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Abstract

This article generalises the concept of realised covariation to Hilbert-space-valued stochastic pro-
esses. More precisely, based on high-frequency functional data, we construct an estimator of the
race-class operator-valued integrated volatility process arising in general mild solutions of Hilbert space-
alued stochastic evolution equations in the sense of Da Prato and Zabczyk (2014). We prove a weak
aw of large numbers for this estimator, where the convergence is uniform on compacts in probability
ith respect to the Hilbert–Schmidt norm. In addition, we determine convergence rates for common

tochastic volatility models in Hilbert spaces.
2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Law of large numbers; High-frequency estimation; Quadratic covariation; Volatility; Hilbert space;
Evolution equations

1. Introduction

Stochastic volatility and covariance estimation are of key importance in many fields.
otivated in particular by financial applications, a lot of research has been devoted to

onstructing suitable (co-) volatility estimators and to deriving their asymptotic limit theory in
he setting when discrete, high-frequent observations are available. Initially, the main interest
as in (continuous-time) stochastic models based on (Itô) semimartingales, where the so-called

ealised variance and covariance estimators (and their extensions) proved to be powerful tools.
elevant articles include the works by [3,7–9,32], amongst many others, and the textbooks
y [1,33].
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Subsequently, the theory was extended to cover non-semimartingale models, see, for
nstance, [4,5,21–23] and the survey by [41], where the proofs of the asymptotic theory rely on

alliavin calculus and the famous fourth-moment theorem, see [37]. The multivariate theory
as been studied in [30,39].

Common to these earlier lines of investigation is the fact that the stochastic processes
onsidered have finite dimensions. In this article, we extend the concept of realised covariation
o an infinite-dimensional framework.

The estimation of covariance operators is elementary in the field of functional data analysis
nd was elaborated mainly for discrete-time series of functional data (see e.g. [16,27,31,38,42,
6]). However, spatio-temporal data that can be considered as functional might also be sampled
ensely in time, like forward curves for interest rates or commodities and data from geophysical
nd environmental applications.

In this paper, we consider a separable Hilbert space H and study H -valued stochastic
rocesses Y of the form

Yt = S(t)Y0 +

∫ t

0
S(t − s)αsds +

∫ t

0
S(t − s)σsdWs, t ∈ [0, T ], (1)

or some T > 0. Here (S(t))t≥0 is a strongly continuous semigroup, α := (αt )t∈[0,T ] a
redictable and almost surely integrable H -valued stochastic process, σ := (σt )t∈[0,T ] is a
redictable operator-valued process, Y0 with values in H is some initial element and W a
o called Q-Wiener process on H (see Section 2 for details).

Our aim is to construct an estimator for the integrated covariance process(∫ t

0
σs Qσ ∗

s ds
)

t∈[0,T ]
.

ore precisely, we denote by
⌊t/∆n⌋∑

i=1

(Yti − S(∆n)Yti−1 )⊗2, (2)

he semigroup-adjusted realised covariation (SARCV) for an equally spaced grid ti := i∆n

or ∆n = 1/n, i = 1, . . . , ⌊t/∆n⌋. We prove uniform convergence in probability (ucp) with
espect to the Hilbert–Schmidt norm of the (SARCV) to the integrated covariance process. It
s in line with the finite dimensional theory for continuous semimartingales that, apart from the
ecessary assumptions for stochastic integrability, no assumptions have to be imposed on the
tochastic volatility process σ to guarantee the validity of this weak law of large numbers. In
hat sense, the (SARCV) can be regarded as a natural generalisation of the well known realised
uadratic (co-)variation in finite dimensions (which is a special case) to processes of the form
1), which are sometimes coined mild Itô processes, c.f. Da Prato et al. [24, section 2].

Nevertheless, our framework certainly differs from common high-frequency settings mainly
ue to peculiarities that arise from infinite dimensions. Observe that the main motivation to
onsider processes in this form, is that a vast amount of parabolic stochastic partial differential
quations possess only mild (in opposition to analytically strong) solutions, which are of
he form (1). That is, Y is (under weak conditions) the mild solution of a stochastic partial
ifferential equation

(SPDE) d X t = (AX t + αt )dt + σt dWt , X0 = Y0, t ∈ [0, T ],

here A is the infinitesimal generator of the semigroup (S(t)) (cf. [25,40] or [35]).
t≥0
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In contrast to finite-dimensional stochastic diffusions, this is a priori not an H -valued
emimartingale, but rather an H -valued Volterra process and under certain conditions on the

volatility, the rate of convergence can be affected. For instance, in the case of a constant
deterministic volatility, the rate is O(∆1/2

n ) in the semimartingale case, but might be arbitrarily
slow in our infinite dimensional mild framework, as it is essentially determined by the
continuity of the semigroup on the range of the volatility (see Theorem 3.2 and the subsequent
remark). A discussion around different rates of convergence in various cases is included in
Section 4 of the paper.

Various recent developments related to statistical inference for (parabolic) SPDEs based on
discrete observations in time and space have emerged, see e.g. [15,17,18,20].

To the best of our knowledge, our paper is the first one considering high-frequency esti-
mation of (co-) volatility of infinite-dimensional stochastic evolution equations in an operator
setting. This is of interest for various reasons. For instance, a simple and important application
might be the parameter estimation for H -valued Ornstein–Uhlenbeck process (that is, σs = σ

is a constant operator). Elementary techniques such as functional principal component analysis
might then be considered on the level of volatility. In a multivariate setting, dynamical
dimension reduction was conducted for instance in [2]. Furthermore, it can be used as a tool for
inference of infinite-dimensional stochastic volatility models as in [12] or [14]. In the special
case of a semigroup that is continuous with respect to the operator norm, the framework also
covers the estimation of volatility for H -valued semimartingales.

We organise the paper as follows: First, we recall the main technical preliminaries of our
framework in Section 2. In Section 3, we establish the weak law of large numbers. In Section 4,
we study the behaviour of the estimator in special cases of semigroups and volatility. We derive
convergence rates for particular examples of semigroups in Section 4.1 and stochastic volatility
models in Section 4.2. Section 5 is devoted to the proofs of our main results, while in Section 6
we discuss our results and methods in relation to some existing literature and provide some
outlook into further developments.

2. Notation and some preliminary results

Let (Ω ,F , (Ft )t≥0),P) denote a filtered probability space satisfying the usual conditions.
Consider two separable Hilbert spaces U, H with scalar products denoted by ⟨·, ·⟩U , ⟨·, ·⟩H
nd norms ∥ · ∥U , ∥ · ∥H , respectively. We denote L(U, H ) the space of all linear bounded

operators K : U → H , and use the shorthand notation L(U ) for L(U,U ). Equipped with the
operator norm, L(U, H ) becomes a Banach space. The adjoint operator of a K ∈ L(U, H ) is
denoted by K ∗, and is an element on L(H,U ).

Following Peszat and Zabczyk [40, Appendix A] we use the following notations: An
operator K ∈ L(U, H ) is called nuclear or trace class if the following representation holds

K u =

∑
k

bk⟨u, ak⟩U , for u ∈ U,

where {ak} ⊂ U and {bk} ⊂ H such that
∑

k ∥ak∥U ∥bk∥H < ∞. The space of all nuclear
operators is denoted by L1(U, H ); it is a separable Banach space and its norm is denoted by

∥K∥1 := inf

{∑
k

∥ak∥U ∥bk∥H : K u =

∑
k

bk⟨u, ak⟩U

}
.

We denote by L+

1 (U, H ) the class of all symmetric, non-negative-definite nuclear operators
from U to H . We write L (U ) and L+(U ) for L (U,U ) and L+(U,U ), respectively.
1 1 1 1
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For x ∈ U and y ∈ H , we define the tensor product x ⊗ y as the linear operator in
L(U, H ) defined as x ⊗ y(z) := ⟨x, z⟩U y for z ∈ U . We note that x ⊗ y ∈ L1(U, H ) and
x ⊗ y∥1 = ∥x∥U ∥y∥H , see Peszat and Zabczyk [40, p. 107].

The operator K ∈ L(U, H ) is said to be a Hilbert–Schmidt operator if∑
k

∥K ek∥
2
H < ∞,

or any orthonormal basis (ONB) (ek)k∈N of U . The space of all Hilbert–Schmidt operators is
enoted by LHS(U, H ). We can introduce an inner product by

⟨K , L⟩HS :=

∑
k

⟨K ek, Lek⟩H , for K , L ∈ LHS(U, H ).

he induced norm is denoted ∥ · ∥HS. As usual, we write LHS(U ) in the case LHS(U,U ).
We have the following convenient result for the space of Hilbert–Schmidt operators.

Although it is well-known, we include the proof of this result for the convenience of the reader:

Lemma 2.1. Let U, V, H be separable Hilbert spaces. Then LHS(U, H ) is a separable Hilbert
space. Moreover, if K ∈ LHS(U, V ), L ∈ LHS(V, H ), then L K ∈ LHS(U, H ) and

∥L K∥HS ≤ ∥L∥op∥K∥HS ≤ ∥L∥HS∥K∥HS, (3)

here the HS-norms are for the spaces in question.

roof. It is well-known that LHS(U, H ) is a separable Hilbert space (see e.g. Peszat and
abczyk [40, Appendix A.2, p. 356]). Indeed, an orthonormal basis is (ei ⊗ f j )i, j∈N where

ei )i∈N is an orthonormal basis for U and ( f j ) j∈N for H . Notice that for any x ∈ U , we have
or L ∈ LHS(U, H )

∥Lx∥
2
H =

∞∑
i=1

⟨Lx, ei ⟩
2
H =

∞∑
i=1

⟨x, L∗ei ⟩
2
H ≤ ∥x∥

2
H

∞∑
i=1

∥L∗ei∥
2
H = ∥x∥

2
U ∥L∗

∥
2
HS,

where (ei )∞i=1 is an orthonormal basis in U and we applied the Cauchy–Schwarz inequality.
Hence, ∥L∥op ≤ ∥L∗

∥HS = ∥L∥HS. It can be seen directly from the definition of the
Hilbert–Schmidt norm that for L ∈ LHS(V, H ), K ∈ LHS(U, V ), it holds

∥L K∥HS ≤ ∥L∥op∥K∥HS ≤ ∥L∥HS∥K∥HS,

and the claimed algebraic structure of Hilbert–Schmidt operators follows. □

2.1. Hilbert-space-valued stochastic integrals

Fix T > 0 and assume that 0 ≤ t ≤ T . Let H and U be separable Hilbert spaces throughout.
Recall that a U -valued random variable X is normal with mean a ∈ U and covariance operator
Q ∈ L+

1 (U ) if ⟨X, f ⟩U is a real-valued normally distributed random variable for each f ∈ U ,
with mean ⟨a, f ⟩ and

E[⟨X, f ⟩U ⟨X, g⟩U ] = ⟨Q f, g⟩U ,

for all f, g ∈ U .

Definition 2.2. A stochastic process (Wt )t≥0 with values in U is called a Wiener process with
ovariance operator Q ∈ L+

1 (U ), if W0 = 0 almost surely, W has independent and stationary

increments, and for 0 ≤ s ≤ t , we have Wt − Ws ∼ N (0, (t − s)Q).
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Throughout let W denote a Wiener process taking values in U with covariance operator
Q ∈ L+

1 (U ). To this operator we can assign the reproducing kernel Hilbert space U0 := Q
1
2 U

quipped with the scalar product ⟨h, g⟩0 := ⟨Q−
1
2 h, Q−

1
2 g⟩H , where Q−

1
2 is the pseudo-

inverse of Q
1
2 . The space (U0, ⟨·, ·⟩0) forms again a separable Hilbert space (c.f. Proposition

.03 in [34]). We define for T < ∞ the space NW (0, T ; H ) as the space of all predictable
LHS(U0; H )-valued processes (σs)s∈[0,T ] such that

P
[∫ T

0
∥σs Q1/2

∥
2
HSds < ∞

]
= 1. (4)

et σ = (σt )t≥0 denote a stochastic volatility process where σ ∈ NW (0, T ; H ) for some fixed
T < ∞. The stochastic integral

Yt :=

∫ t

0
σsdWs

can then be defined as in [34, Chapter 2] and takes values in the Hilbert space H .
We denote the tensor product of the stochastic integral Y by (Yt )

⊗2
= Yt ⊗ Yt , and define

the corresponding stochastic variance term as the operator angle bracket (not to be confused
with the inner products introduced above!) given by

⟨⟨Y ⟩⟩t =

∫ t

0
σs Qσ ∗

s ds =

∫ t

0
(σs Q1/2)(σs Q1/2)∗ds,

see Peszat and Zabczyk [40, Theorem 8.7, p. 114].

Remark 2.3. As in Da Prato and Zabczyk [25, p. 104], we note that (σs Q1/2) ∈ L H S(U, H )
nd (σs Q1/2)∗ ∈ L H S(H,U ). Hence the process (σs Q1/2)(σs Q1/2)∗ = σs Qσ ∗

s for s ∈ [0, T ]
akes values in L1(H, H ).

emark 2.4. The integral
∫ t

0 σs Qσ ∗
s ds is interpreted as a Bochner integral in the space of

ilbert–Schmidt operators LHS(H ). Indeed, σs Qσ ∗
s is a linear operator on H , and we have

lmost surely∫ t

0
∥σs Qσ ∗

s ∥HSds =

∫ t

0
∥σs Q1/2(σs Q1/2)∗∥HSds

≤

∫ t

0
∥σs Q1/2

∥
2
HSds < ∞,

y appealing to Lemma 2.1 and the assumption that σ ∈ NW (0, T ; H ).

emark 2.5. From the existence of a localising sequence of stopping times

τN := {t ∈ [0, T ] :

∫ t

0
∥σs Q

1
2 ∥

2
HSds > N },

s described in Liu and Röckner [34, p.36] such that for the stopped process given by
Ymin(t,τN ) =

∫ t
0 I[0,τn ](s)σsdWs we have

E
[∫ T

0
∥I[0,τn ](s)σs Q

1
2 ∥

2
HSds

]
< ∞

nd appealing to Peszat and Zabczyk [40, Theorem 8.2, p. 109] we deduce that the process
Mt )t≥0 with

M = Y ⊗2
− ⟨⟨Y ⟩⟩
t ( t ) t

245



F.E. Benth, D. Schroers and A.E.D. Veraart Stochastic Processes and their Applications 145 (2022) 241–268

b

o

L
o

3

s
s

w
N
(
t

W

T

i

3

i
p

is an L1(H )-valued local martingale w.r.t. (Ft )t≥0. Thus, the operator angle bracket process can
e called the quadratic covariation process of Yt , which we shall do from now on.

We will need the following result, which is a direct corollary of the Hilbert space version
f the Burkholder–Davis–Gundy inequality (c.f. [36]).

emma 2.6. Let σ ∈ NW (0, T ; H ). Then there is a positive constant C4, independent of σ
r t , such that

E

[
sup
s≤t

∫ t

0
σsdWs

4

H

]
≤ C4E

[(∫ t

0
∥σs Q

1
2 ∥

2
HSds

)2
]
.

This finishes our section with preliminary results.

. The weak law of large numbers

In this section, we show our main result on the law of large numbers for Volterra-type
tochastic integrals in Hilbert space with operator-valued volatility processes. Consider, for
ome F0-measurable H -valued Y0,

Yt := S(t)Y0 +

∫ t

0
S(t − s)αsds +

∫ t

0
S(t − s)σsdWs, (5)

here W is a Q-Wiener process on the separable Hilbert space U , σ is an element of
W (0, T ; H ), (S(t))t≥0 is a C0-semigroup on H and α is an almost surely square integrable

in the Bochner sense) predictable process with values in H . We assume that we observe Y at
imes ti := i∆n for ∆n = 1/n, i = 1, . . . , ⌊t/∆n⌋ and define the semigroup-adjusted increment

∆̃i
nY := Yti − S(∆n)Yti−1 =

∫ ti

ti−1

S(ti − s)αsds +

∫ ti

ti−1

S(ti − s)σsdWs . (6)

e define the process of the semigroup-adjusted realised covariation (SARCV) as

t ↦→

⌊t/∆n⌋∑
i=1

(∆̃i
nY )⊗2.

he aim is to prove the following weak law of large numbers for the SARCV
⌊t/∆n⌋∑

i=1

(∆̃i
nY )⊗2 ucp

→

∫ t

0
σs Qσ ∗

s ds, as n → ∞,

n the ucp-topology, that is, for all ϵ > 0 and T > 0

lim
n→∞

P

(
sup

0≤t≤T


⌊t/∆n⌋∑

i=1

(∆̃i
nY )⊗2

−

∫ t

0
σs Qσ ∗

s ds


HS

> ϵ

)
= 0. (7)

.1. The main result

As we use the notation quite frequently, we will write ∥ · ∥ := ∥ · ∥H and ⟨·, ·⟩ := ⟨·, ·⟩H

n what follows. We will first impose a moment condition to hold for the drift and volatility
rocesses, which will later be weakened by localisation:
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Assumption 1. Assume that for T > 0 the following moment conditions hold:

E
[∫ T

0
∥αs∥

2 ds
]

+ E

[(∫ T

0
∥σs Q

1
2 ∥

2
HSds

)2]
≤ C(T ), (8)

or some constant C(T ) > 0.

Remark 3.1. Using the Cauchy–Schwarz inequality, we can deduce under Assumption 1

E
[∫ t

0
∥σs Q1/2

∥
2
HSds

]
≤ E

[(∫ t

0
∥σs Q1/2

∥
2
HSds

)2
] 1

2

≤

√
C(T ) < ∞.

hus, the integrability condition on (σt )t∈[0,T ] holds for predictable processes satisfying
ssumption 1.

Denote for t ≥ 0

M(t) := sup
x∈[0,t]

∥S(x)∥op, (9)

hich is finite by the Hille–Yosida bound on the semigroup. In order to prove the ucp-
onvergence (7) we will first show the following stronger result, which can be used to derive
onvergence rates under Assumption 1:

heorem 3.2. Assume that Assumption 1 holds for some T > 0. Then there exist constants
L1(T ), L2(T ), L3(T ) > 0 such that

E

[
sup

0≤t≤T


⌊t/∆n⌋∑

i=1

(∆̃i
nY )⊗2

−

∫ t

0
σs Qσ ∗

s ds


HS

]

≤ L1(T )∆
1
2
n + L2(T )an(T ) + L3(T )bn(T ), (10)

here

an(T ) := E

⎡⎣( sup
i=1,...,⌊T/∆n⌋+1

∫ min(ti ,T )

ti−1

σs Q
1
2

2

HS
ds

)2
⎤⎦ 1

4

, (11)

bn(T ) :=

(∫ T

0
sup

x∈[0,∆n ]
E[∥(I − S(x))σs Q

1
2 ∥

2
op]ds

) 1
2

, (12)

nd

L1(T ) :=M(∆n)2
(
∆

1
2
n C(T ) + 2C(T )

3
4

)
, (13)

L2(T ) :=M(∆n)2C(T )
1
4 (8(1 + C4))

1
2 + an, (14)

L3(T ) := (1 + M(∆n))C(T )
1
4 , (15)

here C4 is the universal constant from Lemma 2.6 and C(T ) is the constant from Assump-
ion 1. Moreover, an and bn converge to 0 and we have

lim
n→∞

E

[
sup

0≤t≤T


⌊t/∆n⌋∑

(∆̃i
nY )⊗2

−

∫ t

σs Qσ ∗

s ds


]

= 0.

i=1 0

HS
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Remark 3.3. The precise forms of L1(T ), L2(T ) and L3(T ) follow by combining Eqs. (37),
(39) and (46). One should observe that their magnitude can shrink with larger values of n.

That (an(T )))n∈N converges to 0, follows from the integrability condition in Assumption 1
and the implied uniform continuity of the mapping

t ↦→

∫ t

0

σs Q
1
2

2

HS
ds.

Observe, that in many cases we may assume the volatility to have integrable fourth moments,
i.e. ∫ T

0
E
[σs Q

1
2

4

HS

]
ds < ∞. (16)

n this case we have an = O(∆1/4
n ), as it is easy to see that

an(T ) ≤

(∫ T

0
E
[σs Q

1
2

4

HS

]
ds
) 1

4

∆
1
4
n .

If we further assume that

E

[
sup

s∈[0,T ]

σs Q
1
2

4

HS

]
< ∞, (17)

hen we even have an = O(∆1/2
n ) as

an(T ) ≤

(
E

[
sup

s∈[0,T ]

σs Q
1
2

4

HS

]) 1
4

∆
1
2
n .

That (bn(T ))n∈N converges to 0 is an implication of Proposition 5.1. The magnitude of this
sequence essentially determines the rate of convergence of the realised covariation by virtue of
inequality (10). We will come back to the magnitude of the bn’s in specific cases in Section 4.1.

A localisation argument yields the general law of large numbers

Theorem 3.4. Assume σ ∈ NW (0, T ; H ), i.e. it is stochastically integrable, and the drift α
is almost surely square integrable, i.e.

P
[∫ T

0
∥αs∥

2ds < ∞

]
= 1.

Then

lim
n→∞

P

(
sup

0≤s≤t


⌊s/∆n⌋∑

i=1

(∆̃n
i Y )⊗2

−

∫ s

0
σu Qσ ∗

u du


HS

> ϵ

)
= 0, (18)

We also emphasise, that the following holds:

Corollary 3.5. Let (Ȳt )t∈[0,T ] be another process on another separable Hilbert space H̄ of the
form

Ȳt := S̄(t)Ȳ0 +

∫ t

S̄(t − s)ᾱsds +

∫ t

S̄(t − s)σ̄sdWs, (19)

0 0
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where Ȳ0 is F0-measurable with values in H, σ̄ is an element of NW (0, T ; H̄ ), (S̄(t))t≥0 is
a C0-semigroup on H̄ and ᾱ is an almost surely square integrable (in the Bochner sense)
predictable process. We have with respect to the Hilbert–Schmidt norm-topology on LHS(H, H̄ )

⌊t/∆n⌋∑
i=1

(Yti − S(∆n)Yti−1 ) ⊗ (Ȳti − S̄(∆n)Ȳti−1 )
ucp
→

∫ t

0
σ̄Qsσ

∗

s ds.

roof. We define the process Ŷ := (Y, Ȳ )⊤ on the Hilbert space H × H̄ equipped with the
scalar product

⟨(h, h̄)⊤, (g, ḡ)⊤⟩H×H̄ := ⟨h, g⟩H + ⟨h̄, ḡ⟩H̄ .

Moreover, define the strongly continuous semigroup

Ŝ(t) :=

(
S(t − s) 0

0 S̄(t − s)

)
, t ≥ 0

n H × H̄ . As

Ŷt =

(
Y0

Ȳ0

)
+

∫ t

0
Ŝ(t − s)

(
αs

ᾱs

)
ds +

∫ t

0
Ŝ(t − s)

(
σs 0
σ̄s 0

)
d
(

Ws

0

)
. (20)

enote by P1 the projection from H × H̄ onto the first component given by P1(h, h̄)⊤ = h and
y P2 onto H̄ given by P2(h, h̄) := h̄. Both P1 and P2 are continuous linear projections, and
s (20) again is a mild Itô process of the form (1), the law of large numbers in Theorem 3.4
s valid. This is why we obtain

⌊t/∆n⌋∑
i=1

(Yti − S(∆n)Yti−1 ) ⊗ (Ȳti − S̄(∆n)Ȳti−1 ) −

∫ t

0
σ̄s Qσ ∗

s ds

=P2

(
⌊t/∆n⌋∑

i=1

(Ŷti − Ŝ(∆n)Ŷti−1 )⊗2
−

∫ t

0

(
σs 0
σ̄s 0

)(
Q 0
0 0

)(
σs 0
σ̄s 0

)∗

ds

)
P∗

1

ucp
→ 0.

he Corollary follows. □

. Applications

In this section, we give an overview of potential settings and scenarios for which we can
se the techniques described above to infer volatility.

Stochastic integrals of the form (19) arise naturally in correspondence to mild or strong
olutions to stochastic partial differential equations. Take as a simple example a process given
y

(SPDE)

{
dYt = AYt dt + σt dWt , t ≥ 0
Y0 = h0 ∈ H,

(21)

where A is the generator of a C0-semigroup (S(t))t≥0 on the separable Hilbert space H , W is a
Q-Wiener process on a separable Hilbert space U for some positive semidefinite and symmetric
race class operator Q : U → U and σ ∈ NW (0, T ; H ).

There are three components in this model, which need to be estimated in practice: the
ovariance operator Q of the Wiener process, the generator A (or the semigroup (S(t))t≥0
espectively) and the stochastic volatility process σ .
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4.1. Semigroups

The essence of the convergence result in Theorem 3.2 is that we can infer on Q and σ
based on observing the path of Y , given that we know the semigroup (S(t))t≥0. Even more,
n this case, Theorem 3.2 allows us to derive rates of convergence, which are specified by the
ehaviour of the semigroup on the volatility. We outline some examples below.

.1.1. Martingale case
For A = 0 and S(t) = I and for all t ≥ 0, we have the solution

Yt =

∫ t

0
σsdWs,

or the stochastic partial differential equation (21). Clearly in this case we have

bn(T ) = 0.

.1.2. Uniformly continuous semigroups
Assume that (S(t))t≥0 is continuous with respect to the operator norm. This is equivalent to

A ∈ L(H ) and S(t) = et A.

emma 4.1. Let Assumption 1 hold. If the semigroup (S(t))t≥0 is uniformly continuous, we
ave, for bn given in (12), that

bn(T ) ≤ ∆n∥A∥ope∥A∥op∆n C(T )
1
4 .

Proof. Recall the following fundamental equality from semigroup theory (cf. Engel and Nagel
[26, Lemma II.1.3]):

(S(x) − I )h =

∫ x

0
AS(s)hds, ∀h ∈ D(A). (22)

Using (22), we get

sup
x∈[0,∆n ]

∥(I − S(x))∥op = sup
x∈[0,∆n ]

sup
∥h∥=1

∫ x

0
AS(s)hds


≤ sup

x∈[0,∆n ]
x∥A∥ope∥A∥opx

= ∆n∥A∥ope∥A∥op∆n .

It follows that

b2
n(T ) =

∫ T

0
E[ sup

x∈[0,∆n ]
∥(I − S(x))σs Q

1
2 ∥

2
op]ds

≤ sup
x∈[0,∆n ]

∥(I − S(x))∥2
op

∫ T

0
E[∥σs Q

1
2 ∥

2
HS]ds

≤∆2
n∥A∥

2
ope2∥A∥op∆nE

[(∫ T

0
∥σs Q

1
2 ∥

2
HSds

)2] 1
2

,

nd the claim follows. □

For uniformly continuous semigroups and if (17) holds, we obtain a convergence speed
f the order ∆

1/2
n for the convergence of the adjusted realised covariation to the quadratic
ovariation in Theorem 3.2.
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Remark 4.2. Note that, if the semigroup is uniformly continuous and under Assumption 1,
we can get back to a case similar to Section 4.1.1: As A is continuous, (Yt )t∈[0,T ] is a strong
olution to the SPDE (21) and therefore takes the form

Yt = Y0 +

∫ t

0
AYsds +

∫ t

0
σsdWs .

s the drift process given by αs = AYs is square-integrable, we can choose the semigroup
qual to the identity and therefore the law of large numbers holds without any the adjustment,
.e. we have the convergence of the (nonadjusted) realised covariation

⌊t/∆n⌋∑
i=1

(
Yti − Yti−1

)⊗2 ucp
→

∫ t

0
σs Qσ ∗

s ds.

y definition bn(T ) = 0 in this case and if (17) holds, the rate of convergence is O(∆1/2
n ),

imilar to the case for the adjusted realised covariation.

Let us turn our attention to a case of practical interest coming from financial mathematics
pplied to commodity markets.

.1.3. Forward contracts in commodity and interest rate markets: the Heath–Jarrow–Morton
pproach

A case of relevance for our analysis is inference on the volatility for forward prices in
ommodity markets as well as for forward rates in fixed-income markets. The Heath–Jarrow–
orton–Musiela equation (HJMM-equation) describes the term structure dynamics in both of

hese settings (see [28] for a detailed motivation for the use in interest rate modelling and [11]
or its use in commodity markets) and is given by

(HJMM)

{
d X t = ( d

dx X t + αt )dt + σt dWt , t ≥ 0
X0 = h0 ∈ H,

(23)

here H is a Hilbert space of functions f : R+ → R (the forward curve space), (αt )t≥0 is a
redictable and almost surely locally Bochner-integrable stochastic process and σ and W are
s before. Conveniently, the states of this forward curve dynamics are realised on the separable
ilbert space

H = Hβ =
{
h : R+ → R : h is absolutely continuous and ∥h∥β < ∞

}
, (24)

or fixed β > 0, where the inner product is given by

⟨h, g⟩β = h(0)g(0) +

∫
∞

0
h′(x)g′(x)eβx dx,

nd norm ∥h∥
2
β = ⟨h, h⟩β . This space was introduced and analysed in [28]. As in [28], one

ay consider more general scaling functions in the inner product than the exponential exp(βx).
owever, for our purposes here this choice suffices. The suitability of this space is partially
ue to the following result:

emma 4.3. The differential operator A =
d

dx is the generator of the strongly continuous
emigroup (S(t))t≥0 of shifts on Hβ , given by S(t)h(x) = h(x + t), for h ∈ Hβ , such that

M(∆n) = sup ∥S(t)∥op ≤ e∆n . (25)

t≤∆n
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Proof. See for example [28]. For the quasi-contractive property (25) compare [11, Theorem
3.5]. □

The HJMM-equation (23) possesses a mild solution (see e.g. [40])

ft = S(t) f0 +

∫ t

0
S(t − s)αsds +

∫ t

0
S(t − s)σsdWs . (26)

Since forward prices and rates are often modelled under a risk neutral probability measure,
he drift has in both cases (commodities and interest rates) a special form. In the case of forward
rices in commodity markets, it is zero under the risk neutral probability, whereas in interest
ate theory it is completely determined by the volatility via the no-arbitrage drift condition

αt =

∑
j∈N

σ
j

t Σ
j

t , ∀t ∈ [0, T ], (27)

here σ j
t =

√
λ jσt (e j ) and Σ

j
t =

∫ t
0 σ

j
s ds for some eigenvalues (λ j ) j∈N and a corresponding

asis of eigenvectors (e j ) j∈N of the covariance operator Q of W (cf. Lemma 4.3.3 in [28]).

emma 4.4. Assume that the volatility process (σt )t∈[0,T ] satisfies (17) and that for each
∈ [0, 1] the operator σt maps into

H 0
β = {h ∈ Hβ : lim

x→∞
h(x) = 0}.

hen the drift given by (27) has values in Hβ , is predictable, and has finite second moments.

roof. That the drift is well defined follows from Lemma 5.2.1 in [28]. Predictability follows
mmediately from the predictability of the volatility. We have by Theorem 5.1.1 from [28] that
here is a constant K depending only on β such that

∥σ
j

t Σ
j

t ∥β ≤ K∥σ
j

t ∥
2
β .

herefore, we get by the triangle inequality that

∥αt∥β ≤ K
∑
j∈N

∥σ
j

t ∥
2
β = K∥σt Q

1
2 ∥

2
HS.

e obtain the finite second moment property by (17) as

sup
t∈[0,T ]

E[∥αt∥
2
β] ≤ K 2 sup

t∈[0,T ]
E[∥σt Q

1
2 ∥

4
HS].

Moreover, the Bochner integrability follows, since we have

E
[∫ T

0
∥αt∥βdt

]
≤

∫ T

0
E[∥αt∥

2
β]

1
2 dt ≤ T K sup

t∈[0,T ]
E[∥σt Q

1
2 ∥

4
HS]

1
2 < ∞.

he result follows. □

emark 4.5. Since we know the exact form of the semigroup (S(t))t≥0, we can recover the
djusted increments ∆̃i

n f efficiently from forward curve data by a simple shifting in the spatial
e.g., time-to-maturity) variable of these curves. Theorem 3.2 and more generally Theorem 3.4
an therefore be applied in practice to make inference on σ .
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The shift semigroup is strongly, but not uniformly, continuous, leaving us with the question
o determine the convergence speed of the estimator established in Eq. (10). We close this
ubsection by deriving a convergence bound under regularity condition of the volatility in the
pace variable (that is time to maturity).

Observe that by Theorem 4.11 in [11] we know that for all r ∈ [0, T ] there exist random
variables cr with values in R, fr , gr with values in H such that gr (0) = 0 = fr (0) and
pr ∈ L2(R2

+
) such that we have

σr Q
1
2 h(x) = cr h(0) + ⟨gr , h⟩β + h(0) fr (x) +

∫
∞

0
qr (x, z)h′(z)dz,

where qr (x, z) =
∫ x

0 pr (y, z)e
β
2 (z−y)dy. We denote by C1,γ

loc := C1,γ
loc (R+) the space of

continuously differentiable functions with locally γ -Hölder continuous derivative for γ ∈ (0, 1].
The proof of the following result can be found in Section 5.2.

Theorem 4.6. Assume that fr , qr (·, z) ∈ C1,γ
loc for all z ≥ 0, r ∈ [0, T ] and that for the

corresponding local Hölder constants L1
r (x) of e

β
2 · f ′

r (·) and L2
r (x, z) of pr , we have that for

ll x ∈ [0, 1]

|eβ(x+y) f ′

r (x + y) − eβx f ′

r (x)| ≤ L1
r (x)yγ

nd

|p(y + x, z) − p(x, z)| ≤ L2
r (x, z)yγ .

oreover, we assume that L1
r and L2

r are square integrable in x and in (x, z) respectively such
hat for some ζ ∈ (0, T )

L̂ :=

(∫ T

0
E

[(
| f ′

r (ζ )| +
√

8(
e
β+1

2

β
)∥ fr∥β +

√
2∥L1

r ∥L2(R+)

+∥L2
r ∥L2(R2

+
) + (1 +

β

2
)∥pr∥L2(R2

+
)

)2
]

dr

) 1
2

<∞.

hen for bn(T ) as given in (12), we can estimate

bn(T ) ≤ L̂∆
min(γ, 1

2 )
n .

In the next section, we investigate the asymptotic behaviour for different stochastic volatility
odels.

.2. Stochastic volatility models

In this section different models for stochastic volatility in Hilbert spaces are discussed.
o far, infinite-dimensional stochastic volatility models are specified by stochastic partial
ifferential equations on the positive cone of Hilbert–Schmidt operators (see [12,14]). We will
heck therefore, which models satisfy Assumption 1. Throughout this section, we take H = U
or simplicity.
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4.2.1. Constant volatility
We start with the simple, but important special case of constant volatility, i.e. σs = I for

ll s ∈ [0, T ] and we want to make inference on Q. In this case (17) is trivially fulfilled
nd it is easy to see that C(T ) ≤ T 2Tr(Q)2. The convergence rate is thus O(∆1/2

n + bn(T )).
he magnitude of bn(T ) is now completely dependent on the range of the square root of the
ovariance operator Q

1
2 . We define

Z̃n(i) :=(∆̃n
i Y )⊗2

−

∫ ti

ti−1

S(ti − s)QS(ti − s)∗ds

=(∆̃n
i Y )⊗2

−

∫ ∆n

0
S(∆n − s)QS(∆n − s)∗ds. (28)

t is interesting to note the following: As the sequence (Z̃n(i))i∈N is a centred i.i.d. sequence of
andom variables, we also obtain a convergence result, if T → ∞ and ∆n is constant. Namely,
he classical law of large numbers in Hilbert spaces, see e.g. [16, Theorem 2.4], yields

lim
T →∞

1
⌊T/∆n⌋

⌊T/∆n⌋∑
i=1

Z̃n(i)
u.c.p.
−→ 0.

f the semigroup is the identity, this again yields a consistent way of estimating Q, which is
nalogous to the finite dimensional case. However, note that, if the semigroup is not equal to
he identity, the long time estimator (28) estimates

∫∆n
0 S(∆n − s)QS(∆n − s)∗ds, rather than

n Q.

.2.2. Barndorff–Nielsen & Shephard (BNS) model
The volatility is oftentimes given as the unique positive square-root of a process Σt , e.g.,

σt := Σ
1
2

t , (29)

here Σ takes values in the set of positive Hilbert–Schmidt operators on H . This is for instance
he case in the Hilbert space-valued volatility model suggested in [12], extending the BNS-

odel introduced in [6] to infinite dimensions. There Σ is given by the Ornstein–Uhlenbeck
ynamics

(B N S)

{
dΣt = BΣt dt + dLt ,

Σ0 ∈ LHS(H ),

here B is a positive bounded linear operator on the space of Hilbert–Schmidt operators
LHS(H ), L is a square integrable Lévy subordinator on the same space and Σ0 is also positive
efinite. B is then the generator of the uniformly continuous semigroup given by S(t) = exp(Bt)
nd the equation has a mild solution given by

Σt = S(t)Σ0 +

∫ t

0
S(t − s)dLs,

hich defines a stochastically integrable process in NW (0, T ; H ) (see [12]). We have

sup E[∥σs∥
4
op] = sup E[∥Σ

1
2

s ∥
4
op] = sup E[∥Σs∥

2
HS].
s∈[0,T ] s∈[0,T ] s∈[0,T ]
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By the Itô isometry, we obtain

sup
t∈[0,T ]

E[∥Σt∥
2
HS]

1
2 ≤ sup

t∈[0,T ]

⎛⎝∥S(t)Σ0∥HS + E

[∫ t

0
S(t − u)dLu

2

HS

] 1
2
⎞⎠

≤ sup
t∈[0,T ]

⎛⎝∥S(t)Σ0∥HS +

(∫ T

0
∥S(t − u)Q

1
2
L∥

2
HSdu

) 1
2

⎞⎠
≤e∥B∥opT

∥Σ0∥HS + e∥B∥opT Tr(QL)
1
2 T

1
2 ,

where QL denotes the covariance operator of L. This yields that we can find an upper bound
for the constant C(T ) from Assumption 1 according to

C(T ) ≤T 2 sup
s∈[0,T ]

E
[σs Q

1
2

4

op

]
≤Tr(Q)2T 2

(
e∥B∥opT

∥Σ0∥HS + e∥B∥opT Tr(QL)
1
2 T

1
2

)2
.

oreover, it is easy to see that (16) holds, which is why the rate of convergence in the law
f large numbers Theorem 3.2 becomes O(bn(T ) + ∆

1/4
n ). Now we can combine this result

ith the ones from the previous section (for instance for the term structure models) and obtain
xplicit expressions for the constants L1(T ), L2(T ) and L3(T ) from Theorem 3.2.

It is also possible to derive ucp convergence for rough volatility models, which we present
n the following section.

.2.3. Rough volatility models
In [10] pathwise constructions of Volterra processes are established and suggested for the

se in stochastic volatility models. In this setting, a process is mostly known to be Hölder
ontinuous almost surely of some particular order.

If H is a Banach algebra (like the forward curve space defined by (24)), we can define the
olatility process by

σt h := exp(Yt )h. (30)

his is a direct extension of the volatility models proposed in [29], if we define the rough
rocess Yt as follows: For ρ > 0 and a locally Bochner integrable function f : R+ → H
efine the fractional integral operator I ρ ∈ L(L1

loc(R+, H )) as

I ρ( f )(t) :=
1

Γ (ρ)

∫ t

0
(t − s)ρ−1 f (s)ds. (31)

or the special case of ρ = 0 we set I 0
= idL1

loc(R+;H ). Define a noise term X as the Gaussian
rocess

X(t) =

∫ t

0
(t − s)ρ−1dW(s). (32)

his integral is well defined pathwise via a Sewing Lemma in Banach spaces (see
10, Prop. 14]), for a process W with sample paths in space of γ -Hölder continuous functions
γ ([0, T ]; H ) on H , such that ρ + γ − 1 > 0. For an initial condition y ∈ H , an

rnstein–Uhlenbeck process in this framework is considered to be the solution to the integral
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equation

Yt = y + I ρ(AY)t + Xt t ∈ [0, T ], (33)

here A ∈ L(H ). It was shown in [10, Prop. 26] that this pathwise integral equation possesses
unique solution Y with sample paths in Cα([0, T ]; H ) for 0 < α < ρ+ γ − 1. This solution

s moreover Gaussian and hence, by virtue of Fernique’s theorem, c.f. [40, Theorem 3.31],
atisfies (16), which is why the rate of convergence is O(bn(T ) + ∆

1/4
n ). More precisely, the

ross-covariance structure is characterised by

QY(t, t ′) := E [Yt ⊗ Yt ′ ]

=

∫ t

0

∫ t ′

0
(t − r )ρ−1 Eρ,ρ(A(t − r )ρ)d2QW(r, r ′)(t ′

− r ′)ρ−1 Eρ,ρ(A∗(t ′
− r ′)ρ),

here for B ∈ L(H )

Eα,β(B) :=

∞∑
i=1

Bi

Γ (αi + β)

s the Mittag-Leffler operator and Γ is the Gamma-function. From these analytic expressions,
ne can derive again explicit formulas for the constants L1(T ), L2(T ) and L3(T ).

. Proofs

In this section, we will present the proofs of our previously stated results.

.1. Proofs of results in Section 3

.1.1. Uniform continuity of semigroups on compact sets
In order to verify that bn(T ) defined in (12) converges to 0 and to prove Theorem 3.2, we

eed to establish some convergence properties of semigroups on compacts.
The next proposition follows from Dini’s theorem and will be important for our analysis:

roposition 5.1. Let U, H be two separable Hilbert spaces. The following holds:

(i) If σ is an almost surely compact random linear operator with values in L(U, H ), we get
that

sup
x∈[0,∆n ]

∥(I − S(x))σ∥op → 0, as n → ∞, (34)

where the convergence holds almost surely. If furthermore σ ∈ L p(Ω; L(U, H )) for some
p ∈ [1,∞), the convergence holds also in L p(Ω;R).

(ii) Assume that s ↦→ σs Q
1
2 is a stochastic process of almost surely compact operators, such

that

P
[∫ T

0
∥σs∥

p
op ds < ∞

]
= 1,

for p ∈ [1,∞). Then almost surely∫ T

sup ∥(I − S(x))σs∥
p
opds → 0, as n → ∞. (35)
0 x∈[0,∆n ]
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If
∫ T

0 E
[σs Q

1
2

p

op

]
ds < ∞, then∫ T

0
E[ sup

x∈[0,∆n ]
∥(I − S(x))σs∥

p
op]ds → 0, as n → ∞. (36)

roof. Let B0(1) := {h ∈ H : ∥h∥ = 1} be the unit sphere in H and fix ω ∈ Ω , such that
(ω) is compact. Since σ (ω) is compact, C := σ (ω)(B0(1)) is compact in H . We define the

et F(ω) of functionals of the form

fn := sup
x∈[0,∆n ]

∥(I − S(x)) · ∥ : C → R.

he functions in F(ω) are continuous, as

| sup
x∈[0,∆n ]

∥(I − S(x))h∥ − sup
x∈[0,∆n ]

∥(I − S(x))g∥|

≤ sup
x∈[0,∆n ]

∥(I − S(x))(h − g)∥

≤ sup
x∈[0,∆1]

∥(I − S(x))∥H∥h − g∥,

or all g, h ∈ C. Hence Dini’s theorem (c.f. Theorem 7.13 in [44]) yields (34) in the almost
ure sense. Since the sequence is uniformly bounded by (1 + M(T ))∥σ∥op, which has finite

pth moment, we obtain L p(Ω;R)-convergence by the dominated convergence theorem, and
herefore (34) holds in the L p-sense.

The convergences (35) and (36) follow now immediately by appealing to the dominated
onvergence theorem, as

sup
x∈[0,∆n ]

∥(I − S(x))σs∥
p
op ≤ M(∆n)p

∥σs∥
p
op

nd supx∈[0,∆n ] ∥(I −S(x))σs∥
p
op, respectively E

[
supx∈[0,∆n ] ∥(I − S(x))σs∥

p
op
]
, converges to 0

y (34). □

Recall also the following fact:

emma 5.2. The family (S(t)∗)t≥0 of adjoint operators of the C0-semigroup (S(t))t≥0 forms
gain a C0-semigroup on H.

roof. See Section 5.14 in [26]. □

Now we can proceed with the proof of our main theorem in the next subsection.

.1.2. Elimination of the drift
The drift process will not affect the asymptotic behaviour of the realised covariation. This

s proved in the next Lemma:

emma 5.3. In order to prove Theorem 3.2, we can without loss of generality assume α ≡ 0
nd Y0 ≡ 0.

roof. That we can assume Y0 ≡ 0 can be seen immediately as

∆̃i
nY := Yti − S(∆n)Yti−1 =

∫ ti
S(ti − s)αsds +

∫ ti
S(ti − s)σsdWs
ti−1 ti−1
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a

w
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is not dependent on the initial condition. We can then argue for the drift as follows: We have

E

[
sup

0≤t≤T


⌊t/∆n⌋∑

i=1

(∆̃i
nY )⊗2

−

∫ t

0
σs Qσ ∗

s ds


HS

]

≤ E

⎡⎣ sup
0≤t≤T


⌊t/∆n⌋∑

i=1

(∫ ti

ti−1

S(ti − s)αsds

)⊗2


HS

⎤⎦
+ E

[
sup

0≤t≤T


⌊t/∆n⌋∑

i=1

(∫ ti

ti−1

S(ti − s)αsds

)
⊗

(∫ ti

ti−1

S(ti − s)σsdWs

)
HS

]

+ E

[
sup

0≤t≤T


⌊t/∆n⌋∑

i=1

(∫ ti

ti−1

S(ti − s)σsdWs

)
⊗

(∫ ti

ti−1

S(ti − s)αsds

)
HS

]

+ E

⎡⎣ sup
0≤t≤T


⌊t/∆n⌋∑

i=1

(∫ ti

ti−1

S(ti − s)σsdWs

)⊗2

−

∫ t

0
σs Qσ ∗

s ds


HS

⎤⎦
≤

⌊T/∆n⌋∑
i=1

E

⎡⎣
∫ ti

ti−1

S(ti − s)αsds


2
⎤⎦

+ 2

⎛⎝⌊T/∆n⌋∑
i=1

E

⎡⎣
∫ ti

ti−1

S(ti − s)σsdWs


2
⎤⎦⎞⎠ 1

2

×

⎛⎝⌊T/∆n⌋∑
i=1

E

⎡⎣
∫ ti

ti−1

S(ti − s)αsds


2
⎤⎦⎞⎠ 1

2

+ E

⎡⎣ sup
0≤t≤T


⌊t/∆n⌋∑

i=1

(∫ ti

ti−1

S(ti − s)σsdWs

)⊗2

−

∫ t

0
σs Qσ ∗

s ds


HS

⎤⎦
= (1) + (2) + (3).

n order to prove the assertion, we have to show that (1) and (2) converge to 0 as n → ∞. We
nd by Bochner’s inequality

E

⎡⎣
∫ ti

ti−1

S(ti − s)αsds


2
⎤⎦ ≤ ∆n M2(∆n)E

[∫ ti

ti−1

∥αs∥
2ds

]
,

nd by the Itô isometry

E

⎡⎣
∫ ti

ti−1

S(ti − s)σsdWs


2

H

⎤⎦ ≤ M2(∆n)E

[∫ ti

ti−1

∥σs Q
1
2 ∥

2
H Sds

]
,

here we appealed to the bound (9) on the semigroup. Hence, (1) + (2) = O(∆
1
2
n ), so the first

wo terms will not impact the estimation of the covariation (in the limit). More precisely we
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F
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have that

(1) + (2) ≤∆n M2(∆n)
∫ T

0
E
[
∥αs∥

2] ds

+ 2
(
∆n M2(∆n)

∫ T

0
E
[
∥αs∥

2] ds
) 1

2
(

M2(∆n)
∫ T

0
E
[σs Q

1
2

2

HS

]
ds
) 1

2

nd therefore, in view of Assumption 1

(1) + (2) ≤ ∆
1
2
n M(∆n)2

(
∆

1
2
n C(T ) + 2C(T )

3
4

)
. (37)

he Lemma follows. □

5.1.3. Proof of Theorem 3.2
In view of Lemma 5.3 we assume in this subsection that the process Y takes the form

Yt =
∫ t

0 S(t − s)σsdWs . The operator bracket process for the semigroup-adjusted increment
takes the form

⟨⟨∆̃i
nY ⟩⟩ =

∫ ti

ti−1

S(ti − s)σs Qσ ∗

s S(ti − s)∗ds. (38)

We have

roposition 5.4. Let Assumption 1 hold. Then

E

[
sup

t∈[0,T ]


⌊t/∆n⌋∑

i=1

(∆̃n
i Y )⊗2

− ⟨⟨∆̃n
i Y ⟩⟩


]

≤ M(∆n)2C(T )
1
4 (8(1 + C4))

1
2 an(T ). (39)

roof. We define

Z̃n(i) := (∆̃n
i Y )⊗2

− ⟨⟨∆̃n
i Y ⟩⟩ = (∆̃n

i Y )⊗2
−

∫ ti

ti−1

S(ti − s)σs Qσ ∗

s S(ti − s)∗ds.

irst we show that supt∈[0,T ] ∥
∑⌊t/∆n⌋

i=1 Z̃n(i)∥HS has finite second moment. By the triangle
nequality and Lemma 2.1

sup
t∈[0,T ]


⌊t/∆n⌋∑

i=1

Z̃n(i)


HS

≤

⌊T/∆n⌋∑
i=1

∥Z̃n(i)∥HS

≤

⌊T/∆n⌋∑
i=1

∥(∆̃n
i Y )⊗2

∥HS

+

⌊T/∆n⌋∑
i=1


∫ ti

ti−1

S(ti − s)σs Qσ ∗

s S(ti − s)∗ds


HS

≤

⌊T/∆n⌋∑
i=1

∥∆̃n
i Y∥

2
H + M(∆n)2

∫ T

0

σs Q
1
2

2

HS
ds.
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m
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A
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Considering E
[
supt∈[0,T ] ∥

∑⌊t/∆n⌋

i=1 Z̃n(i)∥2
HS

]
, we get a finite sum of linear combinations of

he following terms

E

[(∫ T

0
∥σs Q

1
2 ∥

2
HSds

)2]
= C(T ), (40)

E
[
∥∆̃n

i Y∥
2
∥∆̃n

j Y∥
2
]
, (41)∫ T

0
E
[
∥∆̃n

i Y∥
2
∥σs Q

1
2 ∥

2
HS

]
ds. (42)

he expression in (40) is finite by the imposed Assumption 1. The term in (41) is finite, since
y the Cauchy–Schwarz inequality

E
[
∥∆̃n

i Y∥
2
∥∆̃n

j Y∥
2
]

≤E
[
∥∆̃n

i Y∥
4
] 1

2 E
[
∥∆̃n

j Y∥
4
] 1

2

≤C4E

⎡⎣(∫ ti

ti−1

∥S(ti − s)σs Q
1
2 ∥

2
HSds

)2
⎤⎦ 1

2

E

⎡⎣(∫ t j

t j−1

∥S(t j − s)σs Q
1
2 ∥

2
HSds

)2
⎤⎦ 1

2

≤M(∆n)4E

⎡⎣(∫ ti

ti−1

∥σs Q
1
2 ∥

2
HSds

)2
⎤⎦ 1

2

E

⎡⎣(∫ t j

t j−1

∥σs Q
1
2 ∥

2
HSds

)2
⎤⎦ 1

2

(43)

≤M(∆n)4C(T ),

here the second inequality followed from Lemma 2.6. For (42), we apply the Cauchy–
chwarz inequality and argue as for the first two. In conclusion, we obtain a finite second
oment as desired.
Now note that t ↦→ ψt =

∫ t
ti−1

S(ti − s)σsdWs is a martingale for t ∈ [ti−1, ti ]. From Peszat
and Zabczyk [40, Theorem 8.2, p. 109] we deduce that the process (ζt )t∈[ti−1,ti ] with

ζt = (ψt )
⊗2

− ⟨⟨ψ⟩⟩t

s a centred martingale w.r.t. (Ft )t∈[ti−1,ti ] and hence

E
[

Z̃n(i)|Fti−1

]
= E

[
ζti |Fti−1

]
= 0.

lso, this shows that Mn
m :=

∑m
i=1 Z̃n(i) defines a discrete-time martingale in LHS(H ) and

herefore ∥Mn
m∥HS a positive real-valued submartingale with respect to (Fti )i=0,.... This is why

by Doob’s martingale inequality Revuz and Yor [43, Corollary (II.1.6)]

E

⎡⎣ sup
t∈[0,T ]


⌊t/∆n⌋∑

i=1

Z̃n(i)


2

HS

⎤⎦ =E
[

max
m=1,...,⌊T/∆n⌋

∥Mn
m∥

2
HS

]
≤4E

[
∥Mn

⌊T/∆n⌋
∥

2
HS

]
=4E

⎡⎣
⌊T/∆n⌋∑

i=1

Z̃n(i)


2

HS

⎤⎦ . (44)
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C

S

Moreover, for j < i , as each Z̃n(i) is Fti−1 measurable and as the conditional expectation
commutes with bounded linear operators, and also using the tower property of conditional
expectation

E
[
⟨Z̃n(i), Z̃n( j)⟩HS

]
=E

[
E
[
⟨Z̃n(i), Z̃n( j)⟩HS|Fti−1

]]
=E

[
⟨E
[

Z̃n(i)|Fti−1

]
, Z̃n( j)⟩HS

]
= 0. (45)

ombining (44) and (45) we obtain

E

⎡⎣ sup
t∈[0,T ]


⌊t/∆n⌋∑

i=1

Z̃n(i)


2

HS

⎤⎦ ≤ 4
⌊T/∆n⌋∑

i=1

E
[
∥Z̃n(i)∥2

HS

]
.

Applying the triangle and Bochner inequalities, the basic inequality (a + b)2
≤ 2(a2

+ b2)
and appealing to (43), we find

E
[
∥Z̃n(i)∥2

HS

]
≤ 2E

⎡⎣∥(∆̃n
i Y )⊗2

∥
2
HS +

(∫ ti

ti−1

∥S(ti − s)σs Qσ ∗

s S(ti − s)∗∥HSds

)2
⎤⎦

≤ 2E

⎡⎣∥∆̃n
i Y∥

4
+ M(∆n)4

(∫ ti

ti−1

∥σs Q
1
2 ∥

2
HSds

)2
⎤⎦

≤ 2M(∆n)4(C4 + 1)E

⎡⎣(∫ ti

ti−1

∥σs Q
1
2 ∥

2
HSds

)2
⎤⎦ .

umming up, we have

E

⎡⎣ sup
t∈[0,T ]


⌊t/∆n⌋∑

i=1

Z̃n(i)


2

HS

⎤⎦ ≤ 8(1 + C4)M(∆n)4
⌊T/∆n⌋∑

i=1

E

⎡⎣(∫ ti

ti−1

∥σs Q
1
2 ∥

2
HSds

)2
⎤⎦

≤8(1 + C4)M(∆n)4E

[∫ T

0

σr Q
1
2

2

HS
dr sup

i=1,...,⌊T/∆n⌋

∫ ti

ti−1

σs Q
1
2

2

HS
ds

]

≤8(1 + C4)M(∆n)4E

[(∫ T

0

σr Q
1
2

2

HS
dr
)2] 1

2

× E

⎡⎣( sup
i=1,...,⌊T/∆n⌋

∫ ti

ti−1

σs Q
1
2

2

HS
ds

)2
⎤⎦ 1

2

≤8(1 + C4)M(∆n)4C(T )
1
2 an(T )2.

Hence, the proposition follows by application of the Cauchy–Schwarz inequality. □

The Law of large numbers, Theorem 3.2, follows now from the following result:

Proposition 5.5. Suppose that Assumption 1 holds. Then

E

[
sup

0≤t≤T


⌊t/∆n⌋∑

i=1

⟨⟨∆̃i
nY ⟩⟩ −

∫ t

0
σs Qσ ∗

s ds


HS

]
≤ 1 + M(∆ ) b (T )C(T )

1
4 + a (T )2. (46)
( n ) n n
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B

Proof. Recall the expression for ⟨⟨∆̃i
nY ⟩⟩ in (38). By the triangle and Bochner inequalities,

we find,

sup
t∈[0,T ]


∫

⌊t/∆n⌋∆n

0
σs Qσ ∗

s ds −

⌊t/∆n⌋∑
i=1

∫ ti

ti−1

S(ti − s)σs Qσ ∗

s S(ti − s)∗ds


HS

≤ sup
t∈[0,T ]

⌊t/∆n⌋∑
i=1

∫ ti

ti−1

∥σs Qσ ∗

s − S(ti − s)σs Qσ ∗

s S(ti − s)∗∥HSds

≤

⌊T/∆n⌋∑
i=1

∫ ti

ti−1

∥σs Qσ ∗

s − S(ti − s)σs Qσ ∗

s S(ti − s)∗∥HSds.

y Lemma 2.1 and the Cauchy–Schwarz inequality we obtain

E

[
sup

0≤t≤T


⌊t/∆n⌋∑

i=1

⟨⟨∆̃i
nY ⟩⟩ −

∫ t

0
σs Qσ ∗

s ds


HS

]

≤

⌊T/∆n⌋∑
i=1

∫ ti

ti−1

E[∥(I − S(ti − s))σs Qσ ∗

s ∥HS]

+ E[∥S(ti − s)σs Qσ ∗

s (I − S(ti − s)∗)∥HS]ds

+ sup
t∈[0,T ]

∫ t

tn
E[∥σs Qσ ∗

s ∥HS]ds

≤

⌊T/∆n⌋∑
i=1

∫ ti

ti−1

E[∥(I − S(ti − s))σs Q
1
2 ∥op∥Q

1
2 σ ∗

s ∥HS]

+ M(∆n)E[∥σs Q
1
2 ∥HS∥Q

1
2 σ ∗

s (I − S(ti − s)∗)∥op]ds

+ sup
t∈[0,T ]

∫ t

tn
E[∥σs Q

1
2 ∥

2
HS]ds

≤ (1 + M(∆n))

(∫ T

0
sup

t≤∆n

E
[(I − S(t))σs Q

1
2

2

op

]
ds

) 1
2 (∫ T

0
E
[σs Q

1
2

2

HS

]
ds
) 1

2

+ sup
t∈[0,T ]

E

[(∫ t

tn
∥σs Q

1
2 ∥

2
HSds

)2
] 1

2

≤ (1 + M(∆n)) bn(T )C(T )
1
4 + an(T )2.

This completes the proof. □

5.1.4. Proof of Theorem 3.4

Proof of Theorem 3.4. As σ and α are locally square integrable, we can for all m ∈ N define
the stopping time

τm := inf
{

t ∈ [0, T ] :

∫ T (
∥αs∥

2
+

σs Q
1
2

2
)

ds > m
}
.

0 HS
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Define with the notations σ (m)
t := σt 1(0,τm ](t) and α(m)

t := αt 1(0,τm ](t), such that

Y (m)
t :=S(t)Y0 +

∫ min(t,τm )

0
S(t − s)αsds +

∫ min(t,τm )

0
S(t − s)σsdWs

=S(t)Y0 +

∫ t

0
S(t − s)α(m)

s ds +

∫ t

0
S(t − s)σ (m)

s dWs,

here the last equality holds almost surely for all t ∈ [0, T ] (c.f. Lemma 2.3.9 in [34]). We
urther define

Zn
m := sup

0≤s≤t


⌊s/∆n⌋∑

i=1

(∆̃i
nY (m))⊗2

−

∫ s

0
σ (m)

u Qσ (m)∗
u du


HS

,

Zn
:= sup

0≤s≤t


⌊s/∆n⌋∑

i=1

(∆̃i
nY )⊗2

−

∫ s

0
σu Qσ ∗

u du


HS

.

Since α(m) and σ (m) satisfy Assumption 1 and thus, the conditions of Theorem 3.2, we obtain
hat for all m ∈ N and ϵ > 0

lim
n→∞

P[Zn
m > ϵ] = 0. (47)

e have Zn
m = Zn on Ωm := {τm ≥ t} and hence

P[Zn > ϵ] =

∫
Ωm

1(Zn > ϵ)dP +

∫
Ωc

m

1(Zn > ϵ)dP

=

∫
Ωm

1(Zn
m > ϵ)dP +

∫
Ωc

m

1(Zn > ϵ)dP

≤ P[Zn
m > ϵ] + P[Ω c

m],

hich holds for all n,m ∈ N. Now, by virtue of (47) we obtain for all m ∈ N that

lim sup
n→∞

P[Zn > ϵ] ≤ P[Ω c
m].

s Ωm ↑ Ω (due to the local integrability of drift and volatility) and by the continuity of P
rom below, P[Ω c

m] converges to 0 as m → ∞ and therefore

lim
n→∞

P[Zn > ϵ] = lim sup
n→∞

P[Zn > ϵ] = 0. □

.2. Proof of Theorem 4.6

roof of Theorem 4.6. Since for all h ∈ Hβ one has |h(0)| ≤ ∥h∥β , we have for ∥h∥β = 1
hat

∥(I − S(x))σr Q
1
2 h∥β ≤∥(I − S(x)) fr∥β +

(I − S(x))
∫

∞

0
qr (·, z)h′(z)dz


β

=(1) + (2).
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H

N

The first summand can be estimated as follows: By the mean value theorem, there is a
ζ ∈ (0, 1), such that for x < 1 we have

(1) ≤

(
| fr (x)|2 + 2

∫
∞

0
((1 − e

β
2 x ) f ′

r (y + x))2eβydy

+2
∫

∞

0
(e

β
2 (x+y) f ′

r (y + x) − e
β
2 y f ′

r (y))2dy
) 1

2

≤ (| f ′

r (ζ )|2x2
+ 2∥S(x) fr∥

2
β(

2e
β
2

β
)2x2

+ 2x2γ
∥L1

r ∥
2
L2(R+))

1
2

≤xγ (| f ′

r (ζ )| +
√

8(
e
β+1

2

β
)∥ fr∥β +

√
2∥L1

r ∥L2(R+)). (48)

ere we used in the second inequality fr (0) = 0 and that L1 is the Hölder constant of e
β·

2 f ′(·).
In the third inequality we used the subadditivity of the squareroot and that the semigroup is
quasi-contractive and satisfies ∥S(x)∥op < e1

= e for x ≤ 1 (c.f. [11, Lemma 3.5]). We can
show, using the Hölder inequality, for all h ∈ Hβ such that ∥h∥β = 1, that for some ζ ′

∈ (0, 1)

(2) ≤

⏐⏐⏐⏐∫ ∞

0
qr (x, z)h′(z)dz

⏐⏐⏐⏐
+

(∫
∞

0

[
∂y

∫
∞

0
(qr (y + x, z) − qr (y, z))h′(z)dz

]2

eβydy

) 1
2

=

⏐⏐⏐⏐∫ x

0

∫
∞

0
pr (y, z)e

β
2 (z−y)h′(z)dzdy

⏐⏐⏐⏐
+

(∫
∞

0

[∫
∞

0

(
e−

β
2 x pr (y + x, z) − pr (y, z)

)
e
β
2 (z−y)h′(z)dz

]2

eβydy

) 1
2

=

(∫ x

0

∫
∞

0
eβ(z−y)h′(z)2dzdy

) 1
2
(∫ x

0

∫
∞

0
pr (y, z)2dzdy

) 1
2

+

(∫
∞

0

[∫
∞

0
(e−

β
2 x pr (y + x, z) − pr (y, z))e

β
2 zh′(z)dz

]2

dy

) 1
2

≤

(
x
∫

∞

0
eβzh′(z)2dz

) 1
2
∥pr (·, ·)∥L2(R2

+
)

+

(∫
∞

0

∫
∞

0
(e−

β
2 x pr (y + x, z) − pr (y, z))2dz∥h∥

2
βdy

) 1
2

≤x
1
2 ∥pr∥L2(R2

+
) +

(∫
∞

0

∫
∞

0
(e−

β
2 x pr (y + x, z) − pr (y, z))2dzdy

) 1
2
.

ow we can estimate, for x < 1, using the triangle inequality

(2) ≤x
1
2 ∥pr∥L2(R2

+
) +

(∫
∞

0

∫
∞

0
(e−

β
2 x (pr (y + x, z) − pr (y, z)))2dzdy

) 1
2

+

(∫
∞

0

∫
∞

0
(e−

β
2 x

− 1)2 pr (y, z)2dxdz
) 1

2

≤x
1
2 ∥p ∥ 2 + xγ ∥L2

∥ 2 + |e−
β
2 x

− 1|∥p ∥ 2
r L2(R
+

) r L2(R
+

) r L2(R
+

)
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C

N

T

6

o
t
l
n

o
t
d
i
i
a
e
f
s
a
i

e
R
s
a

≤

(
x

1
2 ∥pr∥L2(R2

+
) + xγ ∥L2

r ∥L2(R2
+

) +
β

2
x∥pr∥L2(R2

+
)

)
≤xmin(γ, 1

2 )(∥L2
r ∥L2(R2

+
) + (1 +

β

2
)∥pr∥L2(R2

+
)). (49)

ombining (48) and (49), we obtain, for ∥h∥β = 1,

∥(I − S(x))σr Q
1
2 h∥β

≤ xmin(γ, 1
2 )

[
| f ′

r (ζ )| +
√

8(
e
β+1

2

β
)∥ fr∥β +

√
2∥L1

r ∥L2(R+)

+∥L2
r ∥L2(R2

+
) + (1 +

β

2
)∥pr∥L2(R2

+
)

]
.

ow we can conclude that

bn(T )2
≤

∫ T

0
E[ sup

x∈[0,∆n ]
sup

∥h∥β=1
∥(I − S(x))σr Q

1
2 h∥

2
β]dr

≤ x2 min(γ, 1
2 )
∫ T

0
E

[(
| f ′

r (ζ )| +
√

8(
e
β+1

2

β
)∥ fr∥β +

√
2∥L1

r ∥L2(R+)

+∥L2
r ∥L2(R2

+
) + (1 +

β

2
)∥pr∥L2(R2

+
)

)2
]

dr.

his concludes the proof. □

. Discussion and outlook

Our paper develops a new asymptotic theory for high-frequency estimation of the volatility
f infinite-dimensional stochastic evolution equations in an operator setting. We have defined
he so-called semigroup-adjusted realised covariation (SARCV) and derived a weak law of
arge numbers based on uniform convergence in probability with respect to the Hilbert–Schmidt
orm. Moreover, we have presented various examples where our new method is applicable.

Many articles on (high-frequency) estimation for stochastic partial differential equations rely
n the so-called spectral approach and assume therefore the applicability of spectral theorems
o the generator A (cf. the survey article [19]). This makes it difficult to apply these results on
ifferential operators that do not fall into the symmetric and positive definite scheme, as for
nstance A =

d
dx in the space of forward curves presented in Section 4.1.3, a case of relevance

n financial applications that is included in our framework. Moreover, a lot of the related work
ssumes the volatility as a parameter of estimation to be real-valued (c.f. the setting in [19]). An
xception is the spatio-temporal volatility estimation in the recent paper by [17] (see also [18]
or limit laws for the power variation of fractional stochastic parabolic equations). Here, the
tochastic integrals are considered in the sense of [45] and the generator is the Laplacian. In our
nalysis, we operate in the general Hilbert space framework in the sense of [25] for stochastic
ntegration and semigroups.

In our framework, we work with high-frequent observations of Hilbert-space valued random
lements, hence we have observations, which are discrete in time but not necessarily in space.
ecent research on inference for parabolic stochastic partial differential considered observation

chemes which allow for discreteness in time and space, cf. [15,17,18,20]. However, as our
pproach falls conveniently into the realm of functional data analysis, we might reconstruct
265
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data in several cases corresponding to well-known techniques for interpolation or smoothing.
Indeed, in practice, a typical situation is that the Hilbert space consists of real-valued functions
(curves) on Rd (or some subspace thereof), but we only have access to discrete observations of
the curves. We may have data for Yti (x j ) at locations x j , j = 1, . . . ,m, or possibly some
ggregation of these (or, in more generality, a finite set of linear functionals of Yti ). For
xample, in commodity forward markets, we have only a finite number of forward contracts
raded at all times, or, like in power forward markets, we have contracts with a delivery period
see e.g. [13]) and hence observations of the average of Yti over intervals on R+. In other
pplications, like observations of temperature and wind fields in space and time, we may have
ccessible measurements at geographical locations where meteorological stations are situated,
r, from atmospheric reanalysis where we have observations in grid cells regularly distributed in
pace. From such discrete observations, one must recover the Hilbert-space elements Yti . This
s a fundamental issue in functional data analysis, and several smoothing techniques have been
uggested and studied. We refer to [42] for an extensive discussion of this. However, smoothing
ntroduces another layer of approximation, as we do not recover Yti but some approximate
ersion Y m

ti , where the superscript m indicates that we have smoothed based on the m available
observations. The construction of a curve from discrete observations is not a unique operation
as this is an inverse problem. In future research, it will be interesting to extend our theory to
the case when (spatial) smoothing has been applied to the discrete observations.

In addition, there could be cases, in which we do not have knowledge about a closed
form of the semigroup, but rather the generator A. One then has to recover the semigroup
adjusted increment in some way. Appealing to finite difference schemes like the implicit Euler
method could be one way, which nevertheless, approximates the semigroup just strongly.
Mathematically, this opens up an interesting numerical problem, which is left for future
research.

Interestingly, when we compare our work to recent developments on high-frequency estima-
tion for volatility modulated Gaussian processes in finite dimensions, see e.g. [41] for a survey,
it appears that a scaling factor is needed in the realised (co)variation so that an asymptotic
theory for Volterra processes can be derived. This scaling factor is given by the variogram of the
associated so-called Gaussian core process, and depends on the corresponding kernel function.
However, in our case, due to the semigroup property, we are in a better situation than for general
Volterra equations, since we actually have (or can reconstruct) the data in order to compute
the semigroup-adjusted increments. We can then develop our analysis based on extending the
techniques and ideas that are used in the semimartingale case. In this way, the estimator
becomes independent of further assumptions on the remaining parameters of the equation.
However, the price to pay for this universality is that the convergence speed cannot generally
be determined. The semigroup-adjustment of the increments effectively forces the estimator to
converge at most at the same rate as the semigroup converges to the identity on the range of
the volatility as t goes to 0. At first glance, it seems that the strong continuity of the semigroup
suggests that we can obtain convergence just with respect to the strong topology. This would
make it significantly harder to apply methods from functional data analysis, even for constant
volatility processes. Fortunately, the compactness of the operators σt Q

1
2 for t ∈ [0, T ] comes to

he rescue and enables us to prove that convergence holds with respect to the Hilbert–Schmidt
orm. In this case, we obtain reasonable convergence rates for the estimator.
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