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Abstract
We propose a novel image analysis framework to automate analysis of X-ray
microtomography images of sintering ceramics and glasses, using open-source
toolkits and machine learning. Additive manufacturing (AM) of glasses and
ceramics usually requires sintering of green bodies. Sintering causes shrinkage,
which presents a challenge for controlling themetrology of the final architecture.
Therefore, being able to monitor sintering in 3D over time (termed 4D) is impor-
tant when developing new porous ceramics or glasses. Synchrotron X-ray tomo-
graphic imaging allows in situ, real-time capture of the sintering process at both
micro and macro scales using a furnace rig, facilitating 4D quantitative analysis
of the process. The proposed image analysis framework is capable of tracking and
quantifying the densification of glass or ceramic particles within multiple vol-
umes of interest (VOIs) along with structural changes over time using 4D image
data. The framework is demonstrated by 4D quantitative analysis of bioactive
glass ICIE16 within a 3D-printed scaffold. Here, densification of glass particles
within 3 VOIs were tracked and quantified along with diameter change of struts
and interstrut pore size over the 3D image series, delivering new insights on the
sintering mechanism of ICIE16 bioactive glass particles in bothmicro andmacro
scales.
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1 INTRODUCTION

Additive manufacturing (AM) allows the fabrication of
customized porous architectures with complex geometries
and interconnected pores. This enhances the capabilities of
porous biomaterials in the field of regenerative medicine,
facilitating the development of architectures that cannot
be produced by other methods or even patient-specific
implants.1 Bioactive ceramics and glasses are promising for
bone scaffolds due to their ability to bond with bone.2,3
Pore architecture plays a key role in promotion of vascu-
larized bone ingrowth into the scaffold.4,5 Conventional
methods of producing porous ceramics such as freeze
casting,6 foaming,7 or foam reticulation provide a limited
control over pore-architecture.8 With additive manufac-
turing techniques, pore-architectures can be predesigned
using computer aided design (CAD), providing a better
control over pore architecture.9 Various AM technologies
have been used to fabricate porous ceramic structures,
including selective laser sintering (SLS),10,11 selective laser
melting (SLM),12,13 stereolithography (SLA),14,15 fused
deposition modeling (FDM),16–19 inkjet printing (IJP),20,21
binder-based 3D-printing (3DP),22–24 and Direct Ink Writ-
ing (DIW).25–27 In most of these techniques, ceramic parti-
cles mixed with a binder are printed into a green body scaf-
fold and then sintered to obtain a fully densified scaffold,
which also results in shrinkage of the structure.1,22,26
Even though AM can provide exceptional control over

architecture, notable structural defects and discrepancies
can occur between the final product and the design file.
Sintering is an example of postprocessing that contributes
to this discrepancy. The aim here was to enable a method
of following the changes of particles such as rounding,
coalescence, coarsening and residual pores across a 3D-
printed scaffold during sintering and its influence on scaf-
fold’s structure at macro scale.
Hot stage microscopy (HSM), dynamic scanning

calorimetry (DSC), and differential thermal analysis
(DTA) are commonly used to understand sintering of
glasses and ceramics.28–32 HSM provides information
on particle densification with respect to reduction of
surface area during sintering,30,31 and DTA and DSC
provide information on glass transition and crystallization
kinetics.28,31 Combination of HSM with DSC or DTA
deliver a good understanding on sintering kinetics of
glasses.31–34 Furthermore, recently Hmood et al. presented
that a 3D-printed pyrometric cone can be used for in situ
monitoring of viscous flow and sintering-crystallization
of glass ceramic systems, during heat treatments in a
hot stage microscope.35 In situ micro-CT is an effective
technique to analyze sintering within ceramic or glass
structures, as it provides information on 3Dmorphological

and structural changes occur during the sintering.36–40
Nommeots-Nomm et al. presented 4D analysis of bioactive
glass sintering within a 3D-printed scaffold for the first
time. The study delivered new insights on the viscous flow
sintering of angular glass particles with a range of sizes. It
also revealed a global scale sintering due to the coarsening
of the individual struts, emphasizing the importance of
evaluating sintering within a 3D-printed scaffold across
the length scales.41
While 4D in situ microcomputed tomography (micro-

CT) can be used to capture the sintering process, quanti-
fying these micro- and macro-structural changes requires
automated image analysis pipelines. In literature auto-
mated thresholding algorithms are widely used to segment
the solid phases in micro-CT images.39,41–44 Thresholding-
based segmentation algorithms, such as Otsu’s thresh-
olding, can be accurate in low noise micro-CT images,
where mutually exclusive intensity level distribution can
be obtained for solid phase and void. Imaging and recon-
struction of a fast dynamic processes such as sintering
of angular particles may generate more noise. Image seg-
mentation conducted by thresholding is solely based on
the intensity level of each pixel in the image and highly
affected by noise. In such cases, advanced segmentation
methodologies are required to segment the solid phase of
the images. While accurate segmentation of solid phase
is a key image processing challenge, implementation of
an automated image analysis pipeline for the quantitative
analysis of sintering within a 3D-printed scaffolds in both
micro- and mesoscale produce more challenges includ-
ing tracking VOIs and accurate detection of strut bound-
aries. In the study by Nommeots-Nomm et al., the quanti-
tative image analysis was conducted based on a 3D image
analysis pipeline implemented usingAvizo 9.1.1 (FEI Com-
pany) and ImageJ. Due to the challenges of automating the
pipeline over the complete image series, analysis was con-
ducted with a limited set of scans and VOIs.41 Reducing
the image series causes information loss and limiting VOIs
reduces the accuracy of the quantification. Furthermore,
manual selection of VOIs and quantification of descriptors
in 3D image sets is tiresome and limits reproducibility.
To resolve this problem, we propose a new auto-

mated image analysis framework to analyze micro- and
macrostructural changes that occur in AM bioceramic
scaffolds using 4D image data solving image analysis chal-
lenges such as tracking VOIs and accurate segmentation
of glassy phase. This image analysis framework incorpo-
rates machine learning and was developed using open-
source tools. The proposed image analysis framework
will allow studies to investigate dynamic processes that
occur within these 3D-printed bioactive glass scaffolds
and optimization of the AM process. The image analysis
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framework is also applicable in analyzing a wide range of
sintering processes.39,45–47
To demonstrate the image analysis framework, the

bioactive glass particles of the composition of ICIE16
(49.46 mol.% SiO2, 36.27 mol.% CaO, 6.6 mol.% Na2O,
1.07 mol.% P2O5, and 6.6 mol.% K2O) were chosen as
it is a highly bioactive glass that can be fabricated into
amorphous porous scaffolds using AM techniques such
as DIW.26 Commercially available bioactive glasses such
as the 45S5 Bioglass R© and S53P4 tend to crystallize on
sintering, so are not appropriate for producing glass scaf-
folds. Moreover, ICIE16 composition shows promising
osteogenic properties with respect to crystallized 45S5
Bioglass R©.48
This is the first 4D analysis of ICIE16 bioactive glass sin-

tering conducted using synchrotron sourced X-ray com-
puted tomography. Previous study on four-dimensional
quantitative analysis of sintering within a 3D-printed
bioactive glass by Nommets-Nomm et al. was conducted
for the 13–93 (54.6 SiO2, 22.1 CaO, 6.0 Na2O, 1.7 P2O5, 7.9
K2O, and 7.7MgO, inmol%) composition.41 The 13–93 com-
position has a higher network connectivity (mean num-
ber of bridging oxygen bonds per silicon atom) than 45S5
Bioglass, which should mean that 13–93 is less bioactive
than 45S5 in terms of dissolution rate and apatite forma-
tion. Here, ICIE16 is of interest as it has a similar network
connectivity to 45S5 but can be sintered without crystal-
lization as the temperature difference between the glass
transition temperature and the crystallization temperature
is sufficient for sintering.26,41
In this study, quantitative analysis conducted using

the implemented image processing pipeline delivers new
insights about the sintering of ICIE16 bioactive glass
related to particle densification, sintering stages, shrink-
age, and the morphological changes happening within
strut of 3D-printed scaffolds during sintering. Importantly,
the proposed image analysis framework facilitates imple-
menting automated, validated, and reproducible pipelines
to analyze 3D-printed porous glasses and ceramics in 4D.

2 EXPERIMENTAL PROCEDURE

2.1 Scaffold preparation

ICIE16 bioactive glass scaffolds were prepared using the
protocol presented by Nommeots-Nomm et al.26 Glass par-
ticles were manufactured via melt quenching using high
purity silica (SiO2) (High Purity, Prince Minerals, Stroke-
on-Trent), phosphorous pentoxide (P2O5), and the car-
bonate equivalent of the required modifying oxides. The
glass was melted at 1400◦C for 2 h, in a 95% platinum 5%
gold crucible, quenched into deionized water, and dried at

100◦C. Glass frit was ground in a Ball mill to produce par-
ticles with a size distribution ranging from 3.3 to 30.5 µm
and D50 = 10.8 µm was used (measured by a Malvern
Mastersizer 2000, Malvern Instruments Ltd. UK). Inks for
3D printing were produced with a 25 wt% Pluronic F-127
solution (CAS: 9003-11-6) and mixed with glass particles
(47.5 vol% glass to a Pluronic solution, calculated using
the relative glass densities) using a Thinky ARE-100 mixer
until homogenized. Finally, scaffolds were printed using
DIW, by a 3D Robocaster (RoboCAD 3.0, 3-D Inks, Still-
water) with a 250 µm diameter conical nozzle, during the
printing a z layer spacing of 200 µm was used (80% of the
nozzle diameter). It was found in previous work that 80%
is key to insuring layer-on-layer adhesion of struts, and
adherence of the first layer to the printing substrate.26,49
During the printing, the humidity was controlled at 60–
80% with a 23◦C temperature. Prior to sintering, the size
of the printed green body scaffold was 1.8 mm × 1.8 mm ×

1.8 mm.

2.2 Imaging and image reconstruction

Viscous flow sintering of the glass particles within 3D-
printed scaffolds were imaged in situ using synchrotron
sourced X-ray computed tomography at the Diamond-
Manchester Imaging Branchline I13-2 of Diamond Light
Source. The optimum sintering temperature for ICIE16
was fixed at 690◦C based on previous studies car-
ried out for similar particle sizes.26 Sintering was per-
formed in the bespoke proportional-integral-derivative-
controlled “Laura” furnace.41,50–53 Here, the glass scaffolds
were glued on an alumina sample holder using a high-
temperature glue (OMEGABOND 600; Omega LTD, UK)
and alumina holder was mounted on to a rotating spin-
dle on the sample stage. Sintering was carried out in two
phases: printed samples were heated up to 500◦C at a rate
of 3◦C per minute and held at 500◦C for a dwell 1 h to
ensure complete removal of binder (Phase I); then sam-
ples were heated at a rate of 3◦C per minute up to the
sintering temperature 690◦C and held for 2 h (Phase II).
Any remaining binder would be removed quickly during
the ramp up to the sintering temperature. Images were
captured throughout the sintering process, and those cap-
tured during Phase II were analyzed in this study. The X-
ray microtomography was performed with a filtered pink
polychromatic beam in the energy range of 8 to 30 keV. The
emitted beam was captured using a CMOS detector with
a resolution of 2560×2160, which was positioned 75 mm
behind the sample stage. All scans were performed with a
total magnification of 8×, resulting in an effective isotropic
pixel size of 0.81 µm. With this setting, projections were
taken with an angular step size of 0.09 (2001 projections
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per 180) for 70 min from the start of Phase II of the sinter-
ing, and the rest of the projections were acquired with an
angular step size of 0.15◦ (1201 projections per 180◦). Pro-
jections were acquired with an exposure time of 45 ms. All
the projections were reconstructed using filtered back pro-
jection (FBP), incorporating dark and flat field correction
and ring artifact suppression.

2.3 Development of image analysis
framework

The image analysis framework was developed using
ImageJ API and Skimage, Sklearn python libraries. The
complete set of python scripts for the image analysis
framework is available in the provided online repository
(https://github.com/AchinthaIroshan/Sintering-within-
3D-printed-ceramics). An image analysis pipeline was
implemented using the proposed framework to under-
stand the sintering of ICIE16 bioactive within a 3D-printed
scaffold. Here, 93 3D-reconstructed images captured
during the sintering process were analyzed.

2.3.1 Preprocessing, tracking volumes of
interest (VOIs), and denoising of images

Initially, all the slices of 3D-reconstructed images (exam-
ple: Figure 1A) were converted to 8 bits. Then initial pre-
processing was conducted by rotating and cropping each
3D image (Figure 1B). Here, the rotation was conducted
such that the struts of the scaffolds were aligned with y
and z directions of the image. Struts can be considered
as the building element of the scaffold (Figure 2). There-
fore, cropped 3D slices of struts with a thickness of 57.6 µm
(example: Figure 2B) were taken as volumes of interest
(VOIs) to analyze sintering.
VOIs of each imagewas detected using an algorithmpro-

pose with the image analysis framework. Here, the VOIs
were detected by automated identification of centers of
those volumes (centers of selected strut slices). The main
steps of the developed algorithm are described below.

∙ Resampling of the 3D image with a factor of 0.25
(Figure 1C): Here the size of the image is reduced to
1/4th of the original size, which makes it easier to com-
pute macroscale features to detect VOIs.

∙ Detecting image slices, which include VOIs using
a Support Vector Machine (SVM) classifier54 (Fig-
ure 1D): The 3D image can be represented as a stack of
2D images where the 2D image is called as an image
slice. A set of image slices labeledwith two classes (Class
1—Slices that include VOIs, Class 2—Slices that do not
include VOIs) were used as training data to train a Sup-

port VectorMachine classifier, which is amachine learn-
ing classification model. The trained model was used to
detect slices that include VOIs in each 3D image.

∙ Segmenting regions with strut cross-sections in
each detected slice using “Level-set” algorithm55

(Figure 1E, F): In “level-set” segmentation algorithm,
an implicit contour is fitted to boundaries of regions of
interest (Figure 2E)

∙ Labeling each connected component in the 3D
image (Figure 1G): Here, each connected component is
considered as a VOI in the resampled 3D image. Each
connected component is labeled to obtain their centers
separately.

∙ Calculating the center coordinates of each labeled 3D-
connected component: regionprops of Skimage was used
to calculate the center.56,57

∙ Converting the calculated coordinates in coordi-
nates of the original size image: As volumes of inter-
ests in the original images are considered for the anal-
ysis, center coordinates of VOIs in the resampled 3D
image were converted to the coordinates of the original
size image.

∙ Obtaining VOIs based on the center coordinate
(Figure 2H, I): For each obtained center coordinate, vol-
umes of dimensions 150 × 140 × 70 (Figure 2H) and
volumes of dimensions 150 × 140 × 70 (Figure 2I) were
generated at each time point to quantify diameter and
densification, respectively.

4D hyperstacks (3D volume series) of each VOI were
generated by combining 3D volumes based on Euclidian
distance between center coordinates of volumes in consec-
utive time points. Based on the obtained center informa-
tion, 27 VOIs can be obtained from each 3D image, and 27
4D hyperstacks can be generated from the complete scan
set captured during the sintering. Here 3 VOIs from each
3D image were taken for the analysis.
Nonlocal mean filtering58 was applied to further noise

reduction, which uses redundant information of the image
to reduce the noise by performing a weighted average of
pixel values considering spatial and intensity similarities
between pixels. Following the noise-reduction contrast of
images was enhanced using histogram equalization.

2.3.2 Segmentation of strut and glassy phase
in VOIs

The implemented image analysis pipeline to character-
ize sintering in the microscale consists of two main
segmentation components. One of those components is
segmenting the glassy phase within a strut to analyze den-
sification during sintering. A random forest classifier was

https://github.com/AchinthaIroshan/Sintering-within-3D-printed-ceramics
https://github.com/AchinthaIroshan/Sintering-within-3D-printed-ceramics
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F IGURE 1 Automated image analysis pipeline to analyze the sintering process. (A) 3D reconstructed image (image size: 2560 × 2560 ×
2159). (B) 3D image after initial preprocessing (image size: 1356 × 1296 × 1540). (C) Resampled image (image size: 339 × 324 × 385). (D) Image
slices that contain VOIs. (E) Implicit contour to region of interest in 2D. (F) Segmented VOIs (strut slices) in the resampled image. (G)
Labeled VOIs (strut slices) in the resampled image. (H) VOI considered to calculate the diameter of a strut. (I) VOI considered to calculated
relative densification. (J) Segmented VOI that considered to calculate the diameter of a strut. (K) Segmented VOI considered to calculated
relative densification. (L) Distance between strut centers diagonally in the XY plane

applied to segment the glass phase until glass densifica-
tion reached about 90%. The fast random forest classifi-
cation is a machine learning method, which can be used
for image segmentation. In this work, it was implemented
incorporating the Trainable Weka Segmentation module
of Fiji59 and trained to classify every voxel to glassy class
or void class. A total of 162 792 labeled voxels were used
in training the model, where 96 323 voxels were labeled
into pore class and 66 469 into glassy class. During the
model training, each labeled voxel was represented using
77 attributes based on Gaussian blur, Hessian matrix, Dif-
ference of Gaussian, Sobel filters, and directional filter-

ing. Here, a random forest classifier with 200 trees was
constructed. Once the densification of the glassy phase
reached around 90%, images were segmented using Otsu’s
thresholding method.60 The second segmentation compo-
nent of the image analyzing pipeline is segmenting the
strut without considering intrastrut porosity to analyze the
diameter change of struts during the sintering. Here, a
child volume of size 330 × 306 × 10 was obtained from
the VOIs of each 3D image without changing the center
of the VOI. Then, strut regions of each image slice were
segmented using the level-set algorithm to evaluate the
change of strut diameter during the sintering.
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F IGURE 2 (A) segmented micro-CT image of a Direct Ink Write bioactive glass scaffold (before the second stage of sintering). (B)
Volume of Interest considered in analyzing the sintering of glass particles (slice of a strut)

The performance of image segmentation was evaluated
by calculating the accuracy, precision, and Intersect over
Union (IoU) values of each segmentation method. These
performance measures were calculated based on a set of
manually segmented images that were taken as ground
truth segmentations.

2.3.3 Quantitative analysis of ICIE16
bioactive glass sintering

Three parameters were quantified for the quantitative
analysis. Those are the relative densification of the glassy
phase, change of diameter of the struts, and change of
longest diagonal length of the interstrut pores during the
sintering. Here, a complete scan set with a size of 93, cap-
tured during the second stage of the sintering, was ana-
lyzed.
To quantify the relative densification of glass at the time

of a 3D scan was acquired, segmented binary volumes of
150 × 140 × 70 (Figure 1J) were obtained from the detected
VOIs of 330 × 306 × 70, without changing the center of
the volumes. Glass volume and pore volume in each VOI
were calculated by counting corresponding voxels. The
intrastrut porosity and relative density of the glassy phase
were calculated using Equations (1) and (2).

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) =
𝑃𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝑃𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 + 𝐺𝑙𝑎𝑠𝑠 𝑉𝑜𝑙𝑢𝑚𝑒
× 100,

(1)
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐺𝑙𝑎𝑠𝑠𝑦 𝑃ℎ𝑎𝑠𝑒 (%) = 100 − 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦.

(2)

To quantify the diameter of a strut, segmented binary vol-
umes of 330 × 306 × 10 (Figure 1K) were obtained from
the detected VOIs of 330 × 306 × 70 without changing the
center of the volume. Then the cross-sectional area of the
strut in each image slice was calculated. Here, the number
of pixels in the foreground in each slice was taken as the
area. The diameter was calculated using the Equation (3),
assuming that the cross-section of a strut is circular.

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 2 ×

√
𝐴𝑟𝑒𝑎

𝜋
. (3)

The interstrut pore diagonal distance (PDD) at each time
point of a scan was calculated using Equation (4),

𝑃𝐷𝐷 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑟𝑢𝑡 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑦

−𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑢𝑡𝑠, (4)

where the distance between strut centers placed in direc-
tions of pore diagonals was obtained as illustrated in Fig-
ure 1L.
The strut diameter of each VOI was obtained (3 VOIs)

and pore diagonal distance was obtained considering 3
interstrut pore channels in each 3D image. The averages of
those automated measurements were obtained as an esti-
mator for the strut diameter and pore diagonal distance of
the scaffold at the time point of the scan. As the calculation
are obtained in pixels, measurements were rounded to the
nearest integer and multiplied by 0.81 (the isotropic pixel
size) to convert into micrometers.
Finally, strut diameter values, the relative densifica-

tion of glass phase, and the longest diagonal length of



KONDARAGE et al. 1677

F IGURE 3 Response of the nonlocal means filter. (A)
Cross-section of a strut—original image. (B) Response of nonlocal
means filter. (C), (D) Histograms of (A), (B); (E), (F) line intensity
profiles of lines drawn on (A), (B)

interstrut pores were plotted against temperature and time
for the complete 3D image series representing the sintering
of ICIE16 bioactive glass within a 3D-printed scaffold.

3 RESULTS AND DISCUSSION

3.1 Image analysis framework

The accuracy of 4D image quantification is highly reliant
on the image analysis pipeline. Therefore, image analysis
plays a vital role in the characterization of dynamic
processes using 4D imaging. In this study, the relative
density of the glassy phase, the diameter of the strut and
interstrut pore diagonal were quantified as descriptors to
analyze the sintering within a 3D-printed scaffold both
micro- and macroscales.

3.1.1 Detection of VOIs and tracking

Based on the visualization of the series of 93 3D images
(Video S1), it was identified that VOIs considered for the
analysis were not static over time due to the shrinkage
of the scaffold. Manual identification of VOIs in each 3D

image is a challenging and time-consuming task. There-
fore, the proposed algorithm to detect and track VOIs is a
vital component of the image analysis pipeline. Dynamic
visualization of VOIs obtained from the VOI detection and
tracking algorithm is included in Video S2.

3.1.2 Noise reduction

Noise reduction of the detected child volume highly affects
the accuracy of the image segmentation. Notable noise
reduction of VOIs was achieved by applying nonlocal
means filter. Resulting images (Figure 3A, B), histograms
(Figure 3C, D), and intensity profiles of lines drawn on
top of original and resulting images (Figure 3E, F) pro-
vide clear evidence of noise reduction. As shown in the
histograms (Figure 3C, D), even after the noise reduc-
tion, intensity values of glass and pore voxels could not be
observed as mutually exclusive sets.

3.1.3 Image segmentation and
quantification

As mutual exclusive intensity distribution was not
obtained with the noise reduction, random forest classifi-
cation, based on machine learning, was used to segment
the glassy phase of VOIs. In random forest classification,
several image features are used for the image segmenta-
tion. The performance Fast Random Forrest classification
methods to segment glassy phase was evaluated with
respect to Otsu’s thresholding method, using intersection
over union (IoU), accuracy, and precision (Table 1). Fast
random forest delivered a better performance over Otsu’s
thresholding in segmentation of glassy phase for the
images captured within the first 1 h and 15 min of sintering
(early sintering stages) where mutually exclusive intensity
level distribution was not obtained for glass and void. Fig-
ure 4A–C visualizes the results of segmentation obtained
with fast random forest classifier. The out-of-bag error of
the fast random forest classifier was 4.88%. After 1 h and
15 min of sintering, the densification of the glassy phase
reached about 90% (Figure 4D). At this stage, mutually
exclusive intensity levels can be observed for the glassy
phase and void (Figure 4E). Therefore, Otsu’s threshold-
ing provided good results for glassy phase segmentation
(Figure 4F) of those images with high IoU, accuracy, and
precision (Table 1).
To quantify the diameter of struts, boundaries of the

struts should be accurately detected. Due to the noise and
the intrastrut porosity (Figure 4G), accurate identifica-
tion of strut boundaries is a challenging task. “Level-set”
segmentationwas identified as themost suitable algorithm



1678 KONDARAGE et al.

TABLE 1 Performance evaluation of the image segmentation

Volume of interest
Segmentation
algorithm

Intersection over
union (IoU) Accuracy Precision

Glassy phase within a strut (relative
densification ≤90%)

Fast random forest 0.83 0.93 0.91

Otsu’s thresholding 0.78 0.88 0.79
Glassy phase within a strut (Relative
densification ≥90%)

Otsu’s thresholding 0.98 0.98 0.99

Strut slice, excluding pores within the strut Level-set segmentation 0.96 0.97 0.99

F IGURE 4 Image segmentation of micro-CT images. (A) Preprocessed image slice of a VOI obtained to quantify relative densification
where individual glass particles are visible. (B) Segmented image of glassy phase using fast random forest voxel classification. (C) Segmented
image volume considered to calculate the relative densification of the glassy phase. (D) Section of a preprocessed image captured after
reaching a higher densification (around 90%). (E) Histogram of the image (D). (F) Image of the glassy phase segmented using Otsu’s
thresholding. (G) Preprocessed image slice of a VOI, obtained to quantify diameter change of struts. (H) Contour of level-set function fitted to
the boundaries of the strut cross-section. (I) Segmented strut cross-section obtained using the level-set segmentation
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F IGURE 5 Densification of glass particles with a 3D-printed
scaffold as temperature increased during sintering

to detect the boundaries of the strut accurately. “Level-set”
segmentation is carried out by fitting an implicit contour to
strut boundaries (Figure 4H), resulting in a good segmen-
tation (Figure 4I) with high IoU, accuracy, and precision
(Table 1).
In the implemented image analysis pipeline, the seg-

mentation is followed by the quantification descriptors to
analyze sintering. The results of quantification and insight
delivered on sintering are discussed in the next section.
Furthermore, the presented image analyzing methodolo-
gies are not limited to analyzing the sintering within 3D-
printed scaffolds. These techniques can also be used to
analyze the structural changes, which occur in scaffolds
designed using woodpile architecture and to analyze the
densification of different particles within solid structures,
incorporating 4D imaging.

3.2 Sintering analysis

In this work, changes in relative density of the glassy phase
during the sintering were quantified as a descriptor for the
microscale analysis of sintering, and both diameter and
the interstrut pore diagonal distance were quantified as
descriptors for macroscale analysis of sintering.
According to the classical sintering theory on densifica-

tion, powder compaction is described with three defined
stages. During the initial stage of the sintering, neck forma-
tion occurs between particles resulting around 10% of den-
sification. During the intermediate stage, bulk densifica-
tion occurs, collapsing interconnected pores into isolated
pores reaching approximately 90% relative densification.
During the final stage, size of closed pores reaches toward
zero resulting 0% porosity and complete densification.61,62
The graph (Figure 5) shows the change of relative

density of the glassy phase over time and temperature. As

presented in the graph, three stages of densification were
visible with the ICIE16 bioactive glass sintering cycle,
confirming the classical sintering theory. Here, ∼5% of
densification occurred during the initial sintering stage,
∼35% of fast densification happened during the intermedi-
ate sintering stage, and ∼5% of slow densification during
the fast sintering was observed. Furthermore, microstruc-
tural changes within a strut were observed by visualization
of segmented child volumes of VOIs at different stages of
sintering (Figure 6). Closely packed glass particles were
observed within struts of the scaffold after the removal
of binder at the temperature of 500◦C (Figure 6A, Time
00:00:00). No notable morphological changes of glass
particles were observed for the first 45 min with gradual
increase of temperature to 636.8◦C (Figure 6B, Time
00:45:21). Once the temperature reached 667.2◦C, neck
growth between glass particles was observed (Figure 6C,
Time 00:55: 26), which is a feature of the initial stage of sin-
tering according to classical sintering theory. During the
intermediate sintering stage, interconnected pores were
present (Figure 6D, Time 01:15:21). Within a very short
time (12min), these interconnected pores transformed into
isolated pores (Figure 6E, Time 01:15:30). During the final
sintering stage, the isolated pores were further reduced.
A set of tiny (less than 20 µm in size) isolated pores were
observed at the end of the 3-h sintering cycle (Figure 6F,
Time 03:02:15). These observations confirm that the densi-
fication of ICIE16 bioactive glass follows classical sintering
theory.Nommeots-Nomm et al. previously showed that the
sintering of glass particles of the 13–93 composition within
a 3D-printed scaffold also followed classical sintering
theory.41
Figure 7 visualizes changes in a slice or section of a strut

(VOI) within the scaffolds during the different sintering
stages, which indicate the nature of a strut at the start of
the sintering (Figure 7A, Time 00:00:00), showing individ-
ual particles and cylindrical morphology of the strut. At
the intermediate stage of the sintering (Figure 7B, Time:
01:00:29), shrinkage of the strut occurred, and at the end of
sintering (Figure 7C, Time: 03:02:15), a densified strut with
a smooth surface was observed at the end of the sintering.
Here (Figure 7), a notable reduction of strut diameter (15%)
can also be observed.
The glass particles are packedwithin the strut of the scaf-

fold. If we assume that the shrinkage of the strut due to
the sintering of glass particle is isotropic, the relationship
between the volume shrinkage and the linear shrinkage is
as follows:63

𝑉𝑜𝑙𝑢𝑚𝑒 𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = 1 − (1 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒)
3
. (5)

The graph (Figure 8A) shows the change of the strut diam-
eter during the sintering. Initial diameter of a strut was
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F IGURE 6 Visualization of child volumes cropped from a VOI of the scaffold obtained from micro-CT images at different stages of
sintering after segmenting the glassy phase and intrastrut pores: (A) (i), (B) (i), (C) (i) morphological changes of glass particles within a child
volume of a strut in the early stage of sintering; (D) (i) pore network within a child volume of a strut during the intermediate sintering stage;
(E) (i) pores within a child volume of a strut just after the intermediate sintering stage; (F) (i) pores of a child volume within a strut at the end
of sintering. (A) (ii), (B) (ii), (C) (ii), (D) (ii), (E) (ii), (F) (ii) show 2D image slices of volumes (A) (i), (B) (i), (C) (i), (D) (i), (E) (i), (F) (i),
respectively

241.4 µm. Once the temperature reached 660◦C, the diam-
eter rapidly reduced from 239.8 to 207.4 µmwithin 23 min
as a result of bulk densification during the intermediate
sintering stage. The diameter further reduced at 690◦C and
reached aminimum of 203.3 µm. The graph shows that the
strut diameter remained at 204.1 ± 0.8 µm during the final
stages of sintering.
The change of pore diagonal distance also shows a pat-

tern similar diameter reduction and shows a continuous
decreasing (Figure 8B). The pore diagonal distance of the
printed scaffoldwas 294.0µm. Same aswith the strut diam-
eter, once the temperature reached 660◦C, pore diagonal
distance rapidly reduced from 288.4 to 239.0 µm within
23 min. The diagonal distance continues to decrease at
690◦C, reaching a minimum of 226.0 µm.
The reduction of the diameter was 15.8%. If we consider

the reduction of the diameter as linear shrinkage, the vol-
ume shrinkage can be calculated using Equation 5, giving
a value of 40.4%. To evaluate whether the shrinkage of the
scaffold was isotropic, volume shrinkage was calculated
based on the child volumes shown in Figure 9. The shrink-
age of the considered child volume was 46.7%, which
proves that the volume shrinkage was not isotropic. This
confirms the shrinkage results published by Nommeots-
Nommet al. using bulkmeasurements, which showed that
linear shrinkage in the z direction was less than that of

the scaffold in x and y directions.26 To develop patient-
specific scaffolds, the shrinkage should be predetermined
and incorporated into initial design. As this analysis sug-
gests that shrinkage is not isotropic, more advanced mod-
els should be implemented to predict the shrinkage.
The global scale sintering within a 3D-printed scaffold

occurs due to the coarsening of struts of the scaffold that
appears at stage 3 of particle sintering. This was initially
observed by Nommeots-Nomm et al. during the sintering
of 13–93 bioactive glass 3D-printed scaffold. In their work,
they identified a steady increase of strut diameter and a
steady decrease of the longest pore diagonal length dur-
ing stage 3 of sintering.41 This happened as a result of the
coarsening of individual struts, which can be identified
as a sintering at a global level. However, this change was
not clearly observed (Figure 8) with ICIE16 bioactive glass
composition. Furthermore, the z-layer spacing was set as
200 µm in the initial printing parameters and it was main-
tained in the printed green body scaffold (Figure 9Aii),
resulting in a strut overlap of ∼41 µm (∼17% of strut diam-
eter), and it was observed that z-layer spacing reduced to
160 µm(Figure 9Bii), resulting in a strut overlap of∼ 49 µm
(∼ 21% of strut diameter). The strut overlap was calculated
based on the measurement taken from images shown in
Figure 9Aii and Bii. This ∼4% decrease of strut overlap is
also not a strong indication for the coarsening of struts due
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F IGURE 7 VOIs of micro-CT images obtained at different stages of sintering: (A) (i) Segmented slice of a strut considered in sintering
analysis, captured after the complete burn out of the binder. (B) (i) Segmented strut slice during the fast sintering stage. (C) (i) Segmented
strut slice after the completion of the sintering process (A) (ii), (B) (ii), and (C) (ii) are cross-sections of (A) (i), (B) (i), and (C) (i) sequentially

F IGURE 8 Quantification of changes in the global-level 3D-printed scaffold architecture as a function of sintering time, by image
analysis: (A) Change of strut diameter. (B) Change of pore diagonal distance

to global scale sintering. Yet,we cannot avoid conclude that
there is no global scale sintering in ICIE16 bioactive glass.

4 CONCLUSIONS

We developed an image analysis framework incorporating
machine learning to investigate the viscous sintering of

particleswith randomly distributed particle size (nonideal-
izedmodel) within 3D-printed scaffolds using synchrotron
X-ray tomography. The image analysis framework was
validated and able to automate four-dimensional analysis
of sintering within 3D-printed structures. To demonstrate
the developed image analysis framework, we carried out
a 4D automated micro- and macroscale analysis of ICIE16
bioactive glass sintering within a 3D-printed scaffold
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F IGURE 9 Shrinkage of a child volume
within the scaffold after the sintering. (A) (i)
Child volume before sintering and (ii) image
slice of the child volume (A) (i), which
captures centerline of strut layer over
x-direction. (B) (i) Child volume after
sintering and (ii) image slice of the child
volume (B) (i), which captures the centerline
of the strut layer over x-direction The
bounding box is scaled in pixels where 1 pixel
length = 3.21 µm

designed for bone tissue engineering for the first time. The
densification of bioactive glass particles was quantified
during the sintering considering multiple VOIs over time
and its influence on scaffold’s structure was identified.
Shrinkage was found to be anisotropic and the degree of
sintering must be included in the 3D design files for the
scaffolds in the future, especially for patient-specific scaf-
folds. Sintering of the ICIE16 composition follows classical
sintering theory and left some residual spherical pores
within the struts. The findings of this research will be
helpful in the implementation of a computational model
to predict the shrinkage of bioactive glass sintering, which
will enable producing patient-specific scaffolds with
designable geometries. Furthermore, the proposed image
analysis framework is not limited to synchrotron tomog-
raphy data and can be applied with other 4D imaging
modalities which can capture microscale dynamics.
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