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Abstract: This paper is concerned with set-membership estimation in nonlinear dynamic
systems. The problem entails characterizing the set of all possible parameter values such
that given predicted outputs match their corresponding measurements within prescribed error
bounds. Most existing methods to tackle this problem rely on outer-approximation techniques,
which perform poorly when the parameter host set is large due to the curse of dimensionality.
An adaptation of nested sampling—a Monte Carlo technique introduced to compute Bayesian
evidence—is presented herein. The nested sampling algorithm leverages efficient strategies from
Bayesian statistics for generating an inner-approximation of the desired parameter set. Several
case studies are presented to demonstrate the approach.
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1. INTRODUCTION

Mathematical modelling has become an integral part of
process design and control methodologies as well as op-
erations optimization. A typical model development pro-
cedure is divided into two main phases, namely spec-
ification of the model structure followed by parameter
estimation. The latter phase, often referred to as model fit-
ting, proceeds by determining parameter values for which
the model predictions closely match the available process
measurements.

Most commonly, parameter estimation is posed as an
optimization problem that minimizes the gap between
the measurements and the model predictions, for instance
in the least-squares sense. Several factors can impair a
successful and reliable estimation procedure in practice.
First of all, structural model mismatch is inherent to the
modeling exercise, and it is illusive to look for the ‘true’
parameter values in this context. And even in the ab-
sence of structural mismatch, fitting a set of experimental
data perfectly generally proves impossible due to various
sources of uncertainty. A measurement’s accuracy is al-
ways tied to the resolution of the corresponding apparatus
and measured data are furthermore corrupted with noise.

Of the available approaches that account for uncertainty
in parameter estimation, the focus in this paper is on set-
membership estimation (SME) (Walter, 1990). This ap-
proach entails the determination of all parameter values—
referred to as the feasible parameter set subsequently—
that are consistent with the measurements under given
uncertainty scenarios. Specifically, we consider the case
where the uncertainty enters the estimation problem in
the form of bounded measurement errors. An inherent ad-
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vantage of this approach over more traditional parameter
estimation is that no (consistent) solution to the problem
will be lost, and this can help detect problems arising
due to lack of identifiability. Moreover, the estimation
process does not rely on a particular statistical description
of the uncertainty, as is typically the case when applying
maximum likelihood or Bayesian estimation techniques.

Most existing approaches to tackling SME for general
nonlinear dynamic systems aim to outer-approximate the
feasible parameter set. Set-theoretic methods construct
an enclosure of the feasible parameter set in the form
of a subpaving, which relies on the ability to compute
tight bounds on the set of responses of the dynamic
system (Raissi et al., 2004; Kieffer and Walter, 2011; Streif
et al., 2012; Hast et al., 2015; Paulen et al., 2016). By
contrast, optimization-based methods compute a simple
enclosure of the feasible parameter set—usually a box—by
solving a collection of dynamic optimization subproblems
to global optimality (Gottu Mukkula and Paulen, 2017;
Walz et al., 2018). Methods have also been developed that
compute an inner-approximation of the feasible parameter
set (Streif et al., 2013). However, all of these approaches
are afflicted by the curse of dimensionality and often
perform poorly when the parameter host set is large.

The focus in this paper is on sampling techniques to inner-
approximate the feasible parameter set, which has received
little attention in the literature so far. Previous work
includes the use of gridding techniques (Fernández-Cant́ı
et al., 2016) and Markov Chain Monte Carlos (MCMC)
methods (Bai et al., 2015). Herein, we present a novel
algorithm based on nested sampling that leverages efficient
strategies from Bayesian statistics for generating a dense
sample in the feasible parameter set. We demonstrate this
approach with several case studies.



2. PROBLEM STATEMENT

Consider a process model in the form parametric ODEs:

ẋ(t;p) = f(x(t;p),p), x(t0;p) = h(p), (1a)

ŷ(t;p) = g(x(t;p),p), (1b)

where x denotes the nx-dimensional vector of process
states; p, the np-dimensional vector of process (a priori
unknown) parameters; and ŷ, the ny-dimensional vector
of model outputs (predictions).

Given a set of output measurements ym at N time points
t1, . . . , tN , classical estimation seeks for one particular
instance pe ∈ R

np for which the (possibly weighted)
residuals between these measurements and the correspond-
ing model outputs ŷ are minimized. In contrast, set-
membership (bounded-error) estimation accounts for the
fact that the actual process outputs, yp, are only known
within some bounded measurement errors E := [−ē, ē]:

yp(ti) ∈ ym(ti) + [−ē, ē] := Y i. (2)

Here, the objective is to characterize the set Pe of all values
of p such that ŷ(ti;p) ∈ Y i for every i = 1, . . . , N :

Pe :=
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∃x, ŷ such that:
ẋ(t;p) = f(x(t;p),p),
x(t0;p) = h(p)
ŷ(ti;p) = g(x(ti;p),p)
e(ti;p) := ŷ(ti;p)− ym(ti) ∈ [−ē, ē]
∀t ∈ [t0, tN ], ∀i ∈ {1, . . . , N}



























. (3)

Notice that the above formulation encompasses estimation
problems in algebraic equations too, e.g., when the initial-
value problem (1a) is replaced by a static model or the
output function in (1b) does not depend on the differential
states.

3. NESTED SAMPLING FOR BAYESIAN
INFERENCE

In 2004, Skilling (2004) proposed a new Monte Carlo
method called Nested Sampling for approximating the
expected value of a positive-definite function F of a
random variable p ∼ f :

E[F (·) | f(p)] =

∫

p

F (p) f(p) dp. (4)

The particular focus in Skilling’s paper was on computing
the Bayesian evidence Z, namely the expected value of a
likelihood function (the function F ) given a prior distri-
bution (the probability density function f of p) for given
model parameters (the random variables p).

Nested sampling estimates the Bayesian evidence by trans-
forming the multi-dimensional integral (4) over the prior
density into the following one-dimensional integral:

E[F (·) | f(p)] =

∫ 1

0

F (P ) dP, (5)

where the variable P (λ) corresponds to the integral over
the subset contained within the iso-contour F (p) = λ:

P (λ) =

∫

{p:F (p)>λ}

f(p) dp. (6)

Using this reformulation the problem reduces to finding an
ordered set of values {(Pi, λi) : i = 1, . . . ,M} in order to
approximate the one-dimensional integral in (5) as:

Algorithm 1 Nested sampling (Nlive, Nprop, F , f)

1: Create a set L ← {pj ∼ f(p) | j ∈ {1, . . . , Nlive}}
2: Initialize Nnest ← 0 and D ← ∅
3: Set F ⋆ ← minp∈L F (p) and p⋆ ← argminp∈L F (p)
4: repeat
5: Create a set R ← {p̄k ∼ f(p) | k ∈ {1, . . . , Nprop}}
6: for all p̄k ∈ R do
7: if F (p̄k) ≥ F ⋆ then
8: Update L ← L ∪ {p̄k} \ {p

⋆}
9: Update F ⋆ and p⋆ (as in line 3)

10: Get the mass Pnest ← exp(−Nnest/Nlive)
11: Update D ← D ∪ {Nnest, Pnest,p

⋆, F ⋆}
12: Increment Nnest ← Nnest + 1
13: end if
14: end for
15: until Stop Criterion
16: return live points L and dead points D

E[F (·) | f(p)] ≈
M
∑

i=1

λi (Pi−1 − Pi) =: Ẑ. (7)

Although F (P ) is unknown, we can turn to Monte Carlo
methods for the probabilistic association of prior volumes
Pi with iso-contours, λi = F (Pi) based on (6).

A pseudo-code for the nested sampling algorithm is pre-
sented in Algorithm 1. The initialization proceeds by sam-
pling Nlive points from the distribution f (line 1), called
live points, and sorting them by F value to identify the
lowest value F ⋆ and corresponding point p⋆ (line 3).

Each iteration starts by creating a set R of Nprop replace-
ment proposals (line 5). In the Bayesian estimation con-
text, this step requires sampling from the prior subject to a
likelihood constraint, which can prove challenging for non-
uniform prior distributions. This step is also critical to the
overall efficiency of nested sampling and to avoid biasing
the estimation towards low or high likelihood regions. We
also note that the largest computational effort is typically
incurred by the evaluation of the replacement proposals
and executing these evaluations in parallel can therefore
lead to considerable speed-up.

Each replacement proposal p̄k is evaluated and replaces
p⋆ in the live point set L if its F value is larger than F ⋆.
Upon repeating this process the live samples move through
nested shells of increasing F value and the enclosed prob-
ability mass in each nest is progressively reduced.

The probability mass contained within each nest is a
random variable distributed as Pnest = tnestPnest−1, where
tnest follows the distribution for the largest ofNlive samples
drawn uniformly from the interval [0, 1] (Feroz et al.,
2009). It follows that the probability mass after Nnest

successful replacements can be estimated as (line 10)

Pnest ≈ exp(−Nnest/Nlive). (8)

Each discarded point p∗ is referred to as a dead point and
stored into the set D with its F value and probability mass.

The iterations are usually interrupted when the expected
contribution from the current set of live points is less
than a user-defined tolerance. For instance, this expected
remaining contribution can be estimated as ∆Znest =
F ∗Pnest, with F ∗ := maxp∈L F (p). A typical stopping



criterion in Bayesian estimation is when the remaining
contribution is below 10%.

Distinctive features of nested sampling over other Monte
Carlo techniques can be summarized as follows:

• The sampling proceeds by gradually moving toward
higher likelihood regions and the probability mass
enclosed in the nest shrinks exponentially—see (8);

• The tail of the posterior distribution is sampled suf-
ficiently to avoid leaving out regions that contribute
to the Bayesian evidence;

• The likelihood function evaluations can be easily
parallelized;

• The algorithm can be applied to multimodal likeli-
hood functions insofar as a global-search strategy is
used to generate the replacement proposals.

4. NESTED SAMPLING FOR SET-MEMBERSHIP
ESTIMATION

A straightfoward application of nested sampling to the set-
membership (NS-SME) context entails using an indicator
function to define the prior parameter distribution and the
log-likelihood function (Bai et al., 2015):

f(p) := log(If (p)), with If (p) :=

{

1, if p ∈ P0,

0, otherwise,
(9)

and

F (p) := log(IF (p)), with IF (p) :=

{

1, if p ∈ Pe,

0, otherwise.
(10)

In this formulation, however, the progress of Algorithm 1
is hindered by the difficulty of generating a proposal that
belongs to the feasible parameter set Pe. For problems
whereby the initial parameter set Pe is a small subset of
P0, the likelihood of the iso-contour F ∗ might be stuck at
−∞ during most of the iterations. In response to this, we
introduce the following likelihood function:

IF (p) :=











1, if p ∈ Pe,
N
∏

i=1

e−
1

2
e⊺(ti;p)Qe(ti;p), otherwise,

(11)

with the diagonal matrix Q := [diag
(

1
3 ē

)

]−2 and ē as
in (2). In essence, (11) adds to IF (p) a Gaussian tail with
σi = ēi/3 for the ith measurement while keeping F (·)
steep near the boundary of Pe, which does not impair the
estimation quality (see Sec. 4.1 for further discussion).

The NS-SME approach is non-intrusive since it relies on
the result of model simulations at given parameter values
only. This allows for SME to be applied to black-box mod-
els in process flowsheeting or CFD modeling, in principle.
Furthermore, NS-SME does not assume any particular
shape or connectedness of the set Pe. In practice, one can
exploit the live point set L returned by Algorithm 1 to
train a data classifier, possibly combined with a softmax
function to estimate the probability of a given point to
belong to Pe (Kusumo et al., 2020).

4.1 Implementation

An implementation of Algorithm 1 in a Python package
called DEUS (standing for DEsign under Uncertainty using

Sampling methods) is available from: https://github.
com/omega-icl/DEUS. Input files for all the case studies
can also be retrieved from this link. At each iteration,
the replacement candidates are generated by sampling in
ellipsoids enclosing the current live points, which are gen-
erated using the X-Means clustering algorithm (Pelleg and
Moore, 2000). The tuning parameters in DEUS include:
(i) the number of live points, Nlive; (ii) the number of
replacement candidates at each iteration, Nprop; (iii) the
initial enlargement factor of the ellipsoid; and (iv) the
shrinking rate of the enlargement factor at each iteration.

DEUS is used to solve all of the numerical case studies
presented below, using as default parameters an initial
enlargement factor of 30% and a shrinking rate of 0.2
for the ellipsoids (Feroz et al., 2009). The algorithm
is interrupted once the expected contribution from the
current set of live points is below 10%. This choice is
motivated by the likelihood function (11) as we expect
only a negligible contribution from outside of Pe region
and a low ratio between the size of Pe and of P0. Should
these assumptions fail to hold, alternative stopping criteria
may be used, such as interrupting the algorithm as soon
as the number of dead and live points within Pe is greater
than a chosen threshold value M .

Upon termination, the set of dead and live points with
F ∗ = 0 yields an inner-approximation of Pe. A suitable
value for Nlive depends on the accuracy with which a user
wants to characterize the set Pe. We choose Nprop as one
half of the number of live points here as a heuristic. This
choice can be viewed as the same trade-off as exploration
against exploitation in a stochastic-search algorithm. A
high value of Nprop shifts the trade-off towards exploration
by generating more points that are exploited within the
ellipsoidal cluster(s) at each iteration of the algorithm.

5. CASE STUDIES

This section presents several case studies that illustrate
different aspects of the proposed NS-SME approach. All
the results are obtained on a workstation with Intel Core
i7-8565U processor at 1.80GHz×8 with 16GB RAM and
running 64-bit Linux.

5.1 Sampling of a Simple Box

For the purpose of studying the performance of Algo-
rithm 1 for SME, we consider the benchmark problem
of characterizing an np-dimensional box Pe := [0, 2]np by
sampling from an a priori box P0 := [−10m, 10m]np with
m ∈ {1, . . . , 5} and np ∈ {2, . . . , 10}. This problem can
be cast as a parameter estimation problem, whereby the
measurement function is y(ti,p) = p, the measurement
error bound is ē = 1, the true (but unknown) parameter
values are p = (1, . . . , 1)⊺, and the actual measurements
are noise-free.

We run Algorithm 1 for each value of np and m with
Nlive = 150 and 300. The resulting inner-approximations
of the set Pe in Fig. 1 are for np = 10 and m = 5. Only the
2D projections onto the subspace (p1, p2) are represented
since the other 2D projections look qualitatively alike. The
effect of the number of live points on the density (accuracy)
of the obtained inner-approximation is clear. The resulting
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Fig. 1. Inner-approximation (blue dots) of a 10D box (in
red) projected on the subspace (p1, p2).
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Fig. 2. Number of function evaluations (top) and CPU
times (bottom) for various a priori sets P0.

inner-approximation comprises 496 points and requires
ca. 428k function evaluations with Nlive = 150, whereas
it comprises 996 points and requires ca. 904k function
evaluations with Nlive = 300. For comparison, if 106

samples were to be generated using Sobol sampling in P0,
none of these point would end up inside Pe. We shall use
Nlive := 300 as a suitable compromise between solution
speed and accuracy in the rest of the paper.

To asses the computational attributes of NS-SME, Fig. 2
shows the number of evaluations and CPU time required
for various values of m and np. The cases with Nlive = 150
and 300 are reported on the left and right parts of each
plot, respectively. Among the factors that make the SME

problem more challenging, enlarging the width of the a
priori set P0 is found to have a rather small effect of the so-
lution speed—almost constant effect for a 104-fold enlarge-
ment at various dimensions np. This is a favorable result
as the complexity of current set-theoretic SME techniques
is far worse. On the other hand, doubling the number of
live points (and the number proposal points) has roughly
the same effect as either adding three dimensions to the
problem or enlarging the search domain by 10, 000 times.
This is computationally unfavourable and it shows that
it would be näıve to think of replacing set-theoretic SME
techniques with nested sampling in problems where the
full, validated feasible parameter set is required. Finally,
we note that the difference in performance of NS-SME
with the proposed likelihood function (11) compared to
the indicator-based likelihood function (10) is huge—in the
2D case with m = 2, for instance, the former terminates
after 4 CPU-sec and the latter after 63 CPU-sec.

5.2 Static Nonlinear Estimation

This example is adapted from Jaulin and Walter (1993):

ŷ(ti;p) = p1 exp(p2x(ti)), (12)

The a priori parameter set is chosen as P0 := [−10, 10]2.
A total of N = 11 noisefree measurements ym(ti) are
considered at equidistant points x(ti) = 0, 0.1, . . . , 1.0,
as generated from (12) using the parameter values p∗ :=
(1, 1)⊺. The error bound is furthermore set to ē = 1.

The top plot of Fig. 3 shows the inner-approximation
set computed with Algorithm 1 together with the exact
SME constraints as solid lines—the red lines correspond
to the constraints ŷ(ti;p) = −ē and the blue ones to
ŷ(ti;p) = ē. We can see that, despite the skewed shape
of the SME set, the resulting inner-approximation is very
good. The bottom plot shows the rejected proposals (dead
points) alongside the inner-approximation (live points).
Observe the good spread of the samples over P0 and how
they concentrate towards the desired solution set Pe. The
presented solution is obtained within 7 CPU-sec using
7,200 likelihood function evaluations, which is in good
agreement with the analysis in Sec. 5.1.

5.3 Dynamic Estimation under Lack of Identifiabilty

This example from Kieffer and Walter (2011) considers a
dynamic model with two states x = (x1, x2)

⊺ and three
uncertain parameters p = (p1, p2, p3)

⊺ ∈ P0 := [0.01, 1]3:

ẋ1(t;p) = − (p1 + p3)x1(t;p) + p2x2(t;p), (13a)

ẋ2(t;p) = p1x1(t;p)− p2x2(t;p), (13b)

with the initial conditions x(0;p) = (1, 0)⊺. The system
has a single output variable ŷ(t;p) = x2(t,p), with N = 15
measurements corresponding to the time instants ti =
1, . . . , 15. Synthetic experimental data are generated by
simulating the model (13) with the parameter values p∗ =
(0.6, 0.15, 0.35)⊺, and then rounding the output ŷ(ti;p

∗)
up or down to the nearest value by retaining two significant
digits only. The measurement error range is thus taken as
±5× 10−3.

The inner-approximation set computed with Algorithm 1
is shown in Fig. 4. This result is consistent with the
outer-approximation sets presented in Kieffer and Walter
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Fig. 3. Inner-approximation of the SME solution compared
with the exact SME constraints (top) and with the
rejected proposals (bottom).

(2011) and Paulen et al. (2016) using set-theoretic SME
methods. The disconnectedness of the set stems from
a local identifiability problem, since the values of p2
and p3 are interchangeable when only x2 is measured.
The algorithm terminates after 477 CPU-sec and requires
267,600 likelihood function evaluations. This shows the
challenging nature of this case study, which stems from
the shape of the feasible solution set and the rather large
initial bounds.

5.4 Joint Parameter/State SME of an Anaerobic digester

The final case study considers a six-state dynamic model
describing an anaerobic digester (Bernard et al., 2001).
The states represent the concentrations of acidogenic and
methanogenic biomass; organic substrates (COD other
than VFA); volatile fatty acids (VFA); total alkalinity
concentration (TALK); and total inorganic carbon (TIC).
The dilution rate profile, inlet concentrations of organic
substrate, VFA, TALK and TIC, and other process pa-
rameters are given. The estimation problem is to estimate
the parameters of the kinetic microbial growth model and
the two initial biomass concentrations, as in Paulen et al.
(2016). The specific growth rates of acidogenic bacteria
and methanogenic bacteria are assumed to follow Monod
and Haldane kinetics, respectively. The specific growth

0.58 0.585 0.59 0.595 0.6 0.605 0.61 0.615 0.62

0.15

0.2

0.25

0.3

0.35

0.4

p1

p
2

0.15 0.2 0.25 0.3 0.35 0.4

0.15

0.2

0.25

0.3

0.35

0.4

p2

p
3

Fig. 4. Inner-approximation of the SME solution set pro-
jected onto the (p1, p2) subspace (top) and (p2, p3)
subspace (bottom).

rates involve a total of five unknown parameters: two
maximum growth rates, two half-saturation constants and
an inhibition constant (methanogenic bacteria only).

Pseudo-experimental data are generated in the same way
as Paulen et al. (2016) by simulating the model with
the parameter values p∗ = (1.2, 7.1, 0.74, 9.28, 256)⊺ and
initial states x(0)∗ = (0.5, 1.0, 1.0, 5.0, 40.0, 50.0)⊺. For the
estimation, the a priori ranges (P0) are taken, in order, as
[0.5, 1.5], [5.5, 8.0], [0.735, 0.745], [9.1, 9.35], [250.0, 265.0],
[0.3, 0.7], [0.8, 1.2], [0.8, 1.2], [4.0, 6.0], [38.0, 42.0], [48.0,
52.0].

Three outputs are considered in the estimation problem,
namely the organic substrate concentration, the volatile
fatty acids concentration, and the total alkalinity con-
centration, with measurements every 4 hours. In order
to simulate the effect of measurement noise, uniformly
distributed random noise is added such that the maximal
measurement error magnitudes are ē := (0.01, 0.1, 0.1)⊺.

The inner-approximation set computed with Algorithm 1
is shown in Fig. 5 using various 2D projections. This result
is consistent with the outer-approximation sets computed
in Paulen et al. (2016), although the set-theoretic method
used therein was not able to tackle a problem of this size.
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The samples show a good spread and it is furthermore
possible to analyze correlations between the parameters
and/or initial conditions on this basis. The algorithm
terminates after 3,729 CPU-sec and requires 578,250 like-
lihood function evaluations. The total number of function
evaluations is in good agreement with the analysis in
Sec. 5.1. By contrast, the computational overhead is due to
the repeated numerical integration of the dynamic system
using CVODE/Sundials.

6. CONCLUSIONS

This paper has presented an approach based on nested
sampling to inner-approximate the feasible parameter set
in set-membership estimation. The presented case studies
confirm the viability of this approach as an alternative
to state-of-the-art, outer-approximation approaches based
on set-theoretic concepts. The combination of nested sam-
pling and set-theoretic concepts into a hybrid algorithm
constitutes a promising direction for future research.
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