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Abstract: Human operators have the trend of increasing physical and mental workloads when per-
forming teleoperation tasks in uncertain and dynamic environments. In addition, their performances
are influenced by subjective factors, potentially leading to operational errors or task failure. Although
agent-based methods offer a promising solution to the above problems, the human experience and
intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics
reinforcement learning-based integrated framework is proposed for human–agent teleoperation that
encompasses training, assessment and agent-based arbitration. The proposed framework allows for
an expert training agent, a bilateral training and cooperation process to realize the co-optimization
of agent and human. It can provide efficient and quantifiable training feedback. Experiments have
been conducted to train subjects with the developed algorithm. The performances of human–human
and human–agent cooperation modes are also compared. The results have shown that subjects can
complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter
operational time, with a higher success rate and less workload than human–human cooperation.

Keywords: human–agent interaction; teleoperation; reinforcement learning

1. Introduction

Teleoperation helps perform long-distance interaction tasks and thus ensures opera-
tion safety. A network-based communication channel isolates a human operator from a
potentially hazard interaction environment, which is therefore regarded as the special case
of cyber-physical systems. In this regard, teleoperation triggers the systemic revolution of
human-in-the-loop operation [1], providing a universal platform to medical diagnosis [2]
and fault diagnosis [3–5] for industrial applications, which has been widely applied to
space robotics [6–9], medical surgery [10–13] and deep-sea exploration [14,15].

Regarding complex teleoperation tasks, the traditional single-master/single-slave
(SM/SS) mode cannot meet the increased requirements of robustness and flexibility. There-
fore, introducing another operator becomes a possible solution to extend teleoperation
applications [16,17]. In contrast to SM/SS mode, multi-master/single-slave (MM/SS) tele-
operation can be applied to online training and multiple manipulator collaboration, where
shared commands at master side are integrated and sent to the slave robot via weight
distribution. The reliability and effectiveness can be enhanced by MM/SS teleoperation,
not only enabling fine operation but also reducing operation error through collaborative
decision making [18–20].
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Despite these advantages of MM/SS systems, human factors might introduce stability
issues to the operation process. When faced with unstructured environments and unex-
pected accidents, human operators can be mentally stressed, leading to subjective cognition
bias and flawed decisions. To solve this problem, we can introduce reinforcement learning
(RL) to the human-in-the-loop system. RL is a popular approach for policy optimization
that has seen various applications in the robotics domain [17,21–23]. Complex and accurate
high-speed calculations are easy for agents, which can implement policy optimization
under certain rule constraints. Most RL works focus on autonomous [24–27] and multiple-
agent tasks [28–31] that do not exhibit human traits. Despite the promise of high-precision
maneuvering by agents, human guidance is still needed for specific teleoperation tasks. It
is difficult for robots to perceive unstructured environments accurately, which might result
in unsafe behavior during the learning process [32].

In addition, there is a lack of systems for training humans to adapt to cooperative
patterns with agents. This poses a challenge to existing MM/SS teleoperation systems:
how to train the agent which adapts to human operation and then design a training
and cooperation system based on the trained agent. Although some RL works show
agents can be trained by setting the reward function, they only focused on the unilat-
eral training process and did not propose whether the the agent’s policy was based on
rule constraints [28–30,33,34]. The human–agent cooperative mechanism compared with
human–human was not taken into account either. Moreover, some existing works modeled
human actions as part of the RL environment [26,35,36]. Nevertheless, humans are charac-
terized by dynamic real-time interaction rather than the passive environment in terms of
human-oriented teleoperation.

In this paper, a truncated quantile critics (TQC) RL-based training and collaboration
integrated framework is proposed for human–agent teleoperation that encompasses as-
sessment and agent-based arbitration. This framework describes the learning, training and
cooperation relationships among experts, agents and novices based on different experience
levels. Different from training agents, we focus on agent-to-human training and bilateral
cooperation between a human and agent, in which the agent trains novices and trained
novices work with the agent.

2. Methods

The proposed cooperation system is mainly composed of a master interface, TQC
agent and the slave robot interacting with environments. The master commands from the
operator and agent will be fused through a Kalman filter (KF) before being sent to the
slave side, where xm1 and xm2 represent the commands defined in Cartesian space from
the human operator and agent, respectively. The interactive force fe will also feedback to
the master side via a communication channel, which results in the latency Tm and Ts in
the closed-loop system. fm is the force mapped to the master interface. The arguments
of the variables involved in the diagram are omitted for simplicity, as shown in Figure 1.
It is worth pointing out that the proposed framework also allows for human–human
cooperation, which can be realized through replacing the agent with a human.

Before performing the human–agent cooperation, a critical issue is how to improve
agent and operator skills to achieve a similar level of operation for both. Compared with
the traditional one-to-one training mode [37,38] (see Figure 2b), the agent-based training
method [39] is employed in this paper, which is able to provide one-to-many training
for the novices at different levels, as demonstrated in Figure 2a. The adopted agent can
effectively implement the expert’s constraint rules to provide standardized actions and
quantitative feedback. Moreover, the agent-based training approach significantly reduces
the need for expert resources and enables simultaneous remote training of different novices.

The overall training and collaboration procedure is depicted in Figure 3. In order
to render the training and cooperation framework, the first step is to formulate certain
constraints through expert experience and train the agent with specific operational tasks
through RL, as shown in Figure 3a. Then, with the aid of the trained agent, a training and
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cooperation system will be accessible for novices (Figure 3b). The developed system is
beneficial for the training and cooperation of novices, including human–human (Figure 3c)
and human–agent (Figure 3d) cooperation modes. The dominance factors of the agent
and human will change dynamically based on their performance and task constraints.
When the performance gap between operator and expert is large, the agent will play a
relatively dominant role, guiding the novice user; as the performance gap narrows, the
agent’s dominance will gradually shift to the user side.

Figure 1. Overview of the human–agent cooperative teleoperation framework based on RL and KF.
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Figure 2. Comparison of training methods based on RL and one-to-one training mode. (a) RL-based
training mode. (b) Traditional one-to-one training mode.

2.1. Expert Trains Agent

Robotic manipulation tasks are characterized by high dimensions and continuous state
space, including kinematic information on the robot and environment. When attempting
to solve such problems, a dense reward function is difficult to define and use to guide the
robot through the learning process, leading to a high time cost. To overcome this issue,
we introduce hindsight experience replay (HER) [40] and the TQC method to train the
agent. In this way, the agent is trained through the reward function, speed and position
constraints based on expert rules.
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Figure 3. Training and collaboration procedure. (a) Expert trains agent. (b) Agent trains novice. (c) Human cooperates with
human. (d) Agent cooperates with human.

2.1.1. Hindsight Experience Replay

With the HER algorithm, the robot can learn from the high-dimension continuous
state-action space, which facilitates increasing the reward density for the agent. Prior to
completing the learning of a good strategy, the agent could complete the current RL for
any state experienced in the sequence. If these states are regarded as task goals, the agent
can obtain a large number of positive rewards, thereby promoting the learning process.

The HER algorithm additionally defines the task target space G under the basic
RL framework, in which each target element g ∈ G corresponds to a reward mapping
rg : S × A → R. At the beginning of each episode, by sampling the initial state in the
distribution p(s0, g) and the task goal, the task goal remains unchanged during the phase
of interaction with the environment. In each timestep, the agent’s strategy input includes
both the current state and current task goal, namely π : S× G → A, and obtains an instant
reward Rt = rg(st, at).

The input of the Q function includes state, action and goal, namely Qπ(st, at, g) =
E
[
∑∞

i=t γiRi
]

with γ ∈ (0, 1) being the discount factor. For the multi-goal RL task, assume
that the target element g corresponds to a mapping fg : S→ {0, 1}, that is, the goal of the
agent is to reach the state s by interacting with the environment, so as to satisfy fg(s) = 1.
The target can also be specified to satisfy certain attributes in the state. For example, if the
state is used to describe the two-dimensional coordinates of the horizontal plane, where the
agent is currently located in S = R2. The task goal is to render the current state satisfying
the given horizontal coordinates g = xg, then, there exists fg((x, y)) = [x = g | g ∈ G = R].
In addition, we can define the target mapping description. For any given state s, there
exists a mapping such that m : S→ G, s.t.∀s∈S fm(s)(s) = 1.

2.1.2. Truncated Quantile Critics

We train the agent with the TQC algorithm [41] for two experimental applications,
namely reaching and picking and placing (P&P) tasks. The state, action and reward for this
experiment are defined as follows.

1. The actual state of the robot: angles and angular velocities of the robot joints, the
poses of the objects and their linear and angular velocities.

2. The robot observation state: in the reaching task, the observation space contains
the position and velocity of the end-effector. In the P&P task, the observation space
contains the position and velocity of the end-effector and the objects’ pose.

3. The initial state and target distribution: in both tasks, the end-effector starts from
a fixed position in each round. The robot end-effector is 20 cm above the surface.
The initial position of the object is randomly sampled from the surface within a
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square. If the initial state already meets the task target, the initial state and target will
be resampled.

4. Task goal: the target position g that the robot needs to move the object to within a certain

error range εR. Thus, the goal is accomplished with fg(s) = 1 and
[
d
(

sobj, g
)
≤ εR

]
= 1,

where sobj is the position of the target object, and the output d : R3 ×R3 → R is the
Euclidean distance between the two inputs.

5. The reward function is defined as the negative bool value if the distance between the
achieved and target positions is lower than the threshold.

2.2. Agent Trains Novice

Similarity assessment is used to evaluate the training result of the operator. We check
the similarity of operations from an expert agent and operator, and then train the operator
through improving the similarity level. In teleoperation, similarity is reflected by the
time delay and the operating speed difference when human operators conduct the same
trajectory. Operators may behave at different speeds to perform the same trajectory. Apart
from that, the displacement can only occur on the time axis in terms of different time series.
With reverted displacement as an example, the two time series present the identity. Based
on the above complicated cases, it is difficult to successfully measure the similarity between
two time series with the application of point-to-point matching methods, such as Euclidean
distance (Figure 4a). The dynamic time warping (DTW) algorithm [42] is therefore used to
match time series with different lengths through prolonging and restricting the time series.
In accordance with Figure 4b, the top and bottom solid lines denote the two time series, and
the dashed lines between them stand for the similar points. Since a discrete-time sequence
characterizes the motion trajectory collected, the DTW algorithm can avoid unrecognizable
problems due to different lengths. The similarity of two trajectories could be therefore
calculated as follows.

(a) (b)

Figure 4. Comparison of points matching and feature matching. The abscissa is the time series
sequence, and the ordinate is the time series value. (a) Points matching. (b) Feature matching.

Suppose the trajectory outputs by the agent and operator are Ta and To, namely
Ta = {Ta1, Ta2, . . . , TaN} ∈ R2×N and To = {To1, To2, . . . , ToM} ∈ R2×M. We consider the
warp path as W = w1, w2, . . . , wk, . . . , wK, max{M, N} ≤ K ≤ M + N. The distance of the
warp path follows the cost matrix D, whose element is described by

D(i, j) = dij + min{D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)} (1)

where D(M, N) is the minimum distance of warp path W, which is regarded as a metric to
evaluate the similarity. dij , Dist

(
Tai, Toj

)
is the Euclidean distance between the two data

points. The two trajectory sequences are therefore matched through the DTW algorithm.
The smaller the D(M, N) we calculate, the more similar the two trajectory sequences are.
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2.3. Agent Cooperates with Human

The KF module is used to fuse the two commands (i.e., xm1 and xm2) and output the
fused command xm f . A discrete control process can be described as

X(k) = AX(k− 1) + ω(k) (2)

Z(k) = HX(k) + V(k) (3)

where X(k) , xm f (k) is the system state which contains position and velocity signals
at the kth sample. H is the observation matrix. A is the state-transition matrix. Z(k) ,
[xm1(k), xm2(k)]T is the observation state. ω(k) and V(k) represent process and measure-
ment noise, respectively. They are assumed to be white Gaussian noise, and their covari-
ances are Q and R, respectively. Based on the previously collected data, a one-step state
estimate can be deduced from the system process

X(k | k− 1) = AX(k− 1 | k− 1)
P(k | k− 1) = AP(k− 1 | k− 1)AT + Q

(4)

where X(k|k − 1) is the state prediction and X(k − 1|k − 1) the optimal result based on
the previous state. P(k|k − 1) and P(k − 1|k − 1) are the covariances of X(k|k − 1) and
X(k − 1|k − 1), respectively. Based on the observed value at the kth sample and the
estimated value at the k− 1th sample, we can obtain

X(k | k) = X(k | k− 1) + K(k)(Z(k)− HX(k | k− 1))
K(k) = P(k | k− 1)HT(HP(k | k− 1)HT + R

)−1

P(k | k) = (I − G(k− 1))P(k | k− 1)
(5)

where K(k) is the Kalman gain, G(k) = K(k)H and P(k|k) is the error covariance matrix.
With the block matrix G(k) = [G(k)(1), G(k)(2)], we can derive from (5) that

xm f (k | k) = (I − G(k))xm f (k | k− 1) + G(k)(1)xm1(k) + G(k)(2)xm2(k). (6)

3. Experiment

We have conducted a series of experiments with ten healthy subjects (9 male, age
21 ± 3, 9 right-handed) without motor impairment. None of the subjects had experience
with haptic devices. The experiment was approved by the Research Ethics Committee of
Imperial College London (No. ICREC-18IC4816). Each subject was informed about the
experiment and signed a consent form before the test.

3.1. Experimental Platform

The experiment was conducted based on the simulation platform. The system ar-
chitecture diagram is shown in Figure 5, which consists of three main components: a
human–computer simulation system, a visual display and a haptic interface. The hap-
tic device (Omega.7, Force Dimension) was used to collect six degree-of-freedom (DoF)
motion information and provide three-DoF force feedback in translations. The subject
held the handle of the haptic device to remotely control the slave robot in Cartesian space.
The human–computer system rendered the corresponding visual and haptic feedback
information to the operator through a monitor and haptic device.

The software components of the system can be divided into driver layer, system layer
and application layer. The driver layer processed haptic feedback information and drove
the haptic device. In the system layer, the Bullet physics engine [43] was employed to
support Pybullet for the simulation. The application layer included modules of the agent,
task and robot. The simulation platform used the Franka Panda robot (Franka Emika
GmbH Inc., Munich, Germany) as the slave robot to interact with the environment. The
visual display is shown in Figure 6 and this graphic user interface (GUI) was designed
based on Pybullet and Stable-Baselines3 [44]. The main view for the operator was the
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slave robot under a global camera (Figure 6, right panel). There were also three auxiliary
windows on the left side of the GUI to provide user 3D information. The first view
was extracted from the moving camera in the gripper of the robot, providing dynamic
interaction information. The second window could provide depth information of the
objects, and the third segmentation view could reflect the profiles of the objects.

Monitor

Human-computer system

Omega 7 haptic device

Drive layer
Haptic device driver

Application layer

Robot

System layer

Bullet 
physics 
engine

Task

Agent
Motor control

Robot state

Object state

Action Force

Action

Observation

Observation
Reward
Info

Figure 5. Simulation system architecture diagram.

Figure 6. GUI for the teleoperation system. The interface was divided into a display area and an
operation area. The three windows in the display area (left panel) presented the visual feedback of
gripper’s camera in top view, depth information and segmentation information, respectively. The
operation area (right panel) showed the operation robot in perspective view under a global camera.

3.2. Experimental Procedure

The whole experiment included training and test phases (Figure 7). The training
session was designed to allow the subjects to become familiar with the teleoperation and
reach the entry level of the task operation, where the agent would intermittently provide
guidance trajectory for the novice in this phase. Then, in the test phase, we investigated
human–human (HH) and human–agent (HA) cooperation to further check whether the
agent could help the operator perform the task as a human operator. Finally, an assessment
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phase was conducted to collect the participants’ subjective responses to HH and HA
cooperation modes.

Figure 7. Experiment procedure overview.

3.2.1. Tasks

The reaching and P&P tasks were designed to reflect the common actions in teleoper-
ation. The robot was set to move in a workspace of 30 × 30 × 20 cm3. The targets were
shown within the robot’s workspace.

1. Reaching task (Figure 8a): this task was developed to test the subject’s motor control
capability. The robot gripper remained closed in this task. A red target ball was
randomly generated on the table. The subject was required to control the slave robot
through the hand controller to reach the target as fast and accurately as possible. If the
subject realized the goal within the update time (13 s), a new target would be shown.

2. P&P task (Figure 8b): this task tested both the subject’s movement and grasping
control abilities, which required a high level of coordination. In this task, a random
red cube was generated on the table plane. The subject needed to control the robot
end-effector to pick up the cube and place it in the target position (green transparent
cube). The successful grasping should satisfy both position and force criteria, i.e., the
gripper moves to the target and lifts it up using proper force. This grasping force
was calculated by the physical engine of the robot controller through checking the
deformation of the object surface. A new target would be shown if the goal was
achieved or update time was reached. The update time for this task was 30 s.

(a) (b)

Figure 8. Two task scenarios. (a) Reaching task. (b) P&P task.

3.2.2. Training Phase

In this phase, we provided the novices with visual cues and an operation score to
learn the operation efficiently. For each task, there were two modes for training, namely
without or with an agent. It should be noted that the agent in the training phase represents
providing a guidance trajectory instead of involving control commands. At the end of
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each session, a performance score (0 to 100) was shown to the subject. It was derived
from the similarity between the actual motion and guidance trajectory, where the latter
represents the optimal operation in which an agent learned from an expert. If the subject’s
performance score reaches 60, it is supposed that he/she has gained the control skills
required for the test phase. Otherwise, the subject needs to continue a second training
session for the corresponding mode. The criterion of the score and time limits was set
based on trial and error using data of the reference value taken from the experimenters.

3.2.3. Test Phase

There was no guided trajectory shown on the screen in this phase. Subjects were
involved in two different modes of cooperation, HH and HA cooperation tasks. The
subjects were also told whether they would cooperate with a human or agent before each
mode. In the HH cooperation mode, ten subjects were randomly paired into five groups to
conduct the cooperation task. In the HA mode, one subject cooperated with the agent to
perform the same task. At the end of the experiment, all subjects were subjectively assessed
by questionnaires. Data such as operational time and task success rates were recorded for
all trials. The experimental scene is shown in Figure 9.

Figure 9. Experiment setup in (a) human–human cooperation mode and (b) human–agent coopera-
tion mode.

3.3. Evaluation Measures

The performance of the subjects was evaluated through both quantitative measures
and subjective measures.

3.3.1. Quantitative Measures

1. Success rate: the success rate is the percentage of successfully completed trials to the
total number of trials. The task is defined as successfully completed when the object
is reached (i.e., the distance between robot end-effector and the center of the target
cube is less than 0.05 m) within 13 s in the reaching task. In the P&P task, successful
operations include reaching, grasping the object and moving it to the target position
within 30 s. Except satisfying the position criterion, the grasping forces of the gripper
should be large enough to lift the object.

2. Operation time: the operation time is the time from the display of the target to
the successful arrival or placement. In the failed trial, the operation time is the
update time.

3.3.2. Subjective Measures

The subjects were invited to fill in the questionnaire after test phases (Table 1), where
Q1 describes the comparison with human operation without the assistance of an agent or
other subject. The questionnaire was designed to evaluate their subjective responses in
mental effort, temporal demand, agency, performance, task difficulty and robot/human
assistance. All questionnaire items were constructed using a 5-point Likert scale.
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Table 1. Questionnaire for human–human and human–agent control modes.

ID Questions

Q1 I felt less mental effort.
Q2 I felt I have sufficient time to complete the task.
Q3 I felt I can control the robot well.
Q4 I felt my performance is good.
Q5 I felt the task is easy.
Q6 I liked the task.
Q7 I thought my collaborators are helpful to me.

4. Results

In this section, we will show the experimental results of test phase in both performance
metrics and questionnaire responses. A Shapiro–Wilk test was conducted to examine the
data distribution. Both quantitative and subjective measurements were not normally dis-
tributed. Thus, we used non-parametric Wilcoxon signed rank test to check the differences
of human–human and human–agent control modes.

4.1. Performance Measures

Figure 10a shows the result of the success rate for the reaching task. The average
success rate of human–human cooperation mode was 44.0% with 27.2% deviation. In
contrast, the average success rate of human–human cooperation mode arrived at 96.0%
with lower deviation of 8.4%. The addition of robotic agent significantly improves the
success rate compared with a human partner (p = 0.007). Similarly, the assistance of an
agent is also reflected in the operation time. The subjects took 8.0 ± 3.5 s in average to
complete the task in human–human cooperation, while human–agent saved more than
80% of the time than human–human mode, thereby significantly improving the operation
efficiency (p = 0.005). The agent played an important role in human–agent cooperation
with average weights from 0.74 to 0.95.

Figure 10. Subjects’ performance result of reaching task in (a) success rate and (b) operation time;
and the P&P task in (c) success rate and (d) operation time.
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Compared to the reaching task, the P&P task required relatively more time to be
performed (see Figure 10d). The average success rate for human–agent cooperation in the
P&P task was about 77.0% lower than that in the reaching task. On the other hand, the
success rate for human–human cooperation in the P&P task was not affected by the task
complexity and even a little higher than that in the reaching task. This result suggests
that the current assistance strategies of the robotic agent are more suitable for simple
motion tasks. However, the advantages of human–agent cooperation in both metrics were
still obvious compared with the human–human cooperation (Figure 10c,d). The average
operation time for human–human cooperation was 19.5 ± 2.8 s, while the human and
agent spent about 8.6 ± 0.9 s (p = 0.005). The success rate of the human–agent mode
was significantly higher than human–human mode (p = 0.007). In the process of the P&P
task, the average weights for agent in human–agent cooperation were within the range of
[0.647, 0.929].

4.2. Subjective Assessment

The questionnaire result for the reaching task is shown in Figure 11a. In general, the
subjects’ responses were positive on the reaching task. The average response ranges for
human–human and human–agent cooperation were [3.6, 4.0] and [4.3, 4.8], respectively,
which were both above the neutral score. The subjects felt that cooperating with the agent
required less mental effort compared to that with a human partner with a marginally
significant difference (p = 0.05). This might be due to the fact that the agent could provide
efficient and consistent assistance to the operator and the subject could trust the agent
and follow its guidance. Then, it is reasonable that operating with an agent was easier
in terms of the subjects’ feelings (p = 0.02). In addition, the subjects believed they were
able to control the robot with the agent better (p = 0.02). This indicates that although the
agent may contribute more to the task completion, the operator still had the autonomy
with even stronger feelings of control. However, cooperating with the agent and human
partner did not cause different feelings on temporal demand and performance (p = 0.08, 0.1,
respectively). However, from subjective perspectives, the subjects preferred cooperating
with an agent than a human partner (p = 0.01), and they believed the robotic agent was
more helpful to perform the task than cooperating with a human partner (p = 0.02).

The subjective responses for the P&P task are shown in Figure 11b. As the P&P task
consists not only of reaching, but also grasping, moving and loading, it is obvious that the
subjective scores of the P&P task (Figure 11b) were lower than those of the reaching task
(Figure 11a) in all metrics. The average responses were from 2.6 to 3.6 for human–human
mode and 3.9 to 4.2 for human–agent mode. Similar to the reaching task, the subjects
felt human–agent cooperation was easier than human–human (p = 0.008) in the P&P task.
Although the subjects felt the task was easier with an agent, they were uncertain whether
the agent partner or human partner helped them more. There is no significant difference
in assistance from the human and agent partner (p = 0.3). Furthermore, subjects felt their
performance was better when cooperating with an agent (3.9 ± 1.6) but there was no
significant difference between the human or agent partner (p = 0.06). In addition, different
from the responses in the reaching task, subjects did not feel an obvious difference in control
(p = 0.08) or preference (p = 0.1) when cooperating with an agent or human. However, it
is worth noting that human–agent cooperation required significantly less mental effort
(p = 0.02) and temporal demand (p = 0.03) than human–human cooperation in the P&P task.



Sensors 2021, 21, 8341 12 of 15

Figure 11. Questionnaire result for (a) reach task and (b) pick & place task.

5. Discussion

The experimental results have validated the proposed cooperative framework for
multi-master/single-slave teleoperation and proved that human–agent cooperation is
superior to human–human cooperation. With the help of a Kalman filter, the human and
agent commands can be balanced and fused by time-varying weights. Compared with
the previous telerobotic schemes [8,9], the introduced TQC agent extends the traditional
single-master/single-slave teleoperation paradigm to overcome subjective operation errors,
which enables the collaborative agent to assist on the master side. Instead of correcting the
master command by introducing a co-pilot on the slave side [17], the master commands
are blended on the master side, which overcomes the uncertainty caused by the co-pilot
and reduces the computational burden for the slave side.

In general, it is found that cooperating with an agent could reduce the subjects’ mental
effort and make the task operation easier compared to cooperating with a human partner in
both the reaching and P&P task. Compared to a human partner, the proposed agent plays a
fixed role as an assistant, where the degree of assistance is determined dynamically by the
subject’s operation performance. In contrast, a human partner is unpredictable, so a lack of
understanding of each other’s proficiency would result in complicated interactive behaviors
between a human and human, including cooperation, collaboration and competition [45].
The human–human interactive behaviors could switch among these three taxonomies, so it
is difficult to achieve the interaction tasks in the absence of informative communication.
In addition, the subjects felt the agent was more helpful and they had better control than
with a human partner in the reaching task. Since the P&P task consists of multiple sub-
processes (i.e., reaching, grasping, moving and loading), more conflicted behaviors might
be triggered. As a result, the subjective assessment gap in performing the P&P task is more
pronounced than that in the reaching task.
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In the experiment, the agent played a relatively dominant role in both tasks with the
average dynamic weights greater than 0.647. On the one hand, this result indicates that
the designed agent could effectively assist a human operator to reduce their workload and
mental load. On the other hand, the human operator trusted the cooperated agent and
was inclined to cede some of the autonomy to the agent in terms of tasks. The agent in the
reaching task tended to be assigned more weights than in the complex P&P task, due to the
fact that subjects were possibly more confident in the agent performing simple movements.
Regarding the P&P task, the agent partner was still superior to the human partner but its
assistance to the operator was affected by the complexity of the task. Correspondingly, the
operator was determined to take back some control and assign relatively less weight to the
agent. However, it should be noticed that, in the current experiment setting, the novice
operators were trained in a relatively short time and their capability may still be at the
entry level, which explained the high weights in both tasks from another point of view.

6. Conclusions

The teleoperation control framework for human–agent collaboration is investigated in
this paper. A reinforcement learning algorithm and Kalman filter in the proposed coopera-
tive framework allowed for novice training and human–agent collaboration simultaneously.
The TQC agent is beneficial to improve the training compared with traditional one-expert-
to-one-novice training mode. The experimental results have quantitatively shown that the
proposed framework can improve the success rate and operation time for the reaching
task and P&P task with the collaboration of the designed agent. The questionnaire result
also sheds light on the fact that the collaborating agent partner facilitates reducing human
mental loads.

Although the proposed human–agent partnership effectively improves the operation
efficiency and reduces human mental efforts, there are some aspects we could further
improve in the proposed framework. Firstly, the assistance role of the agent is initially
assumed to be fixed. However, a flexible role of the agent is more practical for physical
human–robot interaction. We will integrate the human intent prediction into the system
which enables real-time estimation of the operator’s state and adjusts the role of the
assistant agent accordingly. Secondly, the proposed agent is suitable for simple reaching
tasks but less adaptive to complicated P&P tasks. Our future research will investigate how
a human transfers the authority to his/her partner in more complicated interaction tasks.
Based on this, we will develop more natural, supportive and task-specific agent for a human
operator or autonomous agent–agent control to perform multiple operation activities.
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