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Understanding speech becomes a demanding task when the environment is noisy.
Comprehension of speech in noise can be substantially improved by looking at the
speaker’s face, and this audiovisual benefit is even more pronounced in people with
hearing impairment. Recent advances in AI have allowed to synthesize photorealistic
talking faces from a speech recording and a still image of a person’s face in an end-
to-end manner. However, it has remained unknown whether such facial animations
improve speech-in-noise comprehension. Here we consider facial animations produced
by a recently introduced generative adversarial network (GAN), and show that humans
cannot distinguish between the synthesized and the natural videos. Importantly, we then
show that the end-to-end synthesized videos significantly aid humans in understanding
speech in noise, although the natural facial motions yield a yet higher audiovisual
benefit. We further find that an audiovisual speech recognizer (AVSR) benefits from
the synthesized facial animations as well. Our results suggest that synthesizing
facial motions from speech can be used to aid speech comprehension in difficult
listening environments.

Keywords: speech perception, audiovisual integration, speech in noise, facial animation, generative adversarial
network (GAN)

INTRODUCTION

Real-world listening environments are often noisy: many people talk simultaneously in a busy pub
or restaurant, background music plays frequently, and traffic noise is omnipresent in cities. Seeing
a speaker’s face makes it considerably easier to understand them (Sumby and Pollack, 1954; Ross
et al., 2007), and this is particularly true for people with hearing impairments (Puschmann et al.,
2019) or who are listening in background noise. This phenomenon, termed inverse effectiveness,
is characterized by a more pronounced audiovisual comprehension gain in challenging hearing
conditions (Meredith and Stein, 1986; Stevenson and James, 2009; Crosse et al., 2016).

This audiovisual (AV) gain is linked to the temporal and categorical cues carried by the
movement of the head, lips, teeth, and tongue of the speaker (Munhall et al., 2004; Chandrasekaran
et al., 2009; O’Sullivan et al., 2017) and likely emerges from multi-stage, hierarchical predictive
coupling and feedback between the visual and the auditory cortices (Hickok and Poeppel, 2007;
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Kayser et al., 2007, 2012; Schroeder et al., 2008; Peelle and
Sommers, 2015; Crosse et al., 2016; O’Sullivan et al., 2021).

However, the visual component of audiovisual speech is
often not available, such as when talking on the phone or
to someone wearing a mask, when listening to the radio or
when watching video content where the audio narrates non-
speech video content. A system that automatically synthesizes
talking faces from speech and presents them to a listener could
potentially aid comprehension both for normal hearing people
and those living with hearing loss in such situations.

Early efforts to synthesize talking faces from speech were based
on pre-recorded kinematic and parametrized models (Cohen and
Massaro, 1990; Kuratate et al., 1998). These early models yielded
animations capable of augmenting speech comprehension in
background noise (Massaro and Cohen, 1990; Le Goff et al., 1997;
Munhall et al., 2004) but required the previous or simultaneous
recording of a human speaker wearing facial markers or
myographic electrodes (Bailly et al., 2003).

Later works proposed a modular framework for pre-trained
text-to-AV-speech synthesizers (MASSY) which included both
animated and photorealistic face generation sub-modules (Fagel
and Sendlmeier, 2003; Fagel, 2004). Talking heads synthesized
with such models increased comprehension performance as
much as their natural counterparts in consonant-recognition
paradigms but word and sentence identification was about twice
as high for the natural videos (Lidestam and Beskow, 2006;
Aller and Meister, 2016).

Synface, a project dedicated to synthesizing talking faces
for enhancing speech comprehension, also utilized phonetic
analysis of speech and showed that stimuli generated in such
a way can improve speech comprehension in people with
hearing impairments as well as in healthy volunteers listening in
background noise (Beskow et al., 2002; Agelfors et al., 2006).

Recent advances in speech-driven animation methods have
made it possible to produce photorealistic talking heads with
synchronized lip movements using only a still image and an
audio clip. State-of-the-art solutions are trained in an end-to-end
manner using self-supervision and do not require intermediate
linguistic features such as phonemes, or visual features such
as facial landmarks and visemes. Most are based on generative
adversarial networks (GANs) and can produce high quality visual
signals that can even reflect the speaker’s emotion (Chung et al.,
2017; Chen et al., 2019; Vougioukas et al., 2020).

Employing such facial animations to improve speech-in-noise
comprehension would represent a significant step forward in the
development of audiovisual hearing aids. However, it has not
yet been investigated whether such end-to-end synthetic facial
animations can aid a listener to better understand speech in noisy
backgrounds. In this study we set out to investigate this issue.

MATERIALS AND METHODS

To investigate the impact of different types of AV speech on
speech-in-noise comprehension in humans, we first synthesized
realistic facial animations from speech. We then assessed how
these facial animations benefitted humans in understanding

speech in noise, compared to no visual signal and to the
actual video of a speaker. We finally compared the human
level of AV speech comprehension to that of an AV automatic
speech recognizer.

Audiovisual Material
We employed sentences from the GRID corpus, which consists
of 33 speakers each uttering 1,000 three-second-long sentences
(Cooke et al., 2006). The videos in the GRID corpus are recorded
at 25 frames per second, and the speech signals are sampled at
50 kHz. Four speakers, of which two were female, were selected
for their lack of a strong accent (speakers 12, 19, 24, and 29).

Sentences of the GRID corpus are semantically unpredictable
but meaningful commands composed of six words taken from
a limited dictionary (Table 1). As intended for this corpus,
participants were only scored on the color, letter, and digit in each
sentence (i.e., the keywords marked with an asterisk in Table 1),
with the remaining words acting as contextual cues.

Audio
The audio files of the chosen speakers were down-sampled to
48 kHz using FFMPEG to match the sampling frequency of
the available speech-shaped noise (SSN) files. The latter, also
known as speech-weighted noise, was generated from the spectral
properties of multiple concatenated clean speech files from
different speech corpora and audiobooks by randomizing the
phase of all spectral components before extracting the real part
of the inverse Fourier transform.

The root mean square amplitudes of both the voiced part
of the GRID sentence and the SSN were then measured. The
two signals were scaled and combined such that the signal-
to-noise ratio (SNR) was -8.82 dB. This value was found
during pilot testing to reduce comprehension of normal-hearing
participants to 50%.

Synthesized Video
We used the GAN1 model proposed by Vougioukas et al. (2020)
to generate talking head videos from single still images and
speech signals at 25 frames per second (Figure 1). The GAN is
trained using multiple discriminators to enforce different aspects
of realism on the generated videos, including a synchronization
discriminator for audiovisual synchrony. The offset between the
audio and the visual component in the synthesized videos is
below 1 frame (below 40 ms, Table 6, Vougioukas et al., 2020).

1Pretrained model available at “https://github.com/DinoMan/speech-driven-
animation”

TABLE 1 | Structure of GRID corpus sentences.

Command Color* Preposition Letter* Digit* Adverb

Bin Blue At a–z 0–9 Again

Lay Green By Except Now

Place Red In w Soon

Set White With Please

The keywords on which participants were scored are indicated by an asterisk (*).

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 781196

https://github.com/DinoMan/speech-driven-animation
https://github.com/DinoMan/speech-driven-animation
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-781196 December 28, 2021 Time: 16:59 # 3

Varano et al. Facial Animations Improve Speech Comprehension

FIGURE 1 | Schematic of the generation of the facial animation. A GAN synthesizes a video of a talking face from a still image of the speaker and a speech signal.
Source: adapted from the GRID corpus (available at: https://doi.org/10.5281/zenodo.3625687) under CC-BY 4.0 license.

This method is also capable of generating videos that exhibit
spontaneous facial expressions such as blinks, which contribute
to the realism of the sequences.

The LipNet pretrained automated lipreading model, which
obtains a word error rate (WER) of 21.76% on the natural
images, achieves a WER performance of 23.1% when evaluated
on synthetic videos from unseen subjects of the GRID dataset,
indicating that the produced movements correspond to the
correct words (Assael et al., 2016; Vougioukas et al., 2020).

Natural Video
For direct comparability with the synthesized videos, the natural
videos presented to the volunteers were formatted in the same
way as the natural videos used to train the GAN. The faces in
the high-resolution GRID videos were aligned to the canonical
face, cropped, and downscaled to a resolution of 96 × 128 pixels
using FFMPEG. The points at the edges of the eyes and tip of the
nose were used for the alignment of the face. The process used to
obtain videos focused on the face is outlined in Figure 2.

Turing Realism Test
The realism of the synthesized videos was assessed through an
online Turing test. Users were shown 24 randomly selected videos
from the GRID, TIMIT (Garofolo et al., 1993), and CREMA (Cao
et al., 2014) datasets, half of which were synthesized, and were
asked to label them as real or fake in a two-alternative forced
choice (2AFC) procedure. The experiment was performed by
50 students and staff members from Imperial College London
before the Turing test was made available online.2 The results
from the first 750 respondents were reported in Vougioukas et al.
(2020) and we present updated results from 1,217 participants.
Figure 3 shows a side-by-side comparison between a fake and
generated video.

An unstructured assessment of the videos’ realism was also
performed on the 18 participants of the speech-comprehension
experiment (see below). Following the speech comprehension
task, the subjects were asked to comment on anything interesting
or strange they had noticed in the videos during the experiment.
Their verbal responses were recorded anonymously.

2The Turing test was made available online at “https://forms.gle/
vjFzS4QDU9UzFjDJ9”

Assessment of Speech-in-Noise
Comprehension
Participants
Eighteen native English speakers, eleven of them female, with
self-reported normal hearing and normal or corrected-to-normal
vision participated in the experiment. The participants were
between 18 and 36 years of age, with a mean age of 23 years.
All participants were right-handed and had no history of mental
health problems, severe head injury or neurological disorders.
Before starting the experiment, participants gave informed
consent. The experimental protocol was approved by the Imperial
College Research Ethics Committee.

Stimuli Presentation
We considered three types of AV stimuli. All three types had
speech in a constant level of background noise, that is, with the
same SNR. The type of the video, however, varied between the
three types of AV signals. During one type of stimulation, subjects
heard noisy speech while the monitor remained blank (“audio-
only”). In another type, we presented subjects with noisy speech
together with the synthesized facial animations (“synthetic AV”).
Finally, subjects were also presented with the speech signals while
watching the genuine corresponding videos of the talking faces
(“natural AV”).

The experiment consisted of six rounds of three blocks,
where each block corresponded to one of the AV conditions. Six
sentences were presented in each block. The order in which the
three conditions were presented was randomized within rounds
and across rounds. Each sentence was chosen randomly from a
pool of all 1,000 sentences from each of the four speakers, and the
order of speakers was randomized.

Each subject therefore listened to 36 sentences for each of the
three AV types. The participants took a brief rest for one minute
after every round.

Data and Analysis
Between each sentence, the participants were asked to select
the keywords they had heard, from a list on the screen. The
list allowed participants to select all possible GRID sentence
combinations while non-keyword terms were pre-selected and
displayed for them in each trial. The selection of the keywords

Frontiers in Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 781196

https://doi.org/10.5281/zenodo.3625687
https://forms.gle/vjFzS4QDU9UzFjDJ9
https://forms.gle/vjFzS4QDU9UzFjDJ9
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-781196 December 28, 2021 Time: 16:59 # 4

Varano et al. Facial Animations Improve Speech Comprehension

FIGURE 2 | Video preprocessing pipeline used to obtain cropped videos of the speakers’ face. Source: adapted from the GRID corpus (available at:
https://doi.org/10.5281/zenodo.3625687) under CC-BY 4.0 license.

FIGURE 3 | An example of frames from a generated video (top row) shown alongside the corresponding real video (bottom row). Source: adapted from the GRID
corpus (available at: https://doi.org/10.5281/zenodo.3625687) under CC-BY 4.0 license.

by the participants on the monitor allowed to compute their
comprehension score automatically.

The data was therefore collected and analyzed in a double-
blind fashion: neither the experimenter nor the participant
knew which type of video or what specific sentence was
presented. Importantly, the participants were not informed of the
synthesized nature of part of the videos.

The scoring was expressed as the percentage of keywords
correctly identified in each trial. The scores for each type of
AV signal were extracted by averaging across trials and rounds
for each participant. The responses for each keyword were also
recorded, paired with the corresponding presented keyword.

Hardware and Software
The experiment took place in an acoustically and electrically
insulated room (IAC Acoustics, United Kingdom). A computer
running Windows 10 placed outside the room controlled
the audiovisual presentation and data acquisition. The audio
component of the stimulus was delivered diotically at a level
of 70 dB(A) SPL using ER-3C insert earphones (Etymotic,
United States) through a high-performance sound card (Xonar
Essence STX, Asus, United States). The sound level was
calibrated with a Type 4157 ear simulator (Brüel&Kjaer, DK). The
videos were delivered through a fast 144 Hz, 24-inch monitor
(24GM79G, LG, South Korea) set at a refresh rate of 119.88 Hz.
The monitor was mounted at a distance of one meter from the
participants. The videos were played in full screen such that the
dimensions of the talking heads appeared life-sized.

To ensure that the audio and video components of the
stimuli were presented in synchrony, the audiovisual latency
of the presentation system was characterized. A photodiode
(Photo Sensor, BrainProducts, Germany) attached to the display
and an acoustic adaptor (StimTrak, BrainProducts, Germany)
attached to the audio cable that was connected to the ear
phones were employed to record the output of a prototypical
audiovisual stimulus. The latency difference between the two
stimuli modalities was found to be below 8 ms.

Audiovisual Automated Speech
Recognition
The same 36 sentences that were randomly selected and
presented to each participant for each condition were also
analyzed with an audiovisual speech recognizer (AVSR). We fine-
tuned the pre-trained model from Ma et al. (2021) for ten epochs
on the 29 GRID speakers which were not used in the behavioral
study. The AVSR employed ResNets to extract features directly
from the mouth region coupled with a hybrid connectionist
temporal classification (CTC) objective/attention architecture.
The output of the model was then analyzed in the same way
as the human data.

RESULTS

To assess the realism of our facial animations, we first investigated
whether humans could discriminate between the synthesized
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videos and the natural ones. In a large online Turing test
on 1,217 subjects, we found that the median of the correct
responses was exactly at the chance level of 50% (Figure 4),
as was the result on a more controlled Turing test performed
on 50 subjects. Moreover, the 18 participants of the speech-in-
noise comprehension experiment were not told of the nature of
half of the videos, and none reported finding anything unusual
regarding the videos in a questionnaire completed following the
experiment. To the average human observer, the synthesized
videos were thus indistinguishable from the natural ones.

We then proceeded to assess the potential benefits of the
synthesized talking faces on speech-in-noise comprehension.
We found that both the synthesized and the natural videos
significantly improved comprehension in our participants when
compared to the audio signal alone (Figure 5).

The comprehension for the audio-only type was 50.8 ± 7%
(mean and standard error of the mean). The synthesized and
natural videos improved speech comprehension to 61.8 ± 7%
and 71.2 ± 6%, respectively. The relative improvement between

FIGURE 4 | Histogram of the percentage of correct responses in the Turing
test on discriminating between the synthetic and the natural videos. The
median was exactly at the chance level of 50%.

FIGURE 5 | Speech comprehension in noise without a visual signal, with the
synthesized facial animations, as well as with the natural AV signals. Error bars
represent the standard error of the mean, and the dark gray points show the
average score per subject.

the audio-only and synthetic AV signals was about 22%
(p = 2.3 × 10−5, w = 1, two-sided Wilcoxon signed-rank test
for dependent data with Benjamini–Hochberg FDR correction).
The relative improvement of the natural AV signals as compared
to the audio signal alone was about twice as large, about 40%
(p = 2.3 × 10−5, w = 0). The relative difference between
the synthetic AV signals and the natural ones was statistically
significant as well, at 15% (p = 7.6 × 10−5, w = 5).

We further analyzed the differences between the AV gain in
speech comprehension provided by the synthetic and the natural
AV signals. In particular, we computed confusion matrices
between the different key words of the sentences that the
volunteers were asked to understand. The confusion matrices
were normalized such that, for each presented keyword, the
probability to select any other keyword was one. We then
subtracted the answer-response pair frequency of the confusion
matrix of the synthesized AV signals from that of the natural
AV signals (Figure 6A). As indicated by the presence of mostly
positive differences on the leading diagonal of the resulting
matrix, the natural videos outperformed the synthesized videos
in terms of providing categorically unequivocable cues. The
differences in the remaining sectors of the matrix shed some
light into the reason the natural videos performed better. For
example, matrix elements highlighted by the green rectangle in
Figure 6A demonstrate that the synthesized videos encouraged
participants to mistakenly select the letter “a” when presented
with the keywords “o” and “n.” Similarly, the yellow arrows
highlight that participants were more likely to mistake the letter
“t” for the letter “g” and the digit “two” for the digit “seven” when
presented with synthesized videos relatively to the natural videos.

We also subtracted the answer-response pair frequency of
the confusion matrix of the synthetic AV signals from that
obtained from audio-only signals (Figure 6B). The mostly
negative differences on the leading diagonal of the resulting
matrix show that the synthetic videos improved the subjects’
ability to discriminate between keywords compared to the
audio-only condition. The green arrow in Figure 6B highlights
one exception: the synthetic videos encouraged participants to
mistakenly select the keyword “a” when presented with “o,”
congruently with the results shown in panel A. The yellow
annotations indicates that the confusion of the keywords “t” and
“two” also persists.

Nonetheless, the synthesized videos were found to
disambiguate the keyword “b,” notable for being hard to
distinguish from other consonants pronounced in combination
with the phoneme /i:/ such as the keywords “g” and “d.”

We then determined whether an AVSR could benefit from
the synthetic facial animations as well. We found that the
scores of the AVSR improved by about 13% for the synthetic
AV material as compared to the audio-only signals (Figure 7).
However, this improvement was significantly lower than the
corresponding improvement of 22% in human speech-in-noise
comprehension (p = 0.007, t = 3.04, two-sided single-value
t-test). Also, the natural AV signals improved the scores of
the AVSR by 40% when compared to the audio signal alone,
which was comparable to our result on the gain in human
speech comprehension.
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A B

FIGURE 6 | Confusion matrices showing the difference in frequency of presented keyword and participant response pairs between (A) the natural audiovisual
condition and the synthesized audiovisual condition and (B) the audio-only condition and the synthesized audiovisual condition, in humans. The color keywords are
represented by their first letter in uppercase, those corresponding to a letter are shown in lowercase, and the number keywords by their digit. The magnitude of
statistically significant pairs is highlighted in color (bootstrapped permutation test, alpha = 0.05, FDR corrected). A blue color indicates that subjects were significantly
more likely to select a particular keyword when being presented with the synthesized visual signal as opposed to (A) the natural video and (B) no video.

FIGURE 7 | The scores of an AVSR were improved by the synthetic videos,
although the gain was less than that experienced by humans. The natural AV
signals led to a higher gain, similar to that of our human volunteers.

We also analyzed the confusion matrices for the AVSR data
(Figure 8), which were calculated in the same way as those for
the human behavioral data. The natural videos outperformed the
synthetic videos across most keywords, in particular allowing the
AVSR to disambiguate “t” from “g,” a finding that mirrored those
made for human listeners. The letter “t” is also more frequently
mislabeled when the AVSR has access to the synthetic videos
than when no visual signal is available (yellow annotations in
Figures 8A,B). The green rectangles visible in Figures 8A,B
highlight that the synthetic visual representation for the keywords
“n”, “m” and “o” were a source of confusion for the AVSR, much
like for humans.

Nonetheless, the black annotations in Figure 8 highlight that
the synthetic videos had a significantly lower chance to induce the
AVSR to label a “b” as a “p” than their natural counterparts, and

that they significantly decreased the chance that the AVSR labeled
“i” as “y” when compared to the audio-only condition.

DISCUSSION

To the best of our knowledge, our results provide the first
demonstration that end-to-end synthetic facial animations can
improve speech-in-noise comprehension in humans. Our finding
therefore suggest that facial animations generated from deep
neural networks can be employed to aid with communication
in noisy environments. A next step toward such a practical
application will be to investigate the benefit of the facial
animations in people with hearing impairment, such as patients
with mild-to-moderate sensorineural hearing loss as well as
patients with cochlear implants.

However, our results also showed that the speech-in-noise
comprehension is yet higher when listeners see the natural videos.
This result contrasts with our other finding that humans cannot
distinguish between the real and the synthesized videos, neither
when explicitly instructed to do so in an online Turing test
nor as a spontaneous judgment while carefully and procedurally
attending to the videos in a speech-in-noise task using short
sentences. We note, however, that the standardized nature of
the sentences in the GRID corpus might have hindered the
differentiation between the natural and synthetic videos. On the
other hand, the Turing test also employed audiovisual material
from the TIMIT and CREMA datasets that offer more realistic
speech content, such that the standardized nature of the GRID
corpus alone cannot explain the observed lack of differentiation
in the Turing test. It therefore appears that the synthetic videos
lack certain aspects of the speech information, although the lack
of this information is not obvious to human observers.
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A B

FIGURE 8 | Confusion matrices showing the difference in frequency of presented keyword and participant response pairs between (A) the natural audiovisual
condition and the synthesized audiovisual condition and (B) the audio-only condition and the synthesized audiovisual condition, in the AVSR predictions. The color
keywords are represented by their first letter in uppercase, those corresponding to a letter are shown in lowercase, and the number keywords by their digit. The
magnitude of statistically significant pairs is highlighted in color (bootstrapped permutation test, alpha = 0.05, FDR corrected). In particular, a blue element indicates
that the AVSR was significantly more likely to yield the corresponding prediction as a result of having access to a synthesized visual signal as opposed to (A) a
natural video and (B) no video.

One clue as to why that may be lies in the choice of
discriminators employed in the synthesizer GAN architecture:
the GAN was optimized for realism and audiovisual synchrony
rather than for speech comprehension. Certain keywords
pronounced in combination with alveolar and bilabial nasal
consonants such as “n” and “m” or others pronounced in
combination with (palato)alveolar affricates and plosives such as
“g”, “t” and “two” were poorly disambiguated by the synthetic
videos. This finding suggests that the GAN may have avoided
the issue of synthesizing labial and coronal visemes featuring
complex interactions of tongue, teeth, and lip movements to
some extent, for the sake of realism and at the expense of
comprehension. Still, the result that these videos disambiguated
consonants pronounced in combination with the phoneme /i:/
(letter keywords “b” and “p”) and vowels pronounced in
combination with the diphthong /aI/ (letter keywords “i”
and “y”) signifies that their effectiveness at improving speech
comprehension cannot be due to temporal cues alone but must
include categorical cues.

From a different perspective, the synthesized audiovisual
signals may aid speech comprehension in two ways. First, access
to the visual signal may improve the availability of information
to human listeners, allowing the brain to perform internal
denoising through multimodal integration. This may be aided
by the fact that the visual signals were synthesized from clean
speech signals without background noise. Second, the synthesizer
may be increasing the signal-to-noise ratio externally by adding
information regarding the dynamics of visual speech. Such
information would be learned by the GAN during training and
can be beneficial in speech-in-noise tasks. The latter conclusion
is supported by the results presented by Hegde et al. (2021),
who recently showed that hallucinating a visual stream by
generating it from the audio input can aid to reduce background

noise and increase speech intelligibility. Importantly, they also
showed that humans scores on subjective scales such as quality
and intelligibility were higher for speech denoised in such a
way. Moreover, our finding that an AVSR performs better
when it has access to a synthetic facial motion than when
it relies on the speech signal alone also suggests that our
synthesized facial animations contain useful speech information.
We caution, however, that there exist many unknowns regarding
the interaction of the AVSR and the GAN-generated stimuli,
limiting the further interpretation of the ASVR’s performance
on these stimuli.

As a limitation of our experiment, we did not investigate
the effects of different temporal lags between the auditory and
the visual signals. In a realistic audiovisual hearing aid scenario,
the synthetic video signal would be delayed with respect to
the audio, due to the sampling and processing time required.
Because the auditory signal is often slightly delayed with respect
to the visual signal, this inverse temporal latency could influence
the AV benefit. Moreover, we did not investigate the effects of
different levels and types of background noise on the ability of
the synthesizer to accurately reproduce visual speech. In addition,
the highly standardized sentences of the GRID corpus, in which
the different keywords occurred at the same timing, meant that
dynamic prediction was not required for their comprehension.
Our study could therefore not assess the influence of the synthetic
facial animations on this important aspect of natural speech-in-
noise comprehension.

Therefore, a natural progression of this work will be to
perform on-line experiments with noise-hardened versions of
the synthesizer, such as that proposed by Eskimez et al. (2020).
Further studies will also look at improving the synthesizer model
through the implementation of targeted loss models, informed by
the findings of the confusion matrix analysis presented here.
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Taken together, our results suggest that training a GAN-
based model in a self-supervised manner and without the use of
phonetic annotations is an effective method to capture the lip
dynamics relevant to human audiovisual speech perception in
noise. This research paves the way for further understanding of
the way speech is processed by humans and for applications in
devices such as audiovisual hearing aids.
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