ ∈ JV′KSO holds W 6. W′ we1987

distinguish three subcases:1988

∀W ∈ JUKSI ∀W′ ∈ JV′KSO W 6.W′ is derived by [n-inp-`];1989

∃W ∈ JUKSI ∃W′ ∈ JV′KSO W 6. W′ is derived by [n-inp-S], but could not be derived by1990

[n-inp-`];1991

∃W ∈ JUKSI ∃W′ ∈ JV′KSO W 6.W′ is derived by [n-inp-W], but could not be derived by1992

[n-inp-`] and [n-inp-W].1993

In the first subcase we conclude that ∀i ∈ I : `i 6= `′; in the second ∃i ∈ I : `i = `′ but1994

S′ 6≤: Si; while in the third case ∃i ∈ I : `i = `′ and S′ ≤: Si but ∀W1 ∈ JUiKSI∀W′1 ∈ JV′1KSO1995

holds W1 6.W′1. Thus, we derived that ∀i ∈ I : `i 6= `′ ∨ S′ 6≤: Si ∨ Ui 66 V′, which are1996

the clauses of [n-UV-inp].1997

Cases [n-A-`], [n-A-S] and [n-A-W]: Follow by a similar reasoning as in the previous item,1998

only deriving that U and V′ satisfy rule [n-UV-A].1999

Cases [n-i-o-1] and [n-i-o-2]: Assume ∃W ∈ JUKSI and ∃W′ ∈ JV′KSO such that W 6. W′2000

is derived by [n-i-o-1] or [n-i-o-2]. Using the definition of J KSO and J KSI we conclude2001

U = &i∈I p?`i(Si).Ui and, V′ =
⊕

j∈J q!`j(Sj).V′j or V′ = A(p).
⊕

j∈J q!`j(Sj).V′j , i.e., U2002

and V′ satisfy [n-UV-in-out-1] or [n-UV-in-out-2], respectively.2003

Cases [n-out-`], [n-out-S] and [n-out-W]: Follow by a similar reasoning as in the item with2004

[n-inp-`], [n-inp-S] and [n-inp-W], only deriving that U and V′ satisfy rule [n-UV-out].2005

Cases [n-B-`], [n-B-S] and [n-B-W]: Assume ∃W ∈ JUKSI and ∃W′ ∈ JV′KSO such that W 6.W′2006

is derived by [n-B-`], [n-B-S] or [n-B-W]. Then, W = p!`(S).W1 and W′ = B(p).p!`′(S′).W′1.2007

By definition of J KSI we directly obtain U = p!`(S).U1. By definition of J KSO we obtain2008

p! ∈ act(V′) and V′ 6=
⊕

i∈I p!`i(Si).V′i, i.e., ∀W′ ∈ JV′KSO either W′ = B(p).p!`′′(S′′).W′′12009

or p! 6∈ act(W′). Thus, we may conclude V′ = C(p)[
⊕

i∈In
p!`i(Si).V′i]n∈N . Furthermore,2010

since ∀W ∈ JUKSI (that have form W = p!`(S).W1) and ∀W′ ∈ JV′KSO (that have form2011

W′ = (C(p) � n)[p!`i(Si).W′i] or p! /∈ act(W′)) hold W 6. W′, we may distinguish three2012

cases:2013

∀W = p!`(S).W1 ∀W′ = (C(p) � n)[p!`i(Si).W′i] W 6.W′ is derived by [n-B-`];2014

∃W = p!`(S).W1 ∃W′ = (C(p) � n)[p!`i(Si).W′i] W 6.W′ is derived by [n-B-S], but could2015

not be derived by [n-B-`];2016

∃W = p!`(S).W1 ∃W′ = (C(p) � n)[p!`i(Si).W′i] W 6.W′ is derived by [n-B-W], but could2017

not be derived by [n-B-`] or [n-B-S].2018

In the first case we get that ∀n ∈ N∀i ∈ In ` 6= `i; in the second that ∃n ∈ N∃i ∈ In2019

such that ` = `i, and S 6≤: Si; and in the third that ∃n ∈ N∃i ∈ In such that ` = `i and2020

S ≤: Si, but W 6. (C(p) � n)[p!`i(Si).W′i]. Notice that in the third case ∀W ∈ Jp!`(S).U1KSI2021

and ∀W′ ∈ J(C(p) � n)[p!`(Si).V′i]KSO, where S ≤: Si, we have W 6. W′ is derived by2022

[n-B-W]. Then, we may conclude that ∀W1 ∈ JU1KSI and ∀W′1 ∈ J(C(p) � n)[V′i]KSO, we have2023

W1 6. W′1, i.e., we obtain U1 66 (C(p) � n)[V′i]. Therefore, we concluded that U = p!`(S).U1,2024

and V′ = C(p)[
⊕

i∈In
p!`i(Si).V′i]n∈N , and that ∀n ∈ N∀i ∈ In : ` 6= `i ∨ S 6≤: Si ∨ U1 662025

(C(p) � n)[V′i], that are the clauses of [n-UV-C].2026

J2027

I Lemma D.16. If S 6≤: S′ there is no v such that exprLvalLSM, S′M ↓ v.2028

Proof. By case analysis, we consider expression exprLvalLSM, S′M:2029

int 6≤: nat : exprL−1, natM = (succ(−1) > 0);2030

bool 6≤: nat : exprLtrue, natM = (succ(true) > 0);2031
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nat 6≤: bool : exprL1, boolM = ¬1;2032

int 6≤: bool : exprL−1, boolM = ¬(−1);2033

bool 6≤: int : exprLtrue, intM = (inv(true) > 0).2034

In each case, the expression is undefined since the following expressions are undefined:2035

succ(−1), succ(true),¬1,¬(−1), inv(true). J2036

I Lemma D.17. If S ≤: S′ then exprLvalLSM, S′M ↓ true or exprLvalLSM, S′M ↓ false.2037

Proof. By case analysis:2038

nat ≤: nat : exprL1, natM = (succ(1) > 0) ↓ true;2039

int ≤: int : exprL−1, intM = (inv(−1) > 0) ↓ true;2040

nat ≤: int : exprL1, intM = (inv(1) > 0) ↓ false.2041

J2042

I Proposition D.18. Let U and V′ be session types such that T (U) 66 T (V′) and pt(V′) ⊆2043

{pk : 1 ≤ k ≤ m} and Upk
= cyclic(V′, pk, r). If2044

M ≡ r / P(U) | r /∅ |
∏

1≤k≤m
(pk / P(Upk

) | pk /∅)2045

M′ ≡ r / P | r / hp |
∏

1≤k≤m
(pk / Pk | pk / hk) ,2046

where r / P(U) | r /∅ −→∗ r / P | r / hp and2047 ∏
1≤k≤m

(pk / P(Upk
) | pk /∅) −→∗

∏
1≤k≤m

(pk / Pk | pk / hk)2048

then, M −→∗ M′ and M′ −→∗ error.2049

Proof. The proof is by induction on the derivation of T (U) 66 T (V′). We extensively use2050

notation U = T (U) and V′ = T (V′). The cases for the last rule applied are derived from2051

Table 8.2052

We first consider the cases with act(U) 6= act(V′).2053

2054

act(U) 6= act(V′)2055

2056

[n-UV-out-act] : U = p!`(S).U1 and p! 6∈ act(V′).2057

In this case, if p ∈ pt(V′) by definition of characteristic session type and characteristic2058

process, r? 6∈ P(Up). Thus,2059

M ≡r / P(U) | r /∅ | p / P(Up) | p /∅ | M′12060

≡r / P(p!`(S).U1) | r /∅ | p / P(Up) | p /∅ | M′12061

−→r / P(U1) | r / (p, `(valLSM)) | p / P(Up) | p /∅ | M′1 −→ error (by [err-ophn])2062
2063

If p /∈ pt(V′) we use M ≡ M | p / 0 | p / ∅ and derive the analogous proof as above.2064

[n-UV-inp-act] : U = &i∈I p?`i(Si).Ui and p? 6∈ act(V′).2065

In this case, if p ∈ pt(V′) by definition of characteristic session type and characteristic2066

process, r! 6∈ P(Up). Thus,2067

M ≡r / P(U) | r /∅ | p / P(Up) | p /∅ | M′12068
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≡r / P
(
&
i∈I

p?`i(Si).Ui

)
| r /∅ | p / P(Up) | p /∅ | M′12069

≡r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / P(Up) | p /∅ | M′1 −→ error (by [err-strv])2070

2071

If p /∈ pt(V′) we use M ≡ M | p / 0 | p / ∅ and derive the analogous proof as above.2072

[n-UV-out-act-R] : p! 6∈ act(U) and V′ =
⊕

i∈I p!`i(Si).V′i.2073

In this case, by definition of characteristic process, p! 6∈ P(U).2074

M ≡r / P(U) | r /∅ | p / P
(

cyclic(
⊕
i∈I

p!`i(Si).V′i, p, r)
)
| p /∅ | M′12075

≡r / P(U) | r /∅ | p /
∑
i∈I

p?`i(xi).Pi | p /∅ | M′1 −→ error (by [err-strv])2076

2077

[n-UV-inp-act-R] : p? 6∈ act(U) and V′ = p?`(S).V′1.2078

In this case, by definition of characteristic process, p? 6∈ P(U).2079

M ≡r / P(U) | r /∅ | p / P(cyclic(p?`(S).V′1, p, r)) | p /∅ | M′12080

≡r / P(U) | r /∅ | p / r!`〈valLSM〉.P | p /∅ | M′12081

−→r / P(U) | r /∅ | p / P | p / (r, `(valLSM)) | M′1 −→ error (by [err-ophn])2082
2083

In the following cases, U type tree is rooted with an external choice.2084

2085

U = &i∈I p?`i(Si).Ui2086

2087

In these cases, we have2088

P(U) ≡
∑
i∈I

p?`i(xi).Pi, where2089

Pi ≡if exprLxi,SiM then P(Ui) else P(Ui)2090
2091

According to Table 8, we distinguish four cases (not already considered), depending on the2092

form of V′.2093

[n-UV-inp]: V′ = p?`(S).V′1 and ∀i ∈ I : `i 6= ` ∨ S 6≤: Si ∨ Ui 66 V′1.2094

Now we have2095

M ≡r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / P(cyclic(p?`(S).V′1, p, r)) | p /∅ | M′12096

=r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / r!`〈valLSM〉.P ′ | p /∅ | M′12097

−→r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / P ′ | p / (r, `(valLSM)) | M′12098

=:M12099
2100

We now distinguish three cases.2101

∀i ∈ I : `i 6= `: Session M1 reduces to error by [err-mism].2102

∃i ∈ I : `i = ` ∧ S 6≤: Si:2103

M1 −→ r / if exprLvalLSM,SiM then P(Ui) else P(Ui) | r /∅ | p / P ′ | p /∅ | M′12104

By Lemma D.16 and [err-eval], the session reduces to error.2105
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∃i ∈ I : `i = ` ∧ S ≤: Si ∧ Ui 66 V′1:2106

M1 −→ r / if exprLvalLSM,SiM then P(Ui) else P(Ui) | r /∅ | p / P ′ | p /∅ | M′12107

By Lemma D.17, we further derive2108

M1 −→∗ r / P(Ui) | r /∅ | p / P ′ | p /∅ | M′12109

where (assuming p = p1 = pm+1)2110

P ′ ≡p2!`(true).pm?`(x).2111

if exprLvalLxM, boolM then cyclic(V′1, p1, r) else cyclic(V′1, p1, r)2112

M′1 ≡
∏

2≤k≤m
(pk / pk−1?`(x).if exprLvalLxM, boolM then Qk else Qk | pk /∅)2113

2114

where Qk = pk+1!`(true).P(cyclic(V′1, pk, r)). Hence, we have2115

M1 −→∗r / P(Ui) | r /∅ | p / cyclic(V′1, p, r) | p /∅ |2116 ∏
2≤k≤m

(pk / P(cyclic(V′1, pk, r)) | pk /∅)2117

2118

Since Ui 66 V′1, by induction hypothesis the session reduces to error.2119

[n-UV-A]: V′ = A(p).p?`(S).V′1 and ∀i ∈ I : `i 6= ` ∨ S 6≤: Si ∨ Ui 66 A(p).V′1.2120

Assuming p1 = pm+1 = p, we have2121

M ≡r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / P
(

cyclic(A(p).p?`(S).V′1, p, r)
)
| p /∅ |2122

∏
2≤k≤m

(pk / P
(

cyclic(A(p).p?`(S).V′1, pk, r)
)
| pk /∅)2123

2124

By induction on context A(p) we may show that2125

M −→∗r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / P(cyclic(p?`(S).V′1, p, r)) | p /∅ |2126 ∏
2≤k≤m

(pk / P(cyclic(p?`(S).V′1, pk, r)) | pk / hk)2127

2128

where for all 2 ≤ k ≤ m: hk = (r, `1(valLS1M)) · . . . · (r, `n(valLSnM)) when2129

A(p) = A(pk)
1 .pk?`1(S1).A(pk)

2 . . . .A(pk)
n .pk?`n(Sn).A(pk)

n+12130

where instead of A(pk)
i contexts there could also be empty contexts, and if pk? /∈ act(A(p))2131

then hk = ∅. Using the last observation, we have2132

M −→∗r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / r!`〈valLSM〉.P ′ | p /∅ |2133 ∏
2≤k≤m

(pk / P(cyclic(p?`(S).V′1, pk, r)) | pk / hk)2134

−→r /
∑
i∈I

p?`i(xi).Pi | r /∅ | p / P ′ | p / (r, `(valLSM)) |2135 ∏
2≤k≤m

(pk / P(cyclic(p?`(S).V′1, pk, r)) | pk / hk)2136

2137

We now distinguish three cases2138
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∀i ∈ I : `i 6= `;2139

∃i ∈ I : `i = ` ∧ S 6≤: Si;2140

∃i ∈ I : `i = ` ∧ S ≤: Si ∧ Ui 66 A(p).V′1.2141

In the first two cases M reduces to error by the same arguments that are presented for the case2142

of [n-UV-inp]. For the third case, again using the same arguments as in the case of [n-UV-inp],2143

we have that2144

M −→∗r / P(Ui) | r /∅ | p / cyclic(V′1, p, r) | p /∅ |2145 ∏
2≤k≤m

(pk / P(cyclic(V′1, pk, r)) | pk / hk)2146

=: M′2147
2148

Since, Ui 66 A(p).V′1 and2149

M′′ =r / P(Ui) | r /∅ | p / cyclic(A(p).V′1, p, r) | p /∅ |2150 ∏
2≤k≤m

(pk / P
(

cyclic(A(p).V′1, pk, r)
)
| pk /∅)2151

−→∗M′2152
2153

which can also be shown in the same way as for M (by induction on A(p)), by induction2154

hypothesis we get M′′ −→∗ M′ −→∗ error, and hence, M −→∗ M′ −→∗ error.2155

2156

[n-UV-in-out-1]: V′ =
⊕

j∈J q!`j(Sj).V′j .2157

Assuming p1 = pm+1 = q we have2158

M ≡r / P(U) | r /∅ | q / P(cyclic(V′, q, r)) | q /∅ | M′12159

=r /
∑
i∈I

p?`i(xi).Pi | r /∅ | q /
∑
j∈J

r?`(xj).P q
j | q /∅ | M′12160

2161

where2162

M′1 ≡
∏

2≤k≤m
(pk /

∑
j∈J

pk−1?`j(xj).P pk

j | pk /∅)2163

The session reduces to error by [err-dlock].2164

2165

[n-UV-in-out-2]: V′ = A(p).
⊕

j∈J q!`j(Sj).V′j .2166

Let us first assume q 6= p. Denoting p1 = pm+1 = q and p2 = p we have2167

M ≡r /
∑
i∈I

p?`i(xi).Pi | r /∅ |2168

∏
1≤k≤m

(pk / P

cyclic(A(p).
⊕
j∈J

q!`j(Sj).V′j , pk, r)

 | pk /∅)2169

2170

Using a similar reasoning as in the case of [n-UV-A] (by induction on A(p)) we obtain2171

M −→∗r /
∑
i∈I

p?`i(xi).Pi | r /∅ |2172

∏
1≤k≤m

(pk / P

cyclic(
⊕
j∈J

q!`j(Sj).V′j , pk, r)

 | pk / hk)2173
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=: M′2174
2175

where for all 1 ≤ k ≤ m: hk = (r, `1(valLS1M)) · . . . · (r, `n(valLSnM)) when2176

A(p) = A(pk)
1 .pk?`1(S1).A(pk)

2 . . . .A(pk)
n .pk?`n(Sn).A(pk)

n+12177

where instead of A(pk)
i contexts there could also be empty contexts, and if pk? /∈ act(A(p))2178

then hk = ∅. Since p? /∈ act(A(p)), for the last derived session we have2179

M′ =r /
∑
i∈I

p?`i(xi).Pi | r /∅ | q /
∑
j∈J

r?`(xj).P q
j | q / h1 |2180

p /
∑
j∈J

q?`j(xj).P pk

j | p /∅ |
∏

3≤k≤m
(pk /

∑
j∈J

pk−1?`j(xj).P pk

j | pk / hk)2181

2182

the session reduces to error by [err-dlock]. In case q = p, the proof follows similar lines.2183

2184

In the following cases, U type tree is rooted with an internal choice.2185

2186

U = p!`(S).U12187

2188

In these case, we have P(U) ≡ p!`〈valLSM〉.P(U1) .2189

Depending on the form of V′, we distinguish two more cases (according to rules in Table 8).2190

2191

[n-UV-out]: V′ =
⊕

i∈I p!`i(Si).V′i and ∀i ∈ I : ` 6= `i ∨ S 6≤: Si ∨ U1 66 V′i.2192

Now we have2193

M ≡r / p!`〈valLSM〉.P(U1) | r /∅ | p / P
(

cyclic(
⊕
i∈I

p!`i(Si).V′i, p, r)
)
| p /∅ | M′12194

=r / p!`〈valLSM〉.P(U1) | r /∅ | p /
∑
i∈I

r?`i(xi).Pi | p /∅ | M′12195

−→r / P(U1) | r / (p, `(valLSM)) | p /
∑
i∈I

r?`i(xi).Pi | p /∅ | M′12196

2197

Now the proof proceeds following the same lines as in the case of [n-UV-inp].2198

2199

[n-UV-C]: V′ = C(p)[
⊕

i∈In
p!`i(Si).V′i]n∈N and ∀n ∈ N ∀i ∈ In : ` 6= `i ∨ S 6≤: Si ∨ U1 662200

(C(p) � n)[V′i].2201

Let us denote p1 = pm+1 = p. We have2202

M ≡r / p!`〈valLSM〉.P(U1) | r /∅ | p / P
(

cyclic(C(p)[
⊕
i∈In

p!`i(Si).V′i]n∈N , p, r)
)
| p /∅2203

|
∏

2≤k≤m
(pk / P

(
cyclic(C(p)[

⊕
i∈In

p!`i(Si).V′i]n∈N , pk, r)
)
| pk /∅)2204

2205

By induction on C(p)[ ]n∈N we may show that either M −→∗ error or there is n ∈ N such2206

that2207

M −→∗r / P(U′1) | r / (p, `(valLSM)) · hr | p / P
(

cyclic(
⊕
i∈In

p!`i(Si).V′i, p, r)
)
| p / hp2208
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|
∏

2≤k≤m
(pk / P

(
cyclic(

⊕
i∈In

p!`i(Si).V′i, pk, r)
)
| pk / hk)2209

=:M12210
2211

where there exist output-only context B(r) and A(r) context (where instead of r we could use2212

any other fresh name) such that2213

M2 =r / P
(

p!`(S).B(r).U′1
)
| r /∅ | p / P

(
cyclic(A(r).

⊕
i∈In

p!`i(Si).V′i, p, r)
)
| p /∅2214

|
∏

2≤k≤m
(pk / P

(
cyclic(A(r).

⊕
i∈In

p!`i(Si).V′i, pk, r)
)
| pk /∅)2215

−→∗M12216
2217

and where B(r).U′1 66 A(r).V′i can be derived from U1 66 (C(p) � n)[V′i] by applying the rules2218

given in Table 8 from conclusion to premises.2219

Note that the above A(r) is actually derived from (C(p) � n), by taking out all the outputs2220

(that are transformed into the inputs in the characteristic session), since they have found the2221

appropriate outputs in U1, and also some inputs (that are transformed into outputs in the2222

characteristic session), that have found the appropriate inputs in U1: these pairs of actions2223

enabled session M to reduce to M1. Along these lines B(r).U′1 is derived from U1.2224

The above also implies that by the assumption B(r).U′1 6 A(r).V′i we could derive U1 62225

(C(p) � n)[V′i].2226

Since2227

P

(
cyclic(

⊕
i∈In

p!`i(Si).V′i, p, r)
)

=
∑
i∈I

r?`i(xi).Pi2228

we distinguish three cases2229

∀i ∈ I : ` 6= `i;2230

∃i ∈ I : ` = `i ∧ S 6≤: Si;2231

∃i ∈ I : ` = `i ∧ S ≤: Si ∧ U1 66 (C(p) � n)[V′i].2232

In the first two cases M1 reduces to error using similar arguments as for [n-UV-inp]. For the2233

third case we have that2234

M1 −→∗r / P(U′1) | r / hr | p / P(cyclic(V′i, p, r)) | p / hp2235

|
∏

2≤k≤m
(pk / P(cyclic(V′i, pk, r)) | pk / hk)2236

=: M′2237
2238

Similarly as in the case of [n-UV-A], we have2239

M′′ =r / P
(
B(r).U′1

)
| r /∅ | p / P

(
cyclic(A(r).V′i, p, r)

)
| p /∅2240

|
∏

2≤k≤m
(pk / P

(
cyclic(A(r).V′i, pk, r)

)
| pk /∅)2241

−→∗M′2242
2243

Since B(r).U′1 66 A(r).V′i can be derived from U1 66 (C(p) � n)[V′i] by applying the rules given2244

in Table 8 from conclusion to premises, we may apply induction hypothesis and obtain2245

M′′ −→∗ M′ −→∗ error. Hence, M −→∗ M′ −→∗ error. J2246
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I Proposition D.19. Let T and T′ be session types such that T 66 T′. Then, there are U2247

and V′ with T (U) ∈ JT (T)KSO and T (V′) ∈ JT (T′)KSI and U 66 V′ such that:2248

r / P(U) | r /∅ |
∏

1≤k≤m
pk / (P(Upk

) | pk /∅) −→∗ error,

where pt(V′) ⊆ {pk : 1 ≤ k ≤ m} and Upk
= cyclic(V′, pk, r).2249

Proof. If T (T) 66 T (T′), there are U and V such that U ∈ JT (T)KSO and V′ ∈ JT (T′)KSI and2250

U 66 V′. By Corollary D.6, there are U and V′ such that T (U) ∈ JT (T)KSO and T (V′) ∈2251

JT (T′)KSI and T (U) 66 T (V′) . Now the proof follows by Proposition D.18. J2252

I Theorem 5.13. The asynchronous multiparty session subtyping 6 is complete.2253

Proof. Let T and T′ be such that T (T) 66 T (T′) . Then, by Proposition D.19 there are U2254

and V′ with T (U) ∈ JT (T)KSI and T (V′) ∈ JT (T′)KSO and T (U) 66 T (V′) , such that,2255

r / P(U) | r /∅ | Mr,V′ −→∗ error, (223)2256

where2257

Mr,V′ =
∏

1≤k≤m
pk / (P(Upk

) | pk /∅)2258

and pt(V′) ⊆ {pk : 1 ≤ k ≤ m} and Upk
= cyclic(V′, pk, r).2259

By Proposition 5.11, ` Q1 : T′ implies there is a live typing environment Γ such that2260

Γ ` r / Q1 | r /∅ | Mr,V′2261

Since by Proposition 5.6 ` P(U) : T, we conclude the proof by (223). J2262
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