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Secure Access Control for DAG-based Distributed
Ledgers

L. Zhao, L. Vigneri, A. Cullen, W. Sanders , P. Ferraro, and R. Shorten

Abstract—Access control is a fundamental component of the
design of distributed ledgers, influencing many aspects of their
design, such as fairness, efficiency, traditional notions of network
security, and adversarial attacks such as Denial-of-Service (DoS)
attacks1. In this work, we consider the security of a recently pro-
posed access control protocol for Directed Acyclic Graph-based
distributed ledgers. We present a number of attack scenarios and
potential vulnerabilities of the protocol and introduce a number
of additional features which enhance its resilience. Specifically, a
blacklisting algorithm, which is based on a reputation-weighted
threshold, is introduced to handle both spamming and multi-
rate malicious attackers. The introduction of a solidification
request component is also introduced to ensure the fairness
and consistency of network in the presence of attacks. Finally,
a timestamp component is also introduced to maintain the
consistency of the network in the presence of multi-rate attackers.
Simulations to illustrate the efficacy and robustness of the revised
protocol are also described.

I. INTRODUCTION

Over the last decade, Distributed Ledger Technologies
(DLTs) have become a very popular topic both in industry and
academic communities because of their broad applications
across many vertical domains, such as, supply chain, smart
cities [1] and decentralized finance [2]. In essence, a
distributed ledger, just as the name suggests, is an immutable
database shared across multiple agents in a decentralized
manner, where participants have consensus on the contents
of the database. DLT’s are viewed as a game changing
technology in many industries as they enable an immutable
recording of exchange of assets, and can also be used to
design cyberphysical systems [3].

The best known DLT architectures is Blockchain [1].
While the inception of Blockchain represented a leap forward
in achieving consensus and immutability in a Peer-to-Peer
(P2P) network, its technological and design limitations make
it unsuitable for many Internet-of-Things (IoT) applications
[4]. For example, from a structural perspective, the incentive
mechanism in Blockchain encourages the validation of large
transactions over small ones, and tends to centralise power
in the hands of a few powerful mining pools [5]. Moreover,
the time interval between the creation of new blocks leads to
low throughput and scalability issues that seriously limits the
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1Attackers attempt to put stress on the network by sending a large amount

of transactions to other nodes.

range of domains to which Blockchain can be applied.

Recently, many researchers have suggested alternatives to
the basic Blockchain structure. One such alternative is Direct-
Acyclic-Graph (DAG) based DLTs [6], [7]. A typical DAG
architecture is represented by the IOTA Tangle [8]. Instead
of using a chain, every new incoming transaction can freely
reference existing transactions in a graph structure. This means
many transactions are verified in a parallel fashion, thereby
realising a more scalable and high-throughput architecture.
Unlike in the Blockchain where Proof-of-Work (PoW) is used
to reach consensus among nodes, the IOTA Tangle employs
a lightweight reputation-based voting mechanism to keep
consistent ledger states, and PoW is only employed to make
Denial-of-Service (DoS) attacks expensive [9]. Consequently,
the PoW in the Tangle tends to be computationally much less
expensive than the one used in Blockchain [3].

In this paper, we consider certain specific DAG-based
ledgers that have been proposed for IoT applications. While
their design overcomes some of the scalability and economic
issues in traditional Blockchains, these DLTs also give rise
to new challenges in terms of the design of access control
mechanisms to support their operation. In fact, Blockchains
have an intrinsic filter provided by the work performed by
the miners to select which transactions should be added
to the ledger. Removing PoW makes DAG-based DLTs
more IoT-friendly, but also necessitates an explicit access
control mechanism to guarantee fair writing rights to the
network nodes. While the literature on congestion and access
control for conventional networking applications is rich, a
distinguishing feature of DLTs is that they must be designed
to operate in a reliable manner in adversarial environments,
and this mandates new line of research in the area of
congestion and access control.

Our objective here is to address this issue. We focus on
the IOTA Tangle and its recently proposed reputation-based2

access control algorithm [10]. However, our analysis can be
applied to any distributed network that seeks to guarantee

2In this paper, we consider reputation as a numeric value associated to
a node depending on some characteristics. In principle, reputation should
be difficult to gain and easy to lose; reputation may be simply computed
according to the stake handled by nodes or by analysing node’s behavior
from a more complex point of view. However, the actual way of computing
reputation is out of the scope of the paper. We also assume that nodes have
perfect knowledge of reputation of all the other nodes. While this assumption
may not be realistic, our access control algorithm can successfully deal with
small inconsistencies in the reputation perception among different nodes.
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fair access and consistent databases across the network
participants in an adversarial environment. The basic idea is
to allow users with a larger amount of reputation3 to have a
larger impact on the system. Note that in DLTs, access to the
ledger is highly competitive, affecting both consensus and
the ability of users to generate revenue. Consequently, access
control mechanism plays a very important role in DLTs. This
paper studies the reference mechanism adopted as a part of
the IOTA protocol, describes its vulnerabilities and proposes
a number of additional countermeasures to fix these problems
to be resistant to specific attack scenarios. In particular, we
consider the following issues concerning the aforementioned
protocol.

• We analyse the security of [10] against more advanced
attacks than considered in the original work, e.g.,
nodes send different streams of transactions to different
neighbours to harm consistency.

• We introduce several components to ensure ledger
consistency across network participants (see Definition
IV.6). More specifically, we propose specific buffer
management techniques, transaction reordering and
improved gossip strategies to improve the network
solidification process. (For a discussion of solidification
requests and timestamp ordering, please refer to V.B).

• We propose an effective method to penalise attackers
through blacklisting specific malicious flows (blacklisting
strategy - please refer to IV.A).

• We evaluate and benchmark the robustness of the newly
designed IOTA access control algorithm via extensive
simulations.

The remainder of this paper is organised as follows. In
Section II, we give a brief description of access control
mechanism for DLTs and some related network concepts.
In Section III, we present Blockchain structure including
its commonly used consensus mechanism and DAG-based
DLTs. In Section IV, a node model for our access control
mechanism and definitions needed in this paper are provided.
In Section V, we review the access control protocol described
in [10], highlight vulnerabilities, and suggest modifications to
suppress these vulnerabilities. Section VI presents simulations
to illustrate the efficacy of our approach. Finally, we conclude
our paper in Section VII.

II. COMMENTS ON PRIOR WORK

The topic of designing access control algorithms, and more
generally access control mechanisms, is a very rich one in the
domain of the computer networking. That said, this topic, is
relatively new when considering distributed ledgers, and the
design of such algorithms in this specific context gives rise to
new and original challenges due to the adversarial nature of

3The measure of reputation in IOTA is called mana.

the environments in which ledgers are designed to operate.
This richness, and simultaneous sparsity, makes a compact
discussion of prior work challenging. Our objective here is
thus to highlight specific concepts that underpin the work
described in this paper, and to provide a hint of the broader
context. In terms of DLTs, recently several architectures, have
been proposed incorporating access control modules both to
guarantee fair writing rights to the network nodes [11], [12],
and to prevent spamming attacks [13], [14]. These include both
NANO and IOTA [15], [16]. The NANO DLT is particularly
interesting when highlighting the need for access control
mechanisms. Specifically, the NANO ledger was subjected
to attacks that could have been prevented by incorporating
an appropriately designed access control mechanism4. Indeed,
the motivation for this present paper is the proposed IOTA
access control algorithm [10] and the need to make this module
robust against certain types of adversarial attacks. In terms of
connection to traditional networking work, our work builds
heavily on some of the most mature work in this area, with the
caveat that algorithm design is revisited from the perspective of
operation in adversarial environments, That said, much of the
work reported in this paper builds on traditional scheduling al-
gorithms such as Defecit Round Robin (DRR), and flow based
access control, such as the Additive-Increase Multiplicative-
Decrease (AIMD) algorithm [37]. Such algorithms are well
documented in many publications, and we do not repeat this
discussion here. Nevertheless, the interested reader is referred
to the following publications for more background on these
and related topics [17] [18] [19] [20] [21].

III. PRELIMINARIES

A. Blockchain

As we have mentioned, Blockchain is the most famous
DLT architecture and was introduced by Satoshi Nakamoto in
the Bitcoin whitepaper [22] in 2009. In Blockchain, as in all
DLTs, data are replicated across all nodes in a P2P network
without a third-party or central authority. Transparency and
consistency are ensured as all nodes in the network maintain
a copy of the ledger and independently verify each new
record. This is done in a manner which makes it very difficult
for any node to change the content of the ledger. This
property is known as immutability. A high-level diagram of
the Blockchain structure is depicted in Figure 1 which we
describe next.

In Blockchain, special users called miners are responsible
for gathering data and assembling them into blocks that are
later added to the Blockchain. Immutability is then guaranteed
by the fact that each block is connected to the previous one
through a cryptographic mechanism that exploits PoW and
hash functions [23]. The aim of this hash-based PoW is to
find a nonce value which is smaller than the current target
value. A new block will be issued successfully by miners
who successfully find such nonce. This solves the problem

4https://senatusspqr.medium.com/nanos-latest-innovation-feeless-spam-
resistance-f16130b13598
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of double-spending and Sybil attacks5 at the cost of a large
computational expense and a low throughput. For more
details, the interested reader can refer to [25] [26] [27].

Fig. 1. A simplified Blockchain structure. The purple block is the new
incoming block which need be added to the chain. The green blocks (except
the first block also named genesis block) are already added to Blockchain,
yellow blocks are similar to green blocks, but in orphan chain.

An alternative to PoW is Proof-of-Stake (PoS) [28]. In PoS,
instead of requiring miners to do computational work, the
probability of successfully issuing blocks relies on a quantity
called stake that represents a share of the total currency.
Namely, the more stake a node has, the higher chance this
node can be selected to issue a block. A variant of PoS is
called Delegated Proof-of-Stake (DPoS) and is employed, for
instance, in BitShares [29], EOS [30] and Cosmos [31]. In
DPoS, not all nodes are allowed to issue blocks. Every node
holding stake votes for its trusted witnesses whose job is to
issue and validate blocks as the representative of all nodes.
Because there are fewer nodes that participate in block issuing
and validating work, the issuing and confirmation speed of
blocks results accelerated.

B. DAG-based DLT

Recently a number of DLTs based in directed acyclic
graphs (DAGs) have been developed, specifically with a focus
on serving the needs of the IoT industry [32]. One such
architecture is the IOTA Tangle. A DAG is a graph with
no directed cycles and in the IOTA Tangle, each node in
the graph represents a transaction. Roughly speaking, the
IOTA Tangle operates as follows. New transactions arrive and
are appended to the DAG in return for approving existing
transactions that have been already added to the DAG but
which have not yet been approved by other transaction. This
is depicted in Figure 2. Newly arriving transactions (green)
randomly select unapproved transactions (purple) and check
that these transactions are consistent with each other and the
contents of the ledger. Once these selected purple transactions
have been validated, they become orange, and the green
validating transactions become purple. In the language of
the IOTA Tangle, with reference to Figure 2, if there is a
directed path between transaction i and transaction j, we say
transaction i directly/indirectly approves6 transaction j. When
new transactions arrive, they validate up to eight (with two as a
default) existing transactions which are chosen at random [33].
For further details on the consensus protocol of the Tangle, the

5Sybil attack means attackers are trying to get multiple identities in order
to gain advantage in a reputation system [24].

6https://blog.iota.org/the-tangle-an-illustrated-introduction-1618d3e140ad/

interested reader can refer to [33].

Fig. 2. A simplified architecture of ledger

While Figure 2 depicts the architecture of a ledger stored in
a single device, multiple copies of the Tangle are stored and
synchronized across many devices. This scenario is depicted
in Figure 3 and makes evident the need for an access control
mechanism which in turn dictates the fairness properties of
the ledger and allows the Tangle to resist spamming attacks
that might cause the loss of synchronization of the different
copies of the ledger in the network. Note that while access is
controlled automatically in Blockchain through leader election
(e.g., PoW, PoS), no such system naturally arises in the
Tangle. Thus, the design of an access control mechanism for
lightweight IoT-friendly DLTs, such as the IOTA Tangle, is
particularly pressing.

Fig. 3. A peer-to-peer network

IV. SYSTEM MODEL

We consider a P2P network with a set of nodes N where
|N | = N . Each node is connected with n neighbours where
n � N . Node m has a reputation value repm ∈ R+. Nodes
perform two main tasks.
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• Nodes verify the validity of existing transactions (e.g.,
verifying that the transaction has a valid signature)
and participate in conflict (e.g., double spending)
resolution. Discussion related to transaction validation
and consensus are outside the scope of the paper, but
can be found in [34] [35].

• Nodes issue transactions to transfer data or value
transactions. Each transaction must include, among other
information, the ID of the issuer, the list of transactions
which approves, a timestamp indicating the local current
issuing time.

In line with [10], we describe here the main components
of the protocol (more information can be found later in the
section).

• Transactions received from neighbours are first filtered
to remove invalid ones according to some rules: some
typical filters include signature validation and removal
of duplicates and old transactions.

• Filtered transactions are added to the inbox of the node;
specifically, the inbox is split into N queues in order
to differentiate the node issuers, where qmi denotes
transactions issued by node i in node m’s inbox.

• We mentioned that nodes can also issue transactions
themselves. The issuing rate of each node is controlled
by a rate setting algorithm according to the node’s
reputation and its inbox length.

• A scheduling mechanism is employed to schedule
transactions from the inbox. The protocol sets a fixed
global transaction writing power ν, where ν is the
rate at which this writing work is done. Hence, the
dissemination rate, DR (see Definition IV.4), can be
at most ν. The reader should note that fixing the
scheduling rate is a fundamental component for the
successful operation of the protocol defined in [10]. We
denote that the rate at which node m issues transactions
as λm. In the current version of the protocol this
minimum rate is set as λm ≤ ν·repm∑

i∈N repi
.

• Scheduled transactions are then forwarded to neighbours
through a gossip algorithm and added to the local version
of the ledger (if they satisfy the consensus protocol of
the DLT).

Depending on the transaction issuing rate, a node can be
said to be in one of four possible states.

• Inactive node: A node is said to be inactive if it is not
issuing transactions – it only stores the ledger updates
and participates in conflict resolution.

• Content node: We model the issuing rate of a content
node m as a Poisson process with a rate parameter
λm ≤ λ̃m = ν·repm∑

i∈N repi
, where, as we have mentioned,

ν·repm∑
i∈N repi

is the minimum allowed rate and repm is the
reputation of node m. In other words, content nodes
never exceed their fair proportion of the global writing
power according to their reputation.

• Best-effort node: A node is said to be best effort if it
is issuing at rate λm > ν·repm∑

i∈N repi
, while obeying the

restrictions imposed by the access control algorithm. In
practice, if many nodes are inactive or issue transactions
occasionally, which is likely to be the case, some nodes
may want to exploit the unused bandwidth to issue more
transactions than their content rate.

• Malicious node: A node is said to be malicious if it
does not follow the rules imposed by the access control
algorithm. Such nodes try to harm the network and affect
consistency and fairness by introducing congestion and
degrading network performance.

To help the exposition, the notation used in the remainder
of the paper is summarized in Tables I and II.

TABLE I
NOTATION FOR NODE AND NETWORK MODEL.

repi reputation of node i
N the set of all nodes
N the total number of nodes
qmi the queue length for node i’s transactions in node m’s inbox
λm issuing rate of node m
ν global transaction writing power

DRi the dissemination rate of node i
DR the dissemination rate of all transactions

DCmax the maximum deficit for each empty queue

TABLE II
NOTATION FOR PSEUDOCODE.

p transaction’s parent
ε a given fixed time threshold
σ given constant

ReqSolid solidification requests list
Tran node’s inbox transactions list

Scheduled transactions list we have already scheduled
TBLi

the time when any honest node blacklist malicious nodes
q̂mi reputation-scaled inbox length for node i
WBL the threshold of blacklisting a node
THi

the time interval between current time and TBLi

Finally, we now add a number of definitions to assist the
exposition of the sequel.

Definition IV.1 (Past cone). The past cone of transactions
A is the set of all transactions which transaction A approves
either directly or indirectly.

Definition IV.2 (Solid transaction). If a node has in its ledger
all transactions in the past cone of a given transaction, then
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we say that this transaction is solid. An example of a solid
and unsolid transaction are shown in Figure 4.

Fig. 4. A comparison between solid and unsolid transactions. The yellow
transaction is solid in the upper ledger, but is not solid in the lower ledger
because the lower ledger does not contain the green transaction yet.

Definition IV.3 (Disseminated transaction). A transaction
is said to be disseminated when it reaches all nodes in the
network.

Definition IV.4 (Dissemination rate). The rate of the
disseminated transactions issued by node i is denoted
by DRi. Moreover, DR =

∑
iDRi denotes the total

dissemination rate from all nodes.

Definition IV.5 (Latency). Latency refers to the period of
time between a transaction being issue and when it is added
to the ledgers of all other nodes. In case a transaction is not
delivered, this will have latency infinity.

The following definitions relate to requirements of the
algorithm and are useful when we evaluate the efficacy of the
access control algorithm. They are taken directly from [10].

Definition IV.6 (Consistency). If a transaction issued by an
honest node (i.e. a node obeying the proposed protocol) is
written by one honest node, it should eventually be written by
all honest nodes.

Definition IV.7 (Fairness in dissemination rate). The fairness
in dissemination rate means that the dissemination rate of each
node should be allocated proportional to the node’s reputation.

Definition IV.8 (Fairness in latency). The fairness in latency
means that, for a given dissemination rate relative to the node’s
reputation, a node’s transactions should experience similar
latency. In other words, the latency of a nodes’ transactions
is related to reputation-scaled dissemination rate 7and not a
node’s own reputation.

Definition IV.9 (Security). Malicious nodes that arbitrarily
deviates from the proposed protocol should be unable to
interfere with any of the above requirements.

V. ANALYSIS AND EXTENSIONS OF [10]

As we have already mentioned, this work builds on the ac-
cess control algorithm proposed in [10], addressing a number
of potential attack scenarios not considered in the introductory
paper and considering requirements arising from the DAG
structure of the ledger in more detail. We now review the
existing algorithm and introduce the improvements proposed
in this work.

A. Access control algorithm in [10]

The congestion algorithm in [10] is organized around three
functional components: a scheduling algorithm; a rate setting
algorithm; and a buffer management policy.

• Scheduling: In order to accommodate latency-critical
flows arising from bursty arrivals, [10] proposes a
modified version of the Deficit Round Robin (DRR)
scheduling algorithm, DRR– (DRR minus), where each
flow is connected with a queue and is served in a round
robin manner [36] according to node reputation.

• Rate setting: In order to maximize the utilization of the
network and ensure that nodes are not overwhelmed, an
AIMD method is adopted by each node. Specifically,
every node checks the length of its inbox in order
to gauge the congestion level of the network and
adapts its issue rate accordingly. Relying only on local
congestion measurements is enough to evaluate the
degree of congestion of the network since transactions
are broadcast to all network participants which schedule
them at the same rate. Hence, all nodes will see the
same number of transactions within a short time-frame.
Unlike in TCP, where the protocol considers explicit
notification transactions, the usage of local information
is fundamental to properly deal with an adversarial
environment.

• Buffer management: When the buffer becomes full,
this component drops transactions depending on the
number of transactions in the inbox issued by each node,
weighted by the issuing node’s reputation.

7The reputation-scaled dissemination rate is the value that dissemination
rate of this node divide the node’s reputation value. Other terms, including
reputation-scaled inbox length, are defined similarly to this.
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Fig. 5. Inbox of node m. Each transaction in the queue is solid and ordered
by timestamp. The dotted red line above represents the blacklisting threshold
which is concerned with reputation-scaled inbox length of each node. The
deficit every node gets each round is proportional to node reputation.

B. Extensions of access control in [10]

In [10], a baseline access control algorithm was shown
to satisfy requirements and perform well in an honest
environment, and demonstrated an ability to filter out the
transactions of malicious nodes in the case of a simple attack
scenario. However, an extensive security analysis was not
performed in [10] and the following key points were not
addressed.

• Blacklisting: While the buffer management scheme
proposed in [10] ensures that malicious nodes can not
cause the transactions of honest nodes to be dropped,
there is no explicit mechanism for blacklisting malicious
nodes to avoid wasting resources on malicious spam.

• Solidification: The buffer management proposed in [10]
does not take solidification of transactions within the
DAG structured ledger into consideration (see Definition
IV.2). In particular, dropping malicious transactions
may prevent the solidification of subsequent honest
transactions. For example, if node i receives transactions
from malicious nodes and other new coming transactions
have already appended to the ledger, at this time dropping
malicious transactions would affect the consistency of
the ledger.

• Attacks: Only a basic attack scenario is considered
in [10], which does not account for the ability of a
malicious node to send different traffic to different
neighbours, operate numerous nodes, or find new peers
after being identified as an attacker by its current peers.

We propose to extend the algorithm of [10] by introducing
a blacklisting mechanism and a number of modifications to
explicitly take the need for solidification and the associated
issues into account. These improvements ensure that more
advanced attacks can be prevented, as we demonstrate by
simulation in Section VI.

1) Blacklisting: We define the reputation-scaled queue
length as

q̂mi ,
qmi

repi
, ∀i ∈ |N |. (1)

We augment the protocol in [10] by adding a condition
q̂mi > WBL, where WBL is the threshold to blacklist a node.
As shown in Figure 5, when a node m receives transactions
from its neighbours, if the reputation-scaled queue length
related to node i is larger than WBL, then node m will
blacklist node i. Consequently, it will drop any new incoming
transactions issued by node i, and update the time when
node m blacklist this misbehaving node i (malicious node).
We denote this time by TBLi . Note that transactions that are
already in the inbox of node i will be scheduled as normal
to avoid potential inconsistencies, as these transactions may
have already been added to the local ledger by other nodes
in the network.

Additionally, we propose an improved AIMD rate setter.
Depending on whether or not blacklisting has occurred
recently, two cases are considered. If no blacklisting has
happened yet, or the time since the last blacklisting even
is greater than a given time threshold ε, the rate setter
follows the same AIMD algorithm as in [10]. Namely, if the
reputation-scaled queue length, q̂mm is larger than a certain
threshold W , the issuing rate of node m decreases through
a multiplicative decrease parameter β8. After decreasing
the rate, the process of issuing and rate setting waits for τ
seconds to allow the network to stabilise. On the other hand,
if q̂mm

is less than W , the issuing rate of node m increases
by local additive increase parameter – the product of αm · |tx|.
αm is defined as A · repm∑

rep , where A is a global additive
increase parameter for all nodes and |tx| denotes the writing
work needed for a transaction to be added to the ledger. On
the other hand, if the time since the last blacklisting event
is smaller than a given threshold, ε, the issuing rate of node
m is set to be proportional to the issuing rate of a content
node, λ̃m, where the parameter σ is a given fixed value. The
blacklisting algorithm is depicted in Algorithm 1.

Remark: When a node is blacklisted, there is an
instantaneous drop in local traffic, and as blacklisting can
happen at slightly different times for different nodes, this
can cause discrepancies between nodes’ local views of traffic
levels. This is particularly critical for best-effort nodes that
try to fill the spare bandwidth after when traffic levels drop,
which may cause them to be perceived as attackers by their
neighbors that have not yet blacklisted the malicious node.
For this reason, we pause the rate setting increase for some
time after blacklisting.

Remark: The blacklisting method in our work is a local
method, requiring no additional global information. Local
blacklisting is enough as it is likely that honest neighbours
will drop an attacker’s transactions, and hence, these will not
be propagated through the network. In the event the attacker

8Recall that the AIMD algorithm [37] is characterised by two parameters;
an additive increase parameter α > 0, that determines the rate at which the
node probes for available bandwidth; and a multiplicative decrease parameter
β ∈ (0, 1), that determines the fraction of resource the node releases in
response to congestion. In the rate setting defined in [10] these parameters
depend on their reputation.
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tries to change neighbours (i.e., re-peering) then it will be
blacklisted by these new neighbours as well. In order to test
the efficacy of this designed algorithm, a set of simulations
are presented in the next section.

Algorithm 1 Blacklisting algorithm
Part 1: How to blacklist a malicious node in node’s inbox

1: if Node receive a transaction issued by other nodes then
2: if q̂mi

> WBL then
3: Blacklist node i
4: Drop transactions issued by node i
5: Update TBLi

6: end if
7: end if

Part 2: Improved AIMD Rate Setter
Repeat each time a transaction is issued:

8: if TBLi
== 0 or THi

> ε then
9: if q̂mm > W then

10: λm ← λm · β
11: Stop rate setting and issuing for τ seconds
12: else
13: λm ← λm + αm · |tx|
14: end if
15: else
16: λm ← σ · λ̃m
17: end if

2) Solidification requests: Due to the DAG structure of
the ledger, and due to delays in the network, it is possible
that some transactions at this point might not yet be solid
(see Definition IV.2). To avoid these kind of situations, and
to maintain consistency of the ledger, we introduce a new
component called solidification requests to ensure that all
the transactions in the past cone are received by the node.
When a transaction arrives at the front of the queue in the
node’s inbox, if the transaction is not solid, the node sends
a solidification request to ask its neighbours to send the
missing transactions in the past cone. The transaction can
only be scheduled when it becomes solid (full past-cone is
received). By introducing the rule that transactions should
not be scheduled until they are solid, we may encounter
issues when nodes are blacklisted and the transactions of the
blacklisted node are required to solidify. This problem can
be further exaggerated by an attacker by sending different
streams of transactions to different neighbours. To deal with
this problem, we also introduce ordering of transactions in the
inbox based on their timestamps, this ensures that transactions
are scheduled and forwarded in roughly the same order by
all nodes, even if they are received in different order from
malicious nodes. Solidification requests are further explored
in Section VI, where it is shown that if this component is
not deployed, the dissemination rate of the whole network
drops to zero. The solidification algorithm is described in
Algorithm 2.

Algorithm 2 Solidification Requests
Repeat each time a transaction tx is scheduled:

1: if p is unsolid then
2: if p not in ReqSolid/Tran/Scheduled then
3: add p into ReqSolid
4: end if
5: else
6: do normal DRR– scheduler
7: end if

VI. SIMULATION RESULTS

A. Simulation setup

In order to test the robustness and effectiveness of the
designed algorithm under potential attack scenarios, we
have built a Python simulator. In what follows, the network
used to illustrate our results is composed of 50 nodes, each
of which is peered with 4 randomly chosen neighbours.
Communication delays between nodes are exponentially
distributed in the range from 50 ms to 150 ms. The reputation
distribution used in our simulator follows the measured
distribution from the IOTA network and is depicted in Figure
6. Specifically, we use the number of transactions issued by
each account in the IOTA network, which follows a Zipf
distribution9 with exponent 0.9. The scheduling rate ν is set
to 50 transactions per second. Other relevant parameters are
set as follows: the maximum deficit for each empty queue
DCmax = 1, A = 0.06, β = 0.5, τ = 2, σ = 0.6, |tx = 1|,
WBL = 5 and ε = 15 seconds (see Table III). The effect
of parameters, such as increase parameter α, the decrease
parameter β, the work threshold W , and the total number of
nodes, are shown in [10], the interested reader can refer to
that. For each experiment, ten Monte Carlo simulations are
performed.

TABLE III
ACCESS CONTROL ALGORITHM PARAMETERS USED IN SIMULATIONS.

Scheduler Rate Setter Blacklisting
ν DCmax A β τ σ ε WBL

50 1 0.06 0.5 2 0.6 15 5

In our experiments, there are two types of malicious nodes:

• The first type are malicious nodes sending above the
rate allowed by the rate setter module to its neighbours.
We call this a spamming attacker.

• The second type are malicious nodes that send different
streams of transactions to different neighbours, while
each stream individually obeys the rate setter indications.
These are named multi-rate attackers.

Malicious nodes can simultaneously be both spamming and
multi-rate attackers. Furthermore, we assume that attackers

9Wealth has also been shown to follow similar distributions, so this model
is also well suited to reputation systems derived from wealth, i.e., PoS [38].
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can change their neighbours as soon as they detect that they
are blacklisted by all neighbours. We call this action “re-
peering”, and it results in a more sophisticated attack scenario.

Remark: Multiple coordinated malicious nodes in the
system at the same time constitutes a very powerful form of
attack. As we shall see, our modified algorithm is able to
cope with such a scenario.

The rest of the section is organized as follows. In
Section VI-B we consider the following attack scenarios:

• The first experiment considers a spamming attacker
without re-peering.

• The second experiment considers a spamming attacker
with re-peering.

• The third experiment considers a multi-rate attacker
without re-peering.

• The fourth experiment considers multi-rate attacker with
re-peering.

• The fifth experiment considers multiple nodes attacking
the network simultaneously.

Then, in Section VI-C we present an analysis of the robustness
of the protocol:

• The first experiment considers when the nodes’ reputation
varies over time.

• The second experiment considers the impact of active
nodes becoming inactive and switching back to being
active.

Finally, in Section VI-D a number of experiments are
presented to illustrate the improvements of our algorithm
compared to [10]. Note that to the best of our knowledge, [10]
is the first piece of work which proposes reputation-based
access control for DAG-based ledgers and removes the need
for PoW for Sybil protection. So here we can only provide
this one comparison.

Fig. 6. Reputation distribution follows a Zipf distribution with exponent 0.9.
As shown by each bar’s colour, nodes are Best-effort in red, Content in blue,
Inactive in grey and malicious in green.

B. Analysis of the access control algorithm in a malicious
environment

1) Spamming attacker without re-peering:
In this subsection, we consider a spamming attacker which

issues transactions at a larger rate that allowed by the rate
setter module. This malicious node does not reconnect with
other neighbors of the network after being blacklisted. Figure
7(a) and 7(b) show the dissemination rate and reputation-
scaled dissemination rate per node (see Definition IV.4)
respectively. We use red lines to plot best-effort nodes, green
lines for malicious nodes and blue lines for content nodes.
Furthermore, in the plots, the thickness of every line is
chosen to be proportional to each node’s reputation. The
difference between Figure 7(a) and 7(b) is that, 7(b) depicts
the reputation-scaled dissemination rate. From 7(b), we can
see that the value of best effort nodes and content nodes
converge to a constant value respectively by the end of the
simulation. This means that fair access is eventually ensured
for every node. Note that both the dissemination rate and
the reputation-scaled dissemination rate of the attacker drop
to zero since the malicious node has been blacklisted by all
neighbours, hence isolated. This of course means that all
transactions from this malicious node will be discarded.

The dissemination rate and the mean latency over all
disseminated transactions are presented in Figure 7(c). In this
plot, even when attackers appear, the dissemination rate DR
for all transactions converges to a constant value, as does the
mean latency.

The reputation-scaled inbox length of a randomly-chosen
neighbor of the attacker is depicted in Figure 7(d). As can be
observed the reputation-scaled inbox length of honest nodes
is low. This is especially true between 10 and 50 seconds
when the spammer node is trying to fulfill the available
bandwidth. This value is also low between 50 seconds to 60
seconds because we have set the malicious nodes neighbours
issuing rate to be proportional to that of a content node with
their TBLi

is less than 15 seconds.
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The fairness in latency of the revised protocol is validated
in Figure 7(e). In particular, Figure 7(e) depicts the cumulative
density function of the latency of the transactions issued by
each node. It is clear from this plot that malicious node’s
transactions experience a much higher latency than other
transactions: this happens because attacker’s transactions
cannot be scheduled by honest nodes over short time scales
as they get backlogged at the inboxes of honest nodes before
the attacker is blacklisted.

2) Spamming attacker with re-peering:
We now consider the impact of spamming attacker with

re-peering after blacklisting. As can be observed, although
there are some fluctuations in the scaled dissemination rate
caused by malicious nodes re-peering, the dissemination rate
converges quickly to a constant value (see Figure 8(a) and
8(b)). Note also that the dissemination rate of malicious nodes
declines quickly to zero. Thus it can be observed that the
designed protocol in this paper is also effective in mitigating
this type of attack.

Figure 8(c) depicts the total dissemination rate and the
mean latency across all transactions for all nodes, including
honest nodes and malicious nodes. Observe that there is a
clear decreasing trend for both dissemination rate and latency
from time 25 seconds to time 60 seconds. This is due to the
gradual blacklisting of the malicious node by all honest nodes
(remember that re-peering is enabled). Furthermore, it is
interesting to see that malicious node is isolated, the unused
bandwidth which was “wasted” by the attacker becomes now
available and best-effort nodes can use it.

The reputation-scaled inbox length of a randomly-chosen
neighbor of the attacker is depicted in Figure 8(d). As can be
seen, honest nodes blacklist malicious node gradually because
of malicious node re-peering behaviour. The grey line shows
the percentage of honest nodes that have blacklisted the
malicious node over time. The reason why the percentage
is not at one hundred is that the malicious node can not
blacklist itself.

The fairness in latency of the revised protocol is validated
in Figure 8(e). In particular, Figure 8(e) depicts the cumulative
density function of the latency of the transactions issued by
each node. It is same as the previous scenario that malicious
node’s transactions experience a much higher latency than
other transactions.

3) Multi-rate attacker without re-peering:
We now consider the impact of a multi-rate attacker

without re-peering. The dissemination rate and reputation-
scaled dissemination rate are shown in Figure 9(a) and
9(b). In Figure 9(b), it can observed that the fairness of
dissemination rate is maintained for honest nodes, based on
their reputation, throughout the simulation. While malicious
nodes steal allocation from other nodes at the beginning of
simulation, this effect reduces to zero once malicious nodes
spam their neighbours and they are blacklisted.

Figure 9(c) depicts the latency fairness properties of
the network in this scenario. Note that when compared to
content and best effort node, malicious nodes experience a
much higher latency. The reason for this is as discussed above.

4) Multi-rate attacker with re-peering:
We now consider the impact of a multi-rate attacker with

re-peering. Figure 10(a) depicts the total dissemination rate
and the mean latency across all transactions. Similarly to
the previous experiments, attacker temporarily uses resources
which it should not be using. Once the attacker is blacklisted,
best-effort nodes rapidly detect the unused bandwidth and
increase their throughput accordingly (from time 100 seconds
onwards).

The reputation-scaled inbox length of a randomly-chosen
neighbor of the attacker is depicted in Figure 10(b). As
can be seen, due to the complexity of multi-rate attacks,
especially with re-peering, the blacklisting process takes more
time than in previous scenarios. The grey line shows the
percentage of honest nodes that have blacklisted the malicious
node over time. The reason why the percentage does not
achieve 100% is same as the spamming attack with re-peering.

Figure 10(c) depicts the latency fairness properties of
the network in this scenario. Note that when compared to
content and best effort node, malicious nodes experience
a much higher latency. The reason for this is as discussed
above. Because of the complexity of the multi-rate attack, the
latency of malicious node is much higher than other scenarios.

5) Multiple attackers:
We now discuss the scenario when multiple malicious

nodes simultaneously attack the network. First, we consider
an attack performed by five spamming attackers (without
re-peering). The reputation distribution of nodes of this
experiment is illustrated in Figure 11(a). As the reader can
see, we choose the malicious nodes to be in the top ten nodes
by reputation, which means that the a large portion of the
total reputation is controlled by malicious entities, making
this an exceptionally powerful attack.

The fairness of dissemination rate and scaled dissemination
rate is depicted in Figure 11(b) and 11(c). Because we
have several malicious nodes who are blacklisted by their
neighbours at different times, there are fluctuations in the
scaled dissemination rate of honest nodes. As it can be
observed, the dissemination rate and scaled dissemination
rate of malicious nodes approaches zero after they have been
blacklisted.

Figure 11(d) depicts the total dissemination rate and
the mean latency across all transactions. Although there
is a slight fluctuation when multiple spamming malicious
nodes are blacklisted by their neighbours, honest nodes start
to issue more transactions to occupy the rest of the bandwidth.
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(a) (b) (c)

(d) (e)

Fig. 7. This set of figures is spamming attacker scenario without re-peering. (a) is dissemination rate of each node and (b) is scaled dissemination rate of each
node. (c) is dissemination rate and mean latency for each node. (d) is reputation-scaled inbox length of one randomly selected malicious node’s neighbour.
Transactions issued by honest nodes are in red, while transactions issued by malicious nodes are in green. (e) is the cumulative density function of latency
across all transactions for all nodes.

(a) (b) (c)

(d) (e)

Fig. 8. This set of figures is spamming attacker scenario with re-peering. (a) is dissemination rate of each node and (b) is scaled dissemination rate of each
node. (c) is dissemination rate and mean latency for each node. (d) is reputation-scaled inbox length of one randomly selected malicious node’s neighbour.
Transactions issued by honest nodes are in red, while transactions issued by malicious nodes are in green. The grey line depicts the percentage of how many
how many honest nodes have been blacklisted malicious node along with time. (e) is the cumulative density function of latency across all transactions for all
nodes.
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(a) (b) (c)

Fig. 9. This set of figures is multi-rate attacker scenario without re-peering. (a) is dissemination rate of each node and (b) is scaled dissemination rate of
each node. (c) is the cumulative density function of latency across all transactions for all nodes.

(a) (b) (c)

Fig. 10. This set of figures is multi-rate attacker scenario with re-peering. (a) is dissemination rate and mean latency for each node. (b) is reputation-scaled
inbox length of one randomly selected malicious node’s neighbour. Transactions issued by honest nodes are in red, while transactions issued by malicious
nodes are in green. The grey line depicts the percentage of how many how many honest nodes have been blacklisted malicious node along with time. (c) is
the cumulative density function of latency across all transactions for all nodes.

The reputation-scaled inbox length at a randomly-chosen
neighbour of the largest-reputation attacker is depicted
in Figure 11(e). The reputation-scaled inbox length of this
attacker rapidly increases up to the blacklisting threshold, after
which the neighbour starts dropping attacker’s transactions.
Conversely, honest nodes’ inbox occupations remain low up to
time 60 seconds; after that, when all attackers are blacklisted,
best-effort nodes can exploit the bandwidth remained unused
and reputation-scaled inbox length slightly increases.

Second, we consider five multi-rate attackers trying to harm
the network simultaneously. The reputation distribution in this
case is illustrated in Figure 12(a). As in the previous case,
attackers are chosen among the top ten nodes by reputation.
Multi-rate attackers provide a more sophisticated way to
harm the network and, at the same time, more difficult to
detect. The goal of a DLT is to issue a distributed database
where all nodes agree on which transactions are in the ledger.
When attackers send different streams of transactions to
different nodes, they are trying to violate the fairness criterion
and using a larger share of transactions than the one that
should be guaranteed by their reputation. In our mechanism,
a fundamental tool to detect this attack is provided by the
fact that the scheduler sorts transactions in the inbox by
timestamps: this provides an objective rule that is useful in
times of congestion to let all nodes schedule (approximately)
the same transactions.

Figure 12(b) and 12(c) show the dissemination rate
and the reputation-scaled dissemination rate under this

attack. We can verify that, even in this case, the attack is
successfully repelled. The reputation-scaled inbox length at
the a randomly-chosen neighbour of neighbour of the attacker
is depicted in Figure 12(e).

Figure 12(d) depicts the total dissemination rate and
the mean latency across all transactions. As in the multiple
spamming attack scenario, although there is a slight fluctuation
when multiple spamming malicious nodes are blacklisted by
their neighbours, honest nodes start to issue more transactions
to occupy the rest of the bandwidth.

The reputation-scaled inbox length at a randomly-chosen
neighbour of the largest-reputation attacker is depicted in
Figure 12(e). It is clear that, compared to multiple spamming
attacks, multiple multi-rate attacks experience more time and
each attacker may increases up to the blacklisting threshold
at different time. The similar point is that, after that, when
all attackers are blacklisted, best-effort nodes can exploit
the bandwidth remained unused and reputation-scaled inbox
length slightly increases.

C. Robustness analysis

We now present a brief discussion to highlight the
robustness of our protocol against a set of realistic scenarios.
While the experiments in Section VI-B concern a static
scenario, in this section we consider that nodes’ reputation
will change over time, new nodes will join the network and
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(a) (b) (c)

(d) (e)

Fig. 11. This set of figures is multiple spamming attackers scenario. (a) is reputation distribution follows a Zipf distribution with exponent 0.9. As shown
by each bar’s colour, nodes are Best-effort in red, Content in blue, Inactive in grey and malicious in green. (b) is dissemination rate of each node and (c)
is scaled dissemination rate of each node. (d) is dissemination rate and mean latency for each node. (e) is reputation-scaled inbox length of one randomly
selected malicious node’s neighbour.

(a) (b) (c)

(d) (e)

Fig. 12. This set of figures is multiple multi-rate attackers scenario. (a) is reputation distribution follows a Zipf distribution with exponent 0.9. As shown
by each bar’s colour, nodes are Best-effort in red, Content in blue, Inactive in grey and malicious in green. (b) is dissemination rate of each node and (c)
is scaled dissemination rate of each node. (d) is dissemination rate and mean latency for each node. (e) is reputation-scaled inbox length of one randomly
selected malicious node’s neighbour of neighbour.
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some of the existing nodes will change their status (from
inactive to best-effort to content, and so on).

1) Time varying reputation: We consider the impact of
a change in reputation of randomly selected nodes. We
randomly select two nodes and change their reputation as
follows: after 75 seconds, we decrease the reputations of
nodes 3 and 4 (resp. best-effort and content) by 70%, and
we increase (slightly) the reputation of their neighbors. The
changes in reputation are depicted in Figure 13(d) and with
specific reference to Figure 12(a). The difference in these
two figures depicts the change of each node’s reputation in
this experiment. Note that in this experiment we are only
interested in verifying how the variation in reputation affects
the operation of protocol. Consequently, it is not important
which nodes are selected. The experiment is performed in an
honest environment.

For this specific change in reputation, the dissemination
rate, and the scaled dissemination rate of nodes 3 and 4, as
well as their neighbours is depicted in Figure 13(a). It can
be clearly observed that there is a decreasing trend in rate
for the best-effort node 3 and the content node 4 from about
75 seconds onwards. The increasing dissemination rate of
the neighbours of nodes 3 and 4 is marginal. This is because
each of them only acquire a small fraction of newly available
bandwidth. Note also that although there is a clear spike in
dissemination rate when the node reputation changes, the
network quickly settles to a new steady state.

The reputation-scaled inbox length of the one randomly-
chosen neighbor of the attacker is depicted in Figure 13(e).
As we shall see, although the reputation of several honest
nodes are changed during the process, there is not any risk to
the system. To be specific, no honest nodes will be blacklisted
due sudden loss or gain of reputation.

Two more sets of simulations are presented here to illustrate
the robustness and effectiveness of the designed protocol. The
percentage decrease in reputation for the two nodes as 40%
and the dissemination rate and scaled dissemination rate of
each node are depicted in Figure 13(b). For a decrease of 80%
in reputation the dissemination rate and scaled dissemination
rate of each node are depicted in Figure 13(c).

2) Active nodes becoming inactive and reverting active:
We now consider the impact of nodes going offline and
coming back to the network. At time 100 seconds, several best
effort nodes, and several content nodes, leave the network,
which means they stop issuing transactions. Then at time
200 seconds, these nodes join the network again and restart
generating transactions. The dissemination rate and scaled
dissemination rate of each node is depicted in Figure 14(a) and
14(b). Although the transient fairness of the dissemination rate
of some nodes is slightly affected during the interval 100-200
seconds, the value of scaled dissemination rate of each node
converges after 200 seconds and achieves fairness eventually.

D. Comparison with protocol in [10]

Finally, to conclude the paper, in this experiment, we
compare the revised protocol proposed in this paper with
the unmodified one that is described in [10]. In [10], all
transactions are ordered by the order they arrive at node’s
inbox and a simple DRR– scheduling algorithm is employed
to scheduling these transactions in node’s inbox without
considering the completeness of the ledger in each node. The
problem with this mechanism is that the consistency can not
be ensured when attacks occur.

1) Basic protocol in [10] without solidification component:
The network topology and reputation distribution are as
described in scenario A.(1) above. Note, in this experiment,
the access control protocol contains no solidification
component. The dissemination rate and scaled dissemination
rate are depicted in Figure 14(c) and 14(d). As can be
observed, the dissemination rate and scaled dissemination rate
of many honest nodes goes to zero over time, which means
that no transaction is being scheduled by all nodes. This is
clearly not desirable. The reason behind this outcome is that,
when there are no solidification requests, the ledger of each
node may contain different transactions. This means different
transactions may reach different nodes, but a transaction is
only considered to be disseminated if it reaches all honest
nodes. So the consistency is not achieved when attacker
sends different transactions to different neighbours under the
algorithm in [10].

2) The protocol in [10] without timestamp ordering com-
ponent: Again, we retain the same network topology and
reputation distribution of each node as in scenario A.(3). The
dissemination rate of the network, and the mean latency for
each node is depicted in Figure 14(e). Comparing with Figure
14(f), which depicts the situation when we have timestamp
ordering, it is clear that the protocol is not robust without the
timestamp ordering. This is much clearer from 50 seconds to
120 seconds. During this period of time, tn Figure 14(e), the
dissemination rate of all transactions is far over the maximum
value 50 and the mean latency is also very high during this
long time. In Figure 14(f), while there is a slight increasing
of mean latency, it converges to a stable value very quickly.

VII. CONCLUSIONS

In this paper, an improved access control algorithm for DAG
based DLT is designed to improve the security and robustness
of such a network. A blacklisting algorithm, which is based on
a reputation-weighted threshold, is introduced to handle both
spamming and multi-rate malicious attackers. The introduction
of a solidification request component is also introduced to
ensure the fairness and consistency of network in the presence
of attacks. Finally, a timestamp component is also introduced
to maintain the consistency of the network in the presence
of multi-rate attackers. Simulations to illustrate the robustness
of the protocol are also described. Future work will focus on
maintaining network utilization in the presence of attacks.
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(a) (b) (c)

(d) (e)

Fig. 13. This set of figures is time varying reputation scenario. (a), (b) and (c) are dissemination rate and scaled dissemination rate of each node. (d) is
reputation distribution follows a Zipf distribution with exponent 0.9. As shown by each bar’s colour, nodes are Best-effort in red, Content in blue, Inactive in
grey and malicious in green. (e) is reputation-scaled inbox length of one randomly selected node two’s neighbour.

(a) (b) (c)

(d) (e) (f)

Fig. 14. (a) and (b) are dissemination rate and scaled dissemination rate in scenario which active nodes becoming inactive and reverting active, while the
rest plots are contrast experiments with [10]. (c) and (d) are dissemination rate and scaled dissemination rate. (e) is dissemination rate and mean latency for
each node in [10], while (f) is dissemination rate and mean latency for each node in this work.
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