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Abstract
A brief review is given of the effect of porosity on the Poisson ratio of a porous material. In contrast to elastic moduli such
as K, G, or E, which always decrease with the addition of pores into a matrix, the Poisson ratio n may increase, decrease, or
remain the same, depending on the shape of the pores, and on the Poisson ratio of the matrix phase, no. In general, for a
given pore shape, there is a unique critical Poisson ratio, nc, such that the addition of pores into the matrix will cause the
Poisson ratio to increase if no\nc, decrease if no . nc, and remain unchanged if no = nc. The critical Poisson ratio for sphe-
rical pores is 0.2, for prolate spheroidal pores is close to 0.2, and tends toward zero for thin cracks. For two-dimensional
materials, nc = 1=3 for circular pores, 0.306 for squares, 0.227 for equilateral triangles, and again approaches 0 for thin
cracks. The presence of a ‘‘trapped’’ fluid in the pore space tends to cause nc to increase, and for the range of parameters
that may occur in rocks or concrete, this increase is more pronounced for thin crack-like pores than for equi-dimensional
pores. Measurements of the Poisson ratio therefore may allow insight into pore geometry and pore fluid. If the matrix phase
is strongly auxetic, small amounts of porosity will generally not cause the Poisson ratio to become positive.
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1. Introduction

The problem of estimating the effective elastic moduli of a two-phase material is one of the most impor-
tant and well-studied topics in the mechanics of materials. The specific case of porous materials is of
great relevance to the study of geological media (Mavko et al. [1]), ceramics (Rice [2]), and cementitious
materials (Lutz et al. [3], Mehta et al. [4]). An increase in porosity will of course cause the elastic moduli,
such as K, G, and E, to decrease, at a rate that mainly depends on the pore geometry. But the influence
of porosity on the effective Poisson ratio is more subtle, and in fact the Poisson ratio may increase or
decrease with the addition of porosity, depending on the pore geometry and the Poisson ratio of the
matrix phase.
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The topic of the effect of porosity on the Poisson ratio has received a fair amount of study over the
past three decades. Among the papers that are devoted to this topic are Zimmerman [5], Dunn et al. [6],
Brantut et al. [7], and Uhlı́řová et al. [8]. The present paper aims to present a brief review of the effect of
porosity on the Poisson ratio, with a focus on discussing the topic within a unified framework. In addi-
tion to reviewing some of the main known results, several new results will be presented, particularly with
regard to two-dimensional materials, materials having an auxetic matrix phase, and materials containing
‘‘trapped’’ fluids in their pore space.

2. General theory of the effective Poisson ratio

This paper will consider the situation in which the pores in a given porous material each have the same
shape. In order to focus only on macroscopically isotropic materials, it will be further assumed that the
orientation of the pores is random. To fully investigate the effect that these pores have on the macro-
scopic elastic moduli, and in particular on the Poisson ratio, the porosity will be allowed to vary.

It is obvious and ‘‘trivial’’ (although not easy to prove; see Gol’dshtein et al. [9]) that, for a given pore
shape, both the bulk (K) and shear (G) moduli will be monotonically decreasing functions of porosity.
The same will of course then be true for the other elastic moduli, such as Young’s modulus (E), and the
Lamé modulus (l). Since 3K and 2G are the eigenvalues of the elasticity tensor (Gurtin [10]), K and G
play a special role, particularly with regard to upper and lower bounds and effective medium theories,
and so the following discussion will generally refer to K and G, rather than to E or l.

For small values of the porosity, the effective elastic moduli of a macroscopically isotropic material
containing a dilute dispersion of randomly oriented pores of a given shape are given by (David et al. [11]):

K

Ko

’
1

1 + Pf
’1� Pf ð1Þ

G

Go

’
1

1 + Qf
’1� Qf ð2Þ

where f is the porosity, subscript o denotes the non-porous matrix material, and P and Q are the bulk
and shear pore compliances, respectively. As pointed out by Kachanov et al. [12], the expression
1=(1 + Pf) in some cases has a greater range of validity than the linearized form 1� Pf, and similarly
for the shear modulus, but for the present purposes the latter forms are more convenient. In general,
the two pore compliance factors depend on pore shape, and on the Poisson ratio of the matrix material.
For ellipsoidal or spheroidal pores, explicit expressions for P and Q are known, and are related to cer-
tain contractions of the Eshelby–Wu tensor (Wu [13]). Equations (1) and (2) are fully equivalent to the
H tensor formalism (Kachanov et al. [14]; Sevostianov et al. [15]). Expressions for P and Q can be found
in numerous books and papers (Wu [13]; Kachanov et al. [14]; Mavko et al. [1]; David et al. [16]), and
so will not be repeated here, except for some simple special cases.

It follows from equations (1) and (2), and the identity n = (3K � 2G)=(6K + 2G), that for small por-
osities, the effective Poisson ratio is given by

n’no �
(1 + no)(1� 2no)

3
½P(no)� Q(no)�f ð3Þ

As the pre-factor (1 + no)(1� 2no)=3 is inherently positive, the behavior of Poisson’s ratio therefore
depends on the relative magnitudes of P and Q. For spheroidal pores, it is always the case that P . Q as
no approaches 0.5, and P\Q as no approaches 21. Moreover, both P and Q are monotonic functions
of no. Hence, there is always exactly one critical value of no, which can be denoted by nc, for which
P = Q. Therefore: if no\nc, the effective Poisson ratio will increase with porosity; if no . nc, the effective
Poisson ratio will decrease with porosity; and if no = nc, the effective Poisson ratio will remain
unchanged by the addition of pores into the matrix.

The above general statements are known to be true for ellipsoidal or spheroidal pores. For three-
dimensional pores of other shapes, exact analytical expressions for P and Q are not known. However,
the numerical results of Roberts et al. [17] and Uhlı́řová et al. [8] for materials containing concave pores
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formed by the interstices between contacting solid spheres, also indicate the existence of a single ‘‘criti-
cal’’ value of the matrix Poisson ratio.

3. Critical value of the Poisson ratio for (dry) materials containing spheroidal pores

The expressions for P and Q for the general case of ellipsoidal or spheroidal pores are quite cumber-
some (Kachanov et al. [14]; Mavko et al. [1]; David et al. [11]), and in general the critical point nc at
which P = Q can only be computed numerically. However, for the three special cases of spheres, cylin-
ders, and thin cracks, the expressions for P and Q are relatively simple, and nc can be found by simple
algebra.

For spherical pores, expressions for P and Q were first derived by Dewey [18], although they can also
be found from the general expressions for spheroids, by taking the limit as the aspect ratio goes to 1
(Berryman [19]). The critical Poisson ratio, is then found by setting P = Q:

P =
3(1� no)

2(1� 2no)
, Q =

15(1� no)

7� 5no

! nc = 0:2: ð4Þ

For cylindrical pores, P and Q can again be found from the general expressions for spheroids, by tak-
ing the limit as the aspect ratio goes to infinity (Berryman [19]):

P =
5� 4no

3(1� 2no)
, Q =

8(5� 3no)

15
! nc =

7�
ffiffiffiffiffi
29
p

8
’0:202: ð5Þ

For thin crack-like pores, modeled as thin oblate spheroids of vanishingly small aspect ratio a, P and
Q are essentially given by the results of Sneddon [20] and Segedin [21], respectively, and can also be
found from the general expressions for spheroids, by extracting the singular term in each expression as
the aspect ratio goes to zero (Berryman [19]):

P =
4(1� n2

o)

3pa (1� 2no)
, Q =

8(1� no)(5� no)

15pa (2� no)
! nc = 0: ð6Þ

Brantut et al. [7] computed the first three non-zero terms in the Taylor series for nc as a function of a,
and found that the leading non-zero term is nc ’ 0:861a.

Figure 1. The critical Poisson ratio for spheroidal pores, over the entire range of aspect ratios, from thin cracks to needle-like
cylinders (after Dunn et al. [6]). The exact results are plotted as a solid line; the approximate expression given by equation (7) is
plotted as a dashed line.
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The critical Poisson ratio nc is plotted in Figure 1 for spheroidal pores over the entire range of aspect
ratios, from thin oblate cracks to needle-like prolate cylinders (see also Dunn et al. [6]). The variation of
nc with a in the oblate range is somewhat unremarkable, as the curve varies smoothly and monotoni-
cally from 0, as a! 0, to 0.2, as a! 1. However, the behavior in the prolate range is non-monotonic,
and certainly would not be intuitively expected. The critical Poisson ratio has a local maximum at a = 1,
where nc = 0:2. The curve then dips down to about 0.195 when a = 3, rises gradually above 0.2 when a
reaches about 10, and finally reaches its maximum value of 0.202 as a becomes infinite.

David et al. [16] found that this entire curve could be approximated reasonably well by the simple
function nc’0:2(1� e�5a). Although this expression is not asymptotically exact in any limit, it provides
a surprisingly good fit over the entire range of aspect ratios. A different approximation, which reduces
to the correct asymptotic result nc’0:861a for small aspect ratios, and approaches the correct limit of
0.202 for large aspect ratios, is the following slight variation of the expression originally proposed by
David and Zimmerman (see Figure 1):

nc’0:202(1� e�4:26a): ð7Þ

Needless to say, neither of these approximate expressions is capable of capturing the subtle non-
monotonic behavior that occurs in the prolate spheroidal range.

4. Evolution of the effective Poisson ratio with increasing porosity

As shown by equation (3), small amounts of porosity will cause the effective Poisson ratio to move
toward the critical Poisson ratio at a rate that is linear in the porosity. However, predicting the rate at
which the effective Poisson ratio approaches nc as the porosity increases further would require the use of
an effective medium theorem to extend relations such as equations (1) and (2) to finite porosities. Two of
the more widely used such effective medium theories, both of which have some rational basis, and which
have been shown to be reasonably accurate, are the differential effective medium scheme (McLaughlin
[22]; Norris [23]; Zimmerman [24]) and the Mori–Tanaka scheme (Mori et al. [25]; Benveniste [26]).

According to the differential scheme, pores are introduced into the matrix incrementally, and the new
effective moduli are computed at each step using the dilute-concentration approximations given by equa-
tions (1) and (2). In the limit, as the incremental addition of new porosity becomes infinitesimal, this
thought experiment leads to a pair of coupled ordinary differential equations for K and G:

(1� f)

K

dK

df
= � P(n),

(1� f)

G

dG

df
= � Q(n), ð8Þ

which must be solved subject to the initial conditions K(f = 0) = Ko and G(f = 0) = Go. In these two
equations, P(n) and Q(n) must be evaluated at the local value of n that varies with porosity, and not at
the initial value no.

From the identity n = (3K � 2G)=(6K + 2G), the following ordinary differential equation for the
evolution of Poisson’s ratio with porosity can be derived:

(1� f)
dn

df
=

(1 + n)(1� 2n)

3
½Q(n)� P(n)�: ð9Þ

In general, P(n) will contain a factor (1� 2n) in its denominator, whereas Q(n) will not contain an
analogous factor (1 + n); see, for example, equations (4) to (6). Hence, the right-hand side of equation
(9) will vanish only at n = � 1 and at n = nc, the latter of which is defined as the unique point at which
P(n) = Q(n). As mentioned above, it is known, at least for the family of spheroidal pores, that
P(n)\Q(n) as n approaches 21. Hence, n = � 1 will always be an unstable critical point of equation
(9), and so the effective Poisson ratio will never converge toward 21 as the porosity increases. On the
other hand, since P(n) . Q(n) for n . nc, and P(n)\Q(n) for n\nc, the value n = nc will always be a sta-
ble critical point of differential equation (9).
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Specifically, in the neighborhood of n = nc, the term Q(n)� P(n) will be of the form �c(n � nc), where
c is a positive constant. Setting t = � ln (1� f), equation (9) takes the following form near the critical
point:

dn

dt
= � c(n � nc), where c . 0: ð10Þ

In analogy with the theory of first-order dynamical systems, nc is a stable critical point (Strogatz [27]),
and consequently, n will approach nc as t ! ‘, which is to say, n will approach nc as f! 1. Of course,
it is not reasonable to expect any effective medium theory to be very accurate in this high-porosity limit,
if only because it is difficult to imagine the porosity approaching 1 if the pore space consists of isolated
pores of the same shape. Nevertheless, the above result does indicate the expected trend.

For the specific case of a material containing spherical pores, equation (9) takes the form (David et al.
[16]):

(1� f)
dn

df
=

3(1 + n)(1� n)(1� 5n)

2(7� 5n)
: ð11Þ

This equation can be integrated analytically to give an equation for the porosity as a function of the
effective Poisson ratio (Zimmerman [28]; David et al. [16]), but the resulting expression is complicated
and not very informative, and will not be repeated here. The results are more instructive in graphical
form (Figure 2). Roughly speaking, when the Poisson ratio of the matrix is non-negative, the Poisson
ratio of the porous material varies, more or less linearly, from the matrix value no to the critical value
nc, as the porosity increases from 0 to 1.

Since nc = 0:2 for spherical pores, the constant c that appears in equation (10) can be shown to equal
1.2. Approximating equation (11) by equation (10), and integrating, leads to the following expression,
n = 0:2 + (no � 0:2)(1� f)1:2. This approximate expression matches the exact solution to equation (11)
quite closely when no ø 0, but is much easier to interpret.

For materials containing prolate spheroidal pores, or oblate spheroidal pores having aspect ratios
not too close to 0, the Poisson ratio trajectories predicted by the differential scheme are qualitatively
similar to the case of spherical pores, in that n approaches no at a nearly linear rate, and reaches nc as
f! 1 (see David et al. [16]). However, as pointed out by Kachanov et al. [12], the porosity is not a con-
venient parameter to use when discussing the effective elastic parameters for materials containing cracks
of very small aspect ratio. This can be seen by the following simple considerations. The volume of an

Figure 2. Predicted evolution of the effective Poisson ratio for a material containing spherical pores, as a function of porosity,
according to the differential and Mori–Tanaka effective medium theories.
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oblate spheroidal pore having semi-major axes a, and semi-minor axis aa, is 4pa3a=3. It follows that
the porosity is given by f = 4npa3a=3, where n is the number of pores per unit bulk volume. But for
thin oblate pores, the pore compliances P and Q each contain a factor of a in the denominator, as seen
in equation (6). The products Pf and Qf will therefore each contain a factor na3, as well as dimension-
less factors that depend only on the Poisson ratio, but will not depend explicitly on a or f. Hence, the
natural parameter to use to quantify the effect of cracks on the elastic moduli is actually the ‘‘crack den-
sity parameter’’, defined as G = na3 (Walsh [29]; Zimmerman [28]). Expressions for the elastic moduli in
terms of G retain their validity even in the limit as a! 0.

The evolution of the effective Poisson ratio of a cracked body, as a function of the crack density
parameter, is shown in Figure 3. It should be noted that, unlike the porosity, the crack density is not
restricted to being less than 1. Nevertheless, values of G . 1 are probably of limited practical interest.
The percolation threshold of disk-like cracks is 0.244 (Ebigbo et al. [30]), and the pore space of cracked
materials having crack densities much greater than this will generally be highly interconnected, and will
not consist of isolated cracks.

Another widely used effective medium theory is the Mori–Tanaka scheme (Benveniste [26]). The key
idea behind this scheme is based on the fact that if a porous body is subjected to a uniform stress s on
its outer boundary, the mean stress in the matrix phase will be s=(1� f). The usual energy considera-
tions that are invoked in effective medium calculations then lead to the following expressions for the
effective bulk and shear moduli:

K

Ko

=
1� f

(1� f) + P(no)f
,

G

Go

=
1� f

(1� f) + Q(no)f
: ð12Þ

Explicit expressions for the predicted Poisson ratio, as a function of porosity, have been given by
Dunn et al. [6] and Uhlı́řová et al. [8]. The behavior of n in the general case can easily be understood by
noting that since n is a unique function of the ratio K=G, the Poisson ratio will not change with porosity
if and only if G and K change by the same relative amounts as f increases. This only occurs if
P(no) = Q(no), which defines the critical value, nc. Moreover, since n is an increasing function of K=G,
it follows from equation (12) that n increases with f if P(no)\Q(no), decreases with f if P(no) . Q(no),
and does not vary with f if P(no) = Q(no). This is of course qualitatively the same behavior as is pre-
dicted by the differential scheme. However, according to the Mori–Tanaka scheme, the effective
Poisson ratio does not reach nc as f! 1. Instead (David et al. [16]),

Figure 3. Predicted evolution of the effective Poisson ratio for a material containing thin circular cracks, as a function of the crack
density parameter, according to the differential and Mori–Tanaka effective medium theories.
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n(f! 1) =
Q(no)(1 + no)� P(no)(1� 2no)

2Q(no)(1 + no) + P(no)(1� 2no)
: ð13Þ

This expression is not easy to interpret, and does not readily show that the effective Poisson ratio does
not reach the critical value. For the three special cases of spheres, cylinders, and thin cracks, the asymp-
totic values of the effective Poisson ratio, as predicted by the Mori–Tanaka effective medium scheme,
are (for spheres: Zimmerman [5]; for cylinders and cracks: Dunn et al. [6]):

spheres : n(f! 1) =
1 + 5no

9 + 5no

, ð14Þ

cylinders : n(f! 1) =
5 + 12no + 8n2

o

35 + 4no � 16n2
o

, ð15Þ

cracks : n(G ! ‘) =
no

10� 3no

: ð16Þ

Since all reasonable effective medium theories agree to first-order in porosity, the trajectory of the
Poisson ratio as predicted by the Mori–Tanaka scheme (see Figures 2 and 3) initially follows the same
slope as for the differential scheme, i.e., as given by equation (3). However, the predicted rate of change
becomes less severe, as compared with the differential scheme, as the porosity (or crack density)
increases, and the Poisson ratio never reaches the critical value, nc.

5. Influence of fluid saturation on the effective Poisson ratio

The previous discussion focused on dry porous materials that contain no pore fluids in their pore space.
Particularly with regard to porous rocks, there is great interest in understanding the effect of pore shape,
porosity, and pore fluid compressibility, on Poisson’s ratio. In seismic exploration, the ratio of compres-
sional wave speed to shear wave speed is often used to discriminate between different rock types, and to
infer information regarding pore fluid saturation (Brantut et al. [7]; Mavko et al. [1]). The ratio Vp=Vs is
essentially a measure of the effective Poisson ratio, since this ratio is exactly related, in a one-to-one and
monotonic manner, to the Poisson ratio (Jaeger et al. [31]), as follows:

Vp

Vs

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1� n)

1� 2n

r
: ð17Þ

Gassmann [32] derived an exact (albeit implicit) expression for the ‘‘undrained’’ bulk modulus, Ku, of
a fluid-saturated rock in terms of the drained/dry bulk modulus, Kd , the bulk modulus of the fluid, Kf ,
the bulk modulus of the solid phase, Ko, and the porosity, f:

Ku

Ko � Ku

=
Kd

Ko � Kd

+
1

f

Kf

Ko � Kf

: ð18Þ

This relation is valid for any value of the porosity, regardless of pore shape, although its derivation
implicitly assumes that the pores are all interconnected. (The seeming contradiction of assuming a com-
pletely interconnected pore space, but using P and Q factors derived for discrete, isolated pores, is ubi-
quitous in rock physics, and its validity will be assumed in the present discussion.) Furthermore,
according to Gassmann’s theory, pore fluids will have no effect on the shear modulus, and so the shear
modulus of the rock under fluid-saturated conditions will be the same as under dry conditions. This
result is also exact for a material whose pores are all interconnected.

In the limit of small values of the porosity, and using the formalism of equations (1) and (2) for the
dry effective moduli, Gassmann’s results can be expressed as

K(f)’Ko 1� P(no)

1 + jP(no)
f

� �
, G(f)’Go 1� Q(no)f½ �, where j =

Kf

Ko � Kf

: ð19Þ
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Hence, the mathematical consequence of having pore fluid ‘‘trapped’’ in the pore space is to replace
P(no) with P(no)=½1+ jP(no)�. In a qualitative sense, most of the previous discussion continues to apply,
in that there is always a unique critical value of the Poisson ratio, which initially serves as an ‘‘attractor’’
for the effective Poisson ratio. For a given pore shape, this critical Poisson ratio will always be greater
than for the case of dry pores. However, as porosity increases, the effective Poisson ratio veers away
from the critical Poisson ratio, and in fact approaches 0.5, which is the Poisson ratio of the pore fluid;
see Brantut et al. [7] for a detailed discussion of this phenomenon.

The critical Poisson ratio for a fluid-saturated rock is therefore found by solving the equation
P(no)=½1+ jP(no)�= Q(no). For a material containing spherical pores, the following exact expression
can be obtained:

nc(undrained) = 0:2
1 + 5j

1 + j

� �
: ð20Þ

For fluid-saturated rocks, the parameter j is usually small, in which case this expression reduces to
the expression found by Brantut et al. [7], which was a first-order expansion in j:

nc(undrained) = 0:2 + 0:8j: ð21Þ

However, j is not necessarily small for some soft biological materials, and so the more general expres-
sion (20) may be useful for those cases.

For materials containing cracks or needle-like pores, and arbitrary values of the parameter j, the solu-
tion to the equation P(no)=½1+ jP(no)�= Q(no) can only be obtained as a very awkward quadratic equa-
tion that is not easy to interpret. For these pore shapes, the following approximate expressions that are
first-order in j are more instructive (Brantut et al. [7]):

cylinders : nc(undrained) = 0:202 + 0:760j, ð22Þ

cracks : nc(undrained) = 0:157j=a: ð23Þ

This latter expression assumes that, although both j and a are small, the condition a\\j, which is
the situation of most relevance to fluid-saturated rocks, is satisfied. Note that under the condition
a\\j, the critical value of Poisson’s ratio for a fluid-saturated cracked material will be quite large,
and may in fact violate the constraint n ł 0:5. This merely indicates that the initial slope of the curve of
n as a function of f will be large; in all cases, the asymptotic value of n at high porosities will be 0.5,
rather than nc.

6. Effective Poisson ratio of two-dimensional materials

A similar analysis can be given for ‘‘two-dimensional’’ materials. Consider the case of plane strain, in
which the displacement is zero in one direction, which can be denoted as the z-direction. The material is
then assumed to be permeated with long prismatic pores that are aligned parallel to the z-axis, so that
each plane normal to the z-axis has exactly the same microstructure. These pores may have any shape
in the x-y plane. In the subsequent discussion, the term ‘‘pore shape’’ will refer to the shape of the pore
in the x-y plane.

Before discussing the behavior of the Poisson ratio in the two-dimensional case, it is worthwhile to
review the relationships between the ‘‘2D’’ and ‘‘3D’’ elastic moduli. Hooke’s law for plane strain takes
the form (Jaeger et al. [31])

exx =
(1� n2)

E
txx �

n

1� n
tyy

h i
, exy =

(1 + n)

E
txy =

1

2G
txy, etc: ð24Þ

If the ‘‘2D’’ Young’s modulus is defined as E2D = E=(1� n2), the ‘‘2D’’ shear modulus is defined as
G2D = G, and the ‘‘2D’’ Poisson ratio is defined as n2D = n=(1� n), the plane strain version of Hooke’s
law can be written in a form that resembles the 3D version, i.e.,
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exx =
1

E2D

txx � n2Dtyy

� �
, exy =

1

2G2D

txy, etc: ð25Þ

The advantage of writing the equations in this form is that the 2D Young’s modulus and 2D Poisson
ratio now have the same geometrical interpretation as in 3D, i.e., the Poisson ratio is the negative of the
ratio of the transverse strain to axial strain under uniaxial stress, etc. Note that the 2D ‘‘areal bulk mod-
ulus’’ will be given by K2D = E2D=2(1� n2D).

The case of a 2D material permeated with elliptical pores of aspect ratio a has been treated in detail
by Thorpe et al. [33], and Kachanov et al. [12]. After correcting the incorrect minus sign in the expres-
sion for Q given in equation (18) of Thorpe et al. [33], the 2D versions of P and Q can be written as

P =
(1 + a2)

a(1� n2Do)
, Q =

(1 + a)2

a(1 + n2Do)
: ð26Þ

The critical Poisson ratio, found as usual by setting P = Q, is given by (Figure 4)

n2Dc =
a

1 + a + a2
: ð27Þ

The critical Poisson ratio goes to zero for infinitely thin cracks, as in the 3D case. For thin cracks of
‘‘finite’’ aspect ratio, n2Dc’a, which is not very different to the asymptote nc’0:861a in 3D. For circu-
lar holes, n2Dc = 1=3. Unlike the 3D case, the expression for the critical Poisson ratio is sufficiently sim-
ple in form so as to render an approximate expression unnecessary.

Figure 4. The critical Poisson ratio for two-dimensional elliptical pores, over the entire range of aspect ratios, from thin cracks to
circles. Note that in contrast to Figure 1, in this graph the aspect ratio axis is linear, not logarithmic.
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Whereas analytical expressions for three-dimensional pores are available only for ellipsoids and spher-
oids, two-dimensional pores of essentially any shape can be analyzed using conformal mapping and the
Muskhelishvili–Kolosov displacement potentials. These methods have been used to study polygonal
pores (Jasiuk et al. [34]; Kachanov et al. [12]; Jasiuk [35]) and cusp-shaped pores that resemble the inter-
stices between circular ‘‘grains’’ (Zimmerman [36]; Kachanov et al. [12]). Table 1 shows some values of P
and Q, along with the computed critical Poisson ratio, for a few different two-dimensional pore shapes,
such as circles, taken from Thorpe et al. [33], and squares, triangles, and one cusp-shaped pore, taken
from Ekneligoda et al. [37, 38]. The expressions for the square and the equilateral triangle were obtained
by sequentially including additional terms in the Schwarz–Christoffel mapping function, and extrapolat-
ing the results to 1=N2 ! 0, where N is the number of terms in the mapping function. The results of
Ekneligoda et al. [37, 38], which were expressed in terms of the 3D elastic moduli, have been converted
to the 2D moduli in Table 1. When expressed in terms of the 2D moduli, these results apply equally well
to plane strain or plane stress.

7. Porous materials having an auxetic matrix phase

Auxetic materials are isotropic materials that have a negative Poisson ratio (Yang et al. [39]). Most
known auxetic materials are highly porous materials with foam-like structures; non-porous auxetic
materials are very rare (Dagdelen et al. [40]). None of the theories discussed above, which were based
on the conceptual model of a solid phase permeated with discrete, non-intersecting pores of a given
shape, predict that a material with a non-auxetic matrix phase will become auxetic due to the addition
of pores, even at very high porosities. In fact, auxetic foam-like materials require special structural fea-
tures, such as re-entrant angles, etc., (Uhlı́řová et al. [8]), that are very different geometrically to the
spheroidal shapes discussed in previous sections.

Despite the lack of solid auxetic materials to serve as a matrix phase, it may nevertheless be of interest
to examine the behavior of porous materials that have an auxetic matrix phase, for the following reason.
As pointed out by Uhlı́řová et al. [8], such materials could in principle be created by taking a highly por-
ous auxetic foam, and introducing pores into those materials that have a length scale that is much larger
than the characteristic length scale of the foam.

The ‘‘general theory’’ discussed above in Sections 2 to 4 continues to hold for such materials, particu-
larly if one accepts that the differential effective medium scheme and the Mori–Tanaka scheme provide
reasonably accurate predictions of the effective moduli. The critical Poisson ratio nc, defined by the

Table 1. Bulk (P) and shear (Q) compliance factors for several two-dimensional pores, along with the critical Poisson ratio.

Pore shape P Q n2Dc

2

1� n2Do

4

1 + n2Do
0.333

2:414
1� n2Do

4:547
1 + n2Do

0.306

3:25
1� n2Do

5:186
1 + n2Do

0.227

6
1� n2Do

8
1 + n2Do

0.143
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condition that P(no) = Q(no), will again be expected to be non-negative, so that small amounts of poros-
ity will cause an initially auxetic material to become ‘‘less auxetic’’, i.e., its Poisson ratio will increase.
However, due to the factor 1 + no that appears in equation (3), the rate of increase of n with porosity
will be low for highly auxetic materials having initial Poisson ratios close to 21. Although the differen-
tial effective medium scheme predicts that n will always eventually reach nc, this might not occur for
porosity values in the range usually observed in rocks or concrete (see Figure 5). As mentioned previ-
ously, the Mori–Tanaka theory predicts a less severe change in n than does the differential scheme.
According to either theory, small to moderate amounts of porosity will not cause an auxetic material to
become non-auxetic, unless the matrix phase is only weakly auxetic itself.

8. Summary and conclusions

This paper has presented a review of the influence of pore shape on the effective Poisson ratio of porous
materials. The intention has not been to present an exhaustive review of all previous work that has been
done on this topic, but rather to focus on discussing this topic within a unified framework. In addition
to reviewing known results, several new results have been presented, particularly with regard to the effect
of pore fluids, two-dimensional materials, and porous materials having auxetic matrices. The results can
be summarized as follows.

a) Pores of any given shape cause the bulk and shear moduli to decrease toward zero as the porosity
increases, but the trend of Poisson’s ratio depends on the pore shape.

b) For any given pore shape, increasing the porosity will drive Poisson’s ratio toward a critical value
nc that does not depend on the elastic moduli of the matrix.

c) For spheroidal pores, the critical value varies from 0 for thin cracks, to 0.2 for spheres, to 0.202
(but not monotonically!) for long needle-like pores.

d) In 2D plane strain or plane stress, the critical (2D) Poisson ratio is 0.333 for circles, 0.227 for
equilateral triangles, and 0 for thin elliptical cracks.

e) It is not yet known if any pore shapes exist that have values of nc that are appreciably higher than
those for spheres (in 3D) or circles (in 2D).

f) If the pore space contains a ‘‘trapped’’ pore fluid, as is the case for rapid processes such as seismic
wave propagation, as the porosity increases, Poisson’s ratio first approaches a critical value that

Figure 5. Predicted evolution of the effective Poisson ratio for an initially auxetic material containing spherical pores, as a function
of porosity, according to the differential and Mori–Tanaka effective medium theories.
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depends on pore shape and fluid compressibility, but then approaches 0.5 as the porosity increases
toward 1.

g) If the matrix phase is auxetic (i.e., has a negative Poisson ratio), the effective Poisson ratio ini-
tially increases toward nc at a slow rate, and will generally not become positive for the moderate
values of porosity that are typically found in rocks or cementitious materials.
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