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Efficient computational method is presented based on the “thick“ strip method for large
eddy simulation of flexible wings in stall. Fluid domain is break down into series of smaller 3�
strips where can be efficiently solved with LES method for fluid flow. Force and moments are
obtained from each strips and used to evolved the nonlinear dynamics of the wings. Preliminary
result presented for high-altitude long-endurance wing which clearly shows the capability and
robustness of presented approach.

I. Introduction

Fluid-structure interaction (FSI) of slender, highly flexible structures in totally or partially separated turbulent flows
has a broad application in vortex-induced vibration (VIV) of slender cables [1], aeroelastic simulation of wind

turbine blades [2] and high-altitude long-endurance (HALE) aircraft aeroelastic simulations [3] to name a few. Such FSI
simulations are computationally challenging in terms of accuracy, robustness of numerical scheme and computational
costs. Currently, several approaches are available for such FSI simulations including semi-empirical models [4–6],
which are built upon experimental results and hence they are unable to capture the intrinsic physical mechanisms
involved and may lack a predictable capability to analyse new configurations. Other commonly used approaches
such as Blade Element Momentum (BEM) theory for wind turbine applications [7, 8] or unsteady thin-airfoil theory
with a dynamic stall model [9, 10] are based on simplified two-dimensional theories and hence unable to capture the
finite-length and flow unsteadiness effects. Vortex methods [11] and Unsteady Vortex Lattice Method [2, 12] are able to
capture the three-dimensional effects, however, being based on potential theory they are suitable for preliminary studies.
More sophisticated computational approaches such as RANS or LES method for solution of Navier-Stokes equations to
capture the flow dynamics and predict aerodynamic forces on the structure are computationally expensive where the
former one is unable to provide a resolved information of turbulent flow. LES method is extremely resourceful and
computationally expensive to well resolve the flow and maintain the required resolution along the spanwise direction of
the structure. LES require significant grids for full 3� simulation due to the large spanwise length of slender structure
which makes them impractical for FSI simulation of real-size applications with high-Reynolds-number flows.

A computationally efficient approach to address this challenge is to use the thick strip method proposed by Bao et
al.[1] for VIV of slender cylinders. The thick strip method is basically generalisation of strip-based theory methods.
where the fluid domain is divided into a series of domains along the structure’s spanwise length. Each thick strip is a
three-dimensional domain perpendicular to the structure’s local axis with a finite size thickness. The finite size of each
strips enables capturing local spanwise velocity correlations and reflecting the wake turbulence on structural dynamics.
On the other hand, breaking down the full 3� problems into series of locally 3� domains, provides a computationally
efficient approach for simulation of such problems. In the thick strip method of Bao et al. [1], fluid flow is solved
using DNS method and structural dynamics is modelled using Discrete Fourier Transform (DFT) of linearised Euler
beam. Motivated by computational efficiency of thick strip method, in the present work the method is extended to
handle highly deformable geometrically nonlinear slender structures for simulation of HALE wings in stall. The flow
solver is implemented in high-order spectral/hp element framework-Nektar++ [13] and coupled with the multi-body
geometrically nonlinear structural solver SHARPy[14, 15].

The rest of the paper is organised as follows: section II summarize the thick strip method and provides a brief
description of governing equations and solution procedure for fluid, solid and FSI solver. III describes the test case and
provides preliminary results for the HALE wing deformation along with a detailed discussion on the three-dimensional
effects on the results. Finally, section IV outlines the future work for the full paper.
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II. Thick strips FSI method
The 3� fluid domain is divided into a series of independent domains along the structure’s spanwise length. Each

strip is a three-dimensional domain consisting of two-dimensional domains perpendicular to the structure’s local axis
with a finite size thickness of !I as shown schematically in Fig. 1. The strips are distanced apart from each other with
the gap size of !6 which is related to the total structural length through Eq. 1 as

!B = !I + (# − 1) × (!I + !6) (1)

where !B is the total length of slender structure, # is the number of strips and, !I and !6 are strips thickness and gap size
between strips respectively. Theses separated flow-domains are implicitly connected through the structural dynamics
and hence enable a three-dimensional FSI simulation of slender structures in turbulent flows. A distinct advantage of
such an approach is that only a fraction of a full three-dimensional fluid domain is modelled and it is further broken
down into smaller domains, which can be simulated efficiently. Furthermore, considering a finite size thickness (!I) for
each domain enables the spanwise velocity correlations to be constructed locally. Hence, the effect of wake turbulence
would be adequately taken into account while avoiding a costly and time-consuming full three-dimensional simulation.

Fig. 1 Schematic of thick strip method for a three-dimensional simulation of Fluid-Structure Interaction of
turbulent flow with long slender flexible structure

A. Fluid solver
The fluid flow is governed by the Navier-Stokes equations in each fluid strip domain Ω̄= (C) are as

mū=
mC
+ ū= · ∇̄ū= =

−1
d
∇̄?= + a∇̄2ū= >= Ω̄=, = = 0 · · · # − 1 (2)

∇̄ · ū= = 0 (3)

where ū is the velocity vector and the over bar refers to the formulation in inertial coordinate frame X = (Ḡ, H̄, Ī) with Ī
defined along the spanwise coordinates, ? is the pressure, d and a are fluid density and kinematic viscosity respectively
and subscript = represents the =th fluid strip domain. To solve the coupled FSI system and in order to avoid dynamic
re-meshing due to the structural movement and deformation, the Navier-Stokes equations [Eq. (3)] are transformed into
non-inertial body-fitted coordinates [16, 17] as

Ω̄= (C) ↦−→ Ω= : G = Ḡ − b= ( Ī, C) , H = H̄ − [= ( Ī, C) , I = Ī (4)

where b= ( Ī, C) and [= ( Ī, C) are the coordinates of moving structure in streamwise and cross flow directions respectively.
Using the linear mapping in Eq. (4), the flow variables in new coordinate system becomes

D= = D̄= −
mb= ( Ī, C)

mC
, E= = Ē= −

m[= ( Ī, C)
mC

, F= = F̄, ?= = ?̄ (5)
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Therefore using the new body-fitted coordinate X = (G, H, I) (Eq. 4) with the transformed flow variables (u , ?) =
(D, E, F, ?), the Navier-Stokes equations in the body-fitted coordinates becomes

mu=
mC
+ u= · ∇u= =

−1
d
∇?= + a∇2u= + f= >= Ω=, = = 0 · · · # − 1 (6)

∇ · u= = 0 (7)

where f= are the source term in each strip arise from the mapping transformations Eq. (4) and Eq. (5), which take into
account the non-inertial effects of the new coordinate system, and are defined as

5=G = −
m2b ( Ī=, C)

mC2
5=H = −

m2[ ( Ī=, C)
mC2

5=I = 0; (8)

The solution strategy for the thick stripmodel is to use the Fourier expansion for discretization of equations in I direction
and spectral/hp element method in (G, H) planes. Using this approach implies the assumption that the flow variables
are homogenous in spanwise direction with a periodic length of !I equal to the length of thick strips. Based on this
assumption a Fourier expansion in I direction can be introduced for flow variables as

u= (x, C) =
"−1∑
<=0

ûnm (G, H, C) e8V<I (9)

?= (x, C) =
"−1∑
<=0

?̂=< (G, H, C) e8V<I (10)

where V = 2c/!I , < is the Fourier mode index and " is the total number of Fourier modes.
Applying the Fourier expansions for velocity and pressure (Eqs. (9) and (10)) to Eqs. (6) and (7) results in a set of 2D
uncoupled equations for each mode as

mû=<
mC
+ N̂ (u=)< =

−1
d
∇̃ ?̂=< + a∇̃2û=< + f̂=< >= Ω=, = = 0 · · · # − 1 (11)

∇̃ · û=< = 0 (12)

where N̂ (u=)< and f̂=< represents the Fourier modes of convective terms and body forces respectively and the gradient
and Laplacian operators are defined as

∇̃ =
(
m

mG
,
m

mH
, 8V<

)
, ∇̃2 =

m2

mG2 +
m2

mH2 − V
2<2 (13)

Equation (11) is then discretized on each Fourier plane using the spectral/hp method. Finally, the continuity constraint in
incompressible Navier-Stokes equation is enforced via the stiffly stable high-order splitting velocity correction scheme
proposed by Karniadakis et al. [18]. For the detail description of the thick strip method and spectral/hp element method
refer to [1, 19].

B. Structural dynamics
The slender structure dynamics can be modelled as first approximation using the Geometrically-Exact Composite

Beam (GECB)[15, 20, 21]. The structural dynamics is described using two different frame of references (FR): A, and B
where A is a body-fixed frame attached to the structure and B is the local coordinate system. The local orientation of
each beam cross section is determined via transformation between B and A suing the Cartesian Rotation Vector (CRV):
	(B, C). The CRV is based on Euler’s rotation theorem which states that any series of rotations of a rigid body around a
fixed point can be reduced to a single rotation, of magnitude q around a fixed axis n resulting in 	 = qn and hence
C��(B, C) = C(	) can be computed as [20]

3



C(	) = I + B8=(q)
q

	̃ + 1 − 2>B(q)
q2 	̃2 (14)

where 	̃ is the skew-symmetric matrix of rotation vector 	. Defining the nodal positions in body fixed frame A as
R�(B, C), strain and curvature vectors can be computed as[20]

$(B, C) = C(	) (B, C)R′A (B, C) − C(	) (B, 0)R′A (B, 0) (15)
+(B, C) = T(	) (B, C)	′(B, C) − T(	) (B, 0)	′(B, 0) (16)

where •′ represents the derivative with respect to arch length and rotational operator T is defined as[20]

T(	) = I + 2>B(q) − 1
q2 	̃ +

1 − B8=(q)
q

q2 	̃	̃ (17)

Finally using Hamiltonian principle and Finite element discretization, the final discrete form of equations is written
as[20]

M[ (() ¥( +Q6HA (() +QBC8 5 (() = Q4GC (() (18)

where ( is the the state variable containing all displacements and rotations vector of all nodal displacements, and
subscripts gyr, stif and ext refers to gyroscopic, stiffness and external forces respectively. External forces on the body
includes both aerodynamic forces calculated from the flow solver and body forces such gravity. Equation (18) is
discretized using 3-nodes elements and integrated through time using explicit Newmark-V method. For the complete
details of formulation and solution procedure refer to [15, 20, 21]

C. FSI coupling
For the FSI coupling the aerodynamic forces and moments from fluid flow needs to be calculated. Recalling from sec.
II.A that the Navier-Stokes equations are solved on the non-inertial body-fitted coordinate X [Eq. 4], the flow variables
transformed back into the inertial coordinate X. Therefore, the aerodynamic forces and moments on each fluid strip =
are calculated and averaged over the spanwise coordinates of the strip as

F= (C) =
∫
!=
I

∮
mΩ=

(−?̄n̄ + a∇ū= · n̄) 3Γ3Ī Ī ∈
[
=
(
!I + !6

)
, !I + =

(
!I + !6

) ]
M= (C) =

∫
!=
I

∮
mΩ=

(−?̄n̄ + a∇ū= · n̄) × A 3Γ3Ī
(19)

where mΩ= is the structure boundary with unit normal vector n and !=I is the length of =th strip defined as !=I =
{Ī |=

(
!I + !6

)
≤ Ī ≤ !I + =

(
!I + !6

)
}. It is worth mentioning that the location and number of fluid strips are not

necessarily equal to the location and number of vertices used for discretization of structural equation. Hence, after fluid
forces and moments are calculated, their values are interpolated to the structural nodes using the third order spline
interpolations
Having the aerodynamic forces and moments on the structure, the FSI algorithm can be summarised as

I. Start of the solution:
a Calculate initial static deformation state of the structure
b Update new geometric coordinates in fluid solver
c Initialise Flow Solver

II. Starting of each time loop:
a. Calculate the body forces due to the structural motion using Eq. (8)
b. Solve fluid flow for one time step via integrating Navier-Stokes equations [Eqs.(6) and (7)]
c. Calculate aerodynamic forces and moments on the structure using Eq. (19)
d. Interpolate aerodynamic forces and motion to the location of structural elements and vertices
e. Update structure state variables by solving dynamic equation [Eq. (18)]
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f. Repeat steps a.– e. until final time reached
To conclude the FSI algorithm, it should be emphasized that although fluid strips are independent fluid domains,

they are implicitly connected via the structural motion. In other words, having the aerodynamic forces and moments
from various fluid strips, we are able to compute structural motion, velocity and acceleration which in turn shows their
effect via the source term (Eq. 8) in Navier-Stokes equation, providing an implicit means to interconnect the separated
fluid domains and account for their effects on each other.

III. Numerical results
For the numerical test of the proposed method, nonlinear aeroelasticity of a representative HALE wing is considered

with a particular interest in prediction of static stall. The HALE wing considered is firstly introduced by Patil et al.[22]
and further analysed by Smith et al.[23] and, Simpson and Palacios [3]. The wing has a 16< half span length in
spanwise direction with NACA0012 airfoil cross section and subjected to free stream with*∞ = 25</B and density
of d∞ = 0.08891kg/<3 corresponding to an altitude of 20 km. Hence, the chord-based Reynolds number becomes
'42 = d∞*∞2/` = 1.56 × 105. The flow angle of attack (aoa) of U = 4◦ and gravitational force of 6 = 9.754</B2

is considered in current simulations. All parameters are non-dimensionalized with appropriate references. The cord
length 2 = 1m is used as a reference length, velocity and time are non-dimensionalized as u∗ = u/*∞ and C∗ = C*∞/2.

(a)

(c) (d)

(b)
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Fig. 2 (a) Distribution of thick strips domains along the HALE wing (N=8) (b) Schematic of 2D planes with
domain dimensions and boundary conditions (c,d) Computational grid with enlarged view near airfoil leading
and trailing edges

The computational domain for the fluid flow consists of 8 fluid strips with the spanwise length of !I = 0.22 as shown
in Fig. 2(a). Each strip consists of rectangular 2� (G, H) planes perpendicular to the local axis of structure. The airfoil
is placed in the middle of the domain with its leading edge at (G, H) = (0, 0). The inlet boundary is placed 102 upstream
of the airfoil with the inlet boundary condition specified as u∗ =

(
*∗∞ cos(U), *∗∞ sin(U), 0

)
with*∗∞ = 1. The outlet
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Table 1 HALE wing structural properties

chord 2 1 m
semi-span 16 m
Elastic axis 0.52
Center of gravity 0.52
Mass per unit length 0.75 kg/m
Moment of inertia 0.1 kg ·m
Torsional stiffness 1 × 104 Nm2

Bending stiffness 2 × 104 Nm2

Chordwise bending stiffness 5 × 106 Nm2

boundary is located 152 downstream with the high order Neumann boundary condition [1]. Lateral boundaries are
located ±152 from the Center of the domain with the free stream boundary condition. Fig. 2 (b) shows the schematic of
2� planes including the domain dimension and summarizing the boundary conditions. Further, each 2� planes are
discretized with total number of 1704 quadrilateral elements. Boundary layer mesh is used near the airfoil wall with the
first layer height of ℎ∗F = 4.5 × 10−4 and total number of 8 layers which results in maximum H+ = 2 on the suction
surface of the foil during the simulations. For all simulations, the polynomial order % = 5 is used in (G, H) plane for
spectral/hp discretization. Fig. 1 (c) depicts the overview of computational grid where an enlarge view near the airfoil,
leading and trailing edges shown in Fig. 1 (d).

Due to the explicit treatment of convective terms and high '4 number flow, simulations requires small time steps to
satisfy the CFL restrictions. Karniadakis and Sherwin [19] showed that the CFL for spectral/hp element discretization
can be estimated as

��! = max
4;4<4=CB

0.2ΔC |VBC |%2 (20)

where CFL is the Courant–Friedrichs–Lewy condition, |VBC | is the maximum velocity in standard element and % is
the polynomial order. All simulations, both FSI and stationary airfoil, are performed with fixed time step size of
ΔC∗

5
= 2.5 × 10−5 for fluid solver which results in maximum CFL number of 0.4 during the solution.
For the structural solver, 20 3-nodes quadratic elements is used to discretized the structure in spanwise direction[3]

with 500 load steps to linearly approach final state in each time step. Minimum residual of n = 1×10−8 is considered as a
convergence criteria in each time step. The time step for the structural dynamics is set to ΔCB = WΔC∗5 2/*∞ = 1 × 10−3B

where W = 1000 is the frequency at which the aerodynamic forces are updated on the structure and the wing dynamic
is evolved one step in time. Ideally, the fluid and structure should be solved in each time step but due to very small
fluid time steps, this results in extremely small time steps for the structure and introduces high-frequency excitations
into fluid solution domain. Therefore, to alleviate this problem, the structure is evolved one step every W steps of fluid
solvers. Further, the aerodynamic forces from the fluid is averaged over the W interval and transferred to the structural
solver. Finally, the Structural properties of the wing is summarised in table 1.

A. Preliminary result for HALE wing with U = 4◦
In this section preliminary result of the simulation for angle of attack U = 4◦ is presented and the three-dimensional

effect of spanwise length of strips !∗I is discussed for the stationary airfoil. The simulation is performed using 8 fluid
strips [Fig. 1 (a)] with two planes (one complex Fourier mode) per strip. Figure 3 (a) shows the the deformation profile
of HALE wing at 6 distinct times, starting from C∗ = 0 and ending at wing final deformation state at C∗ = 0.4 [solid red
line in Fig. 3 (a)]. The wing is deformed under its weight at C∗ = 0 with the tip deflection of H∗

C8 ?
= −3.0177 and moves

gradually upward in +H direction as the result of lift from the flow until C∗ = 0.4 where the wing reaches the final static
deflection [solid red line in Fig. 3 (a)] with the tip deflection of H∗

C8 ?
= 1.92 [Fig. 3 (b)]. Further, the wing reaches

the steady state static deflection after C∗ = 0.29 and the wing tip does not deform significantly after this time [Fig. 3
(b)]. Comparing our simulation result with the one reported in [3] [dashed black line in Fig. 3 (a)] shows difference
in the final wing deformation between our results and [3]. The wing tip deformation predicted using nonlinear static
simulation of the wing with the aerodynamic forces predicted with Unsteady Vortex Lattice Method (ULVM)[3] using
SHARPy solver [2], predicts the final position of wing tip at H∗

C8 ?
= 3.47 while in our simulation using the dynamic
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Fig. 3 (a) Time history of HALE wing deformation predicted with current FSI method (solid lines) and the
results from [3]. The FSI results obtained using 8 strips, each with one complex Fourier mode (2 planes) in
spanwise direction for '4 = 1.56 × 105 and angle of attack of U = 4◦ (b) Time history of tip deflection from
current FSI simulation (c) Effect of torsional stiffness on the wing deformation at its final state, black dashed
line SHARPy simulation with �� = 1 × 104 Nm2, black solid line SHARPy simulation with �� = 1 × 105 Nm2

and red line is the result of present simulation.

solution of structural motion coupled with thick strip LES flow solver, the final wing tip is predicted to deform to
H∗
C8 ?

= 1.92. One reason for this difference, is that currently the torsional effect is not yet implemented in our simulation
and the wing does not allow to twist due to aerodynamic moments. Hence, the local angle of attack at wing’s sections
is only affected by translational movements of the beam which in turn results in lower lift compared to the case with
twist. To demonstrate the effect of torsion on the final wing deformation, two tests are simulated using the SHARPy
solver with ULVM method to predict aerodynamic forces and moments. The first case, test A, is with the same setting
presented in table 1 with torsional stiffness of �� = 1 × 104 Nm2. The second case, test B, has all structural parameters
the same as the test A but the torsional stiffness, which is increased to �� = 1 × 105 Nm2, in order to reduce the angular
motion of wing. Fig.3(c) compares the results of test A, B and the current work. It is clearly evident that the final
state of wing deformation decreases with increasing the torsional stiffness [black lines in Fig. 3(c)]. The wing tip
deflection is H∗

C8 ?
= 3.47 for the test A which has torsional stiffness of �� = 1 × 104 Nm2 [dashed black line in Fig.

3 (c)]. Increasing the torsional stiffness by factor of 10 ( �� = 1 × 105 Nm2) in test B, the tip deflection reduces to
H∗
C8 ?

= 0.39. Our simulation result for wing tip deflection (H∗
C8 ?

= 1.92) with thick strip LES approach and torsional
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Table 2 Lift coefficient comparison for various our test cases with the available data in literature

aoa '4 �! !∗I No. of Fourier Planes
Present work 2� 4◦ 1.56 × 105 0.422 0.1 2
Present work Q3�-a 4◦ 1.56 × 105 0.5044 0.1 8
Present work Q3�-b 4◦ 1.56 × 105 0.5001 0.15 8
Present work Q3�-c 4◦ 1.56 × 105 0.4769 0.2 4
Present work Q3�-d 4◦ 1.56 × 105 0.4931 0.2 8
Present work Q3�-e 4◦ 1.56 × 105 0.5065 0.2 16
Lehmkuhl et al [24] LES 5◦ 5.00 × 104 0.561 – –
Lehmkuhl et al [24] DNS 5◦ 5.00 × 104 0.569 – –
Serson et al [25] DNS 6◦ 5.00 × 104 0.6312 – –
Paula et al [26] Exp 4◦ 2.90 × 105 0.4902 – –
Abbot et al [27] Exp 5◦ 6.00 × 106 0.5516 – –
Ladson [28] Exp 4◦ 6.00 × 106 0.43 – –
Gregory and O’reilly [29] Exp 6◦ 6.00 × 106 0.6581 – –

Lorem ipsum

(a)

(b)

Fig. 4 Contours of Q-criterion at C∗ = 140 for (a) Thick strip with !∗I = 0.1 (case Q3�-a in table 2) (b) Thick
strip with !∗I = 0.2 (case Q3�-e in table 2). Both cases have the same resolution of 8 Fourier planes in 10% of
chord in spanwise direction.
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stiffness of �� = 1 × 104 Nm2 lies between the results of test A and B [red line in Fig. 3 (c)]. In fact, in our simulation
with thick strip method, the torsional stiffness is the same as test A. However, since the wing’s angular motion is not
considered the wing shows smaller deformations.

Furthermore, we used one complex Fourier mode in spanwise direction in each strips which practically makes
the strips 2� domains and unable to capture the local three-dimensional effects. Hence, series of numerical test is
conducted to determine the effect of !∗I = !I/2 and spanwise resolution on the aerodynamic forces. To reduce the
computational expenses these numerical tests are performed on a stationary wing with the same grid used for FSI
simulation. The first case is the 2� simulation, while the rest of test cases are quasi-3�, homogenous in spanwise
direction, with the strip spanwise thickness !∗I = 0.1, 0.15, 0.2 and two resolution 8 to 16 Fourier planes in spanwise
direction. Table 2 summarizes the conducted test cases and compares the �! coefficient with available numerical and
experimental data in literature. It should be noted that some of the data from the literature are the digitized reproduction
and indicate only approximate values. Further, a comparison between �! data from the literature (table 2) indicate that
�! is not too sensitive to '4 number for the range of '4 shown in the table 2 and the lift coefficient is expected to be
about �! = 0.5. However, our 2� test predicts the lift coefficient to be �! = 0.422 which is about 15% lower than that
predicted with quasi-3� simulations (table 2). Further, comparing the results for the cases Q3�-c, Q3�-d and Q3�-e
which all have same thickness for the fluid domain (!∗I = 0.2) but having different resolution in spanwise direction
shows that using 4 planes in spanwise direction (Q-3�-c) results in 6% under-prediction of the lift coefficient compared
to the case Q3�-e which has 16 planes in spanwise direction (table 2). Moreover, comparison between cases Q3�-a
and Q3�-e which both have same resolution in spanwise direction per unit length, i.e. 8 planes per 10% of chord length
indicates that the results are not sensitive to the spanwise length of the domain as the �! in these cases differs less than
one percent. Figs. 4 (a) and 4(b) compares the snapshot of Q-criterion at C∗ = 140 for Q-3�-a and Q-3�-e which shows
similar turbulent structure for these two cases and further corroborates that as long as the simulation have adequate
spanwise resolution, the results are independent of !∗I for !∗I ≥ 0.1. Therefore, based on the results of the 2� and
Q3�-a to Q3�-e tests for stationary NACA0012 foil, it can be inferred that lack of resolution in spanwise direction of
thick strips is also contributes to a smaller deformation of HALE wing.

To conclude this section, we summarize that an efficient computational method is present for high fidelity simulation
of flexible wings in stall. Large eddy simulation with thick strip method is used to efficiently break down the problem
into smaller 3� fluid domains and structural dynamics is solved using geometrically-exact composite beam for highly
deformable slender structures. Preliminary results shows capability and robustness of presented approach for simulation
of flexible wings in stall. Higher resolution in spanwise direction and angular motion are being developed and are
planned for future work of this paper.

IV. Future work
Following the preliminary results presented, the paper aims to further extends the simulations to incorporate the

3� effects in thick strips. Study of the effect of number of thick strips as well as HALE wing deformation at various
angle of attacks and static stall prediction are future planes of this paper. In addition to this, for prediction of static stall
hysteresis curve, restarting the solution from the previous structural dynamic state should be incorporated in the couple
FSI solver. Finally the torsional movement of the wing due to aerodynamic moments, which is currently neglected,
needs to be considered in the FSI solver in order to achieve more accurate simulations. These steps will be addressed in
the final version of this work.
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