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Abstract
The success of deep learning techniques over the last decades has opened up
a new avenue of research for weather forecasting. Here, we take the novel
approach of using a neural network to predict full probability density functions
at each point in space and time rather than a single output value, thus pro-
ducing a probabilistic weather forecast. This enables the calculation of both
uncertainty and skill metrics for the neural network predictions, and overcomes
the common difficulty of inferring uncertainty from these predictions. This
approach is data-driven and the neural network is trained on the WeatherBench
dataset (processed ERA5 data) to forecast geopotential and temperature 3 and
5 days ahead. Data exploration leads to the identification of the most impor-
tant input variables. In order to increase computational efficiency, several neural
networks are trained on small subsets of these variables. The outputs are then
combined through a stacked neural network, the first time such a technique
has been applied to weather data. Our approach is found to be more accurate
than some coarse numerical weather prediction models and as accurate as more
complex alternative neural networks, with the added benefit of providing key
probabilistic information necessary for making informed weather forecasts.
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1 INTRODUCTION

For over 100 years, advanced mathematical techniques
have been used for weather prediction. Today, numerical
weather prediction (NWP) is an advanced discipline which
uses some of the world’s largest supercomputers to solve
complex nonlinear differential equations. The forecast
skill of these models has been improving by approximately
one day every ten years, that is, the 5-day forecast today is

as accurate as the 4-day forecast was ten years ago (Bauer
et al., 2015). This improvement has been achieved through
the scientific and technological development of both NWP
models and computers (Bauer et al., 2015). However, the
success of deep learning techniques over the last decade
has opened up a new avenue for weather forecasting
(Schultz et al., 2021). Research has been mainly focused
on the supervised learning techniques of neural networks
(Dueben and Bauer, 2018; and Brenowitz and Bretherton,
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2019; Rasp et al., 2020; Rasp and Thuerey, 2020; Weyn et al.,
2020) and random forests (Yuval and O’Gorman, 2020).
Some works have combined NWP models with neural
networks: for example Brenowitz and Bretherton (2019)
successfully couple neural networks with general circu-
lation models to emulate physical parametrizations and
Rasp and Lerch (2018) and Grönquist et al. (2021) use
neural networks to post-process ensemble weather fore-
casts from NWP models. Other works have taken a purely
data-driven approach (e.g., Rasp and Thuerey, 2020). In
this work, we take the purely data-driven approach and use
residual neural networks to create 3- and 5-day hindcasts.

A limitation of the deep learning approaches used in
the works referred to above is that it is difficult to infer the
uncertainty of the predictions from their results (Schultz
et al., 2021). Some previous works address these limita-
tions by using an ensemble of deep learning models to
produce a probabilistic forecast (e.g., Bihlo, 2021; Scher
and Messori, 2021; Weyn et al., 2021). However, choosing
a good ensemble of models is non-trivial (Scher and Mes-
sori 2021) and may be computationally expensive because
it requires the network to be trained multiple times. Others
have dealt with the issue of uncertainty by training neu-
ral networks to predict from the weather data themselves
the error and ensemble spread which would be produced
if an NWP model were applied to this data, i.e., a mixed
data-driven neural network and NWP approach (Scher
and Messori, 2018). However, this method is not purely
data-driven and requires access to good NWP forecasts.

In this work, we propose a novel approach to deal with
the issue of assessing uncertainty from neural network out-
puts. With our approach, the neural networks predict full
probability density functions for the target variable at each
point in space and time instead of single values. These
density functions allow practitioners to estimate the uncer-
tainty of the neural network outputs and make a more
informed weather forecast. In order to reduce computa-
tional cost and optimise model accuracy, we train multiple
neural networks on a small number of variables and com-
bine their outputs using techniques such as a stacked
neural network. This is a technique which has not been
used with weather data before. In this work, the neural net-
works are trained on the WeatherBench dataset created by
Rasp et al. (2020) and used to predict both a 3-day and a
5-day weather hindcast of geopotential at the 500 hPa pres-
sure level in m2s−2 (hereafter Z500) and temperature at
the 850 hPa pressure level in Kelvin (K) (hereafter T850).
These variables are chosen so that our results can be com-
pared to those in other works which use the same dataset
(Rasp et al., 2020; Rasp and Thuerey, 2020).

The remainder of this work is structured as follows:
Section 2 describes the data used in this study followed
by the neural network architectures and data exploration

techniques used: Section 3 presents results from using
stacked neural networks to forecast weather data and
shows how the output can be used to infer uncertainty; and
finally Section 4 concludes the work.

2 METHODS

2.1 Data

The WeatherBench dataset is a global dataset produced
by Rasp et al. (2020) containing a mix of multi-levelled
(13 pressure levels) and single-level variables. It uses as
its raw data the ERA5 reanalysis dataset (Hersbach et al.,
2020) for the 40-year period from 1979 to 2018. The data
were processed and regridded onto a 5.625◦ resolution
latitude–longitude grid (32 × 64 grid points) by Rasp et al.
(2020) and we refer the reader to that work for more
details. Following the same work, we consider data from
2017 to 2018 to be the test dataset. One of the benefits of
deep learning is that we do not need to carry out exten-
sive feature engineering and the neural networks are able
to find the best predictors in the data. However, it is still
necessary, as a first step, to choose an appropriate archi-
tecture for the neural network. For this first step, we use
data from 1979 to 2015 as the training dataset with data
from 2015 used for validation of the neural network (here-
after referred to as the neural-validation dataset). All the
results in this section are applied on the 2016 data (here-
after referred to as the validation dataset), so that results
on the test dataset are not used to make any architecture
decisions.

2.2 Neural network architectures

Fundamentally, a neural network provides a way to extract
nonlinear relationships present in the data and is trained
to minimise a loss. This minimisation is done via gradi-
ent descent which is used to update the neural network
weights. Previous works have applied different types of
neural network to this dataset: the original WeatherBench
dataset work Rasp et al. (2020) uses a simple convolu-
tional neural network (CNN) and Rasp and Thuerey (2020)
uses a 19-block convolutional ResNet (an architecture first
described by He et al., 2016). Additionally, Weyn et al.
(2020), who do not use the WeatherBench dataset but
use comparable data, use a U-Net (an architecture first
described by Ronneberger et al., 2015). The lowest errors
are obtained when using a ResNet and thus in this work
we choose this architecture.

Generally, residual neural networks consist of a series
of repeated blocks (referred to as residual blocks) of
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F I G U R E 1 Schematic of convolutional ResNet used in this work. Each 2D convolution layer has LeakyReLu activation with 𝛼 = 0.3
(Maas et al., 2013) and 100 channels (because of 100 bins) if categorical data is being trained or 64 channels if continuous data is being
trained. Following Rasp et al. (2020), the 2D convolutions are defined with periodic padding in the longitude direction and zero padding in
the latitude direction with a kernel size of 5. The dropout layer has a dropout rate of 0.1. If dropout is not required, then there is no dropout
layer in the network architecture. Note that each ResNet takes between approximately 6 and 12 hr to train (depending on the size of the input
data and the number of residual blocks) on a RTX6000 machine with two GPUs and 48 GB of memory [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 2 Two randomly selected examples of the probability density function for the Z500 3-day hindcast at different gridpoints and
times. These have been predicted by a ResNet with a SoftMax output layer and 15 residual blocks. In (a) the maximum probability bin is the
true bin; in (b) the maximum probability bin (23.7%) is not the true bin, which has a non-zero probability of 16.3%. Each bin corresponds to a
geopotential range of width 169 m2s−2, where the lower bound of the 0-bin is 42,500 m2s−2 and the upper bound of the 99-bin is 59,300 m2s−2

[Colour figure can be viewed at wileyonlinelibrary.com]

convolutional, normalisation, and dropout layers, with
intermediate connections known as “skip connections”. A
skip connection between residual blocks adds the outputs
from previous blocks to the output of the current block
(Figure 1). In this way they can avoid the issue of accuracy
saturation which occurs in other types of neural network
architectures when more layers are added (He et al., 2016).
Figure 1 shows the general structure of the convolutional
ResNet used in this work and provides details of the layers
used. It highlights that, as discussed in Lu et al. (2018), a

ResNet can be viewed as a variation of the forward Euler
finite-difference method

yn+1 = yn + hf (tn, yn), (1)

which is actually a much simpler version of the meth-
ods used by NWP models to predict the weather (White,
1971). This makes a ResNet an appropriate architec-
ture for predicting weather and partly explains the
greater accuracy given by the convolutional ResNet

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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in Rasp and Thuerey (2020) relative to other neural
networks.

The main novelty of our work is that our neural
network architecture aims to predict the probability distri-
bution of the variables Z500 or T850 at a particular point in
time, longitude and latitude, rather than their exact value
which is what the previous works discussed above pre-
dicted. In order to achieve this, the first step is to convert
the continuous weather data to categorical data by taking
each target variable and binning its values into 100 bins
of equal width. The values of Z500 vary between a min-
imum of 42,500 m2s−2 and a maximum of 59,300 m2s−2,
meaning that each Z500 bin has a width of 169 m2s−2

(to 3 significant figures); T850 varies between 213 K and
314 K, leading to a bin width of 1.02 K (to 3 significant
figures). We take the value of the category to be its low-
est value, which introduces an inbuilt root mean square
error (RMSE) of 91.2 m2s−2 for Z500 data and 0.992 K for
T850 data (calculated using Equation (3)). With the target
variables binned, it is then possible to use a SoftMax layer
as the output layer (Figure 1). The SoftMax layer predicts
the probability density functions of the variables by using
an activation function which exponentiates the input and
then normalises it, thus outputting a vector with a value
between 0 and 1 for each bin (Goodfellow et al., 2016). The
sum of this vector is equal to 1, meaning it is a probability
density. Figure 2 shows two randomly chosen examples
of the output from the SoftMax layer for a categorical
output variable. In Figure 2a, the maximum probability
bin is the true bin. Although in Figure 2b the maximum
probability bin (23.7%) is not the true bin, the true bin has
a non-zero probability of 16.3%, meaning this probability
density function is a useful tool from a weather forecasting
perspective.

Our use of categorical data also necessitates a differ-
ent choice of loss metric to the previous works using the
WeatherBench dataset (e.g., Rasp and Thuerey, 2020),
which use the mean squared error. A loss metric is used
by the neural network to calculate the loss during training
and it can play a pivotal role in the accuracy and effi-
ciency of a neural network. We choose sparse categorical
cross-entropy (from Keras) in our neural network due to
our use of categorical data and the memory efficiency of
this metric. Note that these loss metrics can also be used
during the training of the neural network to determine
when to stop training and set the values of important
parameters. For example, in our case, we compile our
neural network with Adam optimiser (Kingma and Ba,
2014) with an initial learning rate of 5 × 10−5. This learn-
ing rate is reduced by a factor of 5 if the loss metric on
the neural-validation dataset does not decrease after two
epochs (i.e., after the entire training dataset has passed
through the neural network twice). If the loss metric on

the neural-validation dataset does not decrease after five
epochs, then the neural network stops training. In gen-
eral, the neural network requires approximately 15 epochs
of training, but this varies depending on the set of inputs
being trained.

In addition to a new loss metric, in order to be able to
compare the results of our new categorical data approach
with the correct values from the data and with other neu-
ral network and numerical model results, it is necessary
to infer a single value from our categorical neural network
predictions. To do this, we again take advantage of the
probability density function we have predicted and calcu-
late their expectation using

E[X] =
100∑
i=1

xiP(X = xi), (2)

where xi is chosen to be the lower bound of each bin. In
this way, we take advantage of the density functions we
have predicted and also reduce the inbuilt error caused by
binning the data, which we discussed previously. Through-
out this work, the RMSE is calculated between the real
data and the expected values of the density functions gen-
erated by our approach using the latitude-weighted RMSE
outlined in (e.g., Rasp et al., 2020). This is given by

RMSE

=

√√√√√ 1
Ntimepoints

Ntimepoints∑
i=1

1
NlatNlon

Nlat∑
𝑗=1

Nlon∑
k=1

L(𝑗)(fi,𝑗,k − ti,𝑗,k)2,

(3)

where

L(𝑗) = cos{lat(𝑗)}
1

Nlat

∑N lat

𝑗=0 cos{lat(𝑗)}
, (4)

is the latitude weighting factor, f is the predicted value
from the neural network and t is the true value from the
dataset.

Despite this expectation calculation, there will still be
differences caused by using categorical output data com-
pared to continuous data. The simplest way to under-
stand these is by training a series of continuous data and
categorical data neural networks with varying numbers of
residual blocks and comparing the results. Note that to
reduce both the computational cost of training the net-
work and the memory cost, we train two separate networks
to predict Z500 and T850 individually. If we had trained a
single neural network to predict both Z500 and T850 at the
same time, this would have added an extra dimension to
the output making it 5-dimensional. We note that, unless
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(a) (b)

F I G U R E 3 Comparison of the RMSE achieved by training a neural network with categorical data and that achieved by training a
neural network with continuous data, for (a) 500 hPa geopotential, and (b) 850 hPa temperature, using different numbers of residual blocks.
The RMSE is a weighted average calculated using Equation (3) over all gridpoints and times in the validation dataset

explicitly stated, all results shown in this work refer to the
3-day hindcast.

For our initial analysis, we use a training dataset con-
sisting of only the two variables of interest, Z500 and T850
at current time t. Figure 1 and its caption show the neural
network architectures used for training continuous data
(the same as that in Rasp and Thuerey (2020)) and categor-
ical data. Note that, for simplicity, initially we have chosen
not to include dropout in either neural network type.

Figure 3 shows that the errors decrease as the number
of residual blocks increases for both categorical and con-
tinuous data. For Z500, Figure 3a shows that the error from
training on continuous data is always less than that from
training on categorical data, but the difference between the
two errors is much less than the inbuilt binning error of
91.2 m2s−2. For T850, Figure 3b shows that there is little
difference in the error as a result of training on categorical
data compared to the error from training on continuous
data and in fact for less than 12 residual blocks the cate-
gorical data error is lower. This is despite the fact that the
inbuilt binning error calculated previously is 0.992 K. This
suggests that, although working in terms of binned data
introduces an error, the new neural network structure and
the expectation calculation is able to partially compensate
for this.

2.2.1 Using dropout for ensemble
modelling

So far the neural network architectures used in our tests
have not included a dropout layer. However, including
a dropout layer is a common strategy to improve the
performance of neural networks (e.g., Srivastava et al.,
2014). This layer randomly ignores some outputs from the
preceding layer in the network at a rate set by the user

(we use a rate of 0.1), meaning these outputs are not
passed on to the preceding layer of the network. This
means that, if dropout is occurring, the neural network
is slightly different every time the data pass through it,
which helps prevent overfitting during training. Moreover,
if dropout is allowed to occur at the inference/predic-
tion phase, then an ensemble of outputs can be generated
from a single neural network train (Gal and Ghahramani,
2016). Thus in this section, we examine the improvements
that can be achieved from using dropout in our neural
network.

Dropout ensemble techniques have already been
applied on continuous weather data in Scher and Messori
(2021), where they show that using this technique results
in an improvement in accuracy. With our categorical data
approach, each ensemble member is actually a series of
density functions at every point in space and time (recall
Figure 2) and so careful analysis is required before they are
combined. The law of total probability states that

P(A) =
∑

n
P(A|Bi) P(Bi), (5)

if Bi are a finite number of pairwise disjoint sets, whose
union is the sample space. In addition, with this technique
there is no reason why one ensemble member should be
more accurate than the others, and thus a simple average
is sufficient to combine them. If we set P(A|Bi) to be the
probability density function from the ith ensemble mem-
ber and P(Bi) to be the probability of sampling from the ith
distribution (thus P(Bi) = 1∕n where n is total number of
ensemble members), we show that averaging the density
functions from the ensemble members is mathematically
rigorous. This averaging is known as linear pooling (Allard
et al., 2012).

Using this knowledge, we can average the ensem-
ble outputs. Figure 4 shows the results of averaging an
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(a) (b)

F I G U R E 4 Comparison of the RMSE achieved by using the dropout ensemble technique with 32 ensemble members; using a single
output from a neural network with dropout; using a neural network with no dropout; and using the coarse NWP model IFS T42. (a) is for
500 hPa geopotential, and (b) 850 hPa temperature. The ensemble dropout technique almost always outperforms the other techniques. Note
that the RMSE of the neural network is calculated using the weighted average (Equation (3)) over all gridpoints and times in the validation
dataset (i.e., 2016), whereas the IFS T42 RMSE is calculated using the same method but over the test dataset (i.e., 2017–2018) [Colour figure
can be viewed at wileyonlinelibrary.com]

ensemble of 32 members and shows that using the dropout
ensemble technique results in a notable reduction in error
compared to not using dropout at all or using dropout but
with only one ensemble member. This reduction in error
as a result of the dropout ensemble technique is obtained
for almost no extra computational cost and occurs no mat-
ter the number of residual blocks used. Whilst for T850 the
error always decreases as the number of residual blocks
increases, for Z500 the trend is less clear. This may be due
to overfitting and the optimum number of residual blocks
will be discussed in more detail in Section 3. For reference,
Figure 4 also shows the error from using the configura-
tion of the Integrated Forecast System (IFS) model of the
European Centre for Medium-range Weather Forecasting
(ECMWF) at the T42 resolution (approximately 2.8◦ res-
olution at the Equator) [IFS T42]. The T42 resolution is
much coarser than the operational IFS used by ECMWF,
but twice as fine as the resolution of the WeatherBench
dataset (5.625◦) used in this work. Despite this finer res-
olution, Figure 4 shows that our ResNet with categorical
data outputs trained on just Z500 and T850 is substantially
more accurate than IFS T42 for both Z500 and T850 when
the dropout ensemble technique is used with more than
five residual blocks. Note that this IFS T42 value is for
the 2017–2018 data and is taken from Rasp and Thuerey
(2020), whereas the neural network errors are for the 2016
data, but we have also used the neural networks to predict
the 2017–2018 data and found the same results. We have
not included this here so as not to mislead the reader by
showing preliminary neural network results applied to test
data.

We also calculate the ensemble spread of the ensem-
ble of Z500 and T850 outputs created using the dropout-

F I G U R E 5 Ratio between the ensemble spread and the
RMSE for the Z500 and T850 hindcasts. Note that, for a “perfect”
ensemble, the ratio would be equal to 1

at-inference technique. This is calculated using

ensemble spread =
√

V(yens), (6)

and is a measure of the uncertainty of the ensemble: if the
ensemble is “perfect” then the ensemble spread should be
equal to the RMSE (Palmer et al., 2006). Figure 5 shows
the ratio between the ensemble spread for Z500 and T850
for the 3-day hindcast. Note in order to compare the spread
and the RMSE directly, we have used the same weighted
average from Equation (3) on the spread to change it into
a single value. Whilst our ensemble is not perfect, the ratio
between the spread and the error is similar to that shown
in Figure 3 of Scher and Messori (2021), when they use
the dropout-at-inference technique to create an ensemble
forecast of Z500. This shows that the use of the dropout
ensemble technique here is appropriate and concludes our
outline of the neural network architecture used in this
work, which is summarised in schematic form in Figure 1.

http://wileyonlinelibrary.com
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2.2.2 Neural network stacking

Ideally, we would now train the neural network (out-
lined above and shown in Figure 1) on the Weather-
Bench dataset and predict Z500 and T850. However,
the WeatherBench dataset is over 300 GB and thus it is
non-trivial and potentially unnecessary to train the neural
network on the entire dataset at any one time. There are
several methods to deal with this issue and in this work
we focus on two: (a) using a meta-learner to combine the
outputs from several neural networks trained individually,
and (b) using data exploration techniques to identify the
important variables in the dataset and discard the unim-
portant ones. In this section, we focus on constructing the
meta-learner and then in Section 2.3 we focus on the data
exploration.

In order to use a meta-learner, we set-up a series of
ResNets (with the categorical data architecture in Figure 1)
trained on smaller input datasets which always include
Z500 and T850 as well as one other variable, all at cur-
rent time t. This set-up is summarised on the left-hand
side of the schematic in Figure 6 and shows the other
variables which make up the input datasets. (Note that
these variables are chosen following extensive analysis
later in Section 2.3.) The output of each of these networks
is a density function at each point in space and time. To
improve accuracy, for each network we use dropout at
inference to create an ensemble of 32 outputs and use
the law of total probability (Equation (5)) to average the
outputs meaning that the output of each individual neu-
ral network run is a single density function. Note that
each individual ResNet takes approximately 12 hr to train
on a RTX6000 machine with two GPUs and 48 GB of
memory – substantially less computational time and mem-
ory than would be required if only one neural network
were used.

The outputs of these individual networks can now
be combined to a single output for each point in time
and space. There are several different methods to do this
including linear pooling with average weights as done with
the ensemble created by the dropout. Whilst linear pooling
with average weights is sufficient for the dropout ensem-
ble (because there is no reason why one ensemble member
should be weighted higher than another), it is reason-
able to assume some input variables are more important
than others in determining the final results and thus
should have a greater weighting (Figures 9 and 10 below).
There are various specific techniques to combine outputs
such as as pooling, voting and stacking (Zhou, 2012), as
well as other simpler techniques such as linear regres-
sion. We choose to combine our outputs by using the
learning technique of stacking (Wolpert, 1992; Smyth and
Wolpert, 1999) where the meta-learner is a stacked neural

network used to combine individual learners (our individ-
ual ResNets). We make this choice because it is simple to
implement and computationally cheap: the stacked neu-
ral network used in this work takes only 30 min to train on
a RTX6000 machine with two GPUs and 48 GB of mem-
ory. Moreover, combining distributions using techniques
such as linear regression will almost definitely result in
weightings which do not satisfy the law of total probabil-
ity (Equation (5)) and thus the combined output will not
be a distribution. The advantage of using a stacked neu-
ral network approach is that, by using a SoftMax layer as
our output layer, we ensure that the combined output pre-
dicted by the stacked neural network is mathematically
a distribution. This means that the inputs to our stacked
neural network do not need to be distributions and thus
to reduce memory and computational cost we transform
the density functions from the individual neural networks
to expectations using Equation (2) before inputting them
into the stacked neural network. This reduces the size of
the input data into the stacked neural network by a factor
of 100 due to there being 100 bins. Figure 6 provides a sum-
mary, showing how the outputs from individual ResNets
are combined using a stacked neural network. For the
stacked neural network, we use a simple shallow network
with the following architecture: an input layer to concate-
nate the output of the individual neural networks, two
hidden layers with 36 nodes each and Rectified Linear
Unit (ReLU) activations. A SoftMax output layer is used
to generate a probability density function (as discussed
above).

2.3 Data exploration and feature
selection

In the previous section, we outline the full neural network
architecture used in this work (summarised in Figures 1
and 6). In a purely data-driven scenario, computational
resources permitting, all possible data inputs are used to
get the best possible performance out of a neural network.
The neural network architecture and hyperparameters are
then tuned to extract optimum predictive power out of
the available data. An alternative to this approach is to
pre-select the key features from the data to train the neural
networks. Such feature selection is a two-fold problem: (i)
how many input variables, and (ii) how many individual
data points should be included. There is always a trade-off
between having a large amount of data resulting in large
computational and memory costs, and having too little
data resulting in overfitting.

As a first step, we make some physically informed
choices to include only certain variables in the potential
input. Recall that the WeatherBench dataset contains a
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F I G U R E 6 Schematic for Z500 3-day hindcast using the stacked neural network approach to combine outputs from individual
ResNets (see Figure 1 for their schematic). The schematics for the Z500 5-day, T850 3-day and T850 5-day hindcasts are the same except that
there is no solar radiation ResNet for the T850 hindcasts. Note that each ResNet used in this set-up takes approximately 12 hr to train on a
RTX6000 machine with two GPUs and 48 GB of memory and the stacked neural network takes 30 min on the same machine

mix of multi-level variables and single-level variables. We
choose to include the multi-level variables of geopotential
and temperature as these are the variables we are forecast-
ing, and zonal wind because of its links to geopotential.
We also choose to include a humidity multi-levelled vari-
able and a vorticity multi-levelled variable. The Weather-
Bench dataset includes both specific humidity and relative
humidity, and both potential vorticity and relative vortic-
ity. From a physical perspective, we would expect little
gain from using relative humidity as this variable is a
function of specific humidity, temperature and pressure
(which is itself related to geopotential), which are already
present in the potential input dataset. Thus we choose
specific humidity. Similarly, we exclude relative vortic-
ity and keep potential vorticity because relative vorticity
describes only the rotational component of the horizontal
flow, whereas potential vorticity also includes a contri-
bution from the vertical stratification of the temperature
field and is known to be a conserved variable in adiabatic
flow. In addition, potential vorticity is often used in the
study of the development of midlatitude weather systems
and as a result is suitable for our potential input dataset.
Finally, we also include: the single-level variables of solar
radiation because it is the energy source driving the sys-
tem, 2 m temperature because of its likely influence on
T850, and the constant fields of orography, land-sea mask,
and latitude.

Thus, as a result of this initial physically informed
analysis, we have been able to exclude 45 variables from
the training dataset out of a total of 115 (where for
data on multiple levels, we are counting each individ-
ual level as a variable). The remaining set of relevant

input variables consists of the multi-level fields of geopo-
tential, temperature, specific humidity, potential vorticity
and zonal wind (x-direction) and the single-level fields
of 2 m temperature, top-of-atmosphere incoming solar
radiation and constants (the three variables constant in
time – orography, land-sea mask, and latitude). To fur-
ther refine the set of relevant variables, we conduct data
exploration using a purely data-driven approach.

Our data-driven approach can be thought of as a way
to create an optimal subset of data for training. In order
to do such feature selection, we first train an individual
neural network with an input dataset of just Z500 and
T850, and define this as our “benchmark” training dataset,
which will be used to understand the effect of including
other variables on the final error. The architecture of this
network is a ResNet (Figure 1) with five residual blocks.
We use the dropout at inference technique, described in
Section 2.2.1, to extract an ensemble of 32 outputs from
the single trained model, and then calculate the error of
the ensemble mean (Section 2.2.1). By using this, we aver-
age out some of the randomness of the results. We then
train individual neural networks with an input dataset of
Z500 and T850 and one variable from the relevant list, and
compare it to the original benchmark. It should be noted
that this relatively small neural network is just a way to
assess the impact of additional variables being included in
the training data. We then use these selected features to
train deeper neural networks to find the optimum archi-
tecture for these data. We have chosen to focus on improv-
ing the 3-day hindcast for this comparison and assume
that any improvements in methodology for this will also
result in improvements in the 5-day hindcast. Thus,
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F I G U R E 7 Percentage error relative to benchmark from
training using extra single-level variables. These are: just incoming
top-of-atmosphere solar radiation, just 2 m temperature, or the
three constants of orography, land-sea mask and latitude. Results
are calculated from the mean of 32 ensemble members generated
using dropout at inference, predicting on all gridpoints and times in
the validation dataset (i.e., 2016) [Colour figure can be viewed at
wileyonlinelibrary.com]

unless explicitly stated, all results shown are for the 3-day
hindcast.

In this section, we show an example of this data-driven
analysis for the variables defined at a single height: 2 m
temperature, total incident solar radiation and constants.
For the multi-levelled variables, we use the same method-
ology to determine which levels are the most important for
predicting Z500 and T850 and have included this analysis
in Appendix A.

Figure 7 shows the ensemble errors as a percentage
of the error relative to the benchmark dataset for the
single-level variables. The figure shows that solar radi-
ation is relatively unimportant for predicting T850 and
relatively important for predicting Z500, that 2 m tempera-
ture is relatively unimportant for predicting Z500 and T850
and finally constants are important for predicting both
Z500 and T850. Thus from Figure 7, we conclude that we
can exclude 2 m temperature from both training datasets
and solar radiation from the T850 training dataset. Note
all relative errors in this figure are relative mean squared
errors (MSE) so that these results can be compared with
those in Figure A1 in Appendix A which use MSE to make
calculating confidence intervals easier.

As a result of the physically informed and data-driven
analysis in this section and in Appendix A, we have
determined a set of input variables which are important
in determining Z500 and T850. From an original dataset
of 115 variables, we have been able to exclude 45 through
an initial physically informed analysis and a further 36 for
Z500 and 37 for T850 through data-driven analysis. We use
this input variable selection in the next section to reduce
computational and memory costs without compromising
too much on accuracy.

3 RESULTS

In the previous section, we outlined our new methodol-
ogy for predicting the weather forecast using a data-driven
approach. In this section, we show the results of imple-
menting this methodology. Because we are now applying
the full stacked neural network approach, we must split
the dataset in a different way from that in Section 2 as
there are now two stages of neural networks. We use the
data from 1979 to 2011 as the training dataset for the indi-
vidual ResNet learners, and use the data from 2011 as a
validation dataset. We then use the individual learners to
make predictions on the dataset from 2012 to 2016 (here-
after referred to as the stacked validation dataset). These
predictions are the inputs for the meta-learner (the stacked
neural network), which uses shuffle as validation. As in
Rasp and Thuerey (2020), the final testing dataset is the
data from 2017 to 2018. As discussed previously, all the
analysis so far has been carried out for the 3-day weather
hindcast, but we show that this methodology also leads to
good results for the 5-day weather hindcast.

As a first step, we determine the optimum number of
residual blocks to use in the individual ResNets which
feed the stacked neural network. (Recall that Figures 3
and 4 in the previous sections show that the accuracy of a
ResNet is very dependent on the number of residual blocks
used.) Figures 8a and 8b show how RMSE Z500 and RMSE
T850 vary as the number of residual blocks is increased
by steps of four blocks from 5 to 25 blocks and steps of
two blocks from 25 to 31. The error is calculated on the
2012 to 2016 dataset, because these are the predictions
which are used as the input for the stacked neural network.
For the main analysis of the optimum number of blocks,
we use the optimum temperature levels as the training
dataset for Z500 and the optimum geopotential levels as
the training dataset for T850. Before 25 residual blocks,
in both cases the error decreases relatively steadily as the
number of residual blocks increases. However, beyond this
number the error sometimes increases dramatically when
more residual blocks are added and sometimes decreases
dramatically. Thus we also conduct a small sensitivity
analysis using the optimum levels of potential vorticity,
specific humidity and zonal wind. Figure 8a shows the
error is minimised with 29 residual blocks for tempera-
ture, potential vorticity and zonal wind, but for specific
humidity the error increases notably when 29 blocks are
used. Given that the error using specific humidity is always
higher than that from using the other variables, the con-
tribution from the specific humidity variable after the
stacked neural network is applied will be small. Thus it is
reasonable to ignore that the error from specific humidity
is high when 29 blocks are used and conclude that 29 is a
good number of residual blocks to use for Z500. Figure 8b

http://wileyonlinelibrary.com
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(a) (b)

F I G U R E 8 RMSE as a result of using different numbers of residual blocks in the ResNet for (a) 500 hPa geopotential, and (b) 850 hPa
temperature. The effect on the error is shown for ResNets trained on a number of different variables. The RMSE is calculated using the
weighted average (Equation (3)) over all gridpoints and times in the stacked validation dataset (i.e., 2012–2016) [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 9 Improvement in accuracy for the 3-day hindcast for (a) 500 hPa geopotential, and (b) 850 hPa temperature, as a result of
using a stacked neural network compared to the individual ResNets trained on specific variables and simply averaging the outputs of the
individual ResNets. The RMSE is a weighted average calculated using Equation (3) over all gridpoints and times in the test dataset (i.e.,
2017–2018) [Colour figure can be viewed at wileyonlinelibrary.com]

shows the error is minimised with 25 blocks for potential
vorticity, specific humidity and zonal wind and close to
being minimised by this number of blocks for geopotential.
Thus, we conclude 25 is a good number of residual blocks
to use for T850.

Using these optimum numbers of residual blocks,
we can now calculate our full neural network results.
Figures 9a and 9b compare, for Z500 and T850 respec-
tively, the 3-day prediction error on the test dataset from
using each of the individual learners trained on a specific
variable, simply averaging the output from the individual
ResNets and using the stacked neural network to com-
bine the outputs. Figures 10a and 10b show the same
comparison for the 5-day prediction error on the test
dataset. These figures show that, for both the 3-day and

5-day hindcast for both Z500 and T850, the stacked neural
network always provides the most accurate result and the
error is notably reduced through using it. This is to be
expected because the stacked neural network framework
(Figure 6) means that the RMSE achieved from using it is
loosely bounded from above by the lowest RMSE achieved
by the individual ResNets; otherwise the stacked neural
network could achieve a lower error simply by setting that
input to 1 and the other inputs to 0. (Note this is only a
loose bound because the training dataset of the stacked
neural network is not the same as the test dataset on which
the predictions are made.) Moreover, the stacked neural
network is also more accurate than simply averaging the
expectation outputs from the individual ResNets. This is
because the stacked neural network learns in training to

http://wileyonlinelibrary.com
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F I G U R E 10 Improvement in accuracy for the 5-day hindcast for (a) 500 hPa geopotential, and (b) 850 hPa temperature, as a result of
using a stacked neural network compared to the individual ResNets trained on specific variables and simply averaging the outputs of the
individual ResNets. The RMSE is a weighted average calculated using Equation (3) over all gridpoints and times in the test dataset (i.e.,
2017–2018) [Colour figure can be viewed at wileyonlinelibrary.com]

give a lower weight to the individual ResNets with larger
errors, meaning the overall error from the stacked network
is unaffected. These accuracy improvements, in addition
to the comparatively computationally cheap nature of the
stacked neural network (30 min on a RTX6000 machine
compared to 12 hr to train each individual ResNet on the
same machine), show that we are correct to apply the
stacked neural network to the ResNet outputs.

To visualise what these error values mean, we look at
the specific event of storm Ophelia which was an active
storm between 8 and 18 October 2017, and the worst storm
to affect Ireland in over 50 years (Stewart, 2018). We cal-
culate the deviations of the true value, the 3-day and the
5-day hindcasts from the global annual climatology value
and show the results in Figure 11 in the North Atlantic
region at 0000 UTC 17 October 2017, which was when the
storm was affecting the British Isles. It is clear that, for
both the 3-day and 5-day hindcasts, the neural network
can predict the general distribution of Z500 and T850 well.
Unsurprisingly, the 3-day hindcast is more accurate at pre-
dicting the location of the storm and is able to pick up finer
details not present in the 5-day hindcast.

Finally, in Table 1, we summarise the results from
using our stacked neural network and compare them with
results from using simple methods (persistence and cli-
matology), other neural networks (Weyn et al., 2020; Rasp
and Thuerey, 2020) and numerical models (IFS T42 and
operational IFS) where the numerical model results have
been taken from Rasp et al. (2020). The key finding is that
our approach is approximately as accurate as that in Weyn
et al. (2020), despite the fact that our neural network is sim-
pler than the U-Net approach used in Weyn et al. (2020).
It should be noted that, although our training dataset

includes more variables than that used in Weyn et al.
(2020), it uses data at a much finer resolution (2◦ compared
to 5.625◦) and furthermore we are using categorical data
rather than continuous data which adds an inbuilt error
to our results. Thus this result highlights the advantages
we gain from the data exploration and good choice of neu-
ral network architecture described in Section 2. The table
also shows that our approach is more accurate than the
coarse numerical IFS T42 model and the simple meth-
ods of persistence and climatology, but less accurate than
the neural network approach in Rasp and Thuerey (2020)
and the operational IFS model. It is likely that our neu-
ral network’s lower skill compared to Rasp and Thuerey
(2020) is due to the fact that the Rasp and Thuerey (2020)
model is trained on a much larger dataset of the Weather-
Bench data (117 data variables compared to our training
dataset of 34 data variables for Z500 and 33 data variables
for T850) and is also pretrained on extra data from the
Climate Model Inter-comparison Project (CMIP; Eyring
et al., 2016). Thus the approach in Rasp and Thuerey (2020)
is both much more computationally expensive and much
more memory intensive than our approach. Furthermore,
our approach has introduced improvements which com-
bine dropout-based ensembles with the ability to predict
probability density functions instead of single values. In
the next section, we show how this enables us to make a
more informed weather forecast.

3.1 Estimating uncertainty

A common criticism of using neural networks for weather
forecasting is that assessing the uncertainty of their

http://wileyonlinelibrary.com
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F I G U R E 11 Deviation from the climatology values of (a, b) the true values, (c, d) the 3-day hindcast values and (e, f) the 5-day
hindcast values of (a,c,e) Z500 and (b, d, f) T850, at 0000 UTC 17 October 2017 during storm Ophelia [Colour figure can be viewed at
wileyonlinelibrary.com]

forecasts is difficult, and requires techniques such as
ensemble approaches, which are often computationally
expensive (see Schultz et al., 2021 and discussion in
Section 1). Thus, one of the key novelties of our neural
network approach to predicting the weather is that it pro-
vides a novel efficient method for producing a probabilistic
output, through our prediction of a full probability density
function for the variable of interest at each point in space
and time. This probabilistic output enables us to estimate
uncertainty and obtain notably more information from our
neural network predictions than can be obtained from a
deterministic output.

To visualise the probabilistic output, we again con-
sider the example of storm Ophelia. Figures 12a and 12b
show the cumulative distribution function (CDF) for T850
from 3- and 5-day hindcasts respectively, at 0000 UTC
17 October 2017. In each panel, the CDFs for three dif-
ferent thresholds are shown using probability contours.

These probability contours indicate the locations where
the probability of T850 being lower than 263.15 K (–10 ◦C)
(blue), 273.15 K (0 ◦C) (green) and 283.15 K (10 ◦C) (red) is
10, 50 and 90%. Similarly Figures 12c and 12d show equiv-
alent probability information for Z500. Note that, although
for a given threshold the probability contours will never
cross, the probability contours for different thresholds may
cross.

In effect, Figure 12a and 12b shows the median loca-
tion of the three isotherms as well as the 10 to 90% proba-
bility interval. We see meanders in the contours associated
with midlatitude synoptic systems, and locations where
the probabilities are not symmetric about the median (e.g.,
in the 3-day T850 hindcast off the west coast of Califor-
nia, where the distance between the 90% and 50% contours
is larger than between the 50% and 10% contours for the
probability of T850 being less than 283.15 K (10 ◦C)). The
CDF for the thresholds of 263.15, 273.15, 283.15 K chosen

http://wileyonlinelibrary.com
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F I G U R E 12 Contour maps of the cumulative distribution functions at 0000 UTC 17 October 2017, showing contours at 10, 50 and
90%. For (a, b) the thresholds considered are T850 < 263.15 K (blue), T850 < 273.15 K (green) and T850 < 283.15 K (red) and for (c,d) they are
Z500 < 5.3×104 m (blue), Z500 < 5.5×104 m (green) and Z500 < 5.7×104 m (red). [Colour figure can be viewed at wileyonlinelibrary.com]

here, generally do not overlap in the 3-day T850 hindcasts
in Figure 12a. However, in the 5-day T850 hindcasts, where
there is more uncertainty, the spread in each set of con-
tours is wider and there are places where they do overlap
(e.g., over Iceland, where there is a 90% chance of T850
being lower than 273.15 K (0 ◦C) but also a 10% chance that
it is lower than 263.15 K (–10◦C)). For Z500, Figures 12c
and 12d also show the contours are closer together in the
3-day hindcast than in the 5-day hindcast, indicating more
certainty in the 3-day hindcast.

The probabilistic output of the neural network also
means we can estimate uncertainty and skill metrics (Hud-
son and Ebert, 2017) for our predictions. A standard metric
used to evaluate probabilistic weather forecasts (Rasp and
Lerch, 2018) is the Continuous Ranked Probability Score

(CRPS). This metric helps to evaluate the distance between
the forecast and the real solution and is calculated using

CRPS(F, y) = ∫
∞

−∞
{F(z) − 1(y ≤ z)}2 dz , (7)

where F(z) is the CDF of the forecast density function and
1(y ≤ z)2 is an indicator function representing the CDF of
the observed value (see Hersbach 2000 for more details).
Following general practice (e.g., Scher and Messori, 2021),
we compute the CRPS for each density function at each
individual gridpoint for each time and then average over
them. Note that, the lower the CRPS score, the better the
forecast density function approximates the real density
function.

http://wileyonlinelibrary.com
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T A B L E 1 Error calculated using Equation (3) on the test
dataset for 3- and 5-day hindcasts for Z500 and T850

RMSE Z500
(3-/5-day)
(m2⋅s−2)

RMSE T850
(3-/5-day)
(K)

Spatial
resolution
of data

Stacked neural
network

375 / 627 2.11 / 2.91 5.625◦

Persistence 936 / 1033 4.23 / 4.56 5.625◦

Climatology 1075 5.51 5.625◦

IFS T42 489 / 743 3.09 / 3.83 2.8◦

Weyn et al. (2020) 373 / 611 1.98 / 2.87 2.0◦

Rasp and Thuerey
(2020)

268 / 499 1.65 / 2.41 5.625◦

Operational IFS 154 / 334 1.36 / 2.03 0.1◦

Note: The table compares the results from using our approach in bold, with
simple methods (persistence and climatology), numerical models (IFS T42)
and other neural networks (Rasp and Thuerey, 2020; Weyn et al., 2020). All
approaches have been evaluated on the entire global region.

Table 2 shows the CRPS values for Z500 and T850
for the 3- and 5-day hindcasts for our stacked neural net-
work. In order to interpret these values, we first compare
the CRPS Z500 values with those obtained in Scher and
Messori (2021), who combine the dropout-at-inference
ensemble method (Section 2.2.1) with a convolutional neu-
ral network to generate an ensemble forecast to predict
Z500 in the same time period (2017–2018) as in our work.
Even though we use data at a much coarser resolution,
our stacked neural network approach performs much bet-
ter than the approach in Scher and Messori (2021) for
the 3-day hindcast but much worse for the 5-day hind-
cast. The error growth for our results is proportionally
larger than that in Scher and Messori (2021) and suggests
that for Z500 the distributions produced by our approach
are close to the real distributions for the 3-day hind-
cast, but suffer greatly as the lead time increases. Scher
and Messori (2021) did not use their approach to pre-
dict T850 and thus we instead compare our T850 values
with the “dressed” ERA CRPS values for the T850 5-day
hindcast used by ECMWF to benchmark their operational
IFS (Haiden et al., 2017, 2018). Note this is not an exact
comparison because the ERA CRPS values are only for
extratropical regions whereas our CRPS values are for the
entire global region. The method used to calculate these
“dressed” distributions is very different to the method we
use to produce distributions. In the “dressed” approach,
the mean error and standard deviation of the 30 days
prior to the datapoint of interest are used to estimate a
Gaussian distribution around reanalysis data. Note that in
2017 ERA-Interim was used as the reanalysis data and in
2018 this was changed to ERA5. For reference, we have

also included the actual CRPS from the operational IFS
(Haiden et al., 2018). Unsurprisingly, the CRPS of the oper-
ational IFS is much lower than that from our approach,
but the ECMWF benchmark CRPS are fairly close to the
CRPS from our approach (especially the interim “dressed”
score), which is a promising result.

We can further examine the spread of the density func-
tions by looking at their standard deviation, 𝜎. We do this
using

𝜎 =

√√√√ 100∑
i=1

(xi − 𝜇)2P(X = xi), (8)

where 𝜇 is the expectation of X given by Equation (2) and,
as before, the value of each bin xi is taken to be the lower
bound. This informs on the spread of the distribution and
allows us to calculate the confidence intervals using

𝜇 ± Z 𝜎√
N
, (9)

where N is the number of bins and Z is the z-value taken
from the normal distribution and equal to 1.960 for the
95% confidence interval and 2.576 for the 99% confidence
interval. Note here that the confidence interval is for the
distribution at each point in space and time and not for
the error as in Equation (A1) in Appendix A. In Table 3,
we show the percentage of datapoints in time and space
where the true value is within the 95% and 99% confi-
dence intervals around the predicted expected value i.e.,
the percentage of datapoints where the true value and the
predicted value are not statistically different from each
other at the 95% or 99% confidence interval. The propor-
tions are relatively low but it should be noted that the
confidence intervals are relatively narrow because N is rel-
atively large and, as shown in Figure 2, the distributions
are very centred around the expected value – the average
width for the 99% confidence interval is 0.6 K and 0.8 K for
the T850 3- and 5-day hindcasts respectively (smaller than
the width of one bin) and 100 and 160 m2s−2 for the Z500 3-
and 5-day hindcasts respectively (approximately the same
size as the width of one bin). Therefore, we also show
in Table 3 the proportion of true values within one and
two 𝜎 (calculated using Equation (8)) from the predicted
expected value. The majority of true values are within one
𝜎 of the expected value and almost all (over 90%) are within
two 𝜎. These metrics, and others like it, help practition-
ers evaluate the neural network results compared to other
model results and also help them understand how much
confidence to have in the predictions.

Finally, the probability density functions not only
improve understanding of the spread and skill of the
results, but also inform of scenarios which are not the
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T A B L E 2 CRPS for the 3- and 5-day hindcasts for Z500 and T850 averaged over all gridpoints and time

Z500 (3-day)
(m2⋅s−2)

Z500 (5-day)
(m2⋅s−2)

T850 (3-day)
(K)

T850 (5-day)
(K)

Spatial resolution
of data

Stacked neural network 211 1500 1.22 1.69 5.625◦

Scher and Messori (2021) 526 707 — — 2.5◦

Dressed ERA Interim (2017) — — — 1.44 0.54◦

Dressed ERA (2018) — — — 1.18 0.28◦

Operational IFS — — — 0.98 0.1◦

Note: Where available, the table presents the CRPS values from our stacked neural network, from other neural network approaches (Scher and Messori, 2021),
from the benchmarks used by the ECMWF in 2017 and 2018 and from the Operational IFS for comparison. Furthermore, our results and Scher and Messori
(2021) are evaluated over the entire globe, but the ECMWF results are evaluated only over the extratropics.

T A B L E 3 Percentage of datapoints where the true value is within a set interval from the expected value
predicted by the neural network

Z500
(3-day)

T850
(3-day)

Z500
(5-day)

T850
(5-day)

Within 95% confidence interval 13.8 17.2 14.7 17.3

Within 99% confidence interval 16.3 20.3 17.4 20.5

Within ±𝜎 64.7 71.2 67.3 71.2

Within ±2𝜎 93.6 94.0 94.0 94.2

most likely to occur, but still have a relatively high prob-
ability of doing so. Recall from the example in Figure 2b
that, in that case, the bin the neural network predicts with
the highest probability is not the correct bin, but the cor-
rect bin still has a high probability of occurring. Figure 13
quantifies cases like these. The first bar in all four sub-
figures shows the percentage of datapoints for which the
bin with the predicted highest probability is the correct
bin – in all four cases this is over 20%. The second bar
shows the percentage of datapoints where the correct bin
is either the bin with the predicted highest probability or
the predicted second highest probability of occurring. This
continues until the fifth bar of the subfigures which shows
the percentage of datapoints where the correct bin is one
of the top five bins that the neural network predicts is
most likely to occur. It should be noted here, for clarity,
that the SoftMax layer is capable of predicting multi-modal
distributions and thus bins with high probabilities are
not necessarily close together in value. For example, if
the distribution is bimodal, it may be that the bin with
the highest probability is at one end of the spectrum
and the bin with the second highest probability is at the
other end.

In summary, Figure 13 shows that, for the 3-day pre-
dictions, the correct bin is in one of the top five most
likely to occur for almost 80% of the datapoints, and for
the 5-day predictions, the correct bin is one of the top

five most likely for over 60% of the datapoints. Given that
there are 100 bins, such a high proportion from just the
top 5 is a notable result. It means that in the vast majority
of cases, the true scenarios have a high probability asso-
ciated with them, which enables practitioners to make
informed decisions when forecasting and issuing weather
warnings.

Thus we have shown in this section how much more
information can be gained for weather forecasting if the
neural network predicts density functions rather than sin-
gle values.

4 CONCLUSION

In this work, we have successfully developed a novel
neural network approach, which is able to predict full
probability density functions for the target weather vari-
able at each point in space and time instead of single
values. This enables practitioners to estimate the uncer-
tainty of the neural network predictions and to provide
a more informed weather forecast. In particular, the
probability density functions inform about events which,
although they may not be the most likely to occur, still have
a significant probability of happening. We have thus pro-
vided a strong proof-of-concept of how neural networks
can be used to produce probabilistic weather forecasts,
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F I G U R E 13 Percentage of all datapoints in time and space where one of the top 5 most likely bins predicted by the neural network is
the observed bin for (a) 500 hPa geopotential, and (b) 850 hPa temperature [Colour figure can be viewed at wileyonlinelibrary.com]

which is an area where many weather forecasting practi-
tioners would like to see neural networks improve (Schultz
et al., 2021).

For our neural network predictions, a relatively sim-
ple ResNet has been used and carefully optimised to
improve the accuracy of our results. Through the care-
ful choice of this architecture along with extensive data
exploration, we have produced weather hindcasts which
are more accurate than some coarse NWP models, and
as accurate as those in Weyn et al. (2020) which use
a more complex neural network architecture. Moreover,
our novel use of a stacked neural network to com-
bine outputs for weather forecasting reduces the mem-
ory cost, as well as the computational cost as smaller
networks generally take less time to train, and this
means that less powerful computers are required to make
predictions.

Finally, in this work we have shown that transform-
ing our output data to categorical can still give accurate
results for continuous numerical weather data. We have
shown that it is possible to move beyond point estimates
for neural network-based weather forecasts and produce

a probabilistic forecast by combining multiple smaller
more efficient models. This opens up a new avenue of
research for data-driven weather forecasting, where the
use of ever bigger models trained with enormous datasets
is not the only way to achieve model skill. In future
work, we will seek to explore the use of transfer learn-
ing to further improve the training efficiency of the neural
networks.

4.1 Computer code availability

The relevant code for the neural networks presented in this
work can be found at https://github.com/mc4117/ResNet_
Weather.git (accessed 5 October 2021).
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APPENDIX A. PRESSURE LEVEL
IMPORTANCE

In this Appendix, we outline the data-driven approach
to determining which pressure levels we should use
to predict Z500 and T850. This analysis often agrees
with well-established theory in meteorology, as noted
later in this Appendix. For all multi-level input variables
(geopotential, temperature, specific humidity, potential
vorticity and zonal wind), we consider multiple different
level combinations. We use these combinations to train
a five-block convolutional ResNet and use the dropout at
inference technique to extract an ensemble of 32 outputs
from the single trained model, and then calculate the error
of the ensemble mean (Section 2.2.1).

The statistical significance of the multi-level analy-
sis results is analysed by calculating the 95% confidence

interval of the MSE of the hindcast at each point in space
and time in the validation dataset. We use the MSE rather
than the RMSE for ease of calculation, and therefore the
95% confidence interval formula is

MSE ± 1.96

√
V
[
L(𝑗)(fi,𝑗,k − ti,𝑗,k)2

]
N

, (A1)

where

MSE = E
[
L(𝑗)(fi,𝑗,k − ti,𝑗,k)2]

= 1
NlatNlonNtimepoints

Ntimepoints∑
i=1

Nlat∑
𝑗=1

Nlon∑
k=1

L(𝑗)(fi,𝑗,k − ti,𝑗,k)2.

(A2)

L(𝑗) is the latitude weighting factor given by
Equation (4), f is the predicted value from the neural
network, t is the true value from the dataset and N is the
total number of points in space and time in the validation
dataset (equal to Ntimepoints × Nlat × Nlon).

The results of the level analysis are shown in Figure A1
as percentages relative to the benchmark. For brevity and
figure clarity, the confidence intervals are shown only
for the optimum level choice (denoted by a star) and to
another level combination with an error close to that of the
optimum error choice. As the confidence intervals are so
narrow, the error bars are extended to make them clearer.
Even so, in some cases, the confidence intervals are so
narrow that it is not possible to distinguish between the
upper and lower error bars on the figure, making it diffi-
cult to interpret them. To avoid confusion, we emphasise
here that all error bars shown in these figures are in the
y-direction. The remainder of this appendix provides more
detail on how the optimum level choice for each variable
is determined.

The optimum levels for the geopotential and temper-
ature variables are determined in a systematic way. First
we consider the two levels we are trying to predict and
the levels between these two (i.e., 500, 600, 700, 850 hPa);
next we extend this dataset by including a further two lev-
els with larger pressure values (i.e., 500, 600, 700, 850,
925, 1000 hPa); then we add the two levels with smaller
pressure values to the first dataset (i.e., 300, 400, 500, 600,
700, 850 hPa); then we include both the levels with larger
and smaller pressure values (i.e., 300, 400, 500, 600, 700,
850, 950, 1000 hPa), and finally we add two further levels
with small pressure values (i.e., 100, 250, 300, 400, 500,
600, 700, 850, 950, 1000 hPa). The results of this analysis
are shown in Figures A1a and A1b, for the geopotential
variable inputs and Figures A1c and A1d, for the tem-
perature variable inputs. In general, they show for both
Z500 and T850 that including more pressure levels results

https://doi.org/10.1098/rsta.2020.0097
https://doi.org/10.1098/rsta.2020.0097
https://doi.org/10.1029/2020MS002109
https://doi.org/10.1029/2021MS002502
https://doi.org/10.1038/s41467-020-17142-3
https://doi.org/10.1038/s41467-020-17142-3


CLARE et al. 4355

in a larger decrease in error relative to the benchmark,
but this must be balanced with computational cost. When
predicting Z500, a good compromise for both the geopo-
tential and temperature input variables is the level choice
[300, 400, 500, 600, 700, 850 hPa] (stars on Figures A1a and
A1c). The figures show that the 95% confidence interval
for this optimum level choice does not overlap with that
of the level choice with the most similar accuracy, and the
same result applies for all other level choices (not shown
for brevity). Therefore, our optimum level choice is sta-
tistically significantly different in accuracy from all other
level choices considered. When predicting T850, a good
compromise for both the geopotential and temperature
input variables is the level choice [500, 600, 700, 850, 925,
1000 hPa] (stars on Figures A1b and A1d). Like when pre-
dicting Z500, Figures A1b and A1d show no overlapping
of the 95% confidence interval (Equation (A1)), and there-
fore our optimum level choice is statistically significantly
different in accuracy. Given that T850 has a larger pres-
sure value than Z500, it is unsurprising that the T850 level
choice contains levels with larger pressure values than the
Z500 level choice.

For the other variables, the same analysis does not
apply and we conducted a small correlation analysis
between the different levels of specific humidity, poten-
tial vorticity and zonal wind, and the target variables using
pattern correlation to determine which levels might be
good predictors. This analysis is not included here for
brevity but is available in the data exploration section of
the GitHub repository (Section 4.1). For specific humidity,
this analysis showed that the correlation is greatest at the
levels with large pressure values. Thus, we begin by con-
sidering the levels with larger pressure values (i.e., [600,
700, 850, 925, 1000 hPa]), then add different subsets of
levels with small pressure values, and finally consider a
broad range of pressure levels (i.e., [150, 200, 250, 300,
500, 600, 700, 850, 925, 1000 hPa]). Figures A1e and A1f
show the results of this analysis; unlike the temperature
and geopotential input variables, adding more pressure
levels does not always result in the error decreasing rela-
tive to the benchmark. Without clear correlation between
the number of pressure levels and the error reduction, we
make the level choice based on reducing the error while
keeping the number of levels as few as possible and thus
choose [150, 200, 600, 700, 850, 925, 1000 hPa] (stars on
Figures A1e and A1f) for both Z500 and T850 predic-
tion. Figure A1f shows that, when predicting T850, the
95% confidence interval (Equation (A1)) of this optimum
level choice does not overlap with that of the level choice
with the most similar accuracy, showing that our opti-
mum level choice is statistically significantly different in
accuracy. However, Figure A1e shows that, when predict-
ing Z500, the difference in the accuracy achieved by using

[150, 200, 600, 700, 850, 925, 1,000 hPa] (our optimum level
choice) compared to [150, 200, 250, 300, 500, 600, 700,
850 hPa] is not statistically significant (95% confidence
intervals overlap). This means we cannot use the criteria
of accuracy to distinguish between the two level combi-
nations, but the difference in computational cost between
the two level combinations still justifies our optimum
level choice.

For potential vorticity, the correlation analysis showed
that the most important levels are at either end of the
pressure level spectrum. Thus when determining the right
level choice, we consider groupings of levels at both large
and small pressure values. We also consider the middle
pressure levels shifted to the larger end of the pressure
spectrum (i.e., [250, 300, 400, 500, 700, 850, 925, 1000 hPa])
and to the smaller end of the pressure spectrum (i.e., [50,
100, 150, 250, 300, 400, 500, 850, 925 hPa]). Figures A1g
and A1h show that there does not seem to be a clear
pattern between level choice and error decrease for poten-
tial vorticity. However, the level choice of [150, 250, 300,
700, 850 hPa] (stars on Figures A1g and A1h) results in a
large error decrease in both RMSE Z500 and RMSE T850
and is also relatively computationally cheap and so is an
appropriate level choice for potential vorticity. Moreover,
the figures show that, for both Z500 and T850, the 95%
confidence interval (Equation (A1)) of this optimum level
choice does not overlap with the confidence interval of the
level choice closest in accuracy to it, which also applies for
all other level choices (not shown for brevity). This means
our optimum level choice is statistically significantly dif-
ferent in accuracy to the other level choices.

Finally we consider the zonal wind input variable.
Using the correlation analysis, the most important lev-
els are at either end of the pressure spectrum. Thus we
consider groupings of levels at both large and small pres-
sure values. We also consider groupings at the larger end
of the pressure spectrum (i.e., [300, 400, 500, 600, 700,
850, 925, 1000 hPa]) to check if the smaller pressure val-
ues are affecting the results. Figures A1i and A1j show
that for both Z500 and T850 having levels at both small
and large pressure values is important for reducing error.
In both cases, we choose the level grouping of [50, 100,
300, 850, 925, 1000 hPa] (stars on Figures A1i and A1j) as
an appropriate choice because it results in a large error
reduction relative to the benchmark and is also relatively
computationally cheap. Figure A1i shows that the 95%
confidence interval (Equation (A1)) of this optimum level
choice does not overlap with the confidence interval of
the level choice closest in accuracy to it, meaning our
level choice is statistically significantly different in accu-
racy to the other level choice. In the case of Figure A1j,
we chose to compare the 95% confidence interval of the
optimum level choice with that of [50, 100, 850, 925,
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F I G U R E A1 Percentage error relative to benchmark from training using extra variable levels (chosen levels are denoted by a star) for
(a, c, e, g, i) 500 hPa geopotential, and (b, d, f, h, j) 850 hPa temperature. The 95% confidence interval bars are shown for some level
combinations. Some intervals are so narrow that it is not possible to distinguish between the upper and lower error bars on the figure, but we
emphasise here that all error bars are in the y-direction. Results are the mean of 32 ensemble members, predicting on all gridpoints and times
in the validation dataset (i.e., 2016) [Colour figure can be viewed at wileyonlinelibrary.com]
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1000 hPa] because of the higher computational cost of the
level choice which is closest in accuracy. The confidence
intervals do not overlap, hence our optimum level choice
is statistically significantly different in accuracy compared
to the computationally cheaper option.

Thus we have shown that our optimum level choices
are always statistically significantly different from other
level choices at a lower or equivalent computational cost,
and are almost always statistically significantly different
from other more computationally expensive level choices.

So far, the choice of which pressure levels to include
has been done in a predominantly data-driven manner. It
is worth emphasizing that the focus has been on predict-
ing Z500 and T850 3 days ahead. If other target variables,
or other lead-times, had been the focus of the predictions,
then other input levels may have been found to be benefi-
cial. Having found the most useful input levels, it is now
sensible to look back and comment on whether the choices
are supported by physical reasoning. This is the case for
many of the pressure level choices that we have made:

• Geopotential and temperature: Using physical intu-
ition, we would expect that the levels that are most
important for prediction are those above and below the
level of interest (e.g., Hoskins et al., 1978).

• Potential vorticity: Our training dataset contains lev-
els both near the tropopause (e.g., 150 hPa) and just
above the boundary layer (e.g., 850 hPa). We would
expect these to be important because they allow the
neural network to learn about the interactions between
lower- and upper-level potential vorticity which can
accelerate cyclone development (e.g., Hoskins, 2015).

• Zonal wind: Quasi-geostrophic theory (Pedder, 1997)
tells us that, in order to determine regions of rising
and falling air, we require knowledge of the wind fields
at high altitude (e.g., 50 hPa) and low altitude (e.g.,
1000 hPa), meaning our choice of levels is physically
reasonable.

It should be noted, however, that just using physical
reasoning alone would not have been sufficient to deter-
mine which pressure levels are good predictors. Firstly,
in the case of specific humidity, we are unaware of
any clear reasoning as to whether the important pres-
sure levels should be low or high pressure. Furthermore,
for other variables, whilst physical reasoning may sug-
gest whether low and/or high pressure levels are impor-
tant, the WeatherBench dataset has a number of levels
which have “low” or “high” pressures. Our data-driven
approach allows us to determine which and how many
of these levels to choose, whereas physical reasoning
does not.

This agreement with physical reasoning shows that
neural network-based feature selection is able to identify
physically important inputs, which include highly corre-
lated time series data. The different pressure levels of a
single variable are particularly highly correlated with each
other and the neural network-based feature selection is
able to identify which pressure levels are important for pre-
diction. Both the agreement with key physical principles
and the ability to deal with correlated data are identified in
Schultz et al. (2021) as areas where neural networks need
to prove themselves in order to be able to compete with
numerical weather prediction models.


