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Abstract. This paper presents a methodology that uses site-specific topographic and cosmogenic 10Be data to
perform multi-objective model optimisation of a coupled coastal evolution and cosmogenic radionuclide produc-
tion model. Optimal parameter estimation of the coupled model minimises discrepancies between model simula-
tions and measured data to reveal the most likely history of rock coast development. This new capability allows
a time series of cliff retreat rates to be quantified for rock coast sites over millennial timescales. Without such
methods, long-term cliff retreat cannot be understood well, as historical records only cover the past∼ 150 years.
This is the first study that has (1) applied a process-based coastal evolution model to quantify long-term cliff
retreat rates for real rock coast sites and (2) coupled cosmogenic radionuclide analysis with a process-based
model. The Dakota optimisation software toolkit is used as an interface between the coupled coastal evolution
and cosmogenic radionuclide production model and optimisation libraries. This framework enables future appli-
cations of datasets associated with a range of rock coast settings to be explored. Process-based coastal evolution
models simplify erosional processes and, as a result, often have equifinality properties, for example that similar
topography develops via different evolutionary trajectories. Our results show that coupling modelled topography
with modelled 10Be concentrations can reduce equifinality in model outputs. Furthermore, our results reveal that
multi-objective optimisation is essential in limiting model equifinality caused by parameter correlation to con-
strain best-fit model results for real-world sites. Results from two UK sites indicate that the rates of cliff retreat
over millennial timescales are primarily driven by the rates of relative sea level rise. These findings provide
strong motivation for further studies that investigate the effect of past and future relative sea level rise on cliff
retreat at other rock coast sites globally.

1 Introduction

Fundamental features of a rock coast are a sea cliff and shore
platform, and the rate of cliff retreat is foremost the collec-
tive result of processes eroding the cliff face horizontally
and the shore platform vertically (Sunamura, 1992; Tren-
haile, 2008a). The ability to erode a cliff face depends fun-
damentally on the type of cliff material exposed to the de-

livery of energy to the cliff surface, usually in the form of
waves. In turn, delivery of wave energy is mediated by the
configuration of the shore platform, beach width, and wave
climate (Sunamura, 1992). Thus, the processes that effect the
weathering, erosion, and transport of shore platform, intact
cliff, failed cliff, and other beach material are an important
part of the whole process of “cliff erosion” (Coombes, 2014;
Hurst et al., 2016; Limber and Murray, 2011; Masteller et
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al., 2020; Naylor and Stephenson, 2010; Prémaillon et al.,
2018; Thompson et al., 2019). These complex and varied
processes make predicting long-term cliff erosion rates dif-
ficult. Erosional processes are governed by climate, relative
sea level (RSL), tides, and local lithology type and structure
(Kennedy et al., 2014), which further complicate the predic-
tion of large-spatial- and temporal-scale erosion rates at rock
coast sites. With climate change threatening the stability of
these coastlines through RSL rise and increased storminess
(Trenhaile, 2014), accurate long-term predictions of erosion
rates will be highly valuable in the development of scenarios
within the context of coastal management.

Understanding and quantifying the long-term trajectory
of cliff erosion is central to the development of predictive
coastal evolution models that account for a changing climate.
Current records of cliff retreat can only be observed through
historical records, which are typically over an approximately
150-year time period (Brooks and Spencer, 2010; Dornbusch
et al., 2008). This time period is monopolised by engineer-
ing and modification of coastlines, hindering observations of
their natural behaviours (Hurst et al., 2016). Furthermore, in-
frequent mass-wasting events can obscure relationships be-
tween climate and average erosion rates in short-term records
(Trenhaile, 2014). This means projections of cliff retreat de-
rived solely from short-term data records can be unreliable
(Sunamura, 2015). It is critical that cliff retreat is studied
over millennial timescales that are able to integrate changes
in RSL rise, the return period of episodic erosion events and
that precede the influence of anthropogenic modifications to
the coastline.

The contribution of cosmogenic radionuclide (CRN) anal-
ysis to the advances in rock coast science is well-known, but
further potential in its application to rock coasts is recog-
nised (Trenhaile, 2018). The quantification of rock coast evo-
lution is impeded by scarce and slow erosion indicators and a
lack of dateable deposits (Trenhaile, 2008a). However, CRN
analysis can be applied directly to the shore platform sur-
face to calculate exposure time and erosion rates (Regard et
al., 2012). Cosmic rays interact with target elements in the
upper few metres of the Earth’s surface to produce CRNs
(Gosse and Phillips, 2001). Model predictions of CRN con-
centrations across a shore platform display a characteris-
tic “humped” distribution profile across-shore (Hurst et al.,
2017), for which the magnitude of the hump is inversely pro-
portional to cliff retreat rate (Regard et al., 2012). Previous
applications of CRN measurements to cliffs and shore plat-
forms have been used to quantify cliff retreat rates (Duguet
et al., 2021; Hurst et al., 2016; Regard et al., 2012; Rogers et
al., 2012; Swirad et al., 2020), understand Quaternary-scale
shore platform exposure history (Choi et al., 2012), date ma-
jor mass-wasting events (Barlow et al., 2016; Recorbet et al.,
2010), and constrain shore platform denudation rates (Raim-
bault et al., 2018). Combining CRN analysis with a coastal
evolution model can help reveal site-specific, long-term cliff
retreat and shore platform lowering rates (Trenhaile, 2018).

A novel contribution here is the use of a morphodynamic
model of rock coast development to interpret CRN concen-
trations. Furthermore, this study is the first application of
a morphodynamic rock coast evolution model to real-world
sites in order to model past cliff retreat rates. Coupling CRN
concentrations with topography can help constrain modelled
morphodynamics and replicate real-world sites. Equally, ac-
curate morphodynamic development provided by the coastal
evolution model is needed in order to interpret CRN con-
centrations. Application of a process-based model allows for
replication of CRN production through time that corresponds
directly to rock coast profile development. In order to ap-
ply a morphodynamic model to a real rock coast site and
accurately model CRN concentrations, we need a rigorous
method of comparing model results with measured field data.
Primarily, we need to establish whether the model is capable
of replicating both the measured topography and CRN con-
centrations simultaneously to ensure the modelled cliff re-
treat rates are an accurate reflection of the evolutionary his-
tory at the rock coast sites in question.

In order to interpret CRN concentrations, a process-based
model of rock coast development is required. Matsumoto
et al. (2016) present an effective exploratory coastal evolu-
tion model that simplifies wave properties. The model can
produce a wide range of endmember across-shore profile
shapes and generally identify dominant erosion processes
(Matsumoto et al., 2018). However, simplified processes and
lack of field data calibration inhibit the application to real-
world sites. As such, replication of an observed topographic
profile of a cliff and shore platform has not yet been achieved.
Equifinality is often an unavoidable property of modelled ge-
omorphic systems and, as a result of simplified processes,
causes the same endmember results to be produced from non-
distinctive parameter values. Previous explorations into the
relative contributions of wave and weathering-driven erosion
revealed evidence of equifinality in the model (Matsumoto et
al., 2018). In particular, similar profile shapes were produced
in mega-tidal settings when considering a significant range of
wave force. The addition of modelled CRN concentrations to
the topographic profiles has the potential to address equifinal
model results. Moreover, field data calibration can be used to
identify and constrain the conditions that cause equifinality
so that this abstract model can be applied to real-world sites.

This study uses multiple site-specific datasets in order
to calibrate a model that couples the Matsumoto et al.
(2016) coastal evolution model and the Hurst et al. (2017)
dynamic coastal evolution and cosmogenic radionuclide
production model. We use Dakota optimisation software
(Adams et al., 2019) with the QUESO Bayesian calibration
library (Estacio-Hiroms et al., 2016) to implement multi-
objective model optimisation using the Metropolis–Hastings
Markov chain Monte Carlo (MCMC) method (Hastings,
1970; Metropolis et al., 1953). We demonstrate that with
our optimisation method, wave and weathering processes are
adequately simulated so as to model real-world sites. The
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model was calibrated to a high-resolution, across-shore to-
pographic profile and, more importantly, high-precision 10Be
concentrations. We are therefore able to extract further infor-
mation from the model, such as (1) the antiquity of the shore
platform, (2) a time series of long-term cliff retreat rates, and
(3) the ability to distinguish between different forms of ero-
sion acting on real-world profiles over a large temporal scale,
while addressing and limiting model equifinality. This new
capability allows us to better constrain the geomorphic his-
tory of rock coast evolution and input model parameters. As a
result, the constrained model parameters can be used together
with future RSL predictions to project rock coast profile de-
velopment so that predictions of future coastal erosion rates
are possible.

2 Field location overview

We utilise field datasets taken from two UK sites to de-
velop an approach to calibrate the coastal evolution model
(Fig. 1). The first study site at Bideford is located on Devon’s
north coast in south-west England. The study was carried out
within the Bideford Formation, part of the upper Carbonifer-
ous deposits of the Culm Basin in Devon, which is composed
of nine coarsening-upwards cycles from black mudstone to
massive sandstones (Edmonds et al., 1979). The beds are
well-exposed in the cliff and platform, are steeply dipping
(60–65◦) to the SW, and strike SE–NW roughly perpendicu-
lar to the coastline. The intertidal shore platform has a width
of ∼ 230 m and a nearly continuous gradient (tanβ) of 0.02.
Cliff height reaches 36 m, with a ∼ 24 m wide beach overly-
ing the cliff–platform junction. The south-west coast of the
UK is mega-tidal, with a mean spring tidal range of 8.41 m at
the Bideford coastline (National Tidal and Sea Level Facility,
2021).

The second study site at Scalby is located in north York-
shire on the east coast of the UK. The Scalby site is located
within the mid-Jurassic Long Nab member of the Scalby For-
mation, which is comprised of fine-grained sandstone (Rid-
ing and Wright, 1989). The beds at Scalby are shallowly dip-
ping (∼ 12◦) to the SE and strike SW–NE. At Scalby, the in-
tertidal shore platform width reaches∼ 240 m and has a gen-
tly sloping gradient (tanβ) of 0.01, and a steeply sloping 50–
80 m high coastal bluff is present. The east coast of the UK
has a meso-macrotidal range half of that at the south-west
site, with a mean spring tidal range of 4.6 m at the Scalby
coastline (National Tidal and Sea Level Facility, 2021).

3 Methods

Using methods described below, we aim to quantify long-
term, transient cliff retreat rates that will enable better pre-
dictions of erosion rates at rock coast sites across the UK and
worldwide. This flexible optimisation method implemented
within the Dakota environment allows for simple replication

Figure 1. Map of Great Britain with two rock coast sites labelled.
Bideford is located in south-west England on the north coast of De-
von. Scalby is located on the east coast of England in north York-
shire.

with new datasets and can be applied to a range of rock coast
settings.

3.1 Field datasets

Two distinct datasets are used to calibrate the coastal evo-
lution model. The first dataset is an across-shore topo-
graphic profile (Fig. 2a). The profile is extracted from a
high-resolution digital surface model (DSM) generated by
structure-from-motion analysis of aerial photographs col-
lected by an unmanned aerial vehicle (UAV) survey at both
sites. The second dataset is a 10Be concentration across-shore
profile (Fig. 2b). In situ bedrock samples for CRN analysis
were taken along an across-shore transect at∼ 10 m intervals
from a sandstone bed at both sites. Quartz purification and
10Be isotope dilution chemistry preparation were conducted
in the CosmIC laboratory at Imperial College London. Anal-
yses of 10Be/9Be ratios using accelerator mass spectrometry
(AMS) were carried out at the Australian Nuclear Science
and Technology Organisation using the 6 MV Sirius tandem
accelerator (Wilcken et al., 2017). Measured 10Be concen-
trations were normalised to the KN-5-3 standard with an as-
sumed ratio of 6.320×10−12 (t1/2 = 1.36 Ma; Nishiizumi et
al., 2007). Details of CRN sample collection and prepara-
tion, as well as drone survey data collection, processing, and
swath profile generation will be presented and interpreted
in detail in future work. In this study, our measured data
serve solely as input test datasets for developing appropriate
multi-objective optimisation routines; thus, details of these
test datasets are not central to this investigation.
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Figure 2. Measured topographic profile (a) and 10Be concentration data (b) from the Bideford and Scalby shore platform rock coast sites.
Average elevation in the swath profile is shown by the solid line, and uncertainty for the topographic profile shown by the shaded area is the
sum of the standard error from a linear regression of the topographic swath profile and the estimated spatial accuracy of the UAV imagery
(a). 10Be concentration values (b) are corrected for chemistry background using process blank samples and inherited 10Be using shielded
sea cave or cliff samples. Errors are propagated in quadrature, allowing for calculation of corrected 10Be concentrations (see Sect. 3.1). An
RSL curve of absolute RSL elevations taken from a GIA model (Bradley et al., 2011) is shown from 8000 years BP to the present day (c).

Measured 10Be concentrations are corrected for both
chemistry background and inherited levels of 10Be by sub-
tracting the concentration of 10Be present in process blank
samples and a shielded sample taken from a sea cave or cliff
base, respectively. Two key 10Be production pathways exist:
10Be produced from spallation reactions (4.0 atomsg−1 yr−1

normalised to sea level high latitude – SLHL) and muogeni-
cally produced 10Be (0.028 atomsg−1 yr−1 SLHL). 10Be pro-
duction in the upper few metres of the Earth surface is dom-
inated by exposure to secondary cosmic-ray neutrons (spal-
lation), whereas muon-produced 10Be prevails with greater
depth below the Earth’s surface owing to its longer attenua-
tion length (42 000 kgm−2) in contrast to the spallation atten-
uation rate of 1600 kgm−2 (Braucher et al., 2013). The pro-
duction of in situ 10Be declines exponentially with depth be-
low the Earth’s surface as cosmic-ray flux attenuates (Balco
et al., 2008; Gosse and Phillips, 2001; Hurst et al., 2017;

Mudd et al., 2016). Because the cliff–sea cave samples are
previously shielded by ∼ 40–80 m of rock (see Sect. 2), the
concentration of 10Be within the shielded sample is assumed
to be entirely produced from deep-penetrating muons, with
no contributions attributed to neutron spallation through ex-
posure to cosmic rays. Correcting shore platform samples us-
ing the shielded samples corrects for any 10Be present in the
rock before spallogenic 10Be becomes dominant. The expo-
sure time is then calculated from the corrected 10Be concen-
trations. See Tables S1 and S2 in the Supplement for 10Be
concentrations used as model inputs for the Bideford and
Scalby sites.

An RSL history record from a glacial isostatic adjust-
ment (GIA) model (Bradley et al., 2011) shows a constant
but declining rate of RSL rise across the Holocene for both
sites (Fig. 2c). At both sites, the RSL 8000 years BP was at
an elevation of ∼ 16 m lower than the present-day RSL. At
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Scalby, average rates of RSL rise were reduced from+7.0 to
+0.5 mmyr−1 across the last 8000 years. Similarly, at Bide-
ford, average rates of RSL rise were reduced from +7.0 to
+0.4 mmyr−1 across the last 8000 years.

3.2 The coastal evolution model

Our model combines a rocky profile model (RPM) for rock
coast evolution (Matsumoto et al., 2016) with a rock coast
cosmogenic radionuclide production model (Hurst et al.,
2017). This coupled model applies a dynamic form of coastal
evolution, in which cliff retreat rate is controlled by compet-
ing cliff–platform dynamics. Generally, an initial period of
rapid cliff retreat results in widening of the shore platform.
As a result, increased wave energy dissipation allows less
wave energy to reach the cliff base, and cliff retreat rate de-
clines under stable RSL conditions (Hurst et al., 2017; Tren-
haile, 2000; Walkden and Hall, 2005). Either platform lower-
ing or RSL rise can maintain energy supply to the cliffs. As
a result, platform morphology is an emergent element of the
model.

The exploratory model uses a grid framework, in which
cells are assigned a binary value of 1 (rock) or 0 (water–
air), and represents a cross section transect taken perpendic-
ular to the cliff line (Fig. 3). Wave erosion is considered an
erosion-driving process and follows established conceptual
rocky shore evolution models, which express wave hydraulic
and mechanical properties as wave assailing force and con-
siders both horizontal cliff back-wearing and vertical plat-
form lowering (Payo et al., 2015; Sunamura, 1992; Trenhaile,
2008a) (Fig. 3). Offshore wave height remains fixed through-
out a model simulation time; waves are transformed inshore
into shallow water and break when wave height exceeds 0.8×
water depth. Wave height then decays exponentially across
the shore platform after wave breaking is initiated. Erosion
achieved by breaking and broken waves can be changed by
varying the distance across the shore platform that waves can
dissipate energy: wave height decay rate (y) (Fig. 3). A small
value for y means wave height will decay slowly, in which
case breaking waves exert energy across a greater distance of
the shore platform surface, which achieves more erosion. In
contrast, a large value for y indicates that wave height will
decay quickly and wave-driven erosion covers a shorter dis-
tance across the shore platform.

In the model array, each rock cell of the cliff–platform pro-
file is assigned a value for material resistance. The rock cell is
eroded and removed from the array (cell values change from
1 to 0) once wave assailing force (FW) exceeds the mate-
rial resistance value (FR): FW ≥ FR (Matsumoto et al., 2016)
(Fig. 3). The conceptual value for material resistance (FR)
is highly simplified by incorporating mechanical, geological,
and structural rock factors into a single value to represent
rock mass strength (Matsumoto et al., 2016).

Subaerial weathering of the platform’s intertidal zone acts
to lower the resistance of the rock material (Matsumoto et

al., 2016). The distribution of intertidal weathering efficacy
is informed by empirical experiments of cyclical wetting and
drying (Porter et al., 2010). Maximum weathering rate (K)
occurs at the mean high water neap tidal level (MHWN),
which is defined by a weathering efficacy distribution (Porter
et al., 2010) (Fig. 3). An annual tidal duration distribution
(Trenhaile, 2000) is used as an erosion-modulating process
by estimating the total annual wave assailing force at each
intertidal level (Matsumoto et al., 2016) (Fig. 3).

Cosmogenic radionuclide production is incorporated into
the model by coupling a numerical model of 10Be accumu-
lation on eroding shore platforms (Hurst et al., 2017). The
concentration of 10Be is calculated for each rock cell at ev-
ery annual time step. Both 10Be produced from exposure to
neutron spallation at the surface and muon-produced 10Be at
depth are modelled (see Sect. 3.1). Modelling both produc-
tion pathways for the surface material and at depth below the
shore platform surface is important because both horizontal
erosion and vertical erosion of the cliff and shore platform
are simulated. Horizontal erosion at the cliff base causes cliff
retreat and exposes new shore platform material to spallo-
genic 10Be production and accumulation. Concentrations of
10Be will increase offshore from the cliff base as exposure
times increase. Erosion across the intertidal shore platform,
including by platform lowering and intertidal weathering,
removes the most abundant 10Be-laden rocks and uncovers
rocks with less abundant 10Be underneath. Incoming cosmic
rays are shielded from the shore platform by water cover-
age across the platform surface, which is further influenced
by tides and RSL change. As water depth increases offshore,
the cosmic-ray flux attenuates exponentially and production
in the shore platform surface is reduced (Hurst et al., 2017;
Regard et al., 2012). Topographic shielding from the pres-
ence of a sea cliff also modulates 10Be production close to
the cliff base (Hurst et al., 2017). The combination of scaling
factors to account for each of these variables, i.e. production
of 10Be in rock, topographic shielding, and water shielding,
results in the predicted across-shore humped 10Be concentra-
tion profile (Regard et al., 2012).

3.2.1 Model implementation

Other fixed model parameters and initial model conditions
are set to the same values as used by Matsumoto et al. (2018)
(Table S7 in the Supplement). Once the model burn-in pe-
riod has been exceeded (first ∼ 1000 years), the initial con-
ditions, such as platform gradient, have a negligible effect on
final outputs of topography, 10Be concentrations, and retreat
rates. The RSL history input is taken from the GIA model
of Bradley et al. (2011). RSL uncertainty was not consid-
ered as we expect it to make little difference to final re-
sults. For southern UK sites across the late Holocene, the
misfits between measured RSL data and GIA model predic-
tions are minor (Bradley et al., 2011). Uncertainties of mag-
nitude ±0.01–0.1 mmyr−1 of RSL rise have a negligible im-
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Figure 3. Coastal evolution model schematic. Topographic profile cross section constructed in a gridded framework, showing wave approach
and influence of tidal duration distribution. MHWS, MHWN, MT, MLWN, and MLWS denote mean high water spring, mean high water
neap, mid tide, mean low water neap, and mean low water spring. Binary values of 0 and 1 are assigned to water–air and rock categorised cells,
respectively. Rock cells (value 1) are eroded and removed from the profile (assigned value 0) once wave force exceeds material resistance
(FW ≥ FR) (b, c). Subaerial weathering (K) can also lower the material resistance value (FR). Wave height decay rate (y) controls the
distance waves can break across the shore platform and, as a result, the erosional potential of wave assailing force FW.

pact due to the spatial and temporal resolution considered
for the model. A fixed mean spring tidal range of 8.41 m for
Bideford and 4.6 m for Scalby are used, which are based on
tide gauge records (National Tidal and Sea Level Facility,
2021).

We chose to implement a model simulation time of
8000 years. A simulation time of 8000 years BP to the
present day captures the RSL history curve for both sites
(Fig. 2) with a rapid RSL rise occurring for the first ∼
1000 years, followed by a slow decline from 7000 years BP
to the present day. Therefore, we can observe how cliff re-
treat rates will respond to these different stages in the RSL
history. Implementing a simulation time of 10 000 years, for
example, would show no change to final model outputs but
would increase the computer run time unnecessarily. Further-
more, previous studies show that under static RSL condi-
tions, a steady-state equilibrium is reached by 8000 years,
in which cliff retreat rates stabilise after rapid initial retreat
(e.g. Walkden and Hall, 2005). Modelling rock coast evolu-
tion across an 8000-year window means only a Holocene his-

tory for shore platform formation has been considered with
no possible re-occupation from a previous interglacial pe-
riod (e.g. Choi et al., 2012). The 10Be concentration datasets
used to develop our optimisation routine at both sites exhibit
low concentrations, suggesting these rock coast features are
formed during the Holocene (Regard et al., 2012). Therefore,
these datasets are suitable for modelling Holocene-formed
shore platforms as a means to develop this optimisation rou-
tine. During the 8000-year simulation time, the topographic
profile and 10Be concentrations are calculated and output ev-
ery year (1-year time step). The model space is split into
10× 10 cm gridded cells (Fig. 3).

3.3 Model optimisation

3.3.1 Dakota and multi-objective optimisation

We use Sandia National Laboratory’s Dakota optimisation
software toolkit (Adams et al., 2019) to implement multi-
objective optimisation. The optimisation software was cho-
sen to work with the model because of Dakota’s flexibility,
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ease of testing a variety of methods, and available function-
ality within the software. In particular, the QUESO Bayesian
calibration library (Estacio-Hiroms et al., 2016) is used to
apply the Metropolis–Hastings MCMC algorithm. Multi-
ple MCMC simulations are performed, each with different
weightings assigned to the topographic profile and 10Be con-
centration profile to construct a Pareto front of optimised re-
sults (see Sect. 3.3.3).

3.3.2 Objective function definition, scaling, and
weighting

In this study, we use the coupled model to simulate both a to-
pographic profile and a 10Be concentration profile. The first
model output is the cliff–platform profile, which displays
a cross section of the elevation, width, and gradient of the
modelled shore platform in an across-shore orientation. The
second model output is an across-shore 10Be concentration
profile. In order for the model to replicate the topography
and 10Be concentrations of a real rock coast site, we need
to calibrate model results to measured datasets. Our model
calibration targets a set of model input parameters that best
match the measured data by minimising an objective func-
tion (Barnhart et al., 2020). Selected input model free pa-
rameters are varied repeatedly within a set parameter space,
and model outputs are compared to corresponding data with
the aim of minimising residuals between modelled and mea-
sured profiles. Because two outputs are generated with the
model, we have two objective functions to minimise simulta-
neously. Multi-objective optimisation is used to find a set of
model input parameters that minimises both topographic and
10Be concentration residuals with different weights.

First, the root mean square error (RMSE) is calculated
between the modelled and measured DSM-extracted topo-
graphic profile and also between the modelled and mea-
sured 10Be concentration profile. Modelled outputs and mea-
sured data are shifted to the final (present-day) modelled
cliff position, with the final cliff position at 0 m. Interpo-
lation is used to assign corresponding modelled data (cell
resolution= 0.1 m) to every measured data position across
the shore profile. For every measured data point, the elevation
and concentration residuals are calculated and combined into
an RMSE score for both topographic and 10Be concentration
model outputs:

RMSEi =

√√√√ Nj∑
j=1

(
Modi,j −Measi,j

Nj

)2

. (1)

In Eq. (1), for each objective function i, the residuals
(Modi,j −Measi,j ) are calculated between the modelled and
measured data values, which are indexed by subscript j . The
number of measured data points is distinct to the topographic
profile and 10Be concentration profile datasets, and they are
denoted by Nj .

Next, both RMSE values are then scaled (si) within Dakota
to (1) equalise the magnitude ranges of both the topographic
and cosmogenic radionuclide RMSE scores and (2) to set the
RMSE magnitudes to a sensible multiple relative to the de-
fault measurement error used by Dakota in the likelihood
function: variance is assumed to be 1.0 when no measure-
ment error is specified. In this case, we have not consid-
ered individual data-point measurement errors in the RMSE
calculation. As a result, scaled RMSE scores for both the
topographic and 10Be concentration profiles are within the
range of ∼ 0 to 10. Individual weightings (wi) are applied
to the scaled RMSE functions for both the topographic and
10Be concentration profiles (Adams et al., 2019). Finally, the
scaled and weighted RMSE scores are combined within a
Gaussian likelihood function, and the final composite objec-
tive function, Likelihoodp, becomes

Likelihoodp =
Ni∏
i=0

1
√

2π
exp

−wi,p
(

RMSEi
si

)2

2

 . (2)

In Eq. (2), Ni is the number of individual objective func-
tions we aim to collectively minimise. In this case, we have
two individual objective functions (Ni = 2): a topographic
profile and a 10Be concentration profile. Future applications
may add additional objective functions (Ni > 2): for exam-
ple, a second CRN concentration profile (e.g. 26Al or 14C).
Weightings applied to the separate RMSE scores are denoted
by wi , where subscript i refers to specific values associated
with each individual objective function. The weightings ap-
plied to the topographic profile and 10Be concentration pro-
file are changed between MCMC inversion calculations in
order to construct the Pareto set of optimised results (see
Sect. 3.3.3). The scaling values are denoted by si and are
exclusive to the individual objective function. A topographic
profile scaling value is calculated by summing the standard
error from a linear regression of the topographic profile and
the estimated spatial accuracy of the UAV imagery. The av-
erage measurement error of 10Be concentrations for each site
is used as a scaling value for the 10Be profile. Table S7 sum-
marises the objective function scaling values for both sites.
Subscript p refers to the different set of weights (wi,p) as-
signed to each objective function (RMSEi) used to construct
the Pareto front.

3.3.3 Pareto front results

When performing multi-objective optimisation rather than
a single optimal solution, there are multiple optimised so-
lutions, which map out what is known as a Pareto front.
We need to consider best-fit model results across a spec-
trum of objective function combinations because changing
the weightings applied to each objective function may result
in different best-fit input model parameters. The Pareto front
is a set of optimised results for which no improvement can
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Table 1. Weightings assigned to the topographic and 10Be concen-
tration RMSE scores for the five MCMC calculations.

MCMC analysis Topography 10Be weighting (%)
weighting (%)

1 50 50
2 25 75
3 75 25
4 5 95
5 95 5

be made to an individual objective function without compro-
mising the performance of at least one of the other objective
functions. This set of results is the most optimal set of input
model parameters. The Pareto front is constructed by per-
forming numerous MCMC inversions with various weight-
ings given to the RMSE scores that are calculated for the to-
pographic and 10Be concentration profiles for each run. The
weighted RMSE values are combined in a likelihood func-
tion to form a single-objective function (Eq. 2). In this in-
vestigation, a total of five MCMC calculations for each site
are performed. For each of the five MCMC runs, the weight-
ings assigned to the topographic and 10Be concentration pro-
file RMSE scores are changed. Weightings assigned to each
individual objective function for each MCMC analysis are
shown in Table 1. Figure 4 shows a basic framework of the
multi-objective optimisation of the coupled model.

3.3.4 MCMC analysis

Metropolis–Hastings is a specific MCMC implementation
(Metropolis et al., 1953), in which MCMC is a class of meth-
ods based on Bayesian inference calibration. A detailed ex-
planation of how Bayesian inference can be used to calibrate
models is provided by Kennedy and O’Hagen (2001).

The composite likelihood score (Eq. 2) is calculated in
Dakota; the lowest combined RMSE scores result in the max-
imum likelihood estimation (MLE). A so-called proposal dis-
tribution is used to select and jump to new parameter val-
ues within the MCMC algorithm. After each run, new values
for the free parameters y, FR, and K (see Sect. 3.4) are ran-
domly selected from a uniform proposal distribution centred
at the current accepted parameter values. A likelihood ratio
compares the posterior likelihood of the proposed parameter
set to the previous accepted likelihood and is used to decide
whether the new set of parameters is accepted or rejected. If
the proposed parameter set produces a model result that is
more likely than the current accepted parameter set (ratio of
current to last accepted iteration> 1), then the new param-
eter set is always accepted. If the proposed posterior is less
likely (likelihood ratio< 1), the new parameter set may still
be accepted with a probability of acceptance proportional to
the likelihood ratio (Hurst et al., 2016). This is achieved by
generating a random number r from a uniform distribution

Figure 4. Structure for implementing a single MCMC calculation
using Dakota. Data inputs into the coupled model include a topo-
graphic profile, a 10Be concentration profile, and an RSL history.
The MCMC analysis is performed multiple times with different
weightings (shown by the blue loop) for the objective functions (to-
pographic profile RMSE and 10Be concentration profile RMSE) and
produces a corresponding maximum likelihood estimation (MLE∗)
result. For each MCMC calculation, the weights∗ value is changed
for each RMSE score. The different values for the weights∗ are
shown in Table 1 and correspond to wi (Eq. 2). The set of MLE
results together produce the “Pareto front” of multi-objective opti-
mised results.

between 0 and 1; if r < ratio, then the proposed parameter
set is accepted. The Metropolis–Hastings algorithm allows
for acceptance of less likely parameter sets in order to pre-
vent the acceptance chain from reaching an immovable posi-
tion in a localised likelihood trough. The proposal distribu-
tion variance was tailored so as to produce an acceptance rate
of ∼ 23 % that ensures optimal chain mixing and full explo-
ration of the parameter space (Gelman et al., 1997).

As we have no prior knowledge of the best-fit model pa-
rameters, a uniform prior distribution is used. As the prior
distribution is essentially removed from the posterior prob-
ability calculation, Dakota returns best-fit parameter values
that correspond to the MLE, which is similar to methods
used to find optimal model results by Hurst et al. (2016).
Dakota takes the log form of the likelihood function to help
numerical stability by working with more manageable nega-
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tive numbers and transforming from multiplications to addi-
tions. Minimising the negative log-likelihood is equivalent to
maximising the likelihood.

3.3.5 Dakota functionality and constraining the
parameter space

The parameter space is constrained to where modelled to-
pographic profiles are similar to those observed at the se-
lected study sites. The failure capture recovery option within
Dakota is used to identify which combinations of input
model free parameters cannot replicate the measured topo-
graphic profile sufficiently. A “fail” flag is produced by the
model if the modelled shore platform profile does not erode
to a width of at least the intertidal width of the measured
shore platform profile. The width of the measured topo-
graphic profile (∼ 250 m) should be taken as the minimum
width because the shore platform undoubtedly extends fur-
ther offshore than where the UAV survey ended. A fail flag
returned to Dakota is replaced by a high RMSE value (set
to 999 999) so this combination of input model free parame-
ters is avoided in future simulations within the Metropolis–
Hastings algorithm.

3.4 MCMC analysis inputs

A previous investigation into the relative importance of wave
erosion versus weathering using the RPM coastal evolution
model found that wave erodibility, material resistance, and
weathering rate parameters have the greatest influence on the
dominance of erosional form (Matsumoto et al., 2018). Be-
cause these model variables have the greatest control over
principal erosion processes, wave erodibility by means of
wave height decay rate (y), material resistance (FR), and
maximum intertidal weathering rate (K) are chosen to vary
in the MCMC calculations (see Sect. 3.2.1).

Wave erodibility is explored in the MCMC analysis by
varying the wave height decay rate (y), which is consistent
with previous modelling approaches (e.g. Matsumoto et al.,
2018; Trenhaile, 2000). Incident wave height is kept constant
throughout model simulations. We chose to explore wave
erodibility in the model by varying wave height decay rate
(y) over incident wave height because a linear relationship
between input wave height and material resistance (FR) is
already established: greater wave height needs to be com-
pensated for by an increase in material resistance (FR) (Mat-
sumoto et al., 2016). Whereas by focussing on process dy-
namics with wave height decay rate (y) the spatial distribu-
tion and degree of wave erosion can be considered, vary-
ing the model parameter y will have implications for the
shore platform morphology. Initial ranges of y followed Mat-
sumoto et al. (2018) by varying an exponential value, a,
between −2 and 1 (i.e. y = 0.01–10 m−1), which, across a
200 m wide shore platform, would equate to wave height de-
creasing by 67 %–100 %. These wave attenuation rates are

consistent with field-based observations of wave transfor-
mation across a shore platform. For example, Ogawa et al.
(2011) find that wave height was reduced by ∼ 93 % across
a 250 m wide platform at the lowest tidal stage. Wave height
decay rate (y) is further constrained in this study to 0.01–
0.16 m−1 because when values of y exceed 0.16 m−1 wave
height would dissipate too quickly and wave force is not large
enough to erode a shore platform to a distance that matches
at least the width of the measured intertidal platform for both
the Bideford and Scalby sites. These high values for y result
in failed model runs as detected by the failure capture recov-
ery function in Dakota (see Sect. 3.3.5).

For material resistance, we use a range of b (an exponen-
tial value) from 1–3 (i.e. FR = 10–1000 kgm2 yr−1), which
follows Matsumoto et al. (2018) and encompasses material
resistance values used by other modelling studies that ex-
plore a range of rock strength settings; e.g. Trenhaile (2008a,
b, 2000).

Following Matsumoto et al. (2018), maximum intertidal
weathering rate (K) is varied as a proportion of the mate-
rial resistance. The greatest rate of weathering that we ap-
ply is equal to FR× 0.2 kgm2 yr−1, which results in maxi-
mum down-wearing rates of 20 mmyr−1 when only consid-
ering weathering contributions to shore platform down-wear.
Down-wearing rates of 20 mmyr−1 are unrealistically high
for a sandstone platform (e.g. Yuan et al., 2020). In this study,
preliminary investigations were carried out to establish an ap-
propriate range of weathering rates needed to match both ob-
jective functions at the two UK sites. Initial results for Bide-
ford and Scalby showed that the topographic profiles and
10Be concentration profiles could only be well-matched si-
multaneously at very low to negligible weathering rates (K).
Weathering of the shore platform surface becomes negligible
when weathering rates (K) fall below a particular ratio in re-
lation to material resistance (FR). By calculating the weath-
ering rate (K) (kgm2 yr−1) for the full modelled simulation
time (K×8000 years), we can compare the total value forK
to the value of FR to detect when weathering rate (K) is less
than the material resistance (FR). We find that when the ex-
ponent of c <−5, maximum weathering rate falls below the
value for material resistance (FR) for the simulated model
time, and erosion of the shore platform through weathering
processes becomes negligible because rock cells cannot be
removed from the model array by means of subaerial weath-
ering. The range of c was adjusted to−10 to−4 for Bideford
and −10 to −1 at Scalby to ensure negligible weathering
was included within the MCMC analysis parameter space.
At Scalby, 10Be concentrations can still be matched at higher
rates of weathering; therefore, we include the upper range of
K values in the MCMC analysis. The wide range of weath-
ering rates that we explore are similar to equivalent platform
down-wear rates quantified for a range of field-based studies
(e.g. Buchanan et al., 2020; Moses, 2014; Stephenson et al.,
2019; Swirad et al., 2019).
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In order to replicate a full range of platform geometries,
we vary these parameters over several orders of magni-
tude across a range that was guided by previous exploratory
morphodynamic modelling (Matsumoto et al., 2016, 2018).
We need to not only apply effective proposal distributions
to the free parameters that ensure the full parameter space
is explored, but also achieve optimal acceptance rates (see
Sect. 3.3.4). In order to target optimal acceptance rates and
fully explore the parameter space, exponents of the y, FR,
and K variables are treated as the calibration parameters,
which is similar to approaches taken by Barnhart et al.
(2019), and these values are varied between model runs.
Symbology assigned to the exponent calibration parameters
are a for y, b for FR, and c for K , which are summarised in
Table 2.

y = 10a

FR = 10b

K = 5c×FR

As these parameters are abstractly defined within the model,
it is important to highlight that our aim is not to report ac-
curate wave force, weathering rates, and material strength
at real-world sites but to determine the best combination of
model parameters to match measured datasets in order to
model cliff retreat. Table 2 summarises the ranges of the free
parameters y, FR, and K used in the MCMC analysis.

3.5 Interpretation of results

The best-fit parameter results provided by Dakota, which cor-
respond to the set of parameters with the MLE, are used for
the model results that best fit the measured data. Likelihood-
weighted histograms are constructed from the distribution
of accepted MCMC samples for each of the free parame-
ters. Confidence intervals defined by the 16 % and 84 % per-
centiles of the distributions are used as the uncertainty for the
best-fit parameter values. We choose not to use 5 % and 95 %
confidence intervals because the resultant range of model
outputs produces unrealistic uncertainty for the modelled to-
pographic profile in terms of the range in platform elevations
and gradients. To observe the resultant uncertainty of model
outputs as defined by the MCMC results, ensemble runs of
the coupled model explore the median as well as the 16 %
and 84 % confidence range for each parameter against the
median result of the other two parameters. A total of nine
model outputs for each site are produced.

4 Results

4.1 Pareto set of optimised results

A Pareto set was constructed by performing multiple MCMC
inversions with different weightings given to the two objec-
tive functions (see Sect. 3.3.3). Because we use measurement

error to scale each objective function, there is potential for
bias as a result of the relative precision of both measured
datasets. It was necessary to explore a range of weightings
for the objective functions to understand the impact of mea-
surement error on the model outputs and to explore how sen-
sitive the final best-fit model outputs were to changes in the
dominant objective function.

The Pareto set of MCMC best-fit results for the Bideford
site is shown in Fig. 5a. All combinations of objective func-
tion weightings, except for the MCMC analysis weighted
most towards the 10Be concentration profile (shown in dark-
est red), fit both measured datasets well. The saw-tooth pat-
tern seen in the 10Be concentration profile is caused by the
cell framework resolution of the model. When a surficial rock
cell with greatest 10Be concentrations is eroded and removed
from the rock profile, 10Be concentrations drop as a subsur-
face cell with less 10Be is revealed. The MCMC best-fit re-
sult with 95 % weighting assigned to the 10Be concentration
profile and 5 % assigned to the topographic profile results in a
topographic profile that is considerably steeper than the mea-
sured profile at Bideford. We do not want to base modelled
cliff retreat rates on scenarios that are not able to replicate the
topography of the shore platform profile well and so should
avoid weighting too strongly towards the 10Be concentration
profile. For the Pareto front, where the scaled and weighted
topographic and 10Be concentration objective functions are
compared, the sensitivity of different weighting sets to final
model results at Bideford is revealed (Fig. 5c). The Pareto set
at Bideford again suggests we should weight more towards
the topography, but only when we weight the combined ob-
jective function 95 % towards the 10Be concentration profile
RMSE do we see a poor match to the topography (Fig. 5a).

Dissimilarly, at Scalby, all combinations of objective func-
tion weightings produce very similar model outputs (Fig. 5b).
This reveals that the best-fit model results for the topo-
graphic profile and the 10Be concentration profile are found
in the same parameter space for Scalby but not necessarily
for Bideford. Uniformity in results across the Pareto set for
Scalby is further supported by the Pareto front (Fig. 5c). For
Scalby, the Pareto front shows the expected convex shape of
a Pareto front that looks to minimise both objective functions
simultaneously.

Crucially, final results from the 50 %–50 % weighted
MCMC analysis show a good representation of the full
Pareto set of output model results (Fig. 5). We suggest
that future applications can confidently use a single, equally
weighted multi-objective MCMC calculation to optimise the
coupled model to multiple measured datasets and quantify
modelled cliff retreat rates. Subsequently, results from the
equally weighted MCMC analysis are used to construct final
model outputs and objective function surfaces in following
sections. Results from all weighted MCMC calculations can
be found in Table S8 in the Supplement.
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Table 2. Free variables, corresponding calibration parameters and their units, and lower and upper bounds used in the MCMC calculations.

Variable description Calibration Upper and lower Variable Equivalent Units
parameter bounds (a, b, c) variable range
(exponent) (y, FR, K)

Wave height decay rate a −2 y (= 10a) 0.01–0.16 (m−1)
−0.8

Material resistance b 1 FR (= 10b) 10–1000 (kgm−2 yr−1)
3

Maximum weathering efficacy rate c −10 K (= 5c ×FR) Scalby: 10−6–200 (kgm−2 yr−1)
Scalby: −1 Bideford: 10−6–1.6

Bideford: −4

Figure 5. The five Pareto set results for both the Bideford (a) and Scalby (b) sites. The modelled topographic profile and 10Be concentration
profile are shown alongside corresponding measured data. Modelled cliff retreat rates are shown for the past 7000 years. The yellow model
results correspond to 50 %–50 % objective-function-weighted MCMC results. The darkest blue model results correspond to the MCMC
results that were most weighted towards the topographic (Topo) profile (95 %). The darkest red model results correspond to the MCMC
results that were most weighted towards the 10Be concentration (CRN) profile (95 %). The Pareto front of scaled and weighted 10Be and
topographic objective functions is shown for both sites (c).
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4.2 Best-fit model results

Model outputs using the best-fit results and uncertainty de-
fined by the 50 %–50 % weighted MCMC results show that
the coupled model is able to produce a good fit to both
the topographic profile and 10Be concentration profile for
both sites (Fig. 6). The topographic profiles shown are the
present-day positions (time 0 kyr BP). For the topographic
profile, maximum uncertainty in the elevation range is found
furthest offshore from the cliff. For the intertidal platform
width, where measured data were collected, maximum un-
certainty in elevation is∼ 5 m (300 m offshore from the cliff)
at Bideford (Fig. 6b) and ∼ 1 m (300 m offshore from the
cliff) at Scalby (Fig. 6f). The nearshore increase in the mea-
sured platform slope seen at Scalby is the start of the beach
profile. Modelled 10Be concentrations display the charac-
teristic humped profile (Regard et al., 2012) (Fig. 6c and
g) with maximum variance in 10Be concentrations occur-
ring offshore of the “hump” at both sites. Maximum un-
certainty in modelled 10Be concentrations for the intertidal
platform is ∼ 5000 atomsg−1 at Bideford (Fig. 6d) and ∼
2500 atomsg−1 at Scalby (Fig. 6h). These uncertainties are
proportional to the magnitude of the measured concentra-
tions with peak 10Be concentration of 14 818 atomsg−1 at
Bideford and 7547 atomsg−1 at Scalby.

At Bideford, the best-fit modelled scenarios show that the
platform has eroded to a width of 750–1650 m across the
past 8000 years (Fig. 6a). At Scalby, however, the best-fit
modelled scenarios indicate that the platform has eroded to
a wider width of 2200–3500 m (Fig. 6e) over the same time
period. Time stamps for modelled cliff positions are back-
calculated and shown for the corresponding distance across
the shore platform. For example, the modelled cliff position
at Bideford was 200 m offshore from the present-day cliff po-
sition at ∼ 5000 years BP (Fig. 6b). These time stamps cor-
respond to when the horizontal position of the cliff foot was
there, but not the exact elevation because down-wearing has
occurred since. Our results indicate that the 250 m present-
day intertidal platforms at Bideford and Scalby were eroded
in the past 5800 and 2400 years, respectively (Fig. 6). The
less time taken to erode the same distance of shore plat-
form at Scalby indicates that late Holocene cliff retreat rates
at Scalby are over 2 times faster than at Bideford. As the
magnitude of the measured 10Be concentrations at Scalby is
considerably less than at Bideford, this model result aligns
with model predictions of CRN concentrations and cliff re-
treat rate interpretations, i.e. that the magnitude of CRN con-
centrations is inversely proportional to cliff retreat rates.

A time series of cliff retreat rates, which are calculated
from modelled cliff positions every 100 years, shows a de-
cline in cliff retreat rates across the Holocene (Fig. 7).
The evolution of modelled cliff retreat covered by the
across-shore distance of measured data encompasses the past
5800 years at Bideford (Fig. 6b) and the past 2400 years
at Scalby (Fig. 6f). We are only able to report cliff retreat

rates with confidence for these time periods which corre-
spond to the measured datasets. Following this, the model re-
sults for Bideford show that cliff retreat rates have declined
from 7.5–17.5 cmyr−1 at 5800 years BP to 1–3 cmyr−1 at
the present day (Fig. 7a). Likewise, the model results for
Scalby show that cliff retreat rates have declined from 11–
17 cmyr−1 at 2400 years BP to 4–8 cmyr−1 at the present
day (Fig. 7b). Despite lacking measured data beyond 250 m
offshore from the cliff, we can assess the antecedent mod-
elled cliff retreat rates needed to match the modelled to mea-
sured profiles in the intertidal zone (full extent of grey ar-
eas in Fig. 7). Best-fit model results for the full model sim-
ulation time reveal a declining cliff retreat rate scenario for
both sites. At Bideford, cliff retreat rates decline from 25–
55 cmyr−1 at 7000 years BP to 1–3 cmyr−1 at the present
day (Fig. 7a). Similarly, at Scalby, cliff retreat rates decline
from 70–100 cmyr−1 at 7000 years BP to 4–9 cmyr−1 at the
present day (Fig. 7b).

The best-fit scenario of a declining cliff retreat rate
throughout the Holocene directly reflects the pattern of
decline in the rate of RSL rise for both UK sites. At
Bideford, the rate of RSL rise falls from +2.5 mmyr−1

at 5800 years BP to +0.5 mmyr−1 at the present day
(Fig. 7a). Similarly, at Scalby the rate of RSL rise falls
from +1.1 mmyr−1 at 2700 years BP to +0.3 mmyr−1 at
the present day (Fig. 7b).

Table 3 summarises the results from the 10 000-iteration,
equally weighted MCMC analysis for both sites, with uncer-
tainties defined by the 16 % and 84 % confidence intervals of
the likelihood-weighted accepted sample distributions. Ac-
ceptance rates for all MCMC calculations ranged between
17 % and 40 % and therefore encompass the range of op-
timum acceptance rates for chain mixing (Gelman et al.,
1997). Figures S1 and S2 in the Supplement plot the cumu-
lative moving median as well as the 16 % and 84 % quan-
tiles across the 10 000 iterations to show the MCMC burn-in
period. We found that 10 000 iterations for each weighted
MCMC analysis was a sufficient number of samples to build
robust posterior distributions.

4.2.1 Material resistance (FR)

Posterior MCMC results of accepted samples show that the
topography and 10Be concentration profiles can be well-
matched across a large range of FR values (Table 3). For
Bideford, the best-fit result defined by the 16 %–84 % con-
fidence intervals for the equally weighted multi-objective
MCMC analysis for FR is equivalent to 23–407 kgm−2 yr−1.
For Scalby, best-fit results for FR tend towards lower val-
ues for material resistance of 19–138 kgm−2 yr−1. The large
uncertainty for FR from posterior distributions is caused by
correlation found between FR and y (see Sect. 5.2).

Earth Surf. Dynam., 9, 1505–1529, 2021 https://doi.org/10.5194/esurf-9-1505-2021



J. R. Shadrick et al.: Multi-objective optimisation of a rock coast evolution model 1517

Figure 6. Final results from the 50 %–50 % weighted multi-objective MCMC calculation for the Bideford study site (a, b, c, d; shown in
purple) and Scalby study site (e, f, g, h; shown in orange). Dark lines show the best-fit results, and the shaded areas show the confidence
interval uncertainty range. The 16 %–84 % confidence interval for each parameter (FR, K , and y) was simulated against the median results
for the other parameters, and shaded uncertainty regions were constructed from the upper and lower limits of model outputs. Panels (a) for
Bideford and (e) for Scalby show the full width of the modelled topographic profile. Panels (b) for Bideford and (f) for Scalby show the first
300 m of the modelled platform offshore from the cliff (0 m) and compare modelled results to the measured topographic profile (black solid
line). Panels (c) for Bideford and (g) for Scalby show the full modelled extent of the 10Be concentration profile. Panels (d) for Bideford and
(h) for Scalby show the first 300 m of the modelled 10Be concentration profile offshore from the cliff (0 m) and compare modelled results
to the measured and corrected 10Be concentrations (see Sect. 3.1). Grey boxes (a, c, e, g) correspond to 300 m distance offshore (b, d, f,
h). Time stamps for the cliff positions across the 8000-year-duration simulation time were back-calculated and shown against corresponding
cliff positions.

Table 3. Best-fit parameter results from 50 %–50 % weighted, multi-objective MCMC calculations.

Wave height decay rate (y) Material resistance (FR) Weathering rate (K)

a y b FR c K

Bideford

−1.45 +0.09 0.02–0.04 m−1 1.93 +0.68 23–407 kgm−2 yr−1
−6.14 +0.17 ∼ 10−4–10−3 kgm−2 yr−1

−0.24 −0.56 −2.83

Scalby

−1.97 +0.17 0.01–0.015 m−1 2.04 +0.1 19–138 kgm−2 yr−1
−4.94 +1.08 ∼ 10−4–0.2 kgm−2 yr−1

−0.02 −0.76 −3.61
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Figure 7. A time series of cliff retreat rate (myr−1) shown by the solid line and shaded area across the late Holocene (from 7000 years BP to
the present day) calculated from modelled cliff positions every 100 years. The first 1 kyr is excluded as this corresponds to the burn-in period
of the model. The rate of RSL rise (mmyr−1) is shown alongside cliff retreat rates by the dashed black line. Inset plots show the cliff retreat
rates and rate of RSL rise for the time period that corresponds to the distance across the shore platform over which measured data were
analysed (∼ 250 m). For Bideford (a), the past 5800 years of modelled cliff retreat correspond to the 250 m intertidal shore platform. For
Scalby (b), the past 2700 years of modelled cliff retreat correspond to the 250 m intertidal shore platform. The grey shaded area corresponds
to the cliff retreat rates which occurred further offshore than where the measured data were collected, and the non-shaded area shows the
extent of the inset plots.

4.2.2 Weathering rates (K )

At both sites, low to negligible weathering rates (K) as a pro-
portion of material resistance (FR) are needed to match both
measured datasets simultaneously. At Bideford, the best-fit
results for maximum weathering rate are skewed towards the
lowestK values. Both measured datasets could only be well-
matched when negligible weathering was implemented in the
modelled profile evolution. Best-fit results forK range across
orders of magnitudes (∼ 10−5–10−3 kgm−2 yr−1) when ap-
plying the best-fit result for FR (85 kgm−2 yr−1). Using the
upper limit of FR and K defined by 84 % confidence inter-
vals, the absolute maximum weathering rate acting on the
profile at Bideford is equivalent to 0.03 kgm−2 yr−1. This
weathering rate would result in maximum down-wear rates
equivalent to 0.007 mmyr−1 when only considering down-
wear as a result of intertidal platform weathering. These re-
sults indicate that erosion of the shore platform at Bideford
is dominated by wave-driven erosion.

In comparison to Bideford, at Scalby, maximum weath-
ering rates acting on the shore platform surface (K) best
match the measured data at intermediate to low weathering
rates equivalent to ∼ 0.0001–0.27 kgm−2 yr−1 when using
the best-fit result of FR (109 kgm−2 yr−1). This weathering
rate would result in maximum down-wear rates equivalent to
0.2 mmyr−1 if only considering down-wear as a result of in-
tertidal platform weathering. Although weathering rates are
still low at Scalby, distinctions between the two sites in re-
lation to maximum weathering rates can still be made. Ob-
serving objective function surfaces (see Sect. 4.3) can help
explain the differences between the two UK sites in terms of
weathering-controlled erosion of the shore platform and the
match to both the measured topography and 10Be concentra-
tions. This, in turn, can reveal if and where any compromises

had to be made to match both objective functions, e.g. if the
two individual objective functions are not minimised in the
same area of the parameter space.

4.2.3 Wave height decay rates (y)

Results from the wave height decay rate (y) show that Scalby
best-fit results tend towards the lowest wave height decay
rates, which are equivalent to 0.01–0.015m−1. Or, in other
words, breaking waves exert erosive power across the fur-
thest distance possible based on realistic constraints placed
on y (see Sect. 3.4). Bideford, on the other hand, has best-
fit y values at higher wave height decay rates, with a best-fit
value equivalent to 0.02–0.04 m−1. The larger value for y
means wave height will dissipate faster and cover a shorter
distance across the shore platform at Bideford in comparison
to Scalby.

4.3 Objective function results

Observing the objective function space for the topographic
RMSE, 10Be concentration RMSE, and the combined likeli-
hood helps demonstrate the trade-offs between the three dif-
ferent parameters (FR, K , and y) and the effects on the two
objective functions. In the following sections, when address-
ing the unitless values for the free parameters, we are refer-
ring to the exponential calibration parameters (a, b, c) that
were varied in the MCMC calculations (see Sect. 3.4).

4.3.1 Material resistance vs. weathering rate

Comparisons between calibration parameters varied for ma-
terial resistance (b) and weathering rate (c) show no distinc-
tive influence on the endmember topographic profile at the
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Bideford site (Fig. 8a). In contrast, only once c falls below
−5 and weathering rates become negligible can the mod-
elled 10Be concentration profile closely replicate the mea-
sured data (Fig. 8b). Furthermore, with insignificant active
weathering, combinations between material resistance and
weathering rate show no noteworthy influence on the mod-
elled 10Be concentration profile. The likelihood objective
function for the accepted samples shows that the best samples
are generally found when c is below −5 (Fig. 8c). Results
from initial Bideford MCMC calculations, with the range of
c set to−5 to−1, are found in the Supplement and show that
the 10Be concentrations cannot be matched with the higher
range of weathering rates explored initially (Fig. S3 in the
Supplement). There needs to be negligible intertidal weath-
ering of the shore platform in order to produce the relatively
high 10Be concentrations measured at the Bideford site. This
is only revealed when optimising for the 10Be profile; opti-
mising for the topographic profile alone, however, does not
reveal any distinct behavioural trends between b and c.

At Scalby, comparisons between b and c show that a bet-
ter fit to the topographic profile can generally be found at
the lower range of b and c (Fig. 8d). In contrast, the 10Be
concentration profile can be well-matched at higher weath-
ering rates with c of −2 (Fig. 8e). These results contrast
with the results from Bideford, which show that negligible
weathering needs to occur in order to match the 10Be con-
centration profile. However, these relationships are not well-
defined: well-matched 10Be concentration profiles can still
be produced when weathering rates are low (Fig. 8e). Equally
poorly matched topographic profiles can still be produced
at the lower range of b and c (Fig. 8d). This suggests that
the third free parameter varied in the MCMC analysis, wave
height decay rate (a), has a further influence on the final mod-
elled profiles. For both sites, these results strongly imply that
wave-driven erosion dominates over subaerial weathering in
the long term.

4.3.2 Wave height decay rate vs. weathering rate

For Bideford, a clear zone in the mid-range of wave height
decay rates (a =−1.5) produces well-matched topographic
profiles across the full range of weathering rates (c) (Fig. 9a).
When a >−1.5, a threshold exists where a zone of well-
matched topographic profiles suddenly meets a zone of
poorly matched topographic profiles. When wave height de-
cay rate (a) is increased too much, waves will dissipate their
energy too quickly and will result in modelled topographic
profiles with gradients too steep to match the topographic
profile at Bideford.

When considering the influence on the 10Be concentration
profile at Bideford, a much wider zone across the range of
a produces well-matched 10Be concentration profiles when
c <−5, i.e. when there is negligible subaerial weathering
occurring (Fig. 9b). This zone of well-matched 10Be concen-
tration profiles extends across the boundary where good and

bad topographic profiles can be produced (Fig. 9a). The ad-
dition of 10Be concentrations to the objective function results
in a dense zone of accepted samples across a range for a of
∼−1.8 to −1.3 when c <−5 (Fig. 9c).

In contrast to Bideford, the slowest wave height dissipa-
tion across the shore platform (defined by the lowest a val-
ues) produces the best topographic profile seen at Scalby
(Fig. 9d). Only when assessing the 10Be concentration pro-
file are we able to see how weathering rates interact with
wave erosion to impact the model results for Scalby (Fig. 9e).
Slower wave height dissipation requires lower rates of weath-
ering in order to produce a matching 10Be concentration pro-
file. In the zone of well-matched results, as wave height de-
cay rate (a) values decrease, weathering rates also decrease
(Fig. 9e). Because the peak in 10Be concentrations at Scalby
is ∼ 7000 atomsg−1 less than the peak in 10Be concentra-
tions at Bideford, greater weathering rates and, as a result,
greater platform lowering can produce a modelled 10Be pro-
file that matches the measured data for Scalby. As active sub-
aerial weathering can contribute to model outputs that can
replicate the measured data, the balance of wave-driven and
weathering-controlled erosion is more complex at Scalby.
Wave erosion and weathering can trade off in multiple com-
binations to produce model outputs that match both the mea-
sured 10Be concentration profiles and topographic profiles at
Scalby. The accepted samples (Fig. 9f) show that the best
model results are found at the lower range of y when con-
strained by matching to the topographic profile (Fig. 9d) and
10Be profile (Fig. 9e) simultaneously.

4.3.3 Wave height decay rate vs. material resistance

A distinct negative relationship exists between material re-
sistance (b) and wave height decay weight (a) at Bideford
when optimising to the topographic profile (Fig. 10a). As b
increases, more wave energy is needed to erode the cliff at
a rate fast enough to produce a shore platform with a gradi-
ent shallow enough to match that seen at Bideford. In other
words, wave height decay rate has to be reduced so waves
can dissipate their energy across a further distance. Varying
the wave decay rate (a) for any value of b reveals a distinct
zone where wave energy is high enough to produce a wide
enough platform, but not large enough to decrease the profile
slope to below the observed 0.02 gradient at Bideford. The
same relationship exists when optimising for the 10Be con-
centration profile, but the best region has shifted to a zone
with a greater wave height decay rate (Fig. 10b). This ratio
between a and b strongly controls the accepted results for
Bideford (Fig. 10c). Section 5.2 expands on this correlation
found between the a and b parameters.

For Scalby, there is a similar, but less distinctive, trade-off
between a and b as seen at the Bideford site. A wider range
of wave height decay rates (a) is able to produce a suitable
topographic profile in relation to b with the most likely re-
sults tending towards lower rates of wave height decay rate
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Figure 8. Objective function results for the material resistance (b) and weathering rate (c) parameters constructed from 50 %–50 % weighted
MCMC analysis results for the Bideford site and Scalby site. The topographic profile RMSE (a, d) and 10Be concentration profile RMSE
(b, e) objective function spaces are constructed from all 10 000 samples visited in the MCMC analysis. The combined likelihood objective
function space (c, f) is constructed just using the accepted samples from the MCMC analysis. Dark blue corresponds to the worst samples
that have the highest RMSE and negative log-likelihood scores, while bright yellow corresponds to the best samples that have the lowest
RMSE and negative log-likelihood scores.

(a) (Fig. 10d). The platform gradient is shallower at Scalby
(0.01); once a falls below ∼−1.5, a shallow platform gra-
dient can be produced by a wider range of wave height de-
cay rate values as long as material resistance (b) is relatively
low. The influence of the 10Be concentration optimisation
constrains the window of best results (Fig. 10e). Accepted
samples cover a wider area of the parameter space at Scalby
compared to Bideford (Fig. 10f).

5 Discussion

Our ultimate aim is to quantify the long-term history of tran-
sient cliff retreat rates in order to enable better predictions of
future cliff retreat rates at rock coast sites across the UK and
worldwide. Our results show that rigorous multi-objective
optimisation of a process-based coastal evolution model to
high-precision measured datasets permits long-term trajecto-
ries of cliff retreat to be identified and quantified for real-
world sites over centennial to millennial timescales.

To explore the potential for further application of these
methods at other rock coast sites, here we justify the method-
ology chosen, address equifinality in model results, and ex-
plore how equifinality impacts our ability to quantify cliff re-
treat rates. We also highlight some aspects of our results that
should be interpreted with caution, specifically where corre-
lation exists between parameters.

5.1 The importance of multi-objective optimisation

In this study, we have a rare opportunity to formally evaluate
how two distinctive datasets constrain a model differently.
We find that the two datasets used here reveal dissimilar pat-
terns in the objective function space between the topographic
profile RMSE and the 10Be concentration RMSE (Figs. 8–
10). The topographic data and 10Be concentration data have
therefore provided us with different information and validate
the use of multi-objective optimisation in understanding the
long-term evolution of rock coasts.

Using the results from Bideford as an example, we can ob-
serve model outputs for three different zones within the pa-
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Figure 9. Objective function results for the wave height decay rate (y) and weathering rate (K) parameters constructed from 50%–50 %
weighted MCMC analysis results for the Bideford and Scalby sites. The topographic profile RMSE (a, d) and 10Be concentration profile
RMSE (b, e) objective function spaces are constructed from all 10 000 samples visited in the MCMC analysis for Bideford and Scalby,
respectively. The combined likelihood objective function space (c, f) is constructed just using the accepted samples from the MCMC analysis.
Dark blue corresponds to the worst samples that have the highest RMSE and negative log-likelihood scores, while bright yellow corresponds
to the best samples that have the lowest RMSE and negative log-likelihood scores.

rameter space: (1) zones where we are able to match the to-
pographic profile, but not the 10Be concentration profile; (2)
zones where we are able to match the 10Be concentration pro-
file, but not the topographic profile; and (3) zones where we
are able to match both objective functions. At the Bideford
site, the parameter space that can produce model results that
match the topographic profile well but the 10Be concentration
profile poorly is only found where weathering rates are high
(c >−5) (shaded blue, Fig. 11a). Examples of model outputs
from this area (Fig. 11a) of the parameter space show that the
shore platform gradient and elevation can be matched well,
but the magnitude of all modelled 10Be concentration pro-
files is considerably lower than the corresponding measured
data (Fig. 11b). This upper range of weathering rates (c) was
incorporated into the initial MCMC analysis for the Bideford
site, but was adjusted in later simulations because the model
could not produce well-matched 10Be concentration profiles
for this range of c (see Sect. 3.4). If we only optimise to the
modelled topographic profile, we could vastly overestimate
the contributions of weathering to the shore profile evolution

at Bideford. More importantly, modelled cliff retreat rates
are consistently faster than the multi-objective optimised re-
treat rate results that also try to match 10Be concentrations
(Fig. 11e).

Furthermore, the zone where model outputs can match the
10Be concentration profile, but cannot match the topographic
profile, is shown for the parameter space between material
resistance (b) and wave height decay rate (a) (shaded or-
ange, Fig. 11a). In all corresponding model examples shown
(Fig. 11c), the magnitude of the 10Be concentration profile
matches the measured data well, but modelled shore platform
profiles are steeper than the measured topographic profile. As
wave height decay rate values (a) are increased above the pa-
rameter space that is able to match both objective functions
well (shaded pink, Fig. 11a), the reduction in wave erodibil-
ity produces steeper profiles because erosion is less efficient.
Concentrations of 10Be are highly dependent on the evolu-
tion of the surface topography. Therefore, even if we are able
to match 10Be concentrations to corresponding data, if the
topography is incorrect, we are matching the 10Be concentra-
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Figure 10. Objective function results for the material resistance (b) wave height decay rate (a) parameters constructed from 50 %–50 %
weighted MCMC analysis results for the Bideford site and Scalby site. The topographic profile RMSE (a, d) and 10Be concentration profile
RMSE (b, e) objective function spaces are constructed from all 10 000 samples visited in the MCMC analysis. The combined likelihood
objective function space (c, f) is constructed just using the accepted samples from the MCMC analysis. Dark blue corresponds to the worst
samples that have the highest RMSE and negative log-likelihood scores, while bright yellow corresponds to the best samples that have the
lowest RMSE and negative log-likelihood scores.

tions incidentally and not as a result of correct topographic
evolution. Results that can only match 10Be concentrations
should therefore be discarded.

Finally, the parameter space where both the topographic
profile and 10Be concentration profile can be matched well
is shown (shaded pink, Fig. 11a). This zone corresponds di-
rectly to the most likely accepted samples (Fig. 10). Ex-
amples of model outputs across this zone all show a good
fit to the topographic profile and 10Be concentration profile
(Fig. 11d). The reduced area covered by the pink shaded re-
gion demonstrates how optimising to multiple datasets has
considerably reduced uncertainty in final best-fit parameter
results.

Results from topographic-only optimisation (shaded blue,
Fig. 11e) show the same declining trend in cliff retreat rates,
but are overall consistently faster than the rates of cliff retreat
generated from multi-objective optimisation (shaded pink,
Fig. 11e). Furthermore, uncertainty in topographic-only op-
timised retreat rates is much greater compared to multi-
objective optimisation results, particularly in modern-day

modelled cliff retreat rates. In contrast, results from 10Be-
concentration-only optimisation (shaded orange, Fig. 11e)
produce slower cliff retreat rates when compared to the
multi-objective optimised results but still show the declin-
ing trend. Multi-objective optimised results (shaded pink,
Fig. 11e) show the declining trend in cliff retreat rates with
magnitudes intermediate to the two single-objective function
results. Importantly, the range of retreat rates from multi-
objective optimisation is considerably smaller in compar-
ison to single-objective optimisation. Present-day cliff re-
treat rates based on multi-objective optimisation range from
1.8–2 cmyr−1 in contrast to 10Be-concentration-only cliff re-
treat rates of 1–1.5 cmyr−1 and topographic-only optimisa-
tion cliff retreat rates of 3–9 cmyr−1.

Differences between cliff retreat rates on the scale of cen-
timetres per year (cmyr−1) may not appear noteworthy, but
projecting these retreat rates across large temporal scales
has a significant effect on the modelled rock coast ero-
sional history. For example, the 250 m modern-day intertidal
shore platform would have been eroded in the past 2700–
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Figure 11. Objective function surface at Bideford (a) for the parameters material resistance (b), material weathering rate (c), material
resistance (b), and wave height decay rate (a). The blue shaded region (a) shows where in the parameter space the modelled topographic
profile alone can match measured data. Blue diamonds (a) correspond to example model results shown in (b). The orange shaded region (a)
shows where in the parameter space the modelled 10Be concentration profile alone can match measured data. Orange triangles (a) correspond
to example model results shown in (c). The pink shaded region (a) shows where in the parameter space both the modelled topographic profile
and 10Be concentration profile can match measured data. Pink crosses (a) correspond to example model results shown in (d). Cliff retreat
rates (myr−1) on a log scale for each set of model examples are shown in (e). Model results are from the 50 %–50 % weighted Pareto set
simulation.

5200 years based on topographic-only optimisation, 6800–
7000 years based on 10Be-concentration-only optimisation,
and 5400–5600 years based on multi-objective optimisation.
For these examples, the time period of modelled cliff ero-
sion that reflects a good match to the measured topographic
profile results in an uncertainty of 2500 years, whereas an
uncertainty based on multi-objective optimisation is only
200 years. The example rock coast site at Bideford is a sta-
ble coastline with relatively slow historic cliff retreat rates. It
is important to ensure that modelled cliff retreat rates can be
constrained as much as possible because the magnitude and
uncertainty in cliff retreat rates would increase by orders of

magnitude when applying this model to more dynamic rock
coast sites, such as the southern UK coast chalk cliffs that
are currently retreating at a much faster rate (e.g. Hurst et al.,
2016).

Multi-objective optimisation ensures that we optimise
both objective functions simultaneously and that best-fit re-
sults will reflect the parameter space where both measured
datasets can be well matched. Consequently, equifinality in
best-fit results can be substantially limited, which, most im-
portantly, results in better-constrained modelled cliff retreat
rates. Further improvements to the model optimisation may
be made with future inversion calculations by optimising to
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a third measured dataset, including a second CRN concen-
tration profile (e.g. 26Al or 14C). This has the potential to (1)
further constrain modelled long-term cliff retreat rates and
(2) reveal more complex shore platform erosion evolution
through coupled CRN analysis such as platform burial due
to sediment cover.

5.2 Parameter correlation

As previously mentioned, Matsumoto et al. (2018) found that
similar modelled topographic profiles can be produced across
a wide range of wave force in relation to weathering, partic-
ularly in mega-tidal settings. Bideford is situated in a mega-
tidal setting with a mean spring tidal range of 8.41 m. As ex-
pected, results from the MCMC analysis show that accepted
samples are found across a wide range of wave height decay
rate (a) and weathering rate (c) values for Bideford (Figs. 8c,
9c, and 10c).

The objective function space for wave height decay rate
(a) and material resistance (b) reveals a trade-off relationship
between the two functions. A linear regression analysis was
performed and highlights a finite range of linearly related a
and b values that can produce a well-matched topographic
profile and resultant 10Be concentration profile. The residu-
als of a, after fitting to the linear correlation in Fig. 12a, are
shown (Fig. 12b). Nevertheless, the relationship between a
and b is not as straightforward as saying faster wave height
needs to be compensated for by a lower material resistance.
Varying the wave height decay rate (a) changes the erosive
energy distribution across the shore platform, and this ulti-
mately influences the potential erosion achieved by waves.
When waves dissipate energy too quickly (a is increased),
erosion of the outer part of the platform is increased and less
erosion is achieved towards the cliff base. As a result, mod-
elled topographic profiles become too steep to match the gra-
dient of the shore platform measured at Bideford (Fig. 12c).
In contrast, when waves dissipate too slowly (a is decreased)
and waves dissipate energy across a wider distance of the
shore platform, erosion is increased further inshore and over-
all erosion across the shore platform is increased. The gradi-
ent of the modelled topographic profiles becomes less than
0.02 measured at the Bideford shore platform (Fig. 12e).
Here we demonstrate the twofold impact of varying wave
height decay rate: (1) increasing the distance across which
waves break increases the amount of energy made available
for erosion, and (2) varying the rate of wave dissipation af-
fects the spatial distribution of erosion across the shore plat-
form. The observed range of residuals across the b/a regres-
sion and the resultant model outputs highlights the narrow
uncertainty of y required to produce a matching topographic
and 10Be concentration profile.

In order for an MCMC analysis to produce effective pos-
terior distributions, the optimisation method requires free pa-
rameters to be independent of each other. As a result of the
correlation revealed between a and b parameters, the high

confidence placed on a values (Fig. 12) is not reflected by
the posterior distributions produced from the MCMC results
(Table 3). Wide posterior distributions of the accepted sam-
ples (axis histograms in Fig. 12a) produce large uncertainty
for final MCMC results. We argue that propagating MCMC
uncertainties for a together with the uncertainty for b pro-
duces unrealistic errors in model outputs, specifically seen
in the large range of shore platform gradients. Consequently,
the uncertainty in final model outputs (Figs. 6 and 7) is con-
structed by plotting the model result of the median and 16 %–
84 % confidence range for each parameter against the median
result for the other two parameters.

Comparisons between the two sites further support our ob-
servations of the relationship between material resistance (b)
and wave height decay rate (a). The platform gradient at
Scalby is shallower compared to Bideford, and best-fit re-
sults for a show that wave dissipation needs to be slower
to match the topographic profile (Fig. 10). Best-fit a values
are constrained by the lowest bound of a for Scalby with a
limits informed by field-based studies (Ogawa et al., 2011).
For Scalby, this either means (1) overall wave erosion needs
to be greater, or (2) wave erosion needs to be more evenly
distributed across the shore platform compared to Bideford.
Furthermore, Scalby is located at a meso-tidal coastline with
mean spring tidal ranges of 4.6 m, and studies have previ-
ously commented on the positive correlation observed be-
tween platform gradient and tidal range for real-world sites
(e.g. Matsumoto et al., 2017). Future investigations into how
b vs. a relationships may change as a function of platform
gradient and/or tidal range within this exploratory model that
are informed with additional site-specific datasets are needed
in order to further understand this model behaviour.

5.3 Equifinality in cliff retreat trajectories

Correlation between a and b parameters at Bideford also
shows that a matching topographic profile can be pro-
duced across the full extent of material resistance (b), pro-
vided wave height decay rate (a) has adjusted accordingly
(Fig. 12d). A greater material resistance (b) requires a greater
wave force, i.e. smaller wave height decay rate (a), in order to
erode an across-shore intertidal shore platform with the same
geometric properties. Correlation between a and b demon-
strates one potential source of equifinality in terms of end-
member topographic and 10Be concentration profiles. To en-
sure we report accurate cliff retreat rates, we need to identify
whether equifinal a and b combinations result in similar cliff
retreat trajectories as well as the same endmember model to-
pographic and 10Be concentration profiles. The magnitude of
material resistance (b) across the b/a regression has no effect
on the final fit for the topographic profile (Fig. 12d). Most im-
portantly, the resultant cliff retreat rates all show comparable
trajectories and rates of cliff retreat across the late Holocene.
Therefore, as long as the combination of a and b tracks the
regression fitted to the accepted samples (Fig. 12a), we can
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Figure 12. (a) Objective function space of accepted samples from the MCMC analysis for material resistance (b) and wave height decay
rate (a) parameters for Bideford. A linear regression calculation was performed and is shown along with the r value of −0.83. Histograms
on either axis show the distribution of accepted sample points. (b) Residual plot from the regression line shown in (a). Yellow circles plotted
along the regression line in (b) correspond to model outputs shown in (d) that show the best-fit to the measured topographic profile. Green
triangles pointing upwards (b) are plotted +0.2 from the regression line and correspond to model outputs shown in (c). Green triangles
pointing downwards (b) are plotted −0.2 from the regression line and correspond to model outputs shown in (e).

have confidence that the most accurate retreat rates are re-
ported.

5.4 Interpretation of best-fit parameter values

It is important to recognise that the best-fit lower wave height
decay rates (a) found at Scalby, which results in a break-
ing wave force to be exerted over a greater distance across
the platform surface, do not necessarily mean that wave en-
ergy is greater at Scalby than Bideford. Wave energy is ab-
stractly defined in the coastal evolution model by an assail-
ing wave force, and we have chosen to explore this in the
MCMC analysis by varying the wave height decay rate (a).
Our aim is not to quantify the wave force at real-world coast-

lines, but to determine the best combination of model param-
eters to match measured datasets in order to model cliff re-
treat over timescales much longer than information on wave
conditions is available. Wave height attenuation length is de-
pendent on other factors such as profile gradient and tidal
range, which are site-dependant (Trenhaile, 2000). We also
have very few constraints on if and how tidal range has
changed across the past 8000 years, as this depends strongly
on local and far-field bathymetry, as well as other uncertain
climatic variables. Furthermore, wave height decay rate is
further impacted by surface roughness (Poate et al., 2018),
and this is not considered within our model simulations. For
these reasons, using wave height decay rate to infer wave
energy for a range of real-world sites is unachievable with
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our model, even with a rigorous optimisation method. More-
over, parameter correlation, which is seen particularly well
in the relationship between material resistance (b) and wave
height decay rate (a) (see Sect. 5.2), means that finding a sin-
gle best-fit result for wave height decay rate (a) is problem-
atic without isolated parameter investigations. Nevertheless,
the relative importance of the parameters that control wave-
driven erosion (a) and weathering-controlled erosion (c) can
be considered. Because best-fit results at Bideford clearly
show that negligible contributions of weathering are needed
to produce the 10Be concentration profile, we can conclude
that the evolution of cliff retreat at Bideford is likely dom-
inated by wave-driven erosion. In contrast, modelled best-
fit values of low to intermediate weathering rates at Scalby
reveal a more complex interplay between wave-driven and
weathering-controlled erosion.

Resultant equifinality in cliff retreat trajectories (Fig. 12)
reveals that correlation does not prevent identification of con-
sistent patterns in cliff retreat rate histories. In other words,
the relative combinations of a, b, and c parameter values
are able to capture the morphodynamics needed to model
compatible rock coast evolutions at unique rock coast sites.
Therefore, the abstract representation of wave force, weath-
ering processes, and material resistance within the RPM does
not inhibit the modelling of cliff retreat for real-world sites.
Furthermore, consistent trends in past cliff retreat rates for all
Pareto weighting sets (Fig. 5) that match the declining rate of
RSL rise suggest that the influence of the RSL boundary con-
dition dominates over individual parameter values.

6 Conclusions

In this study, we have developed a multi-objective optimisa-
tion approach to reconstruct the history of rock coast evolu-
tion through the combination of morphodynamic modelling
and field observations. Our approach calibrates a coupled
morphodynamic–cosmogenic radionuclide rock coast evolu-
tion model using observations of modern rock coast topog-
raphy and measurements of in situ 10Be concentrations in
the exposed bedrock. These developments are vital to en-
able application of a process-based model to real-world coast
sites and quantify a time series of rock coast erosion and sea
cliff retreat rates. Our results demonstrate the necessity for
using multi-objective optimisation in order to limit model
equifinality, in which similar topographies develop via differ-
ing evolutionary trajectories. Optimal parameter selection is
used to minimise discrepancies between model simulations
and measured topography, and 10Be concentrations can re-
veal the most likely history of rock coast development, in-
cluding rates of shore platform lowering and cliff retreat.

The selection of free parameters within the model optimi-
sation focuses on the efficacy of intertidal weathering and
erosion processes relative to the resistance of bedrock. There
is still equifinality in model outcomes for parameter com-

binations for which similar patterns of topographic devel-
opment occur. More resistant bedrock combined with effi-
cient weathering and/or erosion can result in development of
a rock coast profile similar to that of a less resistant bedrock
and less effective weathering and/or erosion. This parameter
correlation can be reduced through multi-objective optimi-
sation but ultimately does not prevent identifying consistent
patterns in cliff retreat rates at specific rock coast sites.

Investigations into the Pareto set of optimised results show
that best-fit results are consistent across a range of objec-
tive function weightings. These findings suggest that a sin-
gle, equally weighted MCMC chain is sufficient to find an
optimal set of input model parameters in order to constrain
the cliff retreat rate history.

By applying rigorous optimisation methods, we demon-
strate how an abstract, process-based model is capable of
reproducing the rock coast profile development of real-
world sites. Moreover, when coupled with a 10Be production
model, equifinality is sufficiently constrained to reveal dis-
tinctive trends in long-term cliff retreat rates. Long-term cliff
retreat rates of two UK rock coast sites both closely mirror
the history of RSL change rates. This link between the rate of
RSL rise and cliff retreat rates indicates that future accelera-
tions in RSL rise associated with climate change will cause
accelerations in cliff retreat rates, even at coastal sites that
have been stable historically. We are only able to understand
how cliff retreat responds to RSL by modelling the trajectory
of cliff evolution across timescales that capture these changes
in RSL rise.

The multi-objective statistical modelling approach devel-
oped and tested in our study highlights potential for future
efforts to (1) reconstruct past rates and patterns of cliff re-
treat over timescales appropriate to the magnitude and fre-
quency of erosion events at rock coast sites, (2) assess the
relative importance of weathering and wave-driven erosion
processes, and (3) forecast future erosion rates under differ-
ent scenarios for RSL change as a result of climate change.
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