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Abstract 

The plastic collapse response of structural steel elliptical hollow section (EHS) 

profiles in compression is examined in this paper. As an initial step, a parametric 

study to identify the factors that determine which plastic mechanisms would arise has 

been carried out using finite element (FE) results from the current work and 

experimental data from the literature. All investigated EHS had a cross-sectional 

aspect ratio of two. The parametric study revealed four plastic collapse mechanism 

and showed that the “split flip disc” plastic collapse mechanism is the most likely to 

appear in compressed EHS. Thus, the present work is focussed on this failure 

mechanism, for which an analytical model to describe the relationship between load 

and deformation is developed. Coupled with consideration of the elastic, yielding and 

strain hardening characteristic of the steel, the derived analytical model enables 

construction of the full load-deformation behaviour of compressed EHS to be 

establish. The parameters controlling the shape and size of the plastic hinges have 

been investigated and found to be of key importance; hence, special care has been 

taken in their definition. Finally, the developed load–displacement curves have been 

compared with both finite element results and experimental data. The comparisons 

have revealed good agreement, confirming the ability of the analytical model to 

predict the collapse response of elliptical tubes. 
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Notation 

a half larger outer dimension of elliptical cross-section 

b half smaller outer dimension of elliptical cross-section 

De equivalent diameter of elliptical cross-section 

dN differential axial load 

ds differential arc length along surface of elliptical section 

E Young’s modulus 

Esh slope of strain hardening regime 

fLB local buckling stress 

fy yield stress 

L stub column length 

Mpl full plastic moment 

M'pl reduced plastic moment in presence of axial load 

M''pl reduced plastic moment in presence of axial load on inclined hinge line 

N axial load 

Nin force inside plastic mechanism 

Nout force outside plastic mechanism 

s arc length along surface of elliptical section 

Sh width of plastic mechanism on the surface of elliptical section 

Sh,a final width of plastic mechanism on the surface of elliptical section once the 

mechanism is fully formed 

Sout arc length along surface outside the plastic mechanism 

t thickness of elliptical cross-section 

w  width of rectangular element of material 

Xh height of plastic mechanism 

Xh' height of plastic mechanism up to the point of zero bending moment 

β angle between inclined hinge line and the direction of thrust 

Δ maximum lateral displacement of hinge 

Δds maximum lateral displacement of material strip within plastic mechanism 

Δ' straight distance between the point of zero bending moment and the 

undeformed position 

δ end shortening of stub column 

δmax axial deformation corresponding to peak load 
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εLB local buckling strain 

εsh strain at the onset of strain hardening 

εy yield strain 

λEHS slenderness of elliptical cross-section 

ν Poisson’s ratio 
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1 Introduction 

Hot-finished structural steel elliptical hollow sections (EHS) have recently 

been introduced to the construction sector. These structural elements can offer greater 

structural efficiency than circular hollow sections (CHS) when subjected to bending 

or combined loading, or when used as columns with intermediate restraint about the 

weaker axis, since they posses different major and minor axis flexural properties. 

Despite recent investigations involving the testing, numerical modelling and 

development of design rules for EHS, a number of aspects of their structural response 

remain unexplored. In particular, the behaviour of elliptical profiles in the post 

ultimate region has not yet been examined. Besides defining the unloading branch of 

the load–deformation curve, an accurate description of this region also allows the 

possibility of quantifying the ductility of the system. 

The aim of the present work is to develop an analytical model to predict the full load–

deformation response of EHS under pure compression. Towards this end, rigid plastic 

theory has been applied to elliptical profiles based on the method presented by 

Murray for plates [1]. Hence, equations relating the applied axial load to the 

characteristic lateral displacement of the plastic mechanism, as well as to the end 

shortening of the member, have been derived. 

As an initial step, and with reference to the responses of flat plates and circular hollow 

sections, which represent the bounds to the behaviour of elliptical sections, a 

parametric study was carried out to identify the most common local plastic collapse 

mechanisms arising in EHS. The study, described in Sections 3 and 4 of this paper, 

involved finite element modelling and the analysis of existing test data [2]. Whilst a 

number of failure modes were identified, an inward plastic collapse mechanism of the 

form shown in Fig. 1 was the most prominent. An analytical description of this 

collapse mechanism is therefore the focus of the present study. Development and 

calibration of the rigid plastic analytical model to describe the unloading behaviour of 

compressed EHS is described in Sections 5 of the paper. Once the load-displacement 

curve was derived, the key parameters controlling the size and shape of the hinge 

lines in the plastic mechanism were carefully examined and their influence on the 

unloading behaviour was assessed. The full load–deformation response was 
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subsequently assembled in Section 6 by introducing the elastic loading, yielding and 

strain hardening components, the extent of which were dictated by the cross-section 

deformation capacity, which itself was determined from a derived relationship with 

cross-section slenderness. In Section 7, comparisons between the analytical model and 

results obtained from both the FE models and existing tests are discussed. 

2 Literature review 

The intermediate response of elliptical tubes between that of flat plates and circular 

shells has been previously identified in terms of elastic buckling [3] and post-buckling 

[4]. In anticipation of an analogous scenario for plastic collapse, previous studies on 

rigid plastic mechanisms in flat plates and circular shells are initially reviewed herein. 

For rigid plastic mechanisms in flat plates, early pioneering work was carried out by 

Murray [1], who introduced a number of different failure modes and derived 

corresponding load–deformation relationships. Among the common plate-like patterns 

identified, the so called “flip disc” mechanism was presented in detail. This 

mechanism is formed by two parabolic hinge lines, one of them folding outwards and 

the other one inwards, creating a disc shape plate within the hinge lines that flips 

around the horizontal mid axis. A further collapse pattern referred to as the “roof 

type” mechanism was also identified. The roof type mechanism includes two outer 

straight hinge lines and a further straight hinge line at mid-mechanism together with 

four inclined hinge lines [1]. Ultimate behaviour of flat plates was found to be 

sensitive to the pattern of failure; Mahendran [5] showed that the type of mechanism 

that arose in thin compressed plates is governed by the location of the first yield point, 

and provided plate slenderness and initial imperfection limits to define the failure 

mechanism. Further research showed that both the flip disc and roof type mechanisms 

are commonly present in compressed square hollow sections (SHS) [6] and fabricated 

box sections [7, 8], and comparisons between these mechanisms and the mechanisms 

in flat plates [9] have been made. 

Research on compressed CHS identified two main local plastic failure modes - the 

“elephant foot” and “Yoshimura” mechanisms. The elephant foot mode is an axis-

symmetrical mode with outwards deformation that creates a concertina shape in the 

surface, while the Yoshimura pattern includes several sequential folding lines that 
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deform the cross-section in a non axis-symmetrical way. The boundaries that define 

the occurrence of each plastic failure mode were studied by Andrews et al. [10] by 

means of compression tests involving annealed aluminium cylindrical tubes. Both 

failure modes, as well as a mixed mode, were identified in the experimental work and 

a classification chart to predict their occurrence was developed. Later, the available 

experimental data on compressed CHS were expanded by Guillow et al. [11] carrying 

out more tests on annealed aluminium tubes over a wider cross-section slenderness 

range. As a consequence, a revised chart for the classification of CHS plastic 

mechanisms was developed. For the elephant foot mode, load-displacement curves 

were derived by Grzebieta [12] using the plastic mechanism approach. Further 

experimental results on circular tubes specifically proportioned to develop axis-

symmetric failure modes were presented by Gupta and Velmurugan [13] while 

Johnson et al. [14] studied the Yoshimura type mechanism by means of tests 

involving circular PVC tubes. 

The key difference between the elements previously studied (i.e. flat plates and CHS) 

and EHS lies in the continuously varying curvature brought about by the following 

geometrical definition: 
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          (1) 

where the symbols are defined in Fig. 2. There is no exact analytical expression to 

determine the perimeter of an ellipse, but the approximation of Ramanujan [15] is 

commonly used. However, in the present study, rather than the entire perimeter, the 

arc length of a specific interval is required to describe the hinge lines in the plastic 

mechanism. An approximate numerical approach is employed herein, as described in 

Section 5. 

The earliest research into elastic buckling of oval hollow sections (OHS) was 

conducted by Marguerre in 1951 [16]. Some years later Kemper [17] concluded that 

the elastic buckling stress of an OHS could be obtained using the expression for CHS 

with the maximum radius of curvature of the oval, and that this solution was a lower 

bound. This proposal was considered later by Hutchinson [18] who stated that it could 

also be applied to EHS provided the section is thin. Between 1964 and 1968, Kemper 
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and Chen studied the post buckling behaviour of OHS [19-21] concluding that 

sections with low aspect ratios (similar to CHS) exhibit less stable post buckling 

behaviour while sections with higher aspect ratios (similar to plates) present more 

stable post buckling behaviour. This conclusion was verified experimentally by 

Tennyson et al. [22]. 

With the recent introduction of hot-finished EHS into the construction sector, renewed 

interest in the structural behaviour of elliptical profiles, as well as the need to develop 

design guidance, have emerged. Structural performance data have been generated on 

elliptical sections in compression [2, 23] and bending [24]. The result of the 25 

compression tests (stub column tests) given in [2], together with numerically 

generated results, have been used in the present study for the development and 

validation of the analytical model. The outer dimensions of the tested cross-sections 

ranged from 150×75 to 500×250 mm, all with a cross-sectional aspect ratio of two. 

The length of the members was chosen so as to avoid member buckling. Based on the 

results of the compression and bending tests [2, 24] and an analysis of the elastic 

buckling of EHS, a cross-section slenderness parameter was derived for the purpose 

of cross-section classification [25]. The slenderness parameter was based on an 

equivalent diameter De, which allowed the classification of EHS to be made on the 

basis of the CHS slenderness limits. For the case of pure compression the equivalent 

diameter De = 2a2/b; this corresponds to the point in the section with maximum radius 

of curvature, a and b being half the larger and smaller outer dimensions respectively 

of the EHS, as shown in Fig. 2. This point of the section was identified by Kemper 

[17] and Hutchinson [18] as the point of initiation of buckling and as suitable for use 

with the classical formula for CHS in determining elastic buckling stresses for EHS. 

More precise expressions for determining the equivalent diameter have also been 

derived [3, 26], while an alternative approach to classification of EHS, based on an 

equivalent rectangular hollow section (RHS), was proposed in [23]. 

Flexural buckling of EHS columns has been investigated by Chan and Gardner [27], 

who performed 24 tests and concluded that the buckling curves for hot-finished CHS 

may be safely applied to hot-finished EHS. Concrete filled EHS have also been 

examined [23, 28, 29], and it was found that the capacity expressions for concrete-

filled RHS may be safely applied to EHS. This approach was shown to be slightly 
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conservative since greater confinement is afforded to the concrete by an EHS tube 

than by an RHS tube. EHS connections have been studied by [30] and [31], and 

design rules for end slotted connections proposed. 

3 Finite element modelling 

3.1 Introduction 

In this section, finite element analysis is used to examine the plastic collapse 

behaviour of stocky EHS in compression. The models have already been validated 

against a total of 25 compression tests [2], where they were shown to be capable of 

replicating the full load-end shortening curves. Although the experiments provided 

load-end shortening data, lateral displacement representing local buckling and the 

formation of a plastic collapse mechanism was not measured; thus, the FE models 

were used to generate this information. Moreover, the FE models provided useful 

information of the shape of the plastic hinge during the deformation process that has 

been used to derive the analytical model. Further to this, the validated FE models 

were also used to identify the different plastic collapse mechanisms arising for 

different section geometries and in the presence of different imperfections. Hence, it 

has been possible to focus the research on the more commonly arising plastic collapse 

modes. 

3.2 Basic modelling features 

All models were developed using the nonlinear finite element software ABAQUS. 

The elements designated as S4R in ABAQUS were employed throughout the 

modelling. These elements are four-noded reduced integration shells with six degrees 

of freedom per node and are suitable for thick and thin applications [32]. A uniform 

mesh size of 2a/10(a/b)×2a/10(a/b) was employed, with maximum element sizes of 

20×20 mm. 

The cross-sectional dimensions of the modelled elliptical sections were kept constant 

at 150×75 mm, while eight variations of thickness - 2, 2.4, 3, 3.75, 4, 5, 6.3 and 8 mm 

- were considered, providing a range of cross-section slenderness values. The member 

length was fixed at 300 mm, which was sufficiently short to ensure no global 

buckling, and all sections were subjected to concentric compression. All models were 
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assigned rigid plastic material properties without strain hardening or residual stresses, 

to allow direct comparison with the analytical model developed in Section 5. The 

modified Riks method was employed to enable the unloading behaviour of the studied 

profiles to be traced. 

3.3 Boundary conditions and initial imperfections 

To represent the test boundary conditions [2] and to ensure that failure occurred away 

from the column ends, all degrees of freedom were fixed at both ends of the columns, 

other than longitudinal displacement at the loaded end. The initial geometrical 

imperfection shapes used in the nonlinear analyses were generated from prior elastic 

buckling analyses of the same EHS. The lowest elastic buckling modes were closely 

spaced and three of them, which were symmetrical about the cross-section centreline 

(i.e. the x-z plane), were considered as initial imperfections. These initial 

imperfections were classified with respect to their symmetry about the mid-height of 

the member - “symmetrical” corresponding to an odd number of half-wavelengths 

along the member length and a non-zero displacement at mid-height and 

“asymmetrical” corresponding to an even number of half-wavelengths along the 

member length and zero displacement at mid-height - and as either positive (inwards 

at mid-height) or negative (outwards at mid-height). Thus, the three imperfections 

considered were: (a) symmetrical positive, (b) symmetrical negative and (c) 

asymmetrical (positive and negative being equivalent). In addition three variations of 

the imperfection amplitude - t, t/10 and t/100 - were considered. Hence, a total of nine 

variations of initial imperfection were applied to the each EHS studied, giving a range 

of plastic collapse modes that are discussed in Section 4. 

4 Identification of plastic collapse mechanisms in EHS 

4.1 Introduction 

According to plastic theory, the number of possible plastic mechanisms in a thin-

walled structure is unlimited; however, some plastic failure patterns are more 

commonly repeated when the element is loaded in a specific way. The present section 

discusses the trend of the elliptical profiles to follow specific failure mechanisms with 

reference to the FE and test results. Hence, the more common local plastic failure 

modes in EHS can be identified and focussed upon in the analytical study. 
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4.2 Plastic mechanisms observed in the FE models 

The variation of the initial geometrical imperfections described in the previous section 

triggered four different plastic failure modes, two of them akin to plate-like behaviour 

and the other two akin to shell-like (CHS) behaviour – see Fig. 3. Within the plate-

like failure modes, one of them is similar to the flip disc (FD) mechanism examined 

by Murray [1] for flat plates, while the other is a variation of it. This variation 

includes an extra straight hinge line (when projected onto the x-z plane) in the middle 

of the mechanism splitting the disc in two half parts as shown in Fig. 1 

(experimentally) and Fig. 3b (numerically). This plastic mechanism is referred to 

herein as the “split flip disc” (SFD) mechanism. The shell-like plastic collapse 

mechanisms observed in the EHS are the elephant foot (EF) and the Yoshimura (Y) 

patterns. All four mechanisms are shown in Fig. 3. 

The specific failure mode that a given EHS profile would succumb to was found to be 

influenced by both the shape and amplitude of the initial geometric imperfection, as 

well as the slenderness (De/t, where De = 2a2/b) of the cross-section. Fig. 4 presents 

the plastic failure modes that arose in the FE models with the different shapes and 

level of initial imperfection amplitude and varying cross-section slenderness. 

The graphs show that plate-like failure modes dominate the profile’s behaviour for the 

smaller (and more practical) levels of initial imperfection. Indeed, the t/10 and t/100 

imperfection amplitude zones are mainly occupied by flip disc or split flip disc 

mechanisms, which are inward failure modes. Among the plate-like failure modes, a 

symmetrical positive imperfection tends to create both flip disc and split flip disc 

responses while the symmetrical negative imperfection triggered only split flip disc 

pattern. Fig. 4 also shows that the elephant foot mode only arises with small initial 

imperfections and the Yoshimura pattern does not feature in the range of scenarios 

covered in the figure. For larger imperfections, the Yoshimura mode appeared in the 

presence of a symmetrical positive imperfection shape. Thus, it can be concluded that 

the flip disc and split flip disc modes arise most commonly when the most practical 

imperfection sizes are employed, while the elephant foot mode occurs for small initial 

imperfections and the Yoshimura mode is only present when very large initial 

imperfections are used. 
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According to [1], plastic collapse mechanisms can be classified as either true or quasi 

mechanisms. A true mechanism can be developed from the original element by 

folding along the plastic hinge lines only with no extensional deformation of the 

material. A quasi mechanism, on the other hand, involves both folding along the hinge 

linen and material stretching or contraction. The FE models revealed that neither the 

flip disc nor the split flip disc mechanisms present any significant extensional 

deformation and are thus true mechanisms, while the elephant foot mode involves 

significant circumferential stretching of the material along the outer ring and is thus a 

quasi mechanism. 

4.3 Plastic mechanisms observed in the experimental work 

The experimental work presented in [2] has also been used to identify the plastic 

failure mechanisms arising in compressed EHS. The tests exhibited three of the four 

modes revealed in the numerical study: the flip disc, the split flip disc and the 

elephant foot modes. However, the elephant foot was present only in four out of 25 

tests. The flip disc and the split flip disc modes appeared in the remaining 21 tests in 

no clear pattern; overall, the split flip disc mechanism appeared more frequently, 

though it was difficult to distinguish between these two mechanisms in many cases. 

The Yoshimura mode was not observed in the tests. 

Summing up, four different plastic collapse mechanisms have been identified in 

compressed EHS, two of them being similar to plate-like modes - the flip disc and 

split flip disc mechanisms - and two of them similar to shell-like modes - the elephant 

foot and Yoshimura mechanisms. The most commonly arising mode in both the 

experimental and numerical studies was the split flip disc mode, hence, development 

of an analytical description of this plastic failure mechanism is the focus of this paper. 

5 Analytical modelling 

5.1 Introduction 

In this section, an analytical model for the split flip disc mode arising in compressed 

EHS is developed based on the plastic theory for thin-walled structures presented by 

Murray [1]. As stated by Murray, assuming that the material stress-strain curve is a 

step function with a step height between tensile and compressive yielding of 2fy, 
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where fy is the material yield strength, a cross-section’s load-carrying capacity can be 

derived from equilibrium as a function of the displacement, based on an assumed 

plastic collapse mechanism. Rigid plastic material behaviour is therefore used, which 

neglects strain hardening, and all deformation is assumed to be localised along the 

hinge lines with no deformation elsewhere. This assumption has been shown to be 

reasonable for the split flip disc mode in the previous section, where it was also 

observed that the plastic mechanism did not extend around the full circumference of 

the cross-section. Thus, in the analytical derivation, the load resisted both within the 

plastic mechanism Nin and outside the plastic mechanism Nout are considered – see 

Sections 5.2 and 5.3, respectively. 

The moment capacity of a plastic hinge, based on a rectangular element of material of 

width w and thickness t is given by: 

4

twf
M

2
y

pl           (2) 

The reduced plastic moment M'pl in the presence of an axial load N may be shown to 

be: 
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Eq. 3 applies when the hinge line is perpendicular to the direction of the applied 

thrust. However, for an inclined hinge line, the reduced plastic moment is given by 

Eq. 4, where β is the angle between the line perpendicular to the thrust and the 

inclined hinge line [1]. 

 2

plpl secMM         (4) 

In the present work, both parabolic and elliptical functions were considered for the 

description of the curved hinge lines in the plastic mechanism. However, the parabolic 

hinge lines were found to more accurately replicate the actual load-displacement 

response of EHS. Thus, this shape is used throughout the present derivation. A 

parabola can be defined using two parameters that fix the height Xh and the width Sh 
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of the curve on the surface of the EHS (Eq. 5). The notation employed in this section 

is illustrated in Fig. 5, together with the definition of the angle β (used in Eq. 4). 
























2

h

h S

s
1X)s(x        (5) 

The load transmitted by the complete cross-section can be obtained in terms of the 

load inside the plastic hinges Nin plus the load outside the plastic hinges Nout. 

Furthermore, by using symmetry, only one quarter of the cross-section needs to be 

analysed with the result for the full cross-section being factored accordingly. The 

contribution to the load-carrying capacity of the cross-section from within the hinge 

lines and outside hinge lines are derived in the following two sub-sections. 

5.2 Load-carrying contribution within the plastic hinges 

Since the inclination of the hinge lines is variable around the cross-section, a 

differential strip of material is analysed, as depicted in Fig. 5, with the following 

reduced plastic moment. 
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in which dN is the load in the strip and ds is the strip width. 

The differential arc length ds along the curved hinge lines can be obtained from Eq. 1, 

by setting  cosaz , as: 

 dcosbsinads 2222        (7) 

Fig. 6 presents the free body diagram of the material strip that relates the lateral 

displacement of the strip Δds to the applied load dN and the reduced plastic moment 

(M'pl for the plastic hinge lines perpendicular to the line of thrust and M''pl for the 

inclined plastic hinge lines). The load borne by the strip dN can be related to the 

lateral displacement by considering equilibrium at a null bending moment point. For 

the split flip disc mechanism, the point of zero bending moment lies between the 



 14

curved hinge line and the straight hinge line that splits the flip disc into two equal 

parts. Fig. 7 presents the bending moment diagram in the strip. Denoting Δ' the 

straight distance between the point of zero bending moment and the undeformed 

position, this distance can be related to ΔdS through the lengths Xh and Xh', which are 

defined in Fig. 7. Hence, Δ' may be written as a function of the magnitudes of M'pl 

and M''pl, and consequently as a function of the plastic hinge inclination β: 
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By considering moment equilibrium about the point of zero bending moment (defined 

by Δ'), the load borne by the strip dN may be related to M'pl and M''pl as follows: 

 2
plpl secMMdN        (9) 

Merging Eq. 8 and Eq. 9, introducing the reduced plastic moment of the material strip 

(Eq. 6) and rearranging, we obtain: 
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The lateral displacement of the strip ΔdS at any point around the section can be related 

to the maximum lateral displacement of the hinge Δ through Eq. 11, where x(s) 

defines the parabolic shape of the curved hinge lines (Eq. 5). This relationship is also 

illustrated in Fig 8. 
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At the same time, Eq. 5 may be manipulated to give the following expression: 

2

4

h

2

h

2

s
S

X
4

ds

dx







         (12) 



 15

And hence 
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From Eqs. 10, 11 and 13, and following some further manipulation, we obtain the 

load carried by each strip as: 
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Eq. 14 can not be integrated explicitly; hence, in the present work Simpson’s rule has 

been employed to obtain the load–lateral displacement curve, as advised in [1]. The 

load in the strip was evaluated at 3 points: s = 0, s = Sh/2 and s = Sh. 
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Thus, using Eqs. 15, 16 and 17 with Simpson’s rule and rearranging, the following 

relationship (Eq. 18) between load carried within the plastic hinges Nin and lateral 

displacement Δ of the split flip disc mechanism for one quarter of the section is 

obtained. 
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The relationship is governed by the parameters Xh and Sh, which define the shape of 

the plastic mechanism. These parameters are examined in Section 5.4. 
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For the flip disc mechanism, which, unlike the split flip disc mechanism, does not 

contain a central hinge line, the load carried within the plastic mechanism Nin can be 

obtained as: 
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If the previous derivation for the split flip disc mechanism were to be repeated with 

elliptical hinge lines (Eq. 20) instead of parabolic hinge lines (Eq. 5), the expression 

for Nin presented in Eq. 21 results. 
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5.3 Load-carrying contribution outside the plastic hinges 

The area of the cross-section outside the plastic hinges is considered to be working at 

the yield stress. Hence, the load-carrying contribution from outside the plastic hinges 

is proportional to the arc length outside the hinge Sout = P/4 – Sh, where P is the 

perimeter of the ellipse, and is given for one quarter of the section as: 

)S
4

P
(tfN hyout          (22) 

The total load carried by the full cross-section is obtained from Eq. 18 and Eq. 22 as: 

)NN(4)(N outin          (23) 

5.4 Parameters controlling the shape of the plastic mechanism 

Since the load-carrying capacity of the section depends on the shape of the plastic 

mechanism, Xh and Sh must be defined in order to determine the final load–lateral 

displacement curve. At this point, information obtained from the FE models and the 
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tests has been used to monitor the value of both parameters in different elliptical 

tubes, but with a constant aspect ratio a/b = 2. The results showed that, under 

increasing deformation, the plastic hinges grew towards a constant value once the 

plastic mechanism was fully formed. The constant (final) values of Xh and Sh are 

considered first, after which expressions that describe the changing nature of the 

plastic hinge (i.e. Xh and Sh as a function of the lateral displacement) are introduced. 

This section presents the analytical curves obtained using both constant and variable 

plastic hinge dimensions, and compares them with the FE results. 

The longitudinal wavelength for elastic buckling of CHS (in the axis-symmetric 

mode) is proportional to Dt  where D is the diameter and t is the thickness of the 

section [3]. Clearly the elastic buckling wavelength is influential in the definition of 

the size of the plastic collapse mechanism. Hence, the measured values of Xh at the 

end of the plastic deformation from the FE models and the experiments have been 

plotted against tDe  in Fig. 9, where De = 2a2/b is the equivalent diameter of the 

EHS. The data may be seen to follow an approximately linear trend, and hence Eq. 24 

was obtained by least squares regression, ensuring that the line passes through the 

origin, and used in the analytical model. 

tD22.1X eh          (24) 

Based on observations of the test failure patterns in both tests and FE models, it was 

found that the width of the plastic mechanism once the mechanism had fully formed 

Sh,a was, on average, 80% of the way around the quarter perimeter of the section – i.e. 

Sh,a = 0.8×P/4, where P is the perimeter of the ellipse. Hence, if Sh is assumed to be 

constant, its final value should be used throughout the deformation process (Eq. 25). 

4

P
8.0SS a,hh          (25) 

Examining the hinge parameters based on energy minimisation (i.e. determining the 

values of Xh and Sh that minimise N in Eq. 23 for a given value of ) reveals that the 

influence of Xh is very small, while the lowest energy solution is achieved when Sh = 

P/4, which corresponds to the mechanism spreading around the full perimeter of the 
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cross-section. However, the geometry of an EHS with an aspect ratio of two is such 

that, in practice, the mechanism is restricted to the flatter portions of the cross-section 

and does not spread into the end regions that have high local curvature and hence high 

stiffness. Energy minimisation is therefore achieved when the mechanism spreads to 

the full extent of the flatter portions of the cross-section, which corresponds to about 

80% of the perimeter, as described above. The proposed mechanism parameters 

(based on experimental and numerical observations), therefore also match the 

minimum energy solution. 

With Sh and Xh defined, Eq. 18, 22 and 23 may be employed to provide an analytical 

description of the load-lateral displacement response of compressed EHS failing in 

the split flip disc mode. Fig. 10 presents the resulting curves for 150×75 EHS with 

four different thicknesses, t = 4, 5, 6.3 and 8 mm. These thickness values have been 

focussed upon since they are representative of commercially available profiles and are 

consistent with those previously studied experimentally. As may be seen in Fig. 10, 

the thicker tubes exhibit a more ductile response with a slower drop in capacity. 

Additionally, in Fig. 11, the load-lateral displacement curves of the analytical model 

for the 150×75×5 and 150×75×8 profiles are compared with the FE results. 

However, the FE models showed that the width of the plastic mechanism, rather than 

being fixed, grows during plastic deformation towards its final value Sh,a, while the 

height of the plastic mechanism Xh remains approximately constant. Thus, defining Sh 

as a function of the lateral displacement was investigated. Based on the FE models, Sh 

was estimated to be the 30% of the way around the quarter perimeter of the section at 

the beginning of the plastic deformation, and was observed to increase more slowly in 

the thicker sections. Hence, it was chosen to represent Sh with the rational expression 

presented in Eq. 26 that, starting at Sh = 0.3, tends asymptotically to the value given 

by Eq. 25 and is controlled by the thickness t of the cross-section. 
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


        (26) 

Fig. 12 shows the curves for 150×75 elliptical tubes with four different thicknesses 

using the Sh defined in Eq. 26. Finally, Figs 13-16 present a comparison between the 

analytical model and the FE results with this Sh value. The accuracy of the analytical 



 19

model with the different Xh and Sh parameters defined above is discussed in Section 

7. 

6 Construction of the load-end shortening curves 

The load-lateral displacement curves presented in the previous section can be readily 

transformed into load-end shortening (N-δ) curves with reference to Fig. 8 through 

Eq. 27. 

)XX(2 22

hh         (27) 

However, particularly for stocky sections, considerable end shortening may take place 

prior to the formation and subsequent development of the plastic collapse mechanism. 

Therefore, in order to construct the full load-end shortening curve, axial deformation 

associated with the elastic, yield plateau and strain hardening stages of the material 

stress-strain response should also be incorporated. Progression through these stages of 

deformation will depend on the deformation capacity of the cross-section, which, in 

turn, is linked to the slenderness of the cross-section. 

The slenderness of an elliptical hollow section λEHS may be defined by Eq. 28 [25]. 

 
t2

D

E

13f
e

2

y

EHS


        (28) 

in which ν is Poisson’s modulus and E is Young’s modulus. 

The deformation capacity of elliptical sections may be determined on the basis of 

their maximum axial deformation δmax prior to a drop in load-carrying capacity. Fig. 

17 shows the FE and test deformation capacity, presented in a normalised form as 

εLB/εy, where εLB = δmax/L, L being the stub column length, and εy = fy/E is the yield 

strain of the section, plotted against cross-section slenderness λEHS. The predictive 

expression given by Eq. 29, in which the coefficients have been adjusted by 

regression to fit the FE and test results, has also been added to Fig. 17, and is of the 

same form as that employed to predict the deformation capacity of steel cross-sections 

comprising flat elements [33]. 
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4.2

EHSy

LB 037.0







         (29) 

The analytical model developed in Section 5 assumes rigid plastic material behaviour. 

However, following a yield plateau, the actual stress-strain response of hot-finished 

steel also exhibits strain hardening. The three stages of the material stress-strain 

response of hot-finished EHS can be approximated by a tri-linear model, as shown in 

Fig. 18. The slope of the elastic stage is given by the Young’s modulus of the 

material, while the strain at the onset of strain hardening εsh and the slope of the strain 

hardening regime Esh were defined based on mean values from the available test data 

on hot-finished [2]: εsh = 0.02 and Esh = E/100. 

The unloading branch of the load-end shortening curve may be obtained from the 

analytical model derived in Section 5 on the basis of fy for sections with deformation 

capacities below the onset of strain hardening. For sections that progress into the 

strain hardening regime, fy in the analytical model is replaced by fLB, which is the 

stress corresponding to εLB and is given by: 

 shLBshyLB Eff   for εLB > εsh     (30) 

Hence, once Eq. 27 has been used to transform the lateral deformation into end 

shortening, the full load–end shortening curve may be obtained with εLB which is a 

function of cross-section slenderness, defining the longitudinal strain that the cross-

section can sustain prior to unloading. Fig. 19 presents the analytical load–end 

shortening curves for 150×75 elliptical profiles of different thickness. Figs 20-23 

show comparisons between the analytical model and corresponding tests results. 

7 Comparison between analytical model and observed behaviour 

The analytical model developed in Sections 5 and 6 are assessed in this section by 

reference to the results from the FE study and the tests presented in [2]. The 

comparisons presented in Figs 13-16 and 20-23 are discussed. During the 

experimental work [2], load and end shortening data were recorded, but lateral 

displacement was not since it is not possible to predict where exactly the plastic hinge 

is going to develop. Hence, the load-lateral displacement results from the analytical 
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model have been compared with FE results, while the load-end shortening results 

from the analytical model have been compared with the experimental data. 

The analytical load-lateral displacement curves, determined using the parameters Xh 

and Sh defined by Eqs. 24 and 26 respectively, are compared with the FE results in 

Figs 13-16. The analytical model may be seen to closely follow the shape of the 

unloading curves obtained from the FE models, for the studied range of EHS. More 

specifically, for the 150×75×4 EHS (Fig. 13) the maximum disparity between 

analytical and FE results was 7% at Δ = 30 mm. For the remaining three section sizes, 

the maximum disparities were less, being 3.9% at Δ = 10 mm for the 150×75×5 EHS 

(Fig. 14), 2.5% over the majority of the deformation range for the 150×75×6.3 EHS 

(Fig. 15), and 3.7% in the early stages of deformation for the 150×75×8 EHS (Fig. 

16).  

Figs 20-23 show comparisons between the analytical load–end shortening curves and 

the tests results. Overall, it may be observed that the full experimental load-end 

shortening histories can be well predicted from the developed analytical model, 

including the elastic, yield plateau, strain hardening and unloading regimes. 

8 Conclusions 

Local plastic collapse mechanisms in compressed EHS have been examined in this 

paper. From an initial parametric study, four possible collapse mechanisms were 

identified, two of which were akin to plate-like behaviour and two to shell-like 

behaviour. A numerical study, coupled with examination of existing test data, 

revealed that the so-called split flip disc mechanism arose most frequently. Hence, an 

analytical model to describe the compressive load–lateral displacement response of 

EHS failing by this mechanism was derived herein. The analytical model was 

developed by applying rigid plastic theory to a postulated plastic collapse mechanism 

for elliptical sections. Simple expressions, posed in terms of section geometry, to 

determine the key parameters required to fully describe the shape of the plastic hinges 

were establish. Following this, a relationship between lateral displacement and end 

shortening was derived, which, coupled with a deformation based method and a tri-

linear material model, enabled the full load-end shortening history of compressed 

EHS to be established. 
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Comparisons between the analytical model and both FE and experimental data 

revealed good agreement over a range of cross-section slenderness. The maximum 

discrepancy in the load-lateral displacement curves was the 7%, while the load–end 

shortening curves followed the experimental curves adequately. Hence, it may be 

concluded that the derived analytical model provides an accurate means of predicting 

the load-displacement response of a compressed EHS undergoing local plastic 

collapse in the split flip disc mechanism. 
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Figure 1. Split flip disc mechanism observed in two different 150×75 mm tests. 
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Figure 2. Geometry of an elliptical hollow section. 
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(a) Flip disc mechanism (FD) 

 

 

(b) Split flip disc mechanism (SFD) 

 

 

(c) Elephant foot mechanism (EF) 

 

 

(d) Yoshimura mechanism (Y) 
Figure 3. Plastic collapse mechanisms obtained from FE models for EHS. 
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(c) Asymmetrical 

Figure 4. Plastic collapse mechanisms in EHS obtained from FE models for varying 
cross-section slenderness and initial imperfection. 
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Figure 5. Shape of plastic mechanism and definition of notation. 
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Figure 6. Free body diagram of the material strip. 
 
 
 
 
 
 
 

 

Figure 7. Bending moment diagram of the material strip. 
 
 
 
 
 
 
 

 

Figure 8. Relationship between lateral deformation Δ and end shortening δ. 
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Figure 9. Xh values from the FE models and the tests. 
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Figure 10. Analytical load–lateral displacement curves for 150×75 EHS of different 
thickness with Sh = 0.8×P/4. 
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Figure 11. Comparison of load-lateral displacement responses of 150×75 EHS from 
the analytical model with Sh = 0.8×P/4 and the FE models. 
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Figure 12. Analytical load–lateral displacement curves for 150×75 EHS of different 
thickness with Sh (Δ). 
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Figure 13. Comparison of load-lateral displacement responses of 150×75×4 EHS from 
the analytical model with Sh (Δ) and the FE model. 
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Figure 14. Comparison of load-lateral displacement responses of 150×75×5 EHS from 
the analytical model with Sh (Δ) and the FE model. 
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Figure 15. Comparison of load-lateral displacement responses of 150×75×6.3 EHS 
from the analytical model with Sh (Δ) and the FE model. 
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Figure 16. Comparison of load-lateral displacement responses of 150×75×8 EHS from 
the analytical model with Sh (Δ) and the FE model. 
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Figure 17. Relationship between deformation capacity and slenderness for EHS. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 18. Stress-strain curve of hot-finished steel. 
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Figure 19. Analytical load– end shortening curves for 150×75 EHS of different 
thickness with Sh (Δ). 
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Figure 20. Comparison of load-end shortening curves from the analytical model with 
Sh (Δ) and two tests for 150×75×4 EHS. 
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Figure 21. Comparison of load-end shortening curves from the analytical model with 
Sh (Δ) and two tests for 150×75×5 EHS. 
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Figure 22. Comparison of load-end shortening curves from the analytical model with 
Sh (Δ) and four tests for 150×75×6.3 EHS. 
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Figure 23. Comparison of load-end shortening curves from the analytical model with 
Sh (Δ) and two tests for 150×75×8 EHS. 
 


