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Abstract—Recent breakthroughs in deep learning often rely on 
representation learning and knowledge transfer. In recent years, 
unsupervised and self-supervised techniques for learning speech 
representation were developed to foster automatic speech 
recognition. Up to date, most of these approaches are task-specific 
and designed for within-task transfer learning between different 
datasets or setups of a particular task. In turn, learning 
taskindependent representation of speech and cross-task 
applications of transfer learning remain less common. Here, we 
introduce an encoder capturing word-level representations of speech 
for crosstask transfer learning. We demonstrate the application of the 
pre-trained encoder in four distinct speech and audio processing 
tasks: (i) speech enhancement, (ii) language identification, (iii) speech, 
noise, and music classification, and (iv) speaker identification. In each 
task, we compare the performance of our cross-task transfer learning 
approach to task-specific baselines. Our results show that the speech 
representation captured by the encoder through the pre-training is 
transferable across distinct speech processing tasks and datasets. 
Notably, even simple applications of our pre-trained encoder 
outperformed task-specific methods, or were comparable, depending 
on the task. 

Index Terms—Speech processing, deep learning, transfer learning, 
feature extraction 

I. INTRODUCTION 

Deep learning frameworks for computer vision and natural 
language processing often rely on representation learning and 
knowledge transfer [1]. The goal of transfer learning is to build 
up domain-specific knowledge on one task and transfer it to 
another downstream task [2]. Currently, three main transfer 
learning approaches can be distinguished: (i) feature 
extraction, whereby the pre-trained model provides compact 
representations of domain-specific data [3], (ii) fine-tuning, 
whereby the knowledge captured by a pre-trained model can 
be adjusted (i.e. fine-tuned) to a particular task or dataset [4], 
and (iii) computing feature losses, whereby representations, 
obtained through the pre-trained feature extractor, are used 
to compute losses for training deep learning systems [5]. 

Following numerous successful applications of deep learning 
in speech processing, learning representations of speech 
became the next focus in the field [6]. In particular, learning 
unsupervised audio representations and evaluating them on 
downstream classification tasks has recently shown promising 
results [7]–[9]. Similarly, one of the recent trends in Automatic 
Speech Recognition (ASR) is an application of unsupervised 
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[10], [11] or self-supervised [12], [13] speech representations, 
as a model pre-training followed by finetuning, or as auxiliary 
speech embedding features. 

Recent studies investigating neural encoding of spoken 
language suggest multi-scale parsing of incoming information 
into units of the appropriate temporal granularity [14], roughly 
at a segmental (such as phonetic) and supra-segmental (such 
as syllabic) timescales. We argue that existing unsupervised 
and self-supervised speech representations emphasize 
segmental features (i.e., acoustic models), and when used with 
a subsequent language model can facilitate ASR. Here, we 
explore the complementary case, where the acoustic model is 
represented on the supra-segmental level. Such word-level 
representation of speech, used without a language model, may 
be therefore more suitable for a wider range of distinct non-
ASR tasks. 

In this paper, we introduce a spoken word encoder for 
learning task-independent representation of speech. In 
contrast to most current transfer learning approaches, our 
method was designed to be flexible, versatile and applicable 
across a range of distinct speech and audio processing tasks. 
Our example encoder presented here adopts VGG-16 
architecture [15], similar to VGG-like models applied 
previously in audio classification [16] and speaker 
identification [17]. Importantly, the proposed methodology 
does not rely on this particular model, and can be easily 
employed with other architectures. 

We hypothesize that the spoken word encoder’s successive 
layers capture hierarchically organized generalized 
representations of speech at the intersection of acoustics and 
linguistic information. Notably, Speech2vec [18] encodes 
similar spoken word representation, however, it was applied 
only withintask for word similarity experiments, but not other, 
different downstream tasks. We thus evaluated our encoder in 
a crosstask and cross-dataset configuration using four distinct 
speech and audio processing problems: (i) speech inpainting 
[19], (ii) language identification [20], (iii) speech, noise and 
music classification [21] and (iv) speaker identification [22]–
[24]. 

The paper is organized as follows: Section II introduces the 
spoken word encoder, its pre-training and its capability for 
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transfer learning. Section III presents four applications of the 
pre-trained encoder in audio and speech processing tasks, 
results and comparisons to relevant baselines. Section IV 
concludes the paper and outlines avenues for future research. 

 

Fig. 1. SpeechVGG spoken word encoder and knowledge acquisition via the 
word classification task. Vertical arrows represent the activation at pooling 
layers, which reflect the hierarchical representation of speech features 
captured by the model. The output from the last block provides the most 
compact representation of speech features (red). 

II. SPOKEN WORD ENCODER 

Here we proposed a word encoder based on VGG-16 
architecture, thus from now on denoted as speechVGG. 
Importantly, the proposed methods can be paired with other 
architectures and applied to transfer knowledge between 
various speech processing tasks beyond those considered 
here. 

A. Encoder architecture 

Diagram illustrating the architecture of our encoder and the 
pre-training task is presented in Fig. 1. The model adopts the 
VGG-16 architecture [15]. Specifically, the network is built out 
of five main blocks (Fig. 1, yellow), each composed of stacked 
convolution layers followed by ReLU activation and concluded 
by a max-pooling layer. The output from the last block is 
subsequently processed through two fully-connected linear 
layers followed by a softmax output layer (Fig. 1, purple). Note 
that depending on the task to which the model is deployed, the 
final fully-connected and output layers of the model may be 
modified (Fig. 2b). 

B. Dataset & encoder pre-training 

We used LibriSpeech dataset [25] to train the speechVGG. 
We used all the available training data to build sets of 100 
(train-clean-100), 460 (+ train-clean-360) and 960 hours (+ 
train-other-500) of speech material and used them to train the 
encoder. We used test-clean as a validation set during the 
model training and dev-clean as a separate subset of data to 
evaluate the performance of the fully trained model. We 
trained the encoder on the word classification task using 
different training dictionaries extracted from the LibriSpeech 
transcriptions. We considered three dictionaries containing 
1000, 3000 & 6000 most frequent, at least 4-letters-long, 
words from the available data. Together, all considered 

dictionary and training data sizes made up nine possible 
training configurations. 

For each training setup, we obtained word boundaries (the 
start and end frames) using forced-alignment from Kaldi 
LibriSpeech setup [26], and extracted the corresponding 
segments from the data. We computed log-magnitude 
spectrograms for each extracted segment by taking absolute 
values of a complex short-time Fourier transform (STFT, 256 
samples window with 128 samples overlap, 128 frequency 
bins) and 

 a) Input b) 

 

Fig. 2. Applications of the spoken word encoder in transfer learning. The pre-
trained model can be used to: (a) compute deep feature losses or (b) to 
transfer knowledge to a new task as a feature extractor (i.e. fixed weights) or 
as a fully fine-tuneable module. 

then applying natural logarithm. Each frequency channel of the 
log-magnitude STFT was normalized using mean and standard 
deviation obtained from the corresponding training dataset. 

Each training sample was augmented using SpecAugment 
[27] to improve the model’s generalization capacity. The 
augmentation was applied by replacing random blocks of time 
and frequency bins (no more than 50% in each dimension) in 
the spectrograms with mean values. To address the varying 
duration of words, each time-frequency representation of a 
word was randomly padded with zeros to a size of 128 x 128, 
corresponding to a 1024-ms-long segment. Such a 
combination of zero-padding and augmentation facilitated the 
extraction of speech features in the model. We hypothesize 
that the zero-padding allows the model to learn to identify 
parts of the input containing speech, while augmentation 
makes the learned representations generalized. 

Each configuration of the encoder was trained via 
crossentropy loss for 30 epochs using ADAM optimizer with a 
learning rate set to 5×10−5. For all of the considered training 
configurations the model yielded over 92% accuracy in the 
word classification task (on held-out data), therefore indicating 
successful training and knowledge acquisition. 

C. Applications in transfer learning 

Our spoken word encoder was designed to extract features 
from up to 1024-ms-long samples of audio. Features of longer 
samples can be obtained by averaging the representations 
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from several windows. Due to the hierarchical, modular 
architecture, each block of the model emphasizes distinct 
features of the input. The highest-level features, obtained 
from the last max-pooling in the model, provide the most 
compact and informative representation of the input (Fig. 1, 
red). 

The pre-trained encoder can be applied to extract features 
in a range of speech processing tasks. They can be employed 
directly as feature extractors in different downstream tasks or 
used to train deep learning systems via (deep) feature losses 
[19] (Fig. 2a). In the latter case, the extractor pooling layers’ 
activation provides rich representations of both training 
output and the target. The direct loss computed between 
these two representations (for example L1) can then be used 
to train the main system. 

The pre-trained encoder can be also employed to provide a 
hot start for learning a brand new task. This can be 
accomplished by replacing the final layers of the extractor or 
attaching the other system to the output of the encoder’s final 
block (Fig. 2b). Such a system benefits from the knowledge 
already captured by the pre-trained model and can be 
furthermore fine-tuned. In the calibration process, the 
extractor’s weights can be either fixed (i.e. frozen) or fine-
tuned with the rest of the system. In both cases, a set of 
generalized speechspecific weights facilitates the (re-)training 
process and the trained system’s overall performance. 

III. TRANSFER LEARNING EXPERIMENTS 

A. Speech inpainting & benchmarking training setups 

In our previous work [19], we employed the speechVGG pre-
trained using 1000 words from 100 hours of speech recordings 
to train a deep speech inpainting system for reconstructing 
missing or distorted parts of the time-frequency 
representation of speech. Here, we explored how different 
speechVGG pretraining configurations (section II-B) influence 
the speech inpainting performance to determine the optimal 
setup. 

We adopted the exact same framework for deep speech 
inpainting as introduced in [19]. In particular, we used 
trainclean-100 from the LibriSpeech dataset to train the 
inpainting framework and dev-clean as an independent 
dataset for model evaluation. All the speech material was 
chunked into 1024-mslong segments and preprocessed in the 
same way as for the speechVGG pre-training (see section II-B 
for details). Each log-magnitude spectrogram was then 
distorted using random time & frequency masks, similar to 
those applied in SpecAugment [27]. The masks removed from 
10% up to 40% time and frequency bins from the input STFTs. 
Such samples, along with their mask (i.e. the position of the 
intrusion was known) were processed through the network to 
reconstruct the original time-frequency representations of 
speech. Waveforms were obtained directly from the 

reconstructed STFT magnitudes using the locally weighted 
sums algorithm [28]. 

The speech inpainting system was trained using nine 
different configurations of speechVGG specified in section II-B. 
Pre-trained speechVGG was each time used as a feature 
extractor with fixed weights and applied to compute feature 
losses for training the inpainting system (Fig. 2a). Specifically, 
each reconstructed training sample and the corresponding 
target were processed through the pre-trained speechVGG. 
The deep feature loss was obtained by computing L1 loss 
between activation of the speechVGG’s pooling layers and 
used to train the speech inpainting model. The inpainting 
performance of the such trained model was quantified via the 
short term objective intelligibility (STOI) [29] and perceptual 
evaluation of speech quality (PESQ) [30] between the 
reconstructed and actual speech samples from the held-out 
dataset (dev-clean). 

Results: Improvements of STOI & PESQ scores through 
speech inpainting, with respect to the unprocessed, distorted 
case, are reported in Fig. 3. SpeechVGG pre-trained to classify 
3000 words extracted from 460 hours of speech recordings 
was the optimal setup leading to the largest improvements in 
STOI & PESQ scores. Notably, this configuration outperformed 
exsiting baseline employing speechVGG pre-trained to classify 
1000 words from 100 hours of speech, as reported in [19]. The 
lack of improvement for larger sizes of either dictionary or 
training dataset may be attributed to the fact that over half of 
the 960 hours of LibriSpeech data belonged to the ‘other‘ 
category, which contains inaccurate annotations of words [25]. 
We used the best performing configuration of speechVGG (460 
hours + 3000 words) for the remaining experiments. 

 

Fig. 3. Impact of the speechVGG on the training of the speech inpainting 
system via deep feature loss. Each cell in the array represents improvement of 
STOI (top) and PESQ (bottom) scores, with respect to the unprocessed case, 
averaged across the evaluation dataset. *-baseline performance from [19]. 

B. Language identification 

The language identification experiment was performed 
using the Spoken Language Identification Kaggle dataset [20] 
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that contains voice recordings in three languages: English, 
German, and Spanish. We followed the recommended 
train/test data split. Twenty randomly chosen 1024-ms-long 
segments were extracted from each recording and pre-
processed to obtain their spectrograms, as specified in section 
II-B. Each segment was processed through the pre-trained 
speechVGG (460 hours + 3000 words), serving as feature 
extractor with fixed weights, to obtain its representation by 
flattening the output from the last block (Fig. 1, red). A set of 
features describing a particular recording was each time 
obtained by averaging representations of its 20 parts. Features 
obtained from training recordings were used to train a simple 
logistic regression classifier [31] to distinguish the three 
languages. The trained classifier was evaluated on a separate 
portion of the data, as stated above. 

Results: Table I compares our transfer learning approach 
with the self-supervised audio representation learning [8] and 
a task-specific convolutional neural network [20]. With 97.6% 
accuracy, our approach outperformed its counterparts using 
the pre-trained speechVGG as a fixed-weight feature extractor 
with no additional task-specific fine-tuning of the encoder 
itself. Although the speechVGG was pre-trained only on 
English, it was able to accurately distinguish all three 
languages. This suggests that the representation of speech 
captured during the encoder pre-training is not 
languagespecific and can generalize to other languages. 

TABLE I 

LANGUAGE IDENTIFICATION TASK. 
Method Accuracy (held-out data) 
Tagliasacchi, et al. [8] 90.0% 
Task-specific ConvNet [20] 97.0% 
speechVGG 97.6% 

C. Speech, music and noise classification 

We used the MUSAN dataset [21] to classify three different 
categories of audio recordings: speech (recordings from the US 
government and librivox.org), music, and noise. We discarded 
all audio samples shorter than 1024 ms from the dataset. All 
such short samples were recordings of noise, and including 
them could lead to biased predictions based solely on the 
sample duration rather than its acoustic content. From the 
remaining data we set aside randomly selected 10% as a held-
out evaluation set. Analogously to the previous task (section 
III-B), twenty randomly chosen 1024-ms-long segments were 
obtained from each recording in the dataset and pre-
processed as specified in section II-B. The pre-trained 
speechVGG (460 hours + 3000 words), with fixed weights and 
no additional fine tuning, was used to obtain features from 
each segment. Same as before, a set of features for each 
recording was obtained by averaging representation of its 
segments. The features from the training portion of the data 
were used to train a simple logistic regression classifier [31] to 

distinguish speech, music, and noise. The classifier was 
evaluated using samples from the held-out portion of the data. 

 

Fig. 4. t-SNE visualization of high-dimensional embeddings of speech, music 
and noise recordings from MUSAN, obtained via the pre-trained speechVGG. 

Results: High-dimensional embeddings of the MUSAN 
dataset were visualized via t-SNE [32] (Fig. 4). Clusters 
representing speech recordings were clearly distinguishable 
from music and noise. Interestingly, embeddings of speech 
recordings were divided into two distinct clusters; one made 
up almost exclusively of US government recordings (Fig. 4, dark 
blue). Our approach yielded 96.5% classification accuracy. This 
suggests that speechVGG, pre-trained on the LibriSpeech data, 
not only successfully transferred the generalized speech 
representation to this task, but also allowed to reliably 
distinguish samples of music and noise. Tagliasacchi, et al. [8] 
reported 99.0% accuracy on this task using representations 
from 0.975-seconds-long segments of recordings. Importantly, 
their approach was tailored specifically for this task, while our 
encoder was designed for versatile cross-task applications. 
Moreover, our approach used only twenty 1024-ms-long 
segments from each clip, i.e. up to 20.5 seconds of audio, 
instead of all available, as Tagliasacchi, et al. [8] did. 

D. Speaker identification 

In the speaker identification task, we used speech recordings 
from the TIMIT dataset, including 630 speakers [33]. We 
randomly selected one recording per speaker to form a set-
aside evaluations set, while the rest of the data was used for 
training. All the data was chunked into 1024-ms-long 
segments, and the log-magnitude spectrogram of each chunk 
was obtained as specified in section II-B. The previously 
introduced approach, where the pre-trained speechVGG (460 
hours + 3000 words) was used as a feature extractor with fixed 
weights, did not succeed in this task and led to poor 
performance. We thus replaced the output layer of the 
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speechVGG to accommodate a different number of classes in 
the new task (630 speakers) and fine-tuned the model (Fig. 2b). 
For fine tuning, we used the same training routines as in the 
speechVGG pre-training, but fed the model with the task-
specific data. In particular, the model was trained to classify 
speakers based on a single 1024ms-long window. During 
evaluation on a set-aside portion of the data, the speaker 
identity was determined by averaging model predictions from 
a window sliding over the entire recording with a 50% overlap 
(512 ms). 

Results: Results of speaker identification using the finetuned 
speechVGG, alongside the baseline approaches, are presented 
in Table II. The fine-tuned speechVGG achieved 99.7% accuracy 
on the set-aside portion of the data and therefore 
outperformed existing methods evaluated on the entire TIMIT 
corpus [22], [23]. Ge et al. (2017) [24] reported 100% accuracy 
in this task employing a 1-second-long window using a subset 
of 100 male speakers. In the same setup our fine-tuned model 
also solved the task yielding 100% accuracy (Table II - 100 male 
speakers). 

TABLE II SPEAKER 

IDENTIFICATION TASK. 

 Accuracy (held-out data) 

Method All speakers 100 male speakers 
Ming, et al. [23] 608/630 (96.5%) - 
Wildermoth, et al. [22] 623/630 (99.0%) - 
Ge, et al. [24] - 100/100 (100%) 
speechVGG (fine-tuned) 628/630 (99.7%) 100/100 (100%) 

IV. DISCUSSION 

Here, we proposed an approach for learning word-level 
embeddings, suitable for flexible knowledge transfer across 
different speech and audio processing tasks. In contrast to 
most existing task-specific transfer learning approaches our 
method is focused on versatility and cross-task compatibility. 
We evaluated the proposed spoken word encoder as a 
‘generalpurpose‘ speech feature extractor and explored its 
performance in a range of distinct speech and audio processing 
tasks. 

The generalized representation of speech captured during 
the encoder pre-trained on the LibriSpeech dataset [25] was 
transferable over four distinct tasks, employing different 
datasets, not limited to speech [20], [21], [33]. Interestingly, 
relatively simple applications of our pre-trained spoken word 
encoder were capable of achieving results comparable to the 
recent task-specific approaches with little to no additional 
finetuning (section III). Implementation of the speechVGG, 
pretrained models and example applications are available at1. 

We would like to re-iterate that the proposed pre-training 
and transfer learning methodology is not restricted to the 
example encoder architecture introduced in Section II. 

 
1 https://github.com/bepierre/SpeechVGG 

Depending on the tasks of interest, the feature extractor can 
be of considerably higher or lower complexity than the 
example presented here. In particular, systematic exploration 
of different encoder configurations and fusion of our approach 
with existing (self-)supervised and unsupervised training 
setups may further improve efficacy of the proposed 
framework. 
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