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Abstract Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and 
can help understand metabolic alterations in response to diet quality. Here, we used 1H NMR 
spectroscopy in a multicountry study in European children (1147 children from 6 different cohorts) 
and identified a common panel of 4 urinary metabolites (hippurate, N-methylnicotinic acid, urea, 
and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed 
food consumption and also had higher capacity in discriminating children’s diet quality than that 
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of established sociodemographic determinants. Further, we showed that the identified metabolite 
panel also reflected the associations of these diet quality indicators with C-peptide, a stable and 
accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables 
objective assessment of dietary patterns in European child populations, complementary to tradi-
tional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, 
this knowledge can provide mechanistic evidence of common biological pathways that characterize 
healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to 
metabolic disease.

Editor's evaluation
This well executed study looks at the association of urinary metabolites to the types of diets 
consumed by European children. Using NMR they find four metabolites that are predictive of 
a Mediterranean diet. This presents both an approach additional to traditional questionnaire 
methods and potential insights into biological pathways and will be of interest to nutritionists and 
epidemiologists.

Introduction
Dietary habits are considered a key element for the prevention of chronic noncommunicable diseases 
(Grosso et al., 2020). In 2017, 22% of all deaths among adults were attributed to dietary risks with 
type 2 diabetes being among the top causes of diet-related deaths (Collaborators, 2019). However, 
it is notoriously difficult to measure diet accurately in large population studies and the absence of 
accurate dietary assessment methods is hampering the evidence linking diet and disease (Posma 
et al., 2020; Ioannidis, 2018). There is a need for novel approaches to better elucidate diet-related 
metabolic alterations and their association with disease risk.

Metabolomics is the systematic study of small-molecule metabolites in a biological system and has 
recently emerged as a powerful top-down approach providing a comprehensive phenotype of biolog-
ical status. Urinary metabolic phenotypes carry rich information on environmental, lifestyle and nutri-
tional exposures, physiological and metabolic status, and disease risks on an individual and population 
level (Gibson et al., 2020; Collins et al., 2019; Rebholz et al., 2018). Urine specimens have high 
concentrations of food-derived metabolites and studies have shown that urinary metabolic profiles 
could provide an objective measure of dietary intake (O’Gorman and Brennan, 2017).

Previous research identifying diet-related metabolic profiles has largely focused on selected food 
groups including fruits, vegetables, meat, and seafood (Gibson et al., 2020; Lau et al., 2018; Guertin 
et al., 2014; Playdon et al., 2016; Scalbert et al., 2014), while dietary patterns and food processing 
are far less studied (Collins et al., 2019; Rebholz et al., 2018; Garcia-Perez et al., 2017; Martinez 
et  al., 2016). Ultra-processed foods (UPFs), which are industrial formulations undergoing a series 
of physical and chemical processes and typically lack intact healthy food components and include 
various additives, can result to cumulative intake of salt, added sugars, and fats (Monteiro et al., 
2019). UPF consumption has been increasing worldwide (Monteiro et al., 2013; Monteiro et al., 
2018a; Monteiro et  al., 2018b; Baker et  al., 2020) and, to our knowledge, no previous report 
exists on its metabolic signature. In contrast with the study of overall diets, including the UPF diet, 
exploring intakes of single foods, which is what is traditionally done in nutrition research, might be 
failing to provide a realistic image of dietary metabolic footprint. Moreover, most previous studies 
have focused on adults, and little is known about body’s metabolic response to diet during childhood. 
This is important as age is a major source of variation in metabolite profiling, with large differences 
being observed between children and adults (Ellul et al., 2019).

Alterations in metabolite profiling could provide a mechanistic link between diet and disease devel-
opment as early as in childhood. Alterations in the levels of several metabolic biomarkers and path-
ways have been associated with insulin resistance in childhood including branched-chain and aromatic 
amino acid metabolism, urea cycle, glucose, and carbohydrate metabolism (Rauschert et al., 2017; 
Zhao et al., 2016; Martos-Moreno et al., 2017). In addition, dietary patterns characterized by high 
consumption of UPFs, such soft drinks, sweet, and savoury snacks, have been related to higher risk of 
insulin resistance in children (Karatzi et al., 2014; Romero-Polvo et al., 2012). All previous studies 
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have included measurement of serum insulin levels as marker of insulin resistance. An alternative 
marker is C‐peptide, a protein that is cosecreted with insulin on an equimolar basis from pancreatic 
β-cells and has been shown to strongly predict metabolic disease progression (Patel et al., 2012). 
C-peptide has a longer half‐life than insulin and is recognized as a stable and accurate marker of 
endogenous insulin secretion, even in nonfasting conditions (Hope et al., 2016; Vezzosi et al., 2007; 
Polonsky et al., 1986). Previous studies in children have shown that higher carbohydrate intake is 
related to higher C-peptide concentrations (Sunehag et al., 2002; Buyken et al., 2006). However, 
there is little evidence on the metabolic signatures underlying the association of diet with C-peptide 
levels in children.

We conducted a multicountry study in European children within the Human Early-Life Exposome 
(HELIX) project (Maitre et al., 2018) aiming (1) to identify urinary metabolites associated with Medi-
terranean diet adherence and UPF consumption, and (2) to determine the extent to which these 
metabolites were associated with C-peptide, used as an early marker of metabolic health.

Methods
Study population
This study is embedded within the HELIX project (Maitre et al., 2018), a collaborative project across 
six established and ongoing longitudinal population-based birth cohort studies in Europe: Born in 
Bradford (BiB, UK) (Wright et al., 2013), Étude des Déterminants pré et postnatals du développe-
ment et de la santé de l’Enfant (EDEN, France) (Heude et al., 2016), Kaunas Cohort (KANC, Lithu-
ania) (Grazuleviciene et al., 2009), INfancia y Medio Ambiente (INMA, Spain) (Guxens et al., 2012), 
Norwegian Mother, Father and Child Cohort Study (MoBa, Norway) (Magnus et al., 2016), and RHEA 
(RHEA, Greece) (Chatzi et al., 2017a). Participating cohorts covered singleton deliveries from 2003 to 
2008. As part of HELIX, a subcohort of 1301 children (approximately 200 children in each cohort) were 
followed in 2014–2015 for a clinical examination, a computer-assisted interview with the parents, and 
the collection of biological samples. Data collection was standardized across cohorts and performed 
by trained staff. A full description of the HELIX follow-up methods and study population are provided 
by Maitre et  al., 2018. Prior to the start of HELIX, all six cohorts on which HELIX is based had 

Entire cohorts
(N=31472)

Common HELIX 
follow-up examination

(N=1301)

Study population
(N=1147)

Excluded from the follow-up examination (N= 30171)

(a) Age not 6–11 years at the time of the visit;
(b) No storage of sufficient pregnancy blood and urine 
samples for analysis of prenatal exposure biomarkers; 
(c) Not complete address history available from first to last 
follow-up point; 
(d) health problem that may affect the performance of the 
clinical testing or impact volunteer’s safety (eg, acute 
respiratory infection)

Excluded (N= 154)

No  availability of dietary data, plasma C-peptide levels, 
and/or metabolomic biomarkers in urine 

Figure 1. Participant flowchart.
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undergone the required evaluation by national ethics committees and had obtained all the required 
permissions for their cohort recruitment and follow-up visits. Each cohort also confirmed that relevant 
informed consent and approval were in place for secondary use of data from preexisting data. The 
work in HELIX was covered by new ethics approvals from the local ethics committees at each site, and 
at enrolment in the HELIX subcohort, participants were asked to sign an informed consent form for 
the specific HELIX work including clinical examination and biospecimen collection and analysis. Addi-
tionally, the current study was approved by the University of Southern California Institutional Review 
Board.

Our study population consisted of 1147 children with available information on dietary intake, 
plasma C-peptide levels, and metabolomic biomarkers in urine collected during the HELIX follow-up 
at a mean age of 7.9 years (range: 5.4–12.0 years) (Figure 1).

Dietary assessment
Information about the children’s habitual diet was collected via a semi quantitative food-frequency 
questionnaire (FFQ) covering the child’s habitual diet, which was filled in by the parent attending the 
examination appointment. The FFQ, covering the past year, was developed by the HELIX research 
group, translated and applied to all cohorts (Maitre et al., 2018). It included 43 questions of intake of 
food items, which were aggregated in 16 main food groups: meat and meat products, fish and seafood, 
sweets, beverages, potatoes, vegetables, dairy products, fruits, bread and cereal, sweet bakery prod-
ucts, added fats, eggs, nuts, salty snacks, pulses, and dressings. It also included 15 specific questions 
to examining the degree of adherence to Mediterranean diet. Diet quality was assessed using two 
different approaches, (1) by assessing the degree of adherence to a Mediterranean diet based on the 
KIDMED index (Mediterranean Diet Quality Index for children and adolescents) (Serra-Majem et al., 
2004) and (2) by assessing the proportion of UPF in the overall diet (Monteiro et al., 2019).

For the KIDMED index (Serra-Majem et al., 2004), items positively associated with the Mediterra-
nean diet pattern (11 items) were assigned a value of +1, while those negatively associated with the 
Mediterranean diet pattern (4 items) were assigned a value of −1 (Supplementary file 1a). The scores 
for all 15 items were summed, resulting in a total KIDMED score ranging from −4 to 11, with higher 
scores reflecting greater adherence to a Mediterranean diet. We categorized the score into three 
groups: low (<1), moderate (1–4), and high (>4).

For UPF intake, we identified foods and drinks as ‘ultra-processed’ by using the NOVA classification, 
a food classification system based on the nature, extent, and purpose of industrial food processing 
(Monteiro et al., 2019) We identified the following ‘ultra-processed’ foods: cookies, pastries, sugar-
sweetened, low-sugar and artificially sweetened beverages, cold meat cuts; ham, dairy desserts, 
sugar-sweetened and other breakfast cereals, crispbread and rusks; chocolate, sweets, margarine, 
dressings, and salty snacks. For some food items, our FFQ did not provide enough information on 
food processing to determine if a specific item belongs to one processing category or another. We 
discussed the classification of each food item with a team of nutritionists and used a conservative 
approach, such that the lower level of processing was chosen – for instance, we made the assumption 
that fries are homemade from fresh potatoes, and therefore, they were not classified as UPF. For each 
child, we calculated the daily proportion of all UPF in the total diet as the ratio between the sum of 
daily servings of UPF to the total daily sum of all food and drink servings. More details on the catego-
rization of foods according to the NOVA classification are presented in Supplementary file 1b.

Urine metabolite profiling
Two urine samples, representing last night-time and first morning voids, were collected on the evening 
and morning before the clinical examination, kept in a fridge and transported in a temperature-
controlled environment, and aliquoted and frozen within 3 hr of arrival at the clinics. They were subse-
quently pooled to generate a more representative sample of the last 24 hr for metabolomic analysis 
(Lau et al., 2018).

Urinary metabolic profiles were acquired using 1H NMR spectroscopy according to Lau et al., 2018. 
In brief one-dimensional 600 MHz 1H NMR spectra of urine samples from each cohort were acquired 
on the same Bruker Avance III spectrometer operating at 14.1 Tesla within a period of 1 month. The 
spectrometer was equipped with a Bruker SampleJet system, and a 5-mm broadband inverse config-
uration probe maintained at 300 K. Prior to analysis, cohort samples were randomized. Deuterated 
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3-(trimethylsilyl)-[2,2,3,3-d4]-propionic acid sodium salt was used as internal reference. Aliquots of the 
study pooled quality control (QC) sample were used to monitor analytical performance throughout 
the run and were analysed at an interval of every 23 samples (i.e., 4 QC samples per well plate). The 1H 
NMR spectra were acquired using a standard one-dimensional solvent suppression pulse sequence. 
Forty-four metabolites were identified and quantified as described in Lau et al., 2018. The urinary 
NMR showed excellent analytical performance, the mean coefficient of variation across the 44 NMR 
detected urinary metabolites was 11%. For the statistical analysis we have used creatinine-normalized 
metabolite concentrations (μmol/mmol of creatinine).

Plasma C-peptide
Blood was collected at the end of the clinical examination during the HELIX follow-up visit. The 
median postprandial interval (time between last meal and blood collection) was 3.3 hr (interquartile 
range [IQR: 2.8–4.0]).

For each cohort, concentration of C-peptide was assessed in child plasma at the CRG/UPF 
Proteomics Unit (Barcelona, Spain) using the xMAP and Luminex System multiplex platform according 
to the manufacturer’s protocol. Blood samples were randomized and blocked by cohort prior to 
measurement to ensure a representation of each cohort in each plate (batch). For protein quantifi-
cation, an 8-point calibration curve per plate was performed with protein standards provided in the 
Luminex kit and following the procedures described in the standard procedures described by the 
vendor. Commercial heat inactivated, sterile-filtered plasma from human male AB plasma (Sigma Cat 
# H3667) was used as constant controls to control for intra- and interplate variability. Four control 
samples were added per plate. Raw intensities obtained with the xMAP and Luminex system for each 
sample were converted to pg/ml using the calculated standard curves of each plate and accounting for 
the dilutions that were made prior measurement. The coefficient of variation for C-peptide was 16%. 
The LOD was determined and the lower and upper quantification limits (LOQ1 and LOQ2, respec-
tively) were obtained from the calibration curves. C-peptide concentrations were log2-transformed 
to achieve normal distribution. Plate batch effect was corrected by subtracting for each individual 
and each protein the difference between the overall protein average minus the plate-specific protein 
average. Finally, values below LOQ1 and above LOQ2 were imputed using a truncated normal distri-
bution using the truncdist R package.

Covariates
Adjustment factors were selected a priori based on literature (Aranceta et al., 2003; Scaglioni et al., 
2018; Patrick and Nicklas, 2005) and included: maternal age (in years), maternal education level (low, 
middle, high), maternal prepregnancy body mass index (BMI, in kg/m2), family affluence score (cohort-
specific definition of low, middle, high), child sex, child age (in years), child BMI (in kg/m2), child 
sedentary behavior (min/day of time spent watching TV, playing computer games or other sedentary 
games), child ethnicity (White European, Asian, other), and postprandial interval (in hours). We also 
included a cohort indicator as a fixed effect in the models, as this, in the context of an observational 
study, is expected to control for cohort effects (Basagaña et al., 2018). We imputed missing values for 
covariates (ranging from 0% to 4%) using the method of chained equations with the R package mice. 
Details about the imputation process in HELIX, diagnostics, and comparison between imputed and 
complete-case values have been reported in detail elsewhere (Agier et al., 2019).

Statistical analysis
As a first step in our analysis, we conducted a metabolome-wide association study to assess the 
associations of urinary metabolites with diet quality. Creatinine-normalized metabolite concentrations 
(μmol/mmol of creatinine) were log10 transformed prior to statistical analyses to improve model fit. We 
fitted separate multivariable regression models for each metabolite with the KIDMED score or UPF 
intake (expressed as per 5% change of total daily food intake). To account for multiple hypothesis 
testing, we applied the Benjamini–Hochberg false discovery rate (FDR) correction; an FDR-corrected 
p value <0.05 denoted statistical significance. For metabolites identified to be associated with the 
diet quality indicators, we assessed between-cohort heterogeneity with the I2 statistic and χ2 test from 
Cochran’s Q.

https://doi.org/10.7554/eLife.71332
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To examine the ability of the identified metab-
olite panels in discriminating children with low 
vs. high KIDMED scores (<1 vs. >4) and low vs. 
high UPF intakes (Quartile 1: <18% vs. Quartile 4: 
≥29%), we plotted receiver operating character-
istic (ROC) curves and estimated area under the 
ROC curve values, indicative of the discriminative 
performance of the metabolite models, based 
on tenfold cross validations. We also repeated 
the ROC analysis for a set of established socio-
demographic factors (maternal education level, 
maternal prepregnancy BMI, family affluence 
score, child sedentary behavior, ethnicity, age, 
and sex) linked to childhood diet quality both 
previously (Aranceta et  al., 2003; Scaglioni 
et al., 2018; Patrick and Nicklas, 2005) and in 
our study population (all p < 0.05) and compared 
the discriminative performance of this sociode-
mographic set with that of the metabolites.

Next, we examined the association of the 
KIDMED score and of UPF intake (as inde-
pendent variables) with plasma C-peptide 
concentration (as dependent variable) using 
multivariable linear regression models. No 
departures from linearity in the associations 
of these diet quality indicators with C-peptide 
concentration were observed both visually and 
statistically (p for linearity >0.42) using gener-
alized additive models. We examined the 
KIDMED score both as continuous (per score 
unit increase) and in categories of low (score <1, 
reference), moderate (score = 1–4), and high 
(score >4). Likewise, UPF intake was assessed 
both as continuous (per 5% change of total daily 
food intake) and in quartiles (Q1: <18%, refer-
ence; Q2: 18% to <23%; Q3: 23% to <29%; and 
Q4: ≥29% of total daily food intake). We also 
included a product term between KIDMED and 
UPF intake in the regression analysis to assess 
their interaction; to simplify interpretation of 
this model, we categorized the KIDMED score as 
low/moderate vs. high and UPF intake based on 
the median population intake ( <23% vs. ≥23%). 
We conducted two sets of sensitivity analyses 
to assess the robustness of the results. First, we 
calculated cohort-specific effect estimates and 
assessed heterogeneity with the I2 statistic and 
χ2 test from Cochran’s Q. Second, we examined 
potential effect modification by child sex and by 
child weight status (IOTF-defined normal weight 
vs. overweight/obese) on C-peptide by testing 
the multiplicative interaction term between the 
potential effect modifier and each diet quality 
measure. Finally, we fitted regression models 
with the metabolites found to be associated 

Table 1. Characteristics of the study population.

Cohort of inclusion, n (%)

 � BiB, UK 189 (16.5)

 � EDEN, France 149 (13)

 � INMA, Spain 202 (17.6)

 � KANC, Lithuania 194 (16.9)

 � MoBa, Norway 221 (19.3)

 � RHEA, Greece 192 (16.7)

Maternal characteristics

Maternal age, mean (SD), years 30.7 (4.9)

 � Missing, n (%) 13 (1.1)

Prepregnancy BMI, mean (SD), kg/m2 25 (5)

 � Missing, n (%) 21 (1.8)

Maternal educational level, n (%)

 � Low 157 (13.7)

 � Medium 391 (34.1)

 � High 562 (49)

 � Missing, n (%) 37 (3.2)

Child characteristics

Age at assessment, mean (SD), years 7.9 (1.6)

Sex, n (%)

 � Male 626 (54.6)

 � Female 521 (45.4)

Ethnicity, n (%)

 � White European 1,028 (89.6)

 � Asian 92 (8)

 � Other 27 (2.4)

Family affluence score, n (%)

 � Low 126 (11)

 � Medium 448 (39.1)

 � High 569 (49.6)

 � Missing, n (%) 4 (0.4)

BMI, mean (SD), kg/m2 16.9 (2.6)

 � Normal weight, n (%)* 906 (79)

 � Overweight/obese, n (%)* 237 (20.7)

 � Missing, n (%) 4 (0.4)

KIDMED score, mean (SD) 2.8 (1.7)

 � Low (<1), n (%) 104 (9.1)

 � Medium (1–4), n (%) 848 (73.9)

 � High (>4), n (%) 195 (17)

Table 1 continued on next page
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with diet quality indicators, and C-peptide in 
order to assess whether diet-related metabo-
lites are related to β-cell function.

We performed analyses with both complete 
(missingness <4% in each covariate) and imputed 
data. Results were similar across raw and imputed 
data analyses, and hence, we present those using 
the imputed covariate data. For easier interpre-
tation of effect estimates for the log-transformed 
C-peptide and metabolite values, we back-
transformed regression coefficients and present 
results as percent change (% change = (back-
transformed [beta] − 1) × 100).

Analyses were conducted using STATA version 
14.2 (StataCorp LLC, TX) and R software version 
3.5.3. Linear regression analyses were performed 
in STATA with the command ‘regress’ and using 

‘mi estimate’ to account for the imputed covariate data (StataCorp, 2021). ROC analysis was 
performed in R with the caret package (Kuhn, 2008). Visualizations of the results were carried out 
using the ggplot2 package in R (Wickham, 2016).

Results
Study population
Among participating children (n = 1147), 626 (54.6%) were boys and 1028 (89.6%) were white (Table 1). 
The mean (SD) age at assessment was 7.9 (1.6) years. Median (IQR) C-peptide concentration was 1.26 
(0.03, 1.95) ng/ml.

Seventeen percent of children (n = 195) had a high KIDMED score (>4), indicative of high adher-
ence to the Mediterranean diet. Mean (SD) UPF intake in the overall study population was 24.2 (8.7)% 
of total daily food intake. KIDMED and UPF intake were negatively correlated (Spearman r = −0.44); 
children with high and low (<1) KIDMED score had a mean (SD) UPF intake of 18.8 (6.6)% and 33.4 
(9.9)%, respectively. The two diet quality scores were associated with most recorded food intakes in 
opposite directions (Supplementary file 1c, d). Daily fruit and vegetable consumption, weekly fish 
consumption and not skipping breakfast were the major dietary habits differentiating children with 
low and high KIDMED score (Supplementary file 1c). Intakes of pastries and bakery products, dairy 

Cohort of inclusion, n (%)

Ultra-processed food intake, mean (SD), 
% of daily food intake 24.2 (8.7)

*Categories of normal weight and overweight/obese 
were derived using the International Obesity Taskforce 
criteria (Cole and Lobstein, 2012).
BiB = Born in Bradford cohort. EDEN = the Étude des 
Déterminants pré et postnatals du développement et 
de la santé de l’Enfant study. INMA = INfancia y Medio 
Ambiente cohort. KANC = Kaunas Cohort. KIDMED 
= Mediterranean Diet Quality Index for children and 
adolescents. MoBa = Norwegian Mother, Father 
and Child Cohort Study. RHEA = Rhea Mother Child 
Cohort study.

Table 1 continued

A) KIDMED score categories B) Quartile categories of UPF intake
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Figure 2. Levels of childhood adherence to the diet quality indicators of interest in each Human Early-Life Exposome (HELIX) subcohort. Panel (A) 
illustrates the levels of adherence to the Mediterranean diet which were defined as follows: low, KIDMED score, <1; moderate, KIDMED score, 1–4; and 
high, >4. Panel (B) illustrates the levels of ultra-processed food consumption (expressed as % of total daily food intake) which are based on quartile 
(Q) cutoffs according to the intake distribution of the overall HELIX study population. BiB, Born in Bradford cohort; EDEN, the Étude des Déterminants 
pré et postnatals du développement et de la santé de l’Enfant study; INMA, INfancia y Medio Ambiente cohort; KANC, Kaunas Cohort; KIDMED, 
Mediterranean Diet Quality Index for children and adolescents; MoBa, Norwegian Mother, Father and Child Cohort Study; RHEA, Rhea Mother Child 
Cohort study.
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desserts, margarine, and dressings were the major determinants of UPF intake (Supplementary file 
1d). Children with the highest KIDMED scores were mostly from Norway and Spain (Figure 2A), while 
those with the highest UPF intake were mostly from Lithuania and the UK (Figure 2B).

Diet quality and urinary metabolome
Figure 3 and Supplementary file 1e, f show the associations of diet quality indicators with urinary 
metabolite levels in childhood. KIDMED and UPF intake exhibited an opposite pattern of association 
for most of the metabolites (30 out of 43). After controlling for FDR (FDR-corrected p value <0.05), 
we found that a panel of four metabolites related to both diet quality indicators. Specifically, a higher 
KIDMED score was associated with higher levels of hippurate, N-methylnicotinic acid, and urea and 
with lower levels of sucrose; UPF intake exhibited opposite associations with these four metabolites. 
A higher KIDMED score was also associated with higher acetate and pantothenic acid concentrations, 

Direction of the 
association

Negative

Positive

-log10(p-value)

KIDMED    UPF

scyllo-inositol
N-me-NA
N-me-PA

2-HIB
Lactate

Dimethylamine
Trimethylamine

3-AIB
5-oxoproline

Alanine
Creatine

Glutamine
Glycine

Isoleucine
Leucine

Lysine
Proline betaine

Tyrosine
Valine

3-HB/3-AB
TMAO

3-Indoxylsulfate
p-cresol sulfate

Hippurate
3-HIB

Glucose
N-Acet-NA

Sucrose
Acetate

Formate
Carnitine

Succinate
3-HIS

Acetone
me-NAM

N-Me-2-pyr-5-Carb
Urea

Taurine
p-hydroxyphenylacetate

Pantothenic acid
4-deoxyerythronic acid

4-deoxythreonic acid
Citrate

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

etilobate
M

yranir
U

Figure 3. Adjusted associations of the diet quality indicators of interest with urinary metabolites in childhood. Linear regression models were adjusted 
for maternal age, maternal education level, maternal prepregnancy body mass index (BMI), family affluence status, child sex, child age, child BMI, 
child sedentary behavior, child ethnicity, and a cohort indicator. The purple line represents a p value of 0.05. The red line represents an false discovery 
rate (FDR)-adjusted p value of 0.05. 2-HIB, 2-hydroxyisobutyrate; 3-AIB, 3-aminoisobutyrate; 3-HB/3-AB, 3-hydroxybutyrate/3-aminoisobutyrate; 3-HIB, 
3-hydroxyisobutyrate; 3-HIS, 3-hydroxyisovalerate; me-NAM, N1-methyl-nicotinamide; N-Acet-NA, N-acetyl neuraminic acid; N-Me-2-pyr-5-Carb, N-
methyl-2-pyridone-5-carboxamide; N-me-NA, N-methylnicotinic acid; N-me-PA, N-methylpicolinic acid; TMAO, trimethylamine N-oxide.
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while tyrosine and valine concentrations were inversely associated with UPF intake. There was no 
evidence of significant between-cohort heterogeneity in the associations between the diet quality 
indicators and these metabolites ( <30%; p for heterogeneity >0.2). ROC curve analyses showed that 
the combination of four metabolites associated with both diet quality indicators performed better 
than individual metabolites in discriminating children with high and low KIDMED scores and UPF 
intake (Figure 4). The discriminative ability of this metabolite panel was not improved with the addi-
tion of urinary metabolites specifically linked to each diet quality indicator and was equal or even 
greater to that of established sociodemographic factors previously linked to diet quality in childhood. 
The regression formulas (scores) for predicting children’s diet quality indicators based on the urinary 
metabolites are given in Supplementary file 1g.

Diet quality and C-peptide levels
Table 2 presents the associations of diet quality indicators with C-peptide concentration in childhood. 
We found that a higher KIDMED score was associated with lower C-peptide. Specifically, compared to 
a low KIDMED score (<1), children with a moderate score (1–4) had a 28% lower C-peptide concen-
tration (percent change: −27.7, 95% CI: −49.6 to 3.9) and those with a high score (>4) had a 39% 
lower C-peptide concentration (percent change: −39.0, 95% CI: −60.6 to −5.7) (p-trend = 0.03). An 
opposite association was observed for UPF intake. Compared to children at the lowest quartile of UPF 
intake (<18% of total daily food intake), children at the second quartile (18% to <23% of total daily 
food intake) had a 24% higher C-peptide concentration (percent change: 24.3, 95% CI: −6.4 to 65.2), 
those at the third quartile (23% to < 29% of total daily food intake) had a 39% higher concentration 
(percent change: 38.5, 95% CI: 3.8–84.9), and those at the fourth quartile (≥29% of total daily food 
intake) had a 46% higher concentration (percent change: 46.0, 95% CI: 8.1–97.3) (p-trend = 0.01). 
There was no evidence of interaction between the diet quality indicators (Supplementary file 1h). 
When we examined the associations separately in each cohort, we found no significant between-
cohort heterogeneity (I2 <18%, p for heterogeneity >0.29) (Figure 5). We also found no evidence that 

KIDMED low vs. high

1−Specificity

Se
ns

iti
vi

ty

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Acetate: 0.57 (0.07)
Pantothenic acid: 0.58 (0.12)
Hippurate: 0.64 (0.12)
Sucrose: 0.66 (0.15)
Urea: 0.65 (0.1)
N−methylnicotinic acid: 0.57 (0.17)
Common panel of 4 metabolites: 0.75 (0.09)
Panel of 6 metabolites: 0.74 (0.08)
Sociodemographic factors: 0.68 (0.11)

Mean AUC value (SD) across 10 cross-validations

UPF low vs. high

1−Specificity

Se
ns

iti
vi

ty

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.0 17.0 8.05.0 6.03.0 4.01.0 2.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Valine: 0.62 (0.08)
Tyrosine: 0.61 (0.07)
Hippurate: 0.59 (0.06)
Sucrose: 0.64 (0.06)
Urea: 0.64 (0.04)
N−methylnicotinic acid: 0.57 (0.04)
Common panel of 4 metabolites: 0.7 (0.07)
Panel of 6 metabolites: 0.7 (0.08)
Sociodemographic factors: 0.66 (0.04)

Mean AUC value (SD) across 10 cross-validations

A) B)

Figure 4. Receiver operating characteristic (ROC) curves reflecting the ability of urinary metabolites of interest in discriminating adherence to diet 
quality in childhood. Panel (A) illustrates the ability of urinary metabolites of interest in discriminating high adherence to the Mediterranean diet 
(KIDMED >4) from low adherence (KIDMED <1). Panel (B) illustrates the ability of urinary metabolites of interest in discriminating high ultra-processed 
food consumption (UPF ≥29% of total intake) from low consumption (UPF <18% of total daily food intake). ROC curves are based on models across the 
full study sample, and discriminative power is evaluated based on tenfold cross-validation. The mean area under the receiver operating characteristic 
curve (AUC) value (SD) across the ten cross-validations of each model is presented in the box. The common panel of four metabolites includes the 
metabolites associated with both diet quality indicators (hippurate, sucrose, urea, and N-methylnicotinid acid). The panel of six metabolites includes 
the metabolites associated with each diet quality indicator (common panel of four plus acetate and pantothenic acid for KIDMED, and plus valine and 
tyrosine for UPF). The panel of sociodemographic factors includes maternal education level, maternal prepregnancy BMI, family affluence score, child 
sedentary behavior, ethnicity, age, and sex.
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the observed associations differed by the sex of 
the children or their weight status (Supplemen-
tary file 1i).

Diet-related urinary metabolites 
and C-peptide levels
When we examined the associations with the 
metabolite scores for each diet quality indicator, 
we found that the scores for KIDMED were associ-
ated with lower C-peptide, while opposite associ-
ations were observed with the metabolite scores 
for UPF (Supplementary file 1j). In the pair-
wise associations between the individual urinary 
metabolites linked to KIDMED or UPF intake and 
C-peptide, we found that higher levels of sucrose 
were associated with higher C-peptide levels.

Discussion
This is the first study of European children that 
identified a panel of urinary metabolites associ-
ated with diet quality, as assessed by a Mediter-
ranean diet adherence score (KIDMED) and UPF 
intake. These metabolites include food constitu-
ents (or their metabolic products), vitamin-related 
compounds and metabolites related to amino 
acid, protein, and carbohydrate metabolism. 
For both diet quality indices, KIDMED score and 
UPF intake, there was a common panel of four 
metabolites exhibiting an opposite pattern of 

Table 2. Adjusted associations of diet quality 
with C-peptide levels in childhood*.

C-peptide

 �
Percent change 

(95% CI)

KIDMED score (per unit increase) −8.1 (−13.7, −2.2)

 � Low (<1) Ref.

 � Moderate (1–4) −27.7 (−49.6, 3.9)

 � High (>4) −39.0 (−60.6, −5.7)

 � p-Trend 0.03

UPF intake (per 5% increase of 
total intake) 9.3 (2.8, 16.2)

 � Q1 (<18% of total intake) Ref.

 � Q2 (18% to <23% of total intake) 24.3 (−6.4, 65.2)

 � Q3 (23% to <29% of total intake) 38.5 (3.8, 84.9)

 � Q4 (≥29% of total intake) 46.0 (8.1, 97.3)

 � p-Trend 0.01

*Effect estimates represent percent changes in log-
2 transformed C-peptide levels and their 95% CIs 
derived from linear regression models adjusted for 
maternal age, maternal education level, maternal 
prepregnancy BMI, family affluence status, child sex, 
child age, child BMI, child sedentary behavior, child 
ethnicity, postprandial interval, and a cohort indicator.
KIDMED = Mediterranean Diet Quality Index for 
children and adolescents. UPF = ultra-processed food.

A) KIDMED score B) UPF intake
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Figure 5. Cohort-specific associations of the diet quality indicators of interest with C-peptide in childhood. Panel (A) illustrates the associations for 
adherence to the Mediterranean diet, which was assessed via the KIDMED score (expressed per unit increase). Panel (B) illustrates the associations 
for ultra-processed food (UPF) intake (expressed per 5% increase of total daily food intake). Beta coefficients (95% confidence intervals, CIs) by cohort 
were obtained using linear regression models adjusted for maternal age, maternal education level, maternal prepregnancy body mass index (BMI), 
family affluence status, child sex, child age, child BMI, child sedentary behavior, child ethnicity, and postprandial interval. Combined estimates were 
obtained by using a fixed-effects meta-analysis. Squares represent the cohort-specific effect estimates; diamond represents the combined estimate; and 
horizontal lines denote 95% CIs. BiB, Born in Bradford cohort; EDEN, the Étude des Déterminants pré et postnatals du développement et de la santé de 
l’Enfant study; INMA, INfancia y Medio Ambiente cohort; KANC, Kaunas Cohort; MoBa, Norwegian Mother, Father and Child Cohort Study; RHEA, Rhea 
Mother Child Cohort study.
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association: higher levels of hippurate, N-methylnicotinic acid, and urea, and lower levels of sucrose 
were concomitant with a higher KIDMED score and lower UPF intake. Moreover, these urinary metab-
olites that reflected these diet quality indicators, were also associated with C-peptide levels, a well-
known marker of β-cell function and insulin resistance (Patel et al., 2012).

Previous studies assessing the metabolic response of the body to diet have largely focused on 
specific foods groups, Collins et al., 2019 yet humans eat a combination of foods that may have 
additive or interactive effects on human physiology. In our study, we assessed two diet quality indices 
to better describe the complexity of overall diet. The Mediterranean diet is characterized by high 
intake of fruits, vegetables, legumes, nuts, and whole grain products, fish and low intakes of red meat 
and sweets, and it has long been appraised for its cardiometabolic benefits, even in children. (Chatzi 
et al., 2017b) Moreover, we assessed UPF intake to characterize the intake of industrial processed 
and prepared food items, with altered food structure, nutritional content, and taste (Elizabeth et al., 
2020). UPF intake assessment diverts from the traditional strategy of studying nutrients, foods, or 
dietary patterns to identify the link between diet with health and disease, and it reflects the cumu-
lative intake of artificial substances (i.e. flavorings, colorings, emulsifiers, and other additives) and 
processing byproducts. Effects of UPF consumption are likely to be the result of synergistic effects 
of many food ingredient compound and characteristics, and high consumption of UPF has been 
proposed to lead to metabolic dysregulation (Srour et al., 2020).

For both KIDMED and UPF, there was a common panel of four urinary metabolites (hippurate, 
N-methylnicotinic acid, urea, and sucrose), exhibiting an opposite pattern of association. In addition, 
KIDMED was positively associated with pantothenic acid and acetate, whereas UPF was negatively 
associated with two amino acids, valine and tyrosine. These metabolic signatures demonstrate a core 
common metabolic biomarker panel reflecting habitual dietary intake, but also show that the two diet 
quality indices and their metabolic signatures act complementary and can highlight different aspects 
of human metabolism and physiology. Our finding are consistent with previous metabolomics studies 
conducted in adults (Garcia-Perez et al., 2017; Garcia-Perez et al., 2020; Almanza-Aguilera et al., 
2017). Four dietary interventions were developped (Garcia-Perez et al., 2017) with similar energy 
content and within the World Health Organization (WHO healthy eating guidelines), but with varying 
macro- and micronutrient intake. The urine metabolic profile for the diet most concordant with the 
guidelines, characterized by high intakes of dietary fiber (through fruits, vegetables, and whole grain 
cereal products) and low intakes of fat, sugar, and salt showed systematic differences for a total of 
28 metabolites, including increased levels of acetate, hippurate, N-methylnicotinic acid, and urea, 
compared to the diet that diverted from the healthy guidelines (Garcia-Perez et  al., 2017). The 
PREDIMED study also used NMR to define urinary biomarkers associated with a high adherence to 
a Mediterranean diet pattern in adults and the proposed biomarkers also included higher levels of 
urea (Almanza-Aguilera et al., 2017). To our knowledge, our study is the first to show the urinary 
metabolic footprint of total UPF intake, and also the first to show that urine NMR-derived scores of 
diet quality are reflective of a key biomarker of metabolic health, C-peptide, in healthy children. The 
ability to use a rapid, noninvasive biofluid screen to measure objective biomarkers of diet quality in 
children opens new avenues for exploring the significance of nutritional patterns to healthy devel-
opment early in life.

Among the diet-related urinary metabolites, sucrose individually reflected the associations observed 
between diet quality and C-peptide (World Health Organization, 2015). Elevated levels of added 
sugars could lead to elevated glucose load in the human body, which in turn can lead to an increase in 
glycemic response and, thus, C-peptide production in healthy populations. To the best of our knowl-
edge, there is only one previous study from Mexico examining the relation of diet to C-peptide in 
children (Perng et al., 2017). Similar to our findings, this study showed that adherence to a prudent 
dietary pattern characterized by food groups commonly consumed in Mediterranean diet (vegetables, 
fruit, fish, and legumes) was associated with low C-peptide levels in boys. Regarding other markers of 
glucose regulation, our findings are in line with previous studies in children and adults reporting that 
low adherence to a healthy dietary pattern or high consumption of specific UPFs (sugar-sweetened 
beverages and ultra-processed meat) were associated with impaired glucose regulation and insulin 
resistance (Manios et al., 2010; Asghari et al., 2016; Chan She Ping-Delfos et al., 2015; McKeown 
et al., 2018; Ley et al., 2014; Fiorito et al., 2009). Overall, our findings are consistent with the public 
health concerns raised by the WHO, relating poor overall quality with high intake level of sugars and 
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added sugars, and with poor metabolic health and a high risk of several noncommunicable diseases 
(World Health Organization, 2015; Stanhope et al., 2013; WHO Study Group, 1990; WHO, 2003).

Regarding the other urinary metabolites reflecting diet quality, hippurate is a normal component 
of urine, a metabolic product of phenolic compounds which are present in various dietary sources. It is 
also a biomarker of fruit/vegetable intake, as it has been confirmed in previous studies in healthy chil-
dren, adolescents (Lau et al., 2018; Krupp et al., 2012) and adults (Edmands et al., 2011) N-meth-
ylnicotinic acid (trigonelline) is a product of the metabolism of niacin (vitamin B3) and a biomarker of 
various dietary sources like legumes (Sri Harsha et al., 2018) and fruits (Lau et al., 2018). Urea is the 
principal end product of amino acids and protein catabolism and a potential marker of protein intake 
from food (Garcia-Perez et al., 2020).

In addition, adherence to the Mediterranean diet was also positively associated with urinary levels 
of pantothenic acid and acetate. Both compounds have a central role in human biochemistry and the 
metabolism and synthesis of carbohydrates, proteins, and fats. Pantothenic acid (vitamin B5, necessary 
to form coenzyme-A) is present in many foods, and we have previously reported a positive association 
between consumption of dairy products and urinary pantothenic acid in the same study population 
(Lau et al., 2018). Further, we have previously shown that BMI is negatively associated with urinary 
levels of this metabolite (Lau et  al., 2018) and our results suggest that higher adherence to the 
Mediterranean diet associates with pantothenic acid independently of the potential influence of BMI. 
Acetate has multiple dietary sources, it is produced by acetate-producing bacteria in foodstuff and 
urinary acetate is also modulated by human gut microbial metabolism. In our previous HELIX analysis 
on specific food group intakes, we have shown a positive association between potato consumption 
and urinary acetate levels (Lau et al., 2018).

Moreover, we found that UPF intake was negatively associated with two urinary amino acids, valine 
and tyrosine. Tyrosine is regarded as a conditionally essential amino acid in adults and essential in 
children. Foods high in dietary tyrosine include dairy, meat, eggs, beans, nuts, grains. Tyrosine is a 
precursor for neurotransmitters and hormones, increases dopamine availability which in turn could 
enhance cognitive performance (Kühn et al., 2019). Valine is an essential branch chain amino acid 
(BCAA) critical to energy homeostasis, protein and muscle metabolism (Brosnan and Brosnan, 2006; 
Nie et al., 2018). In many studies, it has been observed that elevated BCAAs are associated with 
insulin resistance and diabetes (Lynch and Adams, 2014). Also, in our previous HELIX study, Lau et al., 
2018 we found that urinary valine was associated with higher children’s BMI. However, it remains to 
be eludicated whether these associations are causal (e.g., via mTOR activation) or consequential (e.g., 
due to reduced mitochondrial oxidation) in metabolic disease, (Lynch and Adams, 2014) and whether 
UPF intake plays a role in the etiology of the association of BCAAs with metabolic health.

Strengths and limitations
The main strengths of the study are the multicentric design which included children from six countries 
spanning north to south in Europe, the use of standardized data collection and biomarker measure-
ment protocols across cohorts, and the fairly large sample size with biomarker data. Identified panels 
of urinary metabolites had similar or higher capacity in discriminating children’s diet quality to that 
of established sociodemographic determinants. We chose 1H NMR spectroscopy for urinary analysis 
as this is an inherently high reproducible, high throughput technique suitable for the identification 
and quantification of urine metabolites, which are typically of high concentrations, without complex 
sample preparation which could potentially introduce analytical biases. Also, urinary 1H NMR spectros-
copy has been applied in many other cohort studies and proposed as an objective method for dietary 
assessment (Garcia-Perez et al., 2017) potentially facilitating comparative studies in the future. We 
have used a pooled urine sample collection design which combined the last sample before bedtime 
with the first morning void sample of the following day, and we have shown in our preliminary work 
that this sample collection strategy has the advantage of reducing diurnal variations (Lau et al., 2018; 
Maitre et al., 2017).

Our study has also some limitations. As in any observational study, there is the possibility of unmea-
sured residual confounding. In our analyses, we took into account a number of sociodemographic 
and lifestyle factors in childhood (e.g., socioeconomic status, ethnicity) that are associated with both 
diet quality and glycemic response. We did not have data available on children’s physical activity. 
Nevertheless, we adjusted all our models for sedentary behavior (including time spent in front of the 
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screen) which has been shown to associate to physical activity levels, as the time devoted to sedentary 
screen-time activities might affect availability of time devoted for exercise, or vice versa (Serrano-
Sanchez et al., 2011; Pearson et al., 2014; Aira et al., 2021) Further, we did not have data available 
to control for energy intake. However, in all our models, we included BMI of the children, a measure 
strongly correlated to energy intake, (Jakes et al., 2004) and assessed UPF intake as proportion of 
total food intake. Moreover, the absence of heterogeneity across cohorts with different correlation 
structures and confounding patterns in their data (Maitre et al., 2018), provide evidence to support 
that unmeasured confounding is unlikely to have influenced the observed associations. Since the data 
collected are cross-sectional, and there is no temporality in the observed associations, further longi-
tudinal studies examining metabolic and glycemic alterations in relation to diet quality are needed. 
Although 1H NMR spectroscopy had the advantage of improving the specificity of the quantitation 
and provided explicit metabolite identification, it limited the number of metabolites being measured 
and provided partial coverage of the urine metabolome. Absolute quantification of some metabolites 
with exchangable protons such as urea could also be negatively impacted by the solvent suppression 
methods required for 1H NMR spectroscopy of urine. Supplementing the current study with other 
complementary untargeted and targeted metabolomic approaches in future, such as mass spectrom-
etry, would help enhance identification and robust quantification of urinary metabolites associated 
with diet quality in children.

In summary, this multicenter European study showed that urinary metabolic profiles related to food 
constituents (or their metabolic products), to amino acid and carbohydrate metabolism reflect adher-
ence to the Mediterranean diet and UPF intake in childhood. Higher adherence to Mediterranean 
diet, lower UPF intake, and lower levels of the diet-related carbohydrate sucrose were associated 
with lower C-peptide levels, a marker of β-cell function. These results provide evidence to support 
efforts by public health authorities to recommend increased adherence to the Mediterranean diet and 
limiting UPF consumption in childhood. Further prospective studies examining the association of diet 
quality and related metabolomic profiles with C-peptide and other surrogates of insulin resistance are 
needed to replicate our findings.
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