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1. Introduction & Motivation
The ever-growing computational demands of increasingly

complex machine learning models frequently necessitate the
use of powerful cloud-based infrastructure for their training.
Binary neural networks (BNNs) are known to be promising
candidates for on-device inference due to their extreme com-
pute and memory savings over higher-precision alternatives.
BNNs represent the ideal class of neural networks for edge
inference due to their use of XNOR for multiplication, while
their compact weights suit systems with limited memory.

Despite featuring binary forward propagation, existing
BNN training approaches perform backward propagation
using high-precision floating-point data types—typically
float32—often making training infeasible on resource-
constrained devices. Our understanding of the standard BNN
training algorithm introduced by Courbariaux & Bengio [1]
led to the following observation: high-precision activations
and weight gradients should not be used since we are only
concerned with weights and activations’ signs. In this paper,
we present a low-memory, low-energy BNN training scheme
based on this intuition featuring (i) binary activations only,
facilitated through batch normalization modification, and
(ii) matrix multiplication devoid of floating-point operations.

By increasing the viability of learning on the edge, this
work will reduce the domain mismatch between training
and inference—particularly in conjunction with federated
learning—and ensure privacy for sensitive applications. Via
the aggressive energy and memory footprint reductions they
facilitate, our proposals will enable models to be trained
without the network access reliance, latency and energy
overheads or data divulgence inherent to cloud offloading.

This extended abstract forms a summary of our recent
work, which can be found on arXiv1. Our open-source train-
ing software and memory and energy estimation tools are
available on GitHub2. A NumPy-based prototype of our
work, targeting Raspberry Pis, is currently under develop-
ment.

1https://arxiv.org/abs/2102.04270
2https://github.com/awai54st/Enabling- Binary-

Neural-Network-Training-on-the-Edge

2. Implementation
We now detail the application of aggressive approxima-

tion specifically tailored to BNN training. Further to this, and
in line with the observation by many authors that float16
can be used for ImageNet training without inducing accuracy
loss, we also switch all remaining variables to this format.

High-precision activation elimination via batch normal-
ization approximation. Batch normalization ordinarily
sees channel-wise l2 normalization performed on each
layer’s centralized activations. Since batch normalization
is immediately followed by binarization in BNNs, however,
we argue that l1 normalization, free of costly squares and
square roots, is good enough in this circumstance. Through
further quantization and low-cost retention of layer- and
channel-wise means, we transform all activations into their
binary form. By doing so, we reduce their memory cost by
almost 32× and also save energy thanks to the corresponding
memory traffic reduction.

Binarized weight gradients. Intuitively, BNNs should be
particularly robust to weight gradient binarization since their
weights only constitute signs. We therefore store weight
gradients in binary format for use during weight update.

Power-of-two activation gradients. The tolerance of
BNN training to weight and gradient binarization further
suggests that activation gradients can be aggressively ap-
proximated into power-of-two representation without caus-
ing high accuracy loss. We hypothesize that this is more
suitable than fixed- or block floating-point formats due to the
typically high inter-channel variance of activation gradients.

Assuming that the target training platform has native
support for only 32-bit fixed- and floating-point arithmetic,
matrix multiplications between binary and power-of-two
operands can be computed by (i) converting powers-of-two
into int32s via shifts, (ii) performing sign-flips and (iii) ac-
cumulating the int32 outputs. This consumes far less
energy than the all-float32 standard.
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Figure 1. Batch size vs training memory footprint, achieved test accuracy and per-batch training energy consumption for BinaryNet with
CIFAR-10 using the standard and our proposed training flows. In the lower plots, total energy is split into compute- and memory-related
components. Annotations show reductions vs the standard approach.

3. Evaluation

We implemented our BNN training method using Keras
and TensorFlow, and experimented with the small-scale
MNIST, CIFAR-10 and SVHN datasets, as well as large-
scale ImageNet, using a range of network models.

Figure 1 shows the memory footprint savings from our
proposed BNN training method for different optimizers and
batch sizes for BinaryNet with the CIFAR-10 dataset. Across
all of these, we achieved a geomean reduction of 4.86×. For
all three optimizers, movement from the standard to our
proposed BNN training allows the batch size used to be
increased by 10×, facilitating faster convergence, without
a material increase in memory consumption. With respect
to energy, we saw an estimated geomean 4.49× reduction,
split into contributions attributable to arithmetic operations
and memory traffic by 18.27× and 1.71×. Test accuracy did
not drop significantly due to our approximations, with only
Adam inducing small drops (geomean 0.87 pp).

We also trained ResNetE-18, a mixed-precision model
with most convolutional layers binarized, to classify Ima-
geNet. In this setting, our approximations delivered memory
and energy reductions of 3.12× and 1.17× in return for a
2.25 pp drop in test accuracy.

4. Conclusion
In this work, we introduced the first training scheme

tailored specifically to BNNs. Moving first to 16-bit floating-
point representation, we selectively and opportunistically
approximated beyond this based on careful analysis of the
standard training algorithm presented by Courbariaux & Ben-
gio [1]. With a comprehensive evaluation conducted across
multiple models, datasets, optimizers and batch sizes, we
showed the generality of our approach and reported signifi-
cant memory and energy reductions vs the prior art, challeng-
ing the notion that the resource constraints of edge platforms
present insurmountable barriers to on-device learning.
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