
Imperial College London

Department of Computing

Improving the Domain Generalization and Robustness of
Neural Networks for Medical Imaging

Chen Chen

Main supervisor
Dr Daniel Rueckert

Second supervisor
Dr Wenjia Bai

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Computing of Imperial College London

December 2021





Declaration of Originality

I, Chen Chen, hereby declare that the work described in this thesis is my own, except where

specifically acknowledged.

i



ii



Copyright Statement

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution 4.0 International License (CC BY).

Under this license, you may copy and redistribute the material in any medium or format for

both commercial and non-commercial purposes. You may also create and distribute modified

versions of the work. This on the condition that you credit the author.

When reusing or sharing this work, ensure you make the license terms clear to others by

naming the license and linking to the license text. Where a work has been adapted, you should

indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included

in this license or permitted under UK Copyright Law.

iii



iv



Abstract

Deep neural networks are powerful tools to process medical images, with great potential to

accelerate clinical workflows and facilitate large-scale studies. However, in order to achieve

satisfactory performance at deployment, these networks generally require massive labeled data

collected from various domains (e.g., hospitals, scanners), which is rarely available in practice.

The main goal of this work is to improve the domain generalization and robustness of neural

networks for medical imaging when labeled data is limited.

First, we develop multi-task learning methods to exploit auxiliary data to enhance networks.

We first present a multi-task U-net that performs image classification and MR atrial segment-

ation simultaneously. We then present a shape-aware multi-view autoencoder together with a

multi-view U-net, which enables extracting useful shape priors from complementary long-axis

views and short-axis views in order to assist the left ventricular myocardium segmentation task

on the short-axis MR images. Experimental results show that the proposed networks success-

fully leverage complementary information from auxiliary tasks to improve model generalization

on the main segmentation task.

Second, we consider utilizing unlabeled data. We first present an adversarial data augment-

ation method with bias fields to improve semi-supervised learning for general medical image

segmentation tasks. We further explore a more challenging setting where the source and the

target images are from di↵erent data distributions. We demonstrate that an unsupervised im-

age style transfer method can bridge the domain gap, successfully transferring the knowledge

learned from labeled balanced Steady-State Free Precession (bSSFP) images to unlabeled Late

Gadolinium Enhancement (LGE) images, achieving state-of-the-art performance on a public

multi-sequence cardiac MR segmentation challenge.

For scenarios with limited training data from a single domain, we first propose a general

training and testing pipeline to improve cardiac image segmentation across various unseen

domains. We then present a latent space data augmentation method with a cooperative training

framework to further enhance model robustness against unseen domains and imaging artifacts.
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Chapter 1

Introduction

1.1 Motivation

In recent years, deep learning (DL) has gained significant attention and popularity both in the

research and industry community and has been gradually developed as a state-of-the-art tech-5

nique in various areas, including computer vision, natural language processing, and healthcare.

Di↵erent from traditional machine learning (ML) algorithms which heavily rely on handcrafted

feature engineering, DL algorithms, in general, adopt neural networks to automatically extract

a set of complex hierarchical features from data. These features unveil the intricate structure

in large raw data, which are essential for pattern recognition, decision-making, and inference.10

In the field of medical data analysis, such an ability is highly desirable, allowing one to auto-

matically extract, analyze, and interpret information from medical imaging data. For example,

neural networks can be used to perform tedious tasks like segmenting anatomical structures

and performing volume measurement from medical images (e.g., magnetic resonance imaging

(MRI), computed tomography (CT), ultrasound) [1]. Fig. 1.1 presents an overview of typical15

cardiac segmentation tasks in the three most commonly used modalities where deep learning

methods have been applied to. These applications include the segmentation of cardiac sub-

structures such as the left ventricle (LV), right ventricle (RV), left atrium (LA), right atrium

(RA), and coronary arteries, as well as the segmentation of tissues (e.g., scar) and other abnor-

1
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Figure 1.1: Overview of cardiac image segmentation tasks for the three most common

imaging modalities in which deep learning techniques have been applied. Figure source: [1],
reproduced under the terms of the Creative Commons Attribution License (CC BY 4.0).

malities such as plaque. This indicates DL’s wide applicability to various segmentation tasks.20

Meanwhile, with the support of advanced hardware such as graphical processing units (GPUs)

and tensor processing units (TPUs), neural networks can perform prediction very fast (e.g.,

less than a second). They can greatly reduce physicians, clinicians, and radiologists’ work-

load and potentially improve healthcare with higher e�ciency. Since 2015, neural networks

have become the leading technique for automated medical image analysis, thanks to their im-25

pressive accuracy and speed in many vision tasks, such as anatomical structure segmentation,

landmark detection, lesion detection, and segmentation, as well as image registration, image

reconstruction, and computer-aided diagnosis/prognosis [2, 3].

Figure 1.2: Illustrative diagram of the distributional shift between the training and testing

data in real-world applications.

However, adopting DL into real-world medical imaging applications is still at an early stage.
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One major obstacle that restricts the applicability of DL is that it, in general, requires large-scale30

labeled data from various scanners and sites to achieve satisfactory performance. Collecting and

labeling such large-scale datasets for training can be expensive and even prohibitively impossible

due to privacy concerns. As a result, it is common to have a limited training dataset, which

fails to cover the full spectrum of test data in real-world clinical environments, as illustrated in

Fig 1.2. Such a discrepancy between training and test data is termed as ‘distributional shift’35

or ‘domain shift’, attributing to the model’s significant performance drop at deployment time.

For example, when Bai et al. applied a neural network-based segmentation model trained from

a dataset from UK Biobank [5] to a public benchmark dataset collected from France: ACDC

dataset [6], the left ventricle segmentation accuracy score dropped by 20 percent.

Figure 1.3: Illustrative diagram of the domain shift problem in cardiac MR segmenta-

tion. Variations in terms of cardiac structural di↵erences as well as image appearances and contrast
di↵erences can be observed between the training distribution and unseen test distributions. Image
source: [7].

As shown in Fig. 1.3, the domain shift problem or dataset bias problem in cardiac MR40

segmentation is mainly caused by two factors:

• Population shifts such as cardiac structural di↵erences across di↵erent populations. Dif-

ferent datasets from other sites often comprise di↵erent populations regarding age, sex,

race, and pathology. Among these datasets, a great of biological variability in heart size,

orientation in the thorax, and cardiac structure deformations (not only in the diseased45

subjects with pathological deformations related to cardiac disease but also in the healthy

subjects) can be observed;
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• Image quality, appearance, and contrast variations resulted from di↵erences in scanners

(e.g., di↵erent vendors, di↵erent magnetic strengths), protocols, and image planning. For

example, images from scanners with a 1.5T magnetic field often contain a higher noise50

level than those from 3T scanners, whereas 3T images show higher image contrast but are

higher likely to su↵er from imaging artifacts [8], see Fig. 1.4. Even with the same scanner,

the quality of imaging can degrade significantly due to improper image acquisitions and

abnormal patient conditions, e.g., very rapid heart rates, di�culty in holding their breath

for a few seconds [8].55

Figure 1.4: Visualization of cardiac MR images scanned using di↵erent magnetic fields

(1.5T vs 3T). Here, images have been classified into four groups: grade 1 (excellent image quality),
grade 2 (good), grade 3 (poor), and grade 4 (non-diagnostic). No patient in the 3 Tesla group showed
a grade 1 in the examined datasets [9]. We can observe evident artifacts (bright stripes) on the 3T
image with grade 3. Image source: [9], licensed under CC BY 4.0a.

ahttp://creativecommons.org/licenses/by/4.0/

These biological di↵erences and image appearance variations among di↵erent datasets pose

challenges to the deployment of a DL-based model at scale. In this thesis, we focus on invest-

igating techniques to enhance the generalization and robustness of neural networks without

acquiring vast amounts of training data from new domains (e.g., hospitals, scanners). Specific-

ally, we focus on improving:60

• intra-domain generalization, which is used to describe a model’s performance on unseen

test data drawn from the same distribution as the training data, e.g., data from the same

scanner or from the same population;
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• out-of-domain generalization, which is used to describe a model’s performance on out-

of-distribution (OOD) data 1 where domain shift is presented between training and test65

datasets, e.g., data from di↵erent scanners or populations. Out-of-domain generaliza-

tion [10] is very close to model robustness, which quantifies the model’s stability against

specific types of data shifts or corruptions, such as changes in vendors, image acquisition

protocols, image quality, or population.

In Chapter 2, we will introduce DL basics as well as existing theories and common practices for70

improving model generalization. All these form the basis of our works presented in Chapters 3-

5, which exploit di↵erent methods to improve model intra- and/or out-of-domain generalization

under di↵erent data settings for cardiac image segmentation. More details can be found below.

1.2 Thesis outline and contributions

Figure 1.5: Illustrative diagram of the three main topics covered in this thesis. They are:
A) learning with auxiliary data; B) learning with unlabeled data; C) learning with a limited labeled
dataset without any additional data.

1In our thesis, the term ‘out-of-domain’ and ‘out-of-distribution’ are used interchangeably throughout the
thesis. Here, the term ‘domain’ is referred to as ‘dataset distribution’.
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This thesis is mainly based on a list of works done in my Ph.D. study that has been75

published in top-tier conferences and peer-reviewed journals. A list of these works is provided

in Sec.1.3. The remaining of this thesis is organized as follows: each chapter starts with a

box recalling the publication(s) whose content is reproduced or adapted therein. Chapter 2

introduces fundamental concepts of deep learning and neural networks, followed by a literature

review on recent developments for deep learning-based cardiac segmentation applications. We80

then discuss the limitations of deep learning approaches, as well as theory and practice to

understand and to improve model generalization, which form the basis of the works that have

been conducted.

In Chapter 3-5, we present our works for improving model generalization and robustness

of neural networks. As illustrated in Fig. 1.2, our works can be summarized into three topics:85

a) learning with auxiliary data (Chapter 3), b) learning with unlabeled data (Chapter 4), c)

learning with a limited labeled dataset without any additional data sources (Chapter 5). The

last topic is of the greatest practical value but is the most challenging one due to the limitation

of training data. A more detailed introduction for the three chapters is given below.

In Chapter 3 we present two di↵erent methods to exploit the value of auxiliary data for90

improving model intra-domain generalization. Specifically,

• We first introduce a multi-task learning network, which conducts image classification and

segmentation tasks simultaneously. The network is constructed to exploit additional non-

imaging patient information (i.e., whether this patient has undergone atrial ablation or

not) to guide the representation learning process for segmentation. This method has been95

applied to segmenting left atrial from contrast-enhanced MR images and has achieved very

promising results, ranking the 4th in an international challenge;

• We then introduce a novel framework that can extract anatomical shape priors from

multiple 2D standard views and leverage these anatomical priors to segment the left

ventricular myocardium from short-axis MR image stacks. The proposed segmentation100

method has the advantage of being a 2D network but at the same time incorporates spatial

context from multiple, complementary views that span a 3D space. We demonstrated
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that our method achieves accurate and robust myocardium segmentation across di↵erent

short-axis slices, especially on the most challenging slices: apical and basal slices.

In Chapter 4, we exploit unlabeled images for improving model performance for a particular105

domain. The first work is on semi-supervised learning for medical image segmentation, where

a small labeled dataset and a relatively large unlabeled dataset draw from the same data

distribution are available for training. The second work focuses on transferring knowledge

learned from a domain with annotated training examples (source domain) to a di↵erent domain

with unlabeled images only (target domain). Specifically,110

• In the first part of the chapter, we present an adversarial data augmentation method

for training neural networks for medical image segmentation. The proposed method is

capable of generating adversarial images with plausible and realistic signal corruptions

to supplement the training data. One of the main advantages of this adversarial data

augmentation is that it does not require labeled data. Thus, it can be applied to both115

labeled and unlabeled data for semi-supervised learning. By continuously generating these

realistic, ‘hard’ examples, we prevent the network from overfitting and, more importantly,

encourage the network to defend itself from intensity perturbations by learning robust

semantic features for the segmentation task. We demonstrate the e�cacy of the proposed

method on a public cardiac MR segmentation dataset in challenging low-data settings;120

• In the second part, we present a fully automatic method to segment cardiac structures

from late gadolinium enhancement (LGE) images without using labeled LGE data for

training, but instead by transferring the anatomical knowledge and features learned on

annotated balanced steady state free precession (bSSFP) images, which are easier to

acquire. Specifically, we employ a multi-modal image translation network for style transfer125

and a cascaded segmentation network for image segmentation. The multi-modal image

translation network generates realistic and diverse synthetic LGE images conditioned

on a single annotated bSSFP image, forming a synthetic LGE training set. This set is

then utilized to fine-tune the segmentation network pre-trained on labeled bSSFP images,

achieving the goal of unsupervised LGE image segmentation. This method is evaluated on130
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the cardiac multi-sequence segmentation task and was ranked the 1st in an international

challenge [11].

In Chapter 5, we focus on improving model out-of-domain generalization without signific-

antly sacrificing intra-domain performance. A very challenging but realistic data setting is

considered: only labeled data from a single domain is available for training a neural network,135

which is then tested on multiple unseen test datasets. Specifically, we present two works:

• First, we present a simple yet e↵ective way to improve network generalization ability

by carefully designing data normalization and augmentation strategies to accommodate

common scenarios in multi-site, multi-scanner clinical imaging data sets. We demon-

strate that a neural network trained on a single-site, single-scanner dataset from the140

UK Biobank study2 can be successfully applied to segmenting cardiac MR images across

di↵erent unseen sites and di↵erent scanners without substantial loss of accuracy;

• In the second part, we present a cooperative framework for training image segmentation

models and a latent space augmentation method for generating hard examples. Both con-

tributions improve model generalization and robustness with limited data. The cooper-145

ative training framework consists of a fast-thinking network (FTN) and a slow-thinking

network (STN). The FTN learns decoupled image features and shape features for image

reconstruction and segmentation tasks. The STN learns shape priors for segmentation

correction and refinement. The two networks are trained in a cooperative manner. The

latent space augmentation generates challenging examples for training by masking the150

decoupled latent space in both channel-wise and spatial-wise manners. The network is

trained on one dataset from one hospital and then evaluated on multiple di↵erent datasets

acquired from di↵erent sources. We performed extensive experiments on public cardiac

imaging datasets and demonstrated improved cross-site segmentation performance and

particularly increased robustness against various unforeseen imaging artifacts compared155

to strong baseline methods.

2https://www.ukbiobank.ac.uk/
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Finally, Chapter 6 concludes the work presented in this thesis and discusses potential future

work.

1.3 List of publications

A list of published works is given below in chronological order:160

1. C. Chen, W. Bai, and D. Rueckert, Multi-task Learning for Left Atrial Segmenta-

tion on GE-MRI, in Statistical Atlases and Computational Models of the Heart, Atrial

Segmentation and LV Quantification Challenges - 9th International Workshop, STACOM

2018, Held in Conjunction with MICCAI 2018, 2018, pp. 292–301 [12].

2. C. Chen, C. Bi�, G. Tarroni, S. Petersen, W. Bai, and D. Rueckert, Learning Shape165

Priors for Robust Cardiac MR Segmentation from Multi-view Images, in Med-

ical Image Computing and Computer Assisted Intervention - MICCAI 2019, 2019, pp.

523–531 [13].

3. C. Chen, C. Ouyang, G. Tarroni, J. Schlemper, H. Qiu, W. Bai, and D. Rueckert,

Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation, in170

Statistical Atlases and Computational Models of the Heart - STACOM 2019, Held in

Conjunction with MICCAI 2019, 2019, pp. 209–219 [14].

4. C. Chen, W. Bai, R. H. Davies, A. N. Bhuva, C. H. Manisty, J. B. Augusto, J. C. Moon,
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Convolutional Neural Network-Based Segmentation on CMR Images, Frontiers

in Cardiovascular Medicine, vol. 7, p. 105, 2020 [7].

5. C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, and D. Rueckert, Realistic
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10 Chapter 1. Introduction

6. C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, and D. Rueckert,Deep Learning

for Cardiac Image Segmentation: A Review, Frontiers in Cardiovascular Medicine,
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Training and Latent Space Data Augmentation for Robust Segmentation, in185

Medical Image Computing and Computer Assisted Intervention - MICCAI 2021, 2021 [16].
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12 Chapter 1. Introduction



Chapter 2

Background

This chapter contains material from

1. C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai et al., ‘Deep learning

for cardiac image segmentation: A review,’ Frontiers in Cardiovascular Medicine,

vol. 7, p. 25, Mar. 2020, issn: 2297-055X. doi: 10.3389/fcvm.2020.00025 [1]

2.1 Fundamentals of deep learning

Deep learning models are essentially deep artificial neural networks. Each neural network235

consists of an input layer, an output layer, and multiple hidden layers. In the following section,

we will review several common deep learning networks and key techniques that have been

commonly used in state-of-the-art DL-based medical imaging applications. We then will briefly

review the recent developments of deep learning for cardiac MR segmentation. Finally, we will

discuss the limitations of deep learning as well as theories and practical techniques to improve240

model generalization.

13



14 Chapter 2. Background

2.1.1 Deep neural networks

A deep neural network is an artificial neural network (ANN) with multiple layers (n > 2)

between the input and output layers, which allows itself to model complex non-linear rela-

tionships in data. In this section, we first introduce basic building blocks in neural networks245

and then introduce several commonly used deep neural networks in image analysis. The basic

building blocks of deep neural networks are:

• Convolution layers: A convolutional layer consists of a set of small filters with learnable

weights and biases. Each filter in a convolutional layer is only connected to a small

region of the input volume each time. By sliding across the whole input volume along the250

width and height and computing the dot product between the filter weights and the input

volume plus bias o↵sets, a convolution layer produces a set of feature maps (activation

maps). These activation maps correspond to the response of the convolutional filters at

each spatial position of the input. For example, given a convolutional layer with kout 2D

n ⇥ n convolution kernels and an input image xin 2 RH⇥W⇥kin , the computation can be255

formulated as:

8i 2 (1, kout), x
(i)
out = w(i)

� xin + b
(i)
, (2.1)

where w(i)
2 Rn⇥n⇥kin , b

(i)
2 R represent the weights and bias parameters in the i

th

convolution kernel respectively, � represents the convolution operation (i.e. dot products

between the filters and local regions of the input), xout 2 RH0⇥W 0⇥kout represents the

output feature maps. H
0, W

0 are determined by the size of the kernel n, the stride260

s, the amount of zero padding p and the input height H and width W respectively:

H
0 = (H � n+ 2p)/s+ 1,W 0 = (W � n+ 2p)/s+ 1.

• Activation layers: Activation layers are nonlinear transformation functions, which trans-

form input values to fall within an acceptable and useful range. In deep learning, the most

commonly used activation function is the rectified linear unit (ReLU) function, which pre-265

serves the value of non-negative inputs and assigns zeros to negative inputs. The rectifier
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function is given below:

f(x) =

8
>><

>>:

x if x � 0

0, otherwise

. (2.2)

Two main advantages of ReLU are its simplicity and its computational e�ciency. Com-

pared to the other two commonly used sigmoid and tanh activation functions, the gradient

calculation for ReLU is much simple. For non-negative inputs, the gradients are all 1s,270

whereas for negative inputs, the gradients are all 0s. It can, therefore, significantly reduce

computational time at network training.

• Pooling layer: Pooling layers are used to reduce the spatial size of features and, more

importantly, remove/suppress redundant features for improved generalization. One of

the most commonly used pooling layers is Max Pooling. Max Pooling partitions the275

input into a set of non-overlapping regions and then returns the maximum value for each

sub-region.

• Fully connected layers: A fully connected layer contains a set of neurons where each

of them has full connections to its inputs. Given a set of features, it performs matrix

multiplication plus bias o↵sets to compute activation maps.280

Apart from the above basic layers, there is another family of layers called normalization

layers, which are used to standardize the statistics of inputs to layers. A normalization layer is

generally inserted between a convolution layer and its subsequent activation layer. By gently

restricting the distributions of inputs to layers in a deep network, it can help the network to

produce better gradients for weight update, thus alleviating the gradient explosion and vanish-285

ing problems during the network optimization [25]. Without normalization layers, training deep

neural networks with tens of layers is challenging and time-consuming as networks can be very

sensitive to the initial random weights and the change in the distribution of network activations

during training. Several commonly used normalization layers includes batch normalization [25],

layer normalization [26], and instance normalization [27], which normalize inputs batch-wise,290

layer-wise, and instance-wise, respectively.
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2.1.1.1 Convolutional neural networks (CNNs)

Figure 2.1: (A) Generic architecture of convolutional neural networks. A CNN takes a car-
diac MR image as input, learning hierarchical features through a stack of convolutions and pooling
operations. These spatial feature maps are then flattened and reduced into a vector through fully con-
nected layers. This vector can be in many forms, depending on the specific task. It can be probabilities
for a set of classes (image classification) or coordinates of a bounding box (object localization) or a
predicted label for the center pixel of the input (patch-based segmentation), or a scalar for regression
tasks, e.g., left ventricular volume estimation. (B) Patch-based segmentation method based on

a CNN classifier. The CNN takes a patch as input and outputs the probabilities for four classes.
The class with the highest score is the prediction for the center pixel (see the yellow cross) in this
patch. By repeatedly forwarding patches located at di↵erent locations into the CNN for classification,
one can finally get a pixel-wise segmentation map for the whole image. LV: left ventricle cavity; RV:
right ventricle cavity; BG: Background; MYO: left ventricular myocardium. The blue number at the
top indicates the number of channels of the feature maps. Each convolution kernel is a 3x3 kernel
(stride=1, padding=1), producing an output feature map with the same height and width as the input.

In this part, we will introduce convolutional neural networks (CNNs), which are the most

common type of deep neural networks for image analysis. CNNs have been successfully applied

to advance the state-of-the-art on many image classification, object detection and segmentation295

tasks. As shown in Fig. 2.1A, a standard CNN consists of an input layer, an output layer, and

a stack of functional layers in between that transform an input into an output in a specific

form, e.g., vectors. These functional layers often contain convolutional layers, pooling layers,

and/or fully connected layers. In general, a convolutional layer CONVl contains kl convolution

kernels/filters, which is followed by a normalization layer, (e.g., batch normalization [25]), and300
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a nonlinear activation function (e.g., ReLU) to extract kl feature maps from the input. These

feature maps are then down-sampled by pooling layers, typically by a factor of 2, which remove

redundant features to improve the statistical e�ciency and model generalization. After that,

fully connected layers are applied to reduce the dimension of features from its previous layer and

find the most task-relevant features for inference. The output of the network is a fix-sized vector305

where each element can be a probabilistic score for each category (for image classification), a

real value for a regression task, e.g., the left ventricular volume estimation, or a set of values,

e.g., the coordinates of a bounding box for object detection and localization.

A key component of CNNs is the convolutional layer. Each convolutional layer has kl

convolution kernels to extract kl feature maps and the size of each kernel n is chosen to be310

small in general, e.g., n = 3 for a 2D 3 ⇥ 3 kernel, to reduce the number of parameters1.

While the kernels are small, one can increase the receptive field 2 by increasing the number of

convolutional layers. For example, a convolutional layer with large 7⇥7 kernels can be replaced

by three layers with small 3⇥ 3 kernels [28]. The number of weights is reduced by a factor of

72/(3⇥ (32)) ⇡ 2 while the receptive field remains the same (7⇥ 7). In general, increasing the315

depth of convolution neural networks (the number of hidden layers) to enlarge the receptive

field can lead to improved model performance, e.g., classification accuracy [28].

CNNs for image classification can also be employed for image segmentation applications

without major adaptations to the network architecture [29], as shown in Fig. 2.1B. However,

this requires an additional step to divide each image into patches and then train a CNN to320

predict the class label of the center pixel for every patch. One major disadvantage of this

patch-based approach is that, at inference time, the network has to be deployed for every patch

individually despite the fact that there is a lot of redundancy due to multiple overlapping

patches in the image. As a result of this ine�ciency, the main application of CNNs with fully

connected layers is object localization, which aims to estimate the bounding box of the object325

of interest in an image. This bounding box is then used to crop the image, forming an image

1In a convolution layer l with kl 2D n ⇥ n convolution kernels and a lin-channel input, the number of
parameters in a convolutional layer is kl ⇥ (n2

⇥ lin + 1). For a convolutional layer with 16 3⇥ 3 filters where
the input is a 28⇥ 28⇥ 1 2D gray image, the number of parameters in this layer is 16⇥ (32 ⇥ 1 + 1) = 160.

2The receptive field is the input image area that potentially impacts the activation of a particular convolu-
tional kernel/neuron.
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pre-processing step to reduce the computational cost for segmentation [30]. For e�cient, end-

to-end pixel-wise segmentation, a variant of CNNs called fully convolutional neural network

(FCN) is more commonly used, which will be discussed in the next section.

2.1.1.2 Fully convolutional neural networks (FCNs)330

Figure 2.2: (A) Architecture of a fully convolutional neural network (FCN). The FCN first
takes the whole image as input, learns image features through the encoder, gradually recovers the
spatial dimension by a series of upscaling layers (e.g., transposed convolution layers, unpooling layers)
in the decoder, and then produces pixel-wise probabilistic maps to predict regions of the left ventricle
cavity (blue region), the left ventricular myocardium (green region) and the right ventricle cavity
(red region). The final segmentation map is obtained by assigning each pixel with the class of the
highest probability. One use case of this FCN-based cardiac segmentation can be found in [31]. (B)

Architecture of a U-net. On the basis of FCN, U-net adds ‘skip connections’ (gray arrows) to
aggregate feature maps from coarse to fine through concatenation and convolution operations. For
simplicity, we reduce the number of downsampling and upsampling blocks in the diagram. For detailed
information, we refer readers to the original paper [32].

The idea of FCN was first introduced by [33] for image segmentation. FCNs are a special

type of CNNs that do not have any fully connected layers. In general, as shown in Fig. 2.2A,

FCNs are designed to have an encoder-decoder structure such that they can take inputs of

arbitrary size and produce an output with the same size. Given an input image, the encoder

first transforms the input into a high-level feature representation, whereas the decoder interprets335

the feature maps and recovers spatial details back into the image space for pixel-wise prediction
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through a series of upsampling and convolution operations. Here, upsampling can be achieved

by applying transposed convolutions, e.g., 3⇥3 transposed convolutional kernels with a stride of

2 to up-scale feature maps by a factor of 2. These transposed convolutions can also be replaced

by unpooling layers and upsampling layers. Compared to a patch-based CNN for segmentation,340

FCN is trained and applied to the entire images, removing the need for patch selection [34].

FCNs with the simple encoder-decoder structure in Fig. 2.2A may be limited in their abil-

ity to capture detailed contextual information in an image for precise segmentation as some

features may be eliminated by the pooling layers in the encoder. Several variants of FCNs

have been proposed to propagate features from the encoder to the decoder in order to boost345

the segmentation accuracy. The most well-known and most widespread variant of FCNs for

biomedical image segmentation is the U-net [32]. On the basis of the vanilla FCN [33], the

U-net employs skip connections between the encoder and decoder to recover spatial context

loss in the down-sampling path, yielding more precise segmentation (see Fig. 2.2B). Several

state-of-the-art medical image segmentation methods have adopted the U-net or its 3D vari-350

ants, the 3D U-net [35] and the 3D V-net [36], as their backbone networks, achieving promising

segmentation accuracy [37–39].

2.1.1.3 Recurrent neural networks (RNNs)

Recurrent neural networks (RNNs) are another type of neural networks which are used for se-

quential data, such as cine magnetic resonance imaging (MRI) and ultrasound image sequences.355

An RNN can ‘remember’ the past and use the knowledge learned from the past to make its

present decision, see Fig 2.3A and B. For example, given a sequence of images, an RNN takes

the first image as input, captures the information to make a prediction, and then memorize

this information which is then utilized to make a prediction for the next image. The two most

widely used architectures in the family of RNNs are long-short term memory (LSTM) [41] and360

gated recurrent unit (GRU) [42], which are capable of modeling long-term memory. A use case

for cardiac segmentation is to combine an RNN with a 2D FCN so that the combined network

is capable of capturing information from adjacent slices to improve the inter-slice coherence of
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Figure 2.3: (A) Example of an FCN with an RNN for cardiac image segmentation. The
yellow block with a curved arrow represents an RNN module, which utilizes the knowledge learned
from the past to make the current decision. In this example, the network is used to segment cardiac
ventricles from a stack of 2D cardiac MR slices, which allows the propagation of contextual information
from adjacent slices for better inter-slice coherence [40]. This type of RNN is also suitable for sequential
data such as cine MR images and ultrasound movies to learn temporal coherence. (B) Unfolded

schema of the RNN module for visualizing the inner process when the input is a sequence

of three images. Each time, this RNN module will receive an input i[t] at time step t, and produce
an output o[t], considering not only the input information but also the hidden state (‘memory’) h[t�1]
from the previous time step t� 1.

segmentation results [40].

2.1.1.4 Autoencoders (AE)365

Autoencoders (AEs) are a type of neural networks that are designed to learn compact latent

representations from data without supervision. A typical architecture of an autoencoder con-

sists of two networks: an encoder network and a decoder network for the reconstruction of the

input, see Fig. 2.4. Since the learned representations contain generally useful information in

the original data, many researchers have employed autoencoders to extract general semantic370

features or shape information from input images or labels and then use those features to guide

the medical image segmentation [43, 47, 48].
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Figure 2.4: Generic architecture of an autoencoder. An autoencoder employs an encoder-
decoder structure. The encoder maps the input data to a low-dimensional latent representation.
The decoder interprets the code and reconstructs the input. The learned latent representation has
been found e↵ective for cardiac image segmentation [43, 44], cardiac shape modeling [45] and cardiac
segmentation correction [46].

Figure 2.5: GAN and adversarial training. (A) Overview of GAN for image synthesis; (B)
Overview of adversarial training for image segmentation.

2.1.1.5 Generative adversarial networks (GAN)

The concept of generative adversarial network (GAN) was proposed by [49] for image synthesis

from noise. GANs are a type of generative models that learn to model the data distribution375

of real data and thus are able to create new image examples. As shown in Fig. 2.5A, a GAN
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consists of two networks: a generator network and a discriminator network. During training,

the two networks are trained to compete against each other: the generator produces fake images

aimed at fooling the discriminator, whereas the discriminator tries to distinguish real images

from fake ones. This type of training is referred to as ‘adversarial training’, since the two380

models are both set to win the competition. This training scheme can also be used for training

a segmentation network. As shown in Fig. 2.5B, the generator is replaced by a segmentation

network and the discriminator is required to distinguish the generated segmentation maps from

the ground truth ones (the target segmentation maps). In this way, the segmentation network

is encouraged to produce more anatomically plausible segmentation maps [50, 51].385

2.1.1.6 Advanced building blocks for improved segmentation

Figure 2.6: (A) Naive version of the inception module [25]. In this module, convolutional
kernels with varying sizes are applied to the same input for multi-scale feature fusion. On the basis of
the naive structure, a family of advanced inception modules with more complex structures have been
developed [52, 53]. (B) Schematic diagram of the attention module [54, 55]. The attention
module teaches the network to pay attention to important features (e.g., features relevant to anatomy)
and ignore redundant features. (C) Schematic diagram of a residual unit [56]. The yellow arrow
represents a residual connection, which is applied to reusing the features from a previous layer. The
numbers in the green and orange blocks denote the sizes of corresponding convolutional or pooling
kernels. Here, for simplicity, all diagrams have been reproduced based on the illustration in the original
papers.

Medical image segmentation, as an important step for quantitative analysis and clinical re-
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search, requires pixel-level accuracy. Over the past years, many researchers have developed

advanced building blocks to learn robust, representative features for precise segmentation.

These techniques have been widely applied to state-of-the-art neural networks (e.g., U-net)390

to improve medical image segmentation performance. Therefore, we identified several import-

ant techniques reported in the literature and present them with corresponding references for

further reading. These techniques are:

1. Advanced convolutional modules for multi-scale feature aggregation:

• Inception modules [25, 52, 53], which concatenate multiple convolutional filter banks395

with di↵erent kernel sizes to extract multi-scale features in parallel, see Fig. 2.6A;

• Dilated convolutional kernels [57], which are modified convolution kernels with the

same kernel size but di↵erent kernel strides to process input feature maps at di↵erent

scales;

• Deep supervision [58], which utilizes the outputs from multiple intermediate hidden400

layers for multi-scale prediction;

• Atrous spatial pyramid pooling [59], which applies spatial pyramid pooling [60] with

various kernel strides to input feature maps for multi-scale feature fusion;

2. Adaptive convolutional kernels designed to pay attention to important features:

• Attention units [54, 55, 61], which learn to adaptively recalibrate features spatially,405

see Fig. 2.6B;

• Squeeze-and-excitation blocks [62], which are used to recalibrate features with learn-

able weights across channels;

3. Interlayer connections designed to reuse features from previous layers:

• Residual connections [56], which add outputs from a previous layer to the feature410

maps learned from the current layer, see Fig. 2.6C;

• Dense connections [63], which concatenate outputs from all preceding layers to the

feature maps learned from the current layer.
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2.1.2 Training Neural Networks

Before being able to perform inference, neural networks must be trained. The standard training415

process requires a dataset that contains paired images and labels for training and testing, an op-

timizer (e.g., stochastic gradient descent (SGD) [64], adaptive moment estimation (Adam) [65])

and a loss function to update the model parameters. This function accounts for the error of

the network prediction in each iteration during training, providing signals for the optimizer to

update the network parameters through back-propagation [66]. The goal of training is to find420

proper values of the network parameters that minimize the loss function.

Mathematically, we can formulate it as a minimization problem. Given a neural network f

with a set of learnable parameters ✓ (e.g., weights w and biases b in convolutional layers), the

learning goal is to find optimal ✓⇤, so that the expected loss over the joint distribution P(X,Y)

is minimized:425

✓
⇤ = argmin

✓
Lexp = argmin

✓
E(x,y)⇠P(X,Y) L[y, f(x; ✓)], (2.3)

where x 2 X is an input image and y 2 Y is a corresponding target label.

Since the true joint distribution of P(X,Y) is unknown, in practice, we instead find ✓ that

minimizes the empirical loss/risk computed on a given dataset (e.g., training set) Dtr to find

an approximate solution ✓̂ of ✓⇤:

✓̂ = argmin
✓

Lemp = argmin
✓

E(x,y)⇠Dtr L[y, f(x; ✓)]. (2.4)

The above learning objective is also known as empirical risk minimization (ERM) [67] in the430

statistical learning theory, which states that the learning algorithm should choose a hypothesis

that minimizes the empirical risk.

2.1.2.1 Back-propagation

A core element in the network learning process is the backpropagation (BP) algorithm [66],

which adjusts the parameters to minimize the training loss during network training. At a high435
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level, BP computes the gradients from the very last layer to the earlier layers layer by layer and

then employs gradient descent to update the associated weights in the direction to minimize

the error between the actual outputs from the network and the desired outputs functions.

Specifically, the learning process consists of four steps:

1. forward the input data x to the network f(·; ✓) parameterised by ✓, and then compute440

predictions f(x; ✓);

2. compute the errors L[y, f(x; ✓)] between the desired outputs y and the network outputs

f(x; ✓);

3. backpropagate the errors from the final layers to previous layers by repeatedly applying

chain rule to computing the gradients of the loss/errors with respect to the trainable445

parameters r✓L layer by layer;

4. choose a gradient descent algorithm, e.g., SGD to update those parameters ✓: ✓  

✓ � �r✓L where � is the step size.

2.1.2.2 Common loss functions

There are several di↵erent common loss functions L to choose from. For regression tasks (e.g.,450

heart localization, calcium scoring, landmark detection, image reconstruction), the simplest

loss function is the mean squared error (MSE):

LMSE =
1

n

nX

i=1

(yi � ŷi)
2
, (2.5)

where y is the vector of target values and ŷ = f(x; ✓) is the vector of the predicted values.

The subscript i specifies the i-th element in the corresponding vector, and n is the total length

of each vector.455

Cross-entropy is the most common loss for both image classification and segmentation tasks
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where the network produces the probability for each class rather than class labels3. In par-

ticular, the cross-entropy loss for segmentation summarizes the pixel-wise probability errors

between the predicted probabilistic output from the network after softmax p(c) = ef(x;✓)(c)

PC
d=1 e

f(x;✓)(d)

and its corresponding target one-hot segmentation map y(c) for each class c:460

LCE(segmentation) = �
1

n

nX

i=1

CX

c=1

y(c)
i log(p(c)

i ), (2.6)

where C is the number of all classes and n is the number of pixels in the corresponding im-

age. For image-level classification tasks, the loss can be simplified by removing the pixel-wise

summation: LCE (classification) = �
PC

c=1 y
(c)log(p(c)).

Another loss function which is specifically designed for object segmentation is called soft-

Dice loss function [36], which penalizes the mismatch between a predicted segmentation map465

and its target map at pixel-level:

LDice = 1�
2
Pn

i=1

PC
c=1 y

(c)
i p(c)

iPn
i=1

PC
c=1(y

(c)
i + p(c)

i )
. (2.7)

In addition, there are several variants of the cross-entropy and soft-Dice loss such as the

weighted cross-entropy loss [68–70] and weighted soft-Dice loss [71], which are used to address

potential class imbalance problem in medical image segmentation tasks where the loss term is

weighted to account for rare classes or small objects. Specifically, the weighted cross-entropy470

loss is defined as:

Lweighted CE = �
1

n

nX

i=1

CX

c=1

w
(c)y(c)

i log(p(c)
i ), (2.8)

where w
(c) is a scalar, specifying the weight for the loss term associated with the class c. In

practice w
(c) for a rare class is set to a higher value than the one for the majority class.

3At inference time, the predicted segmentation map for each image is obtained by assigning each pixel with
the class of the highest probability:ŷi = argmaxc p

c
i .



2.2. Applications of deep learning: cardiac MR image segmentation 27

2.2 Applications of deep learning: cardiac MR image

segmentation475

In this section, we provide a literature review on recent developments of deep learning-based

applications for medical imaging, with a particular focus on one of the most commonly used

main imaging modalities: cardiac MRI. Cardiac MRI is a non-invasive imaging technique that

can visualize the structures within and around the heart. Compared to computed tomography

(CT), it does not require ionizing radiation. Instead, it relies on the magnetic field in con-480

junction with radio-frequency waves to excite hydrogen nuclei in the heart and then generates

an image by measuring their response. By utilizing di↵erent imaging sequences, cardiac MRI

allows accurate quantification of both cardiac anatomy and function (e.g., using cine imaging)

and pathological tissues such as scars (e.g., using LGE imaging). Accordingly, cardiac MRI is

currently regarded as the gold standard for quantitative cardiac analysis [72].485

In the following, we summarize the recent developments of cardiac image segmentation in

magnetic resonance (MR) imaging, with a particular focus on cardiac ventricle segmentation,

where the deep learning techniques have been heavily adopted in.

2.2.1 Vanilla FCN-based segmentation

Tran was among the first ones to apply a FCN [34] to segment the left ventricle, myocardium,490

and right ventricle directly on short-axis cardiac MR images. Their end-to-end approach based

on FCN achieved competitive segmentation performance, significantly outperforming tradi-

tional methods in terms of both speed and accuracy. In the following years, a number of works

based on FCNs have been proposed, aiming at achieving further improvements in segmentation

performance. In this regard, one stream of work focuses on optimizing the network structure to495

enhance the feature learning capacity for segmentation [38, 68, 71, 73–77]. For example, Isensee

et al. developed a residual U-net to combine multi-scale features for robust segmentation across

images with large anatomical variability, see Fig. 2.7. Several works [68, 70, 78, 79] investigated

di↵erent loss functions such as weighted cross-entropy, weighted Dice loss, deep supervision loss
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Figure 2.7: Architecture of a residual U-Net with long-range concatenations and short-

range residual connections. Image source: [38], reproduced with permission from Springer Nature.

and focal loss to improve the segmentation performance. Among these FCN-based methods,500

the majority of approaches use 2D networks rather than 3D networks for segmentation. This

preference is mainly due to the typical low through-plane resolution and motion artifacts of

most cardiac MR scans, which limits the applicability of 3D networks [69].

2.2.2 Introducing spatial or temporal context

One drawback of using 2D networks for cardiac segmentation is that these networks work slice505

by slice, and thus they do not leverage any inter-slice dependencies. As a result, 2D networks

can fail to locate and segment the heart on challenging slices such as apical and basal slices

where the contours of the ventricles are not well defined. To address this problem, several

works have attempted to introduce additional contextual information to guide 2D FCN. This

contextual information can include shape priors learned from labels or multi-view images [13,510

80, 81]. Others extract spatial information from adjacent slices to assist the segmentation, using

recurrent units (RNNs) or multi-slice networks (2.5D networks) [40, 82–84]. These networks

can also be applied to leveraging information across di↵erent time frames in the cardiac cycle

to improve spatial and temporal consistency of segmentation results [83, 85–88].
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2.2.3 Applying anatomical constraints515

Figure 2.8: Architecture of the anatomical constrained CNN (ACNN) described in [44].

The segmentation network �(; ✓) is trained to minimize a cross-entropy loss Lx and a Euclidean
distance loss Lhe measured on the latent spaces of the predicted label and ground truth. Image
source [44], licensed under CC BY 4.0a.

ahttp://creativecommons.org/licenses/by/4.0/

Another problem that may limit the segmentation performance of both 2D and 3D FCNs is

that they are typically trained with pixel-wise loss functions only (e.g., cross-entropy or soft-Dice

losses). These pixel-wise loss functions may not be su�cient to learn features that represent

the underlying anatomical structures. Therefore, several approaches focus on designing and

applying anatomical constraints to train the network to improve its prediction accuracy and520

robustness. These constraints are represented as regularization terms, which take into account

the topology [89], contour and region information [90] or shape information [44, 48], as a way

to encourage the network to generate more anatomically plausible segmentations.

For example, Oktay et al. proposed a network called anatomically constrained neural net-

works (ACNN) to improve cardiac segmentation performance, see Figure. 2.8. An auto-encoder525

is introduced in their network to embed the labels and predicted segmentations into latent space.

This design allows one to quantify the dissimilarity of the global shape structures between the

labels and predictions. The network is trained to minimize a dissimilarity loss computed on

the latent space and a cross-entropy loss. Their experimental results suggest that learning

global anatomical properties of the underlying anatomy could improve the prediction accuracy530

of state-of-the-art models. In addition to regularizing networks at training time, Painchaud et
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al. proposed a variational AE to correct inaccurate segmentations at post-processing.

2.2.4 Multi-task learning

Figure 2.9: Architecture of the multi-task learning network for joint estimation of cardiac

motion and segmentation network. It consists of two branches: a motion estimation branch and
a segmentation branch. The two branches share the same feature encoder and are trained jointly. The
motion estimation branch employs a Siamese-style recurrent multi-scale spatial transformer network
to estimate the motion fields given MR image sequences. The segmentation branch is employed to
predict segmentation simultaneously. The predicted segmentation for an unlabeled frame is wrapped
to the labeled target frame using the motion fields estimated from the motion estimation branch for
supervised learning[87]. Image source: [87], reproduced with permission of the rights holder, Springer
Nature.

Multi-task learning has also been explored to regularize FCN-based cardiac ventricle seg-

mentation during training by performing auxiliary tasks that are relevant to the main seg-535

mentation task, such as motion estimation [91], estimation of cardiac function [92], ventricle

size classification [93] and image reconstruction [94–96]. Training a network for multiple tasks

simultaneously encourages the network to extract features that are useful across these tasks,

resulting in improved learning e�ciency and prediction accuracy.

For example, Qin et al. proposed a joint learning method to estimate motion and segment-540
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ation for cardiac MR image sequences simultaneously (see figure 2.9). The motion estimation

network and the segmentation network are jointly optimized by minimizing a composite loss

function. This composite loss consists of an image dissimilarity loss, a smoothness penalty of

motion fields, and pixel-wise cross-entropy segmentation losses. Motion information extrac-

ted from a large number of unlabeled images is used to improve their estimated segmentation545

results by encouraging their spatial-temporal smoothness in the same sequence. Their exper-

imental results showed that with additional motion constraints, their segmentation accuracy

was marginally improved in terms of dice (left ventricle blood pool (LV): from 0.92 to 0.93,

left ventricular myocardium (MYO): from 0.84 to 0.86, right ventricular blood pool (RV): from

0.87 to 0.89) [87].550

2.2.5 Multi-stage networks

Figure 2.10: Architecture of the Omega network. Image source: [97], reproduced with permission
of the rights holder, Elsevier.

Recently, there is a growing interest in applying neural networks in a multi-stage pipeline

which breaks down the segmentation problem into subtasks [84, 97–100]. For example, Zheng et

al., Li et al. proposed a region-of-interest (ROI) localization network followed by a segmentation

network. Likewise, Vigneault et al. proposed a network called Omega-Net, which consists of a555

U-net for cardiac chamber localization, a learnable transformation module to normalize image

orientation, and a series of U-nets for fine-grained segmentation, see Fig. 2.10. By explicitly

localizing the ROI and by rotating the input image into a canonical orientation, the proposed
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method better generalizes to images with varying sizes and orientations.

2.2.6 Hybrid segmentation methods560

Another stream of work aims to combine neural networks with classical segmentation ap-

proaches, e.g., level-sets [101, 102], deformable models [30, 103, 104], atlas-based methods [105,

106] and graph-cut based methods [107]. Here, neural networks are applied in the feature ex-

traction and model initialization stages, reducing the dependency on manual interactions and

improving the segmentation accuracy of the conventional segmentation methods deployed after-565

ward. For example, Avendi et al. proposed one of the first deep learning (DL)-based methods

for LV segmentation in cardiac short-axis MR images. The authors first applied a CNN to

detect the LV automatically and then used an AE to estimate the shape of the LV. The estim-

ated shape was then used to initialize follow-up deformable models for shape refinement. As a

result, the proposed integrated deformable model converges faster than conventional deform-570

able models, and the segmentation achieves higher accuracy. In their later work, the authors

extended this approach to segment RV [103]. While these hybrid methods demonstrated better

segmentation accuracy than previous non-deep learning methods, most of them still require an

iterative optimization for shape refinement. Furthermore, these methods are often designed

for one particular anatomical structure. As noted in the recent benchmark study [6], most575

state-of-the-art segmentation algorithms for bi-ventricle segmentation are based on end-to-end

FCNs, which allows the simultaneous segmentation of the LV and RV.

2.2.7 Achievements that deep learning based approaches made for

cardiac ventricle segmentation

To better illustrate these developments for cardiac ventricle segmentation from cardiac MR580

images, we collate a list of bi-ventricle segmentation methods that have been trained and tested

on the Automated Cardiac Diagnosis Challenge (ACDC) dataset, reported in Table 2.1. For

ease of comparison, we only consider those methods that were trained on the given training set
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Table 2.1: Segmentation accuracy of state-of-the-art segmentation methods verified on

the cardiac bi-ventricular segmentation challenge dataset [6]. Bold numbers are the highest
mean Dice values for the corresponding structure. LV: left ventricle cavity, RV: right ventricle cavity,
MYO: left ventricular myocardium; ED: end-diastolic; ES: end-systolic.

Methods Description LV MYO RV

Isensee et al. [38] 2D U-net+3D U-net (ensemble) 0.950 0.911 0.923
Li et al. [98] Two 2D FCNs for ROI detection and segmentation respectively; 0.944 0.911 0.926
Zotti et al. [81] 2D GridNet-MD with registered shape prior 0.938 0.894 0.910
Khened et al. [71] 2D Dense U-net with inception modules 0.941 0.894 0.907
Baumgartner et al. [69] 2D U-net with a cross-entropy loss 0.937 0.897 0.908
Zotti et al. [80] 2D GridNet with registered shape priors 0.931 0.890 0.912
Jang et al. [68] 2D M-Net with a weighted cross-entropy loss 0.940 0.885 0.907
Painchaud et al. [46] FCN followed by an AE for shape correction 0.936 0.889 0.909
Wolterink et al. [88] Multi-input 2D dilated FCN, segmenting paired ED and ES frames simultaneously 0.940 0.885 0.900
Patravali et al. [82] 2D U-net with a Dice loss 0.920 0.890 0.865
Rohé et al. [106] Multi-atlas based method combined with 3D CNN for registration 0.929 0.868 0.881
Tziritas et al. [108] Level-set+markov random field (MRF); Non-deep learning method 0.907 0.798 0.803
Yang et al. [70] 3D FCN with deep supervision 0.820 N/A 0.780

All the methods were evaluated on the same test set (50 subjects). Note that for simplicity, we report the average Dice scores for each structure
over ED and ES phases. More detailed comparison for di↵erent phases can be found on the public leaderboard in the post testing part (https:
//acdc.creatis.insa-lyon.fr) as well as corresponding published works in this table. Last update: 2019.8.1.

(100 subjects) and have been evaluated on the same online test set (50 subjects). As the ACDC

challenge organizers keep the online evaluation platform open to the public, our comparison585

includes not only the methods from the original challenge participants (summarized in the

benchmark study paper from Bernard et al.[6]) but also three segmentation algorithms that

have been proposed after the challenge (i.e. [46, 81, 98]). The Dice metric is used for comparison.

The Dice score measures the ratio of overlap between two results (e.g., automatic segmentation

vs. manual segmentation), ranging from 0 (mismatch) to 1 (perfect match). It is important590

to note that the segmentation accuracy of di↵erent methods cannot be directly comparable

in general unless these methods are evaluated on the same dataset. This is because, even for

the same segmentation task, di↵erent datasets can have di↵erent imaging modalities, di↵erent

patient populations, and di↵erent methods of image acquisition, which will a↵ect the task

complexities and result in di↵erent segmentation performances.595

From the comparison of results shown in Table 2.1, one can see those top algorithms are

the ensemble method proposed by Isensee et al. and the two-stage method proposed by Li

et al., both of which are based on FCNs. In particular, compared to the traditional level-set

method [108], both methods achieved considerably higher accuracy even for the more challen-

ging segmentation of the left ventricular myocardium (MYO), indicating the power of deep600

learning-based approaches. One should note that the success of deep learning models on this
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benchmark dataset comes not only from the emergence of advanced network architectures but

also from the increased size of public datasets [6]. When it comes to deploying deep learning

methods to real-world applications, the current literature suggests that there is still a long way

to go due to several significant limitations. We summarize them in the next section.605

2.3 Limitations of deep learning

Even though such machines might do

some things as well as we do them, or

perhaps even better, they would

inevitably fail in others, which would

reveal they were acting not through

understanding, but only from the

disposition of their organs.

Discourse on the Method

Rene Descartes, 1637

In this section, we will discuss about main limitations of deep learning that hinder its

deployment in real-world applications:

• Limitation 1: requirement of massive labeled data for training,

• Limitation 2: sensitivity to small changes in inputs, e.g., adversarial noise in images,610

• Limitation 3: lack of explainability and interpretability.

2.3.1 Requirement of massive labeled data for training

Deep learning models are essentially deep artificial neural networks with millions of parameters

and complex structures, which require large labeled data sets to avoid over-fitting. Fig. 2.11

illustrates the idea of under-fitting, optimal fitting, and over-fitting for a classification model.615
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Figure 2.11: Visual demonstration of under-fitting, optimal fitting, over-fitting and how

they a↵ect prediction accuracy. Red lines in the left three diagrams represent decision boundaries.

Under-fitting happens when we have a model with limited capacity, which fails to capture

the underlying structure of the data. For example, as shown in the left-most diagram in

Fig. 2.11, under-fitting occurs when we fit a linear model (see the red line) to complex data

with a non-linear structure. In practice, under-fitting can happen when the task complexity is

much higher than the model complexity. Over-fitting happens when a model fits the training620

data too ‘perfectly’, learning irrelevant detail and noise in the training dataset, as shown in

the third diagram in Fig. 2.11. In general, an over-fitted model tends to ‘memorize’ training

data rather than ‘learning’ generalized concepts. In this case, the performance on unseen test

data becomes worse while the error on the training examples still decreases when the model

complexity is much larger than desired, see the right-most figure in Fig. 2.11. For deep learning625

models with many parameters and complex structures, over-fitting is more likely to happen.

This is because in the real world it is very di�cult to obtain a large-scale, representative labeled

dataset.

In medical imaging applications, the lack of large labelled dataset is prevalent and extremely

severe due to several reasons. First, manually labeling images can be prohibitively expensive630

and time-consuming. Taking cardiac MR image segmentation as an example, it generally takes

a trained expert 20 minutes to analyse a single subject and to delineate the cardiac structures

from images with manual annotations. Second, collecting and labeling datasets from multiple,

di↵erent sites to form a large-scale dataset to cover the variety of real-world data is time-

consuming and sometimes infeasible due to data privacy issues.635
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2.3.2 Sensitivity to small changes in images

There has been substantial evidence that modern CNNs can be surprisingly brittle even when

changes to the input are nearly imperceptible. These networks are not only sensitive to carefully

constructed adversarial noise, which introduces imperceptible changes to images [109] but are

also sensitive to geometric changes, such as image translation, rotation [110, 111], and other640

contextual changes, e.g., adding a carefully constructed ‘adversarial patch’ [112]. This has

raised concerns about the safety of AI when deploying deep neural networks in safety-critical

applications such as autonomous driving, face recognition, and medical diagnosis [113, 114].

The fragility of neural networks against those small image transformations stems from their

outstanding capacity to learn complex, salient, and non-salient features in deep layers. This645

also brings risks that a tiny change in the input can change their intermediate features and

a↵ect the final decision.

To strengthen neural networks’ robustness, adversarial training has emerged as a principled

approach, which augments training data with adversarial examples or other challenging data

that may alter the network’s prediction [109]. However, optimizing neural networks against one650

particular form of attacks can weaken them against others [115]. Another direction is instead

to detect and report those outlier inputs before providing network predictions [114]. So far,

there is no golden remedy to solve the brittleness of neural networks completely.

2.3.3 Lack of explainability and interpretability

Another issue with deep neural networks is their opacity, as most of them are ‘black boxes’ in655

nature. Traditional symbolic AI such as decision trees can reason about their decision-making.

By contrast, deep neural networks, which have millions of operations with their complex struc-

tures, are extremely di�cult for a human to follow the exact mapping from data input to

prediction. The lack of transparency makes deep neural networks unpredictable, and hence

untrustworthy. In recent years, many e↵orts have been made to make neural networks more660

explainable and interpretable. This includes the visualization and analysis of intermediate
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features [116] and input attribution, e.g., highlight the pixels that were relevant for image

classification by a neural network [117].

2.4 Theories and practices for model generalization

In this thesis, we particularly consider the limitation 1 and 2, focusing on alleviating the need665

of massive labeled data for domain generalization, and improving model robustness against

realistic imaging corruptions. Below we introduce existing theories and common practices for

improving model generalization, which form the basis of our work that will be introduced latter.

2.4.1 Generalization theory

To guide the model selection and alleviate the over-fitting problem, di↵erent theories have been670

proposed with di↵erent measures of model complexity. Central to these theories is ‘simplicity’.

As suggested by the Occam’s Razor principle proposed in the 14th century, the simplest one

is the most preferable among all candidate solutions. However, formulating Occam’s razor in

machine learning is not trivial. Let generalization error of a model be the error rate on unseen

data, and the empirical/training error be its error rate on the training examples that it was675

learned from. A formulation of the razor that may be the closest to Occam’s original intent is:

Given two models with the same generalization error, the simpler one should be preferred.

However, the generalization error is often not feasible to compute and how to e↵ectively

quantify the ‘simplicity’ or ‘complexity’ of di↵erent learning models for model selection is still

an open question. These two problems pose challenges to model generalization.680

A group of studies focus on establishing theories and utilizing them to quantify the model

complexity for specific types of models. One group of studies are based on information the-

ory. Two of the most representative works in this regard are the minimum description length

(MDL) principle [118] and Solomono↵’s inference theory [119]. Viewing learning models as

data compressors, MDL suggests that the one that permits the greatest compression of the685
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data should be selected. Solomono↵’s inference theory of universal inductive inference uses the

Kolmogorov complexity [120], a.k.a. algorithmic complexity, to quantify the model complexity,

which is determined by the length of the shortest binary computer program that describes the

object. Similar to the MDL principle, this theory favors models with the ‘shortest program’ to

produce the training data. However, in practice, the information-oriented theoretic minimum690

description length cannot be easily computed, as it can be very time consuming especially when

the dataset itself is extremely large.

Later on, several works proposed di↵erent model complexity measures based on statistical

learning theories to obtain the upperbound of generalization error. Two of the most well-

known measures are the Vapnik–Chervonenkis (VC) dimension (dV C) [121] 4 and Rademacher695

complexity (dR) [122]. A key assumption behind both of them is that a training set Dtr

is generated by an unknown distribution D, where each data point is I.I.D (independently,

identically distributed). A learning algorithm chooses a function/hypothesis fi : X! Y from

a hypothesis space H:{f1, f2, f3, ..., fk} based on the training dataset Dtr, and then performs

prediction with this hypothesis on unseen data (e.g., test data) from the same distribution.700

The upperbound of the generalization error for the class of hypothesis (Errgeneralization) can then

be estimated as:

Errgeneralization  Errtrain + g(d(H),m), (2.9)

where d(·) is a complexity measure of the hypothesis class, e.g., dV C or dR. And g(·) is a

function that approaches 0 when the training data size m = |Dtr| approaches infinity; g(·)

approaches infinity when the measured complexity explodes to infinity. This formula suggests705

that the generalization error is dependent on both model complexity and the size of training

data and help to quantify how much data is needed as a function of a particular complexity

measure.

While the above theoretical analysis provides nice formal guarantees, they can be di�cult

to apply in practice, especially in deep neural networks where the model complexity is di�cult710

4VC dimension is the maximum cardinality of the largest set that an algorithm can shatter. In practice, VC
dimension is mainly used for statistical binary classification algorithms (e.g., linear classifiers), and is highly
correlated with the number of parameters in most cases.
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to quantity and certain assumptions may not hold [28, 123–125]. In fact, both the VC di-

mension [121] and Rademacher complexity[122] fail to estimate tight generalization bounds for

deep learning models. And it has been reported that over-parameterized networks whose model

capacity greatly exceeds the training set size can still have good intra-domain generalization

performance on the hold-out test set [124].

Figure 2.12: Risk curves for classical models and modern deep learning models. (a) The
classical U-shaped risk curve in the bias-variance trade-o↵ for conventional statistical models. (b) The
double descent risk curve for modern neural networks, which incorporates the classical U-shaped risk
curve and the observed behavior from deep neural networks with high capacity. The interpolation
threshold is the critical point with zero training error. After this point, the test error begins to decrease
with increased model capacity, where the traditional bias-variance trade-o↵ fails to predict. Image
source: [126]. Image reproduced with permission from the Proceedings of the National Academy of
Sciences USA (PNAS) for noncommercial use.

715

To explain this phenomenon, Belkin et al. proposed a new double U-shaped risk curve for

deep neural networks (see Fig. 2.12), which challenges the traditional bias-variance trade-o↵

theory in classical statistical learning theory. It suggests that once the number of network

parameters is high enough, the risk curve enters into the second regime, where the higher the

capacity of networks, the lower the generalization error. However, this double descent risk720

curve is largely empirically observed and can be tricky to reproduce [127]. Other works try to

tighten the generalization bounds by establishing new theory to measure the model complexity

of deep neural networks [128, 129], such as intrinsic dimension [128] and the lottery ticket hypo-

thesis [129]. Both works suggest that the complexity of deep learning models are significantly

smaller than what they might appear to be. For example, the lottery ticket hypothesis states725

that in a dense, feed-forward network there exists a pool of sub-networks (‘winning tickets’)

which can achieve good accuracy that is comparable to the performance of the original net-
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work. This suggests that while there is a huge number of parameters in the network, which

gives the network freedom to discover and to model the data structure, the final solution after

training only occupies a smaller set of ‘active’ parameters. However, finding those sub-networks730

requires significant computational resources since models must be trained with a full structure

and retrained many times with pruned networks. Yet, most of these theories are mostly veri-

fied on specific types of neural networks with a specific task (e.g., supervised learning for image

classification), and their prescriptive and descriptive value is still uncertain [124, 125]. So far,

the generalization theory in deep learning is still an under-explored domain.735

2.4.2 Practical techniques to avoid over-fitting in deep learning

While it is di�cult to theoretically quantify model complexity of deep neural networks, there are

several practical techniques proposed to improve model generalization and reduce over-fitting.

Figure 2.13: A standard neural network and its variant with dropout. An example of a
two-layer net without and with dropout. Image source: [130], license: Creative Commons license (CC
BY 4.0).

Several commonly used techniques are:

• Train-val split strategy: This is a training strategy to estimate unseen the test error740

for model selection since the true test set is not accessible during training. Specifically,

it splits the training set into a training subset and a validation subset without overlap-

ping. Then a model is trained on the training subset and evaluated on the validation set
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throughout learning. The validation error is used to estimate the unseen test error. The

model with the lowest validation error is chosen as the ‘optimal’ model;745

• Weight regularization: Weight regularization is a type of regularization techniques

that add weight penalties R(w) to the empirical loss function Lemp: Weight regularization

encourages small or zero weightsw for less relevant or irrelevant inputs. Common methods

to constrain the weights include L1 regularization: R(w) = kwk1 =
P

j |wj| which

penalizes the sum of the absolute weights; and L2 regularization:R(w) = kwk22 =
P

j w
2
j750

which penalizes the sum of the squared weights;

• Dropout [130]: Dropout is a regularization method that randomly drops some units/neurons

from the neural network during training (see Fig 2.13), encouraging the network to learn

a sparse representation. On the basis of the vanilla Dropout, there are also several vari-

ants developed to further enhance the regularization e↵ect for specific vision tasks, such as755

Spatial Dropout [131] which drops out entire feature maps rather than individual neurons;

• Data augmentation: Data augmentation is a training strategy that artificially generates

more training samples to increase the diversity of the training data. This can be done

by applying di↵erent transformations to each input sample, such as injecting random

noise, applying a�ne transformations (e.g., rotation, scaling), flipping, or cropping to760

the original labeled sample. Recently, there is a growing interest in learning-based data

augmentation to improve the diversity and e↵ectiveness of augmented samples, including

adversarial data augmentation [132], and generative model-based data augmentation such

as GAN-based approaches [133];

• Ensemble learning: Ensemble learning is a type of machine learning algorithms that765

combine multiple trained models to obtain better predictive performance than individual

models, which has been shown e↵ective for medical image segmentation [134]. By av-

eraging predictions from di↵erent learners, individuals mistakes can be potentially dis-

missed. There have been many di↵erent ways to construct diverse models, including

training the same network with di↵erent hyper-parameters [134], constructing di↵erent770

training subsets [135], or training di↵erent networks with the same data [38];
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• Transfer learning: Transfer learning aims to transfer knowledge from one task to an-

other related but di↵erent target task. This is often achieved by reusing the weights of a

pre-trained model to initialize the weights in a new model for the target task. Transfer

learning can help to decrease the training time and achieve lower generalization error [136].775

The above strategies are independent of network architectures, and they have been widely

adopted for improved model generalization. These techniques can help to control the model

complexity and alleviate over-fitting without explicitly modifying the architecture of networks.

So far, these techniques have been widely adopted in modern CNN-based methodologies. In

this thesis, these techniques such as train-val split, weight regularization, data augmentation,780

ensemble learning, transfer learning have been employed and/or investigated in our works to

enhance model generalization.

2.5 Conclusion

In this chapter, we have introduced some representative deep learning networks together with

advanced techniques for improved representation learning. We also provided a brief review of785

their applications in cardiac MR segmentation, giving a glimpse into the superior capacities of

deep learning against non-deep learning models for medical image analysis. We then discussed

the limitations of deep learning models and the theory and existing common practical techniques

for improving model generalization. The following chapters will focus more on our recent works

on improving model generalization and robustness for specific applications, particularly cardiac790

MR segmentation.



Chapter 3

Learning with Auxiliary Data

This chapter contains material from

1. C. Chen, W. Bai and D. Rueckert, ‘Multi-task learning for left atrial segment-

ation on GE-MRI,’ in Statistical Atlases and Computational Models of the Heart.

Atrial Segmentation and LV Quantification Challenges - 9th International Work-

shop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain,

September 16, 2018, Revised Selected Papers, vol. 11395, Springer International

Publishing, 2019, pp. 292–301. doi: 10.1007/978-3-030-12029-0_32 [12]

2. C. Chen, C. Bi�, G. Tarroni, S. Petersen, W. Bai and D. Rueckert, ‘Learn-

ing shape priors for robust cardiac MR segmentation from multi-view images,’ in

Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 -

22nd International Conference, Shenzhen, China, vol. 11765, Springer, Jul. 2019,

pp. 523–531. doi: 10.1007/978-3-030-32245-8_58 [13]

In this chapter, we aim to alleviate data scarcity and improve model generalization by795

utilizing auxiliary data. In practice, while there is limited labeled data for a particular task,

there are often auxiliary data available for other tasks. For example, in our modern digitized

healthcare environment, there are images of the same modality taken from di↵erent views,

and images of di↵erent modalities (e.g., CT, MR) to visualize di↵erent parts of a body (e.g.,

43
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bones, soft tissues). Aside from medical images, there is also non-imaging data such as clinical800

history, physical examination, and other laboratory results available to gain a comprehensive

understanding of the patient’s condition. Inspired by the fact that clinicians can process data

for multiple sources and apply the learned knowledge to improve decision making, we would like

to develop multi-task learning algorithms that extract useful contexts from auxiliary data and

leverage them to help the main task. In Sec. 3.1, we present a multi-task learning framework for805

atrial segmentation, which utilizes non-imaging patient information as auxiliary data to help

our atrial segmentation from gadolinium enhancement MR images. In Sec. 3.2, we present a

novel segmentation framework that utilizes auxiliary data from multiple views for learning the

shape prior and guiding the segmentation. Experiments show that utilizing auxiliary data for

multi-task learning can relax the constraints of massive labeled data and improve the model810

generalization.

3.1 Multi-task learning for left atrial segmentation on

GE-MRI

3.1.1 Introduction

Atrial fibrillation (AF) is a condition of the heart that causes an irregular and often abnormally815

fast heart rate [137]. This can cause blood clots to form, which can restrict blood supply to

vital organs, and further leads to a stroke and heart failure [138]. One of the most common

treatments for AF is called ablation which can isolate the pulmonary veins (PVs) from the left

atrium (LA) electrically by inducing circumferential lesion and destroying abnormal tissues.

During this procedure, a good understanding of the patient atrial anatomy is very vital for820

planning and guiding the surgery, and further improving the patient outcome [138].

A good way to learn the anatomical structure of the LA is by performing LA segmentation

on medical images, such as CT scans and MR images. With the development of imaging

techniques and computer science, many automatic or semi-automatic algorithms [139] have
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Figure 3.1: Visualization of pre-ablation and post-ablation GE-MRI images

been proposed for atrial segmentation. However, this is still a challenging problem and many825

traditional methods may fail to segment due to several reasons. For example, intensity-based

methods such as region growing may fail to segment those atria with extremely thin myocardial

walls, especially when their surroundings have very similar intensity to their blood pool [139]. In

addition, there is large shape variation among the LA of di↵erent individuals, such as atrial sizes

and pulmonary vein structures [139]. These variations will make it too complex for model-based830

segmentation methods to impose shape prior. An alternative way is to use atlas-based methods

that can be robust to the LA with high anatomical variations. However, this kind of approach is

time-consuming which typically takes 8 minutes around [140]. Most recently, with the increase

of computing hardware performance and more data becoming available, deep learning has

become the state-of-the-art method due to its e�ciency and e↵ectiveness on computer vision835

tasks, and has been widely used in the medical domain [141].

In this work, we focus on the segmentation of the LA from gadolinium enhancement MR

(GE-MRI) images. These images can be taken either before or after ablation treatment. No-

ticing that there might be contextual di↵erence between the pre-ablation and post-ablation

images, e.g., ablation will cause scars in the LA [142] and may influence the quality of images840

as shown in Fig. 3.1, we propose a multi-task CNN that could segment a patient left atrium

from GE-MRI images and detect whether this patient is pre- or post-ablation. In this way, our

network could not only learn structural information from segmentation masks, but also retrieve

contextual information through the auxiliary classification task. Our network is trained sim-

ultaneously for the two tasks, using a stack of 2D slices extracted from each MRI scan along845
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with its corresponding segmentation masks and a pre/post ablation label. In addition, in order

to improve the robustness of segmentation on images with various image contrast and sizes, we

employ a contrast augmentation method to augment our training set and trained our network

with images in di↵erent sizes. In order to produce a fixed-length vector to classify input images

in multiple sizes, spatial pyramid pooling [143] is adopted in this network.850

The proposed framework was trained and evaluated on the data set of the Atrial Segmenta-

tion Challenge 20181. Our experimental results show that by sharing features between related

tasks, our network can achieve better segmentation performance compared to a variant of U-net

trained with a single task. During the test phase, our network can directly inference the seg-

mentation mask from a scan of MR images without taking extra pre-processing steps for image855

contrast enhancement. In total, our method is very e�cient as one 3D segmentation result for

each individual was obtained in 6 seconds on a Nvidia Titan Xp GPU using our model, plus

3 or 4 seconds for post-processing on the whole volume, which is far more faster than general

atlas-based methods that usually take minutes.

Related work. There has been several works on automating the segmentation of atrial seg-860

mentation. Traditional methods such as region growing [144] and atlas-based label fusion

methods [145], and image registration-based methods [146] have been applied. However, the

accuracy of these methods highly rely on good initialization and ad-hoc pre-processing methods,

which limits the widespread adoption in the clinic. Recently, it has been shown that 2D fully

convolutional neural networks can be very e↵ective techniques for segmenting the left atrium865

from standard 2D long-axis images, i.e., 2-chamber (2CH), 4-chamber (4CH) views [4, 97]. Dif-

ferent from previous single-task learning framework, in this work, we would like to investigate

the benefit of multi-task learning for GE-MRI image segmentation, which has not been fully

explored before.

1https://atriaseg2018.cardiacatlas.org/
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3.1.2 Methodology870

In this section, we present the architecture of our proposed multi-task network and how we

post-process the network output to get the final 3D segmentation mask. Our proposed network

is adapted from a commonly used fully convolutional network, i.e., U-net architecture [32] where

we increase the depth of the network and add a classification branch. The input to the network

is a stack of 2D images. The output are predictions of the atrial segmentation mask for this875

stack and pre/post ablation classification scores.

3.1.2.1 Network architecture

In order to explore the benefit of multi-task learning, the proposed network is designed to

conduct both the atrial segmentation task and an auxiliary pre/post ablation classification

task with images of multiple sizes.880

Figure 3.2: Architecture of the proposed multi-task Deep U-net. Conv: convolutional layers;
BN: batch normalization layers; FC: fully connected layers. N: number of input 2D slices. H, W:
image height and width. Best viewed in color.

The core of our method, named ‘Deep U-net’ and shown in Fig 3.2, is derived from the

2D U-net [32] for semantic segmentation. Since the largest size of images in our dataset is
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640⇥640 in x-y planes, we increased the receptive field of U-net by adding more pooling layers.

The modified network now consists of five down-sampling blocks and five up-sampling blocks.

Each down-sampling layer contains two 3⇥3 convolutions, with Batch Normalizations [147] and885

Rectified Linear Unit activations, as well as a 2⇥2 max pooling operation with stride 2 for down-

sampling. The up-sampling path is symmetric to the down-sampling path. By aggregating

both coarse and fine features learned at di↵erent scales from the down-sampling path and up-

sampling path, our network is supposed to achieve better segmentation performance than those

networks without the aggregation operations.890

Our classification task is performed by utilizing image features learned from the down-

sampling path. Features after the 4th max pooling layer are extracted for classification, which

is a common practice for many existing classification networks [56, 148]. In order to generate fix-

length feature vectors learned from input images with di↵erent sizes and scales, spatial pyramid

pooling [143] is applied. These fixed-length vectors are then processed through fully connected895

layers followed by a softmax layer to calculate class probabilities (pre/post-ablation) for each

image. Dropout [130] is applied to the output of fully connected layers with a probability of 0.5

during the training process, which functions as regularizer to encourage the sparsity of network

for improved model generalization [130].

3.1.2.2 Loss function900

Given a training set Dtr: {(x,ys,yc)t}t=1...m consisting of a number of training images x and

their corresponding segmentation ys and classification labels yc (pre/post ablation), the loss

function L for our multi-task network is defined as follows:

L = E(x,ys,yc)⇠Dtr LS(ps,ys) + �LC(pc,yc), (3.1)

where LS is the loss for the segmentation task measuring errors between the predicted seg-

mentation maps ps and the ground truth one-hot maps ys for each training image x, LC is the905

loss for the classification task measuring classification errors given the predicted class scores pc
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and the ground truth class labels yc , and � is a coe�cient to balance the two terms, which

is empirically set to 1 in our experiments. For the segmentation part, pixel-wise cross-entropy

loss is employed:

LS(ps,ys) = �1/n
nX

j=1

X

i=0,1

yi,j
s logpi,j

s , (3.2)

where pi,j
s is the probabilistic prediction for the class i from the network (after softmax) for an910

given image x at pixel j: pi,j
s = softmax(fs(x)i,j) and fs(x) denotes the network output from

the segmentation branch given x, i indicates the segmentation class index (0: background, 1:

left atrium); n is the total number of pixels in each training image. For classification part, we

adopt the sigmoid cross-entropy to measure pre/post ablation classification loss:

LC(pc,yc) = �
X

k=0,1

yk
c logp

k
c , (3.3)

where k indicates the image class index (0: pre-ablation, 1: post-ablation); pc is the classifica-915

tion score, where pk
c = 1

1+e�fc(x)k
and fc(x) denotes the network output from the classification

branch given x. The classification ground truth of a 2D image is labeled as 1 if this slice is

extracted from a post-ablation object. Otherwise, its ground truth is 0. The whole network

is trained jointly on the combined loss, where the classification loss works as a regularization

term, enabling the network to learn the high-level representation that generalizes well on both920

tasks.

3.1.2.3 Post-processing for shape refinement

During the inference time, axial slices extracted from a 3D image are fed into the network slice

by slice. The segmentation branch predicts pixel-wise probability score for both background

and atrium classes. A 2D segmentation mask is then generated by finding the class with the925

highest probability for each pixel on the slice. By concatenating these segmentation results slice

by slice,a rough 3D mask for each patient is produced. In order to refine the boundary of those

masks, we performed 3D morphological dilation and erosion, and kept the largest connected

component for each volume.
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3.1.3 Experiments930

Data. In this work, our algorithm was trained and evaluated on the dataset of the 2018 Atrial

Segmentation Challenge 2. This dataset contains a training set of 100 3D GE-MRI scans along

with corresponding LA manual segmentation mask and pre/post ablation labels for training

and validation. In addition, there is a set of 54 images without labels provided for testing. For

model training and evaluation, we randomly splitted the training set into 80 : 20. We did not935

use any external data for training or pre-training of our network.

Images in this dataset have been resampled and preprocessed by the organizers. So there

is no need to do re-sampling procedure in the pre-processing stage. Despite the consistency

observed in the resolution of the data, this dataset exhibits large di↵erences in images sizes

and image contrast. For example, there are two sizes of images in this dataset: 576 ⇥ 576940

and 640 ⇥ 640 on the axial planes. Apart from that, atria, in di↵erent images, can also have

various shapes and sizes. These phenomena may arise due to the fact that these scans were

collected from multiple sites which may have di↵erent scanners and imaging protocols. Hence,

it is important to build a robust method for those images. Fig. 3.3 visualizes the di↵erence in

image contrast of di↵erent images in di↵erent views. In this work, we use data augmentation to945

increase data variety with the aim of improving the model’s generalization ability on di↵erent

images, which will be discussed in section 3.1.3.

Data pre-processing. In order to preserve the resolution of images, image re-scaling was not

performed in the data pre-processing stage. Instead, multi-scale cropping was used to increase

the data variety, so that network can analyze images with di↵erent contexts. More details950

will be described in the next section as it actually happens in the data augmentation process.

For testing, images can be directly fed into the network provided that its length is a factor

of 32 due to the architecture of the network. Otherwise, zero padding is required. The only

necessary step in our pre-processing stage in both training and testing stage is to normalize

image intensity to zero mean and unit variance, which has been widely accepted in common955

practice.

2http://atriaseg2018.cardiacatlas.org/
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(a) Patient A

(b) Patient B

Figure 3.3: Visualization of 2D raw slices at axial (left), coronal (middle), sagittal (right)

views. Despite the homogeneity in image resolution, there are significant di↵erences in the image
contrast and quality among di↵erent individuals, which can be challenging to segment the left atrium
(red) from MR images. Best viewed in color.

Data augmentation. Our training data was augmented via a composition of image transform-

ations, including random horizontal/vertical flip with a probability of 50%, random rotation

with degree range from �10 to +10, random shifting along X and Y axis within the range of

10 percent of its original image size, and zooming with a factor between 0.7 and 1.3.960

In order to process images at multiple sizes with objects at multiple scales, we centrally

cropped 2D images at various image scales. The cropped sizes include 256⇥256, 384⇥384, 480⇥

480, 512 ⇥ 512, 576 ⇥ 576, 640 ⇥ 640. If the cropped size was larger than the image’s original

size, zero padding was performed instead. Motivated by Curriculum Learning [149], we trained

our network firstly with cropped images where the left atrium taking a large portion of the965

image and then we gradually increased the image size. In this way, our network learns to

segment from easy scenarios to hard scenarios and this helps the model to quickly converge in

the beginning [150]. Despite the change in input images sizes, our network could still output
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a fixed length feature vector for classification since we employed spatial pyramid pooling [143].

In practice, we found this could help the network focus on learning task-specific structural fea-970

tures for organ segmentation regardless of the contextual changes in sizes and scales. It is also

beneficial for quantitative analysis based on medical image segmentation since we do not use

rescaling nor resizing operations which have the risk of introducing scaling/shifting artifacts

during prediction.

975

Contrast augmentation. We found that there exists a diversity of image contrast in the

dataset, where low-contrast e↵ects can reduce the visual quality of an image [151] and thus

a↵ect segmentation accuracy. To solve this issue, traditional machine learning methods often

require image contrast enhancement methods during image pre-processing. Here, we proposed

a contrast augmentation method based on gamma correction instead, to generate a variety of980

images with di↵erent levels of contrast during training. In this way, our CNN could gain the

ability to segment images regardless of the di↵erence of image contrast. And there is no need

to do any contrast adjustment during testing. Therefore, our method is more e�cient than

those general traditional methods which require those adjustments.

The proposed contrast augmentation is based on a point-wise nonlinear transformation:985

G(x, y) = F (x, y)1/� where F (x, y) is the original value of each pixel in an image, and G(x, y) is

the transformed value for each pixel (x, y). The value of � is randomly chosen from the range

of (0.8, 2.0) for each image. By applying gamma correction randomly, the variety of image

contrast in the training set was significantly increased.

To show our contrast augmentation method is superior to the traditional contrast enhance-990

ment methods, we compared it with two image contrast enhancement methods: contrast limited

adaptive histogram equalization (CLAHE) [152] and automatic gamma correction [151]. Both

of them have been widely used in the pre-processing of CT image and MR image applica-

tions [153–155] in order to improve medical image quality for visual tasks. For CLAHE, we

divided each image into 8⇥ 8 regions and performed contrast enhancement on each region by995

default.
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The above experiments were performed based on a simple Deep U-net (without multi-task)

for comparison. All networks was optimized using Stochastic Gradient Descent(SGD) [66]

with the same setting: a momentum of 0.99 and weight decay of 0.0005. The initial learning

rate is 0.001, which will be decreased at a rate of 0.5 after every 50 epochs. From Table 3.1,1000

it can be seen that our proposed data augmentation method could significantly improve the

robustness of our network for processing images with various image contrast and outperformed

the traditional image pre-processing methods which may have the risk of amplifying noises

and take extra processing time. Therefore, in the following sections, we would like to employ

contrast augmentation as our default experimental setting.1005

Table 3.1: Segmentation results of a single-task Deep U-net with di↵erent image contrast

enhancement strategies.

Base Model Method Need Extra Time Dice "

Deep U-net Baseline No 0.847 (0.18)
Deep U-net + Automatic Gamma Correction Yes 0.854 (0.15)
Deep U-net + CLAHE Yes 0.876 (0.09)
Deep U-net + Gamma Augmentation No 0.883 (0.08)

3.1.4 Results

To evaluate our segmentation accuracy for di↵erent experimental settings, we use four measure-

ments: the Dice score (also known as Dice similarity coe�cient score), the Jaccard Similarity

Coe�cient (JC) score, the Hausdor↵ Distance (HD) and the Average Symmetric Surface Dis-

tance (ASSD).1010

Table 3.2: Segmentation results of di↵erent methods.

Dice " JC " HD # ASSD #

Vanilla U-net 0.855 (0.11) 0.760 (0.14) 21.81 (19.35) 1.58 (1.07)
Deep U-net 0.883 (0.08) 0.798 (0.11) 21.18 (21.00) 1.20 (0.47)

Deep U-net + multi-task 0.896 (0.04) 0.815 (0.07) 15.40 (6.39) 1.11(0.35)
Deep U-net + multi-task

+ post-processing
0.901 (0.03) 0.822 (0.06) 14.23 (4.83) 1.04 (0.32)

To show the advancement of our deep network with additional pooling/max-pooling layers,

we compared our modified networks with the vanilla 2D U-net [32]. The results are shown in
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Figure 3.4: Exemplar segmentations for axial slices using di↵erent methods. Each column

shows di↵erent axial slices from the mitral to the PVs plane (top to bottom).

Table 3.2. It can be seen that the segmentation performance was greatly improved by increasing

the depth of the network, increasing the Dice score from 0.855 to 0.883. Our best results were

achieved by using the multi-task Deep U-net followed by post-processing, producing a Dice score1015

of 0.901. In particular, applying multi-task learning greatly reduces the Hausdor↵ distance from

21.18 to 15.40 mm. From the visualization plots in Fig. 3.4, we could see that our multi-task

U-net is more robust than the other two with only one segmentation goal. One reason could

be that by sharing features with segmentation and related pre/post ablation classification, the

network is forced to learn better representation on images taken before the ablation treatment1020

and those after the treatment, which could further improve segmentation performance. Fig. 3.5

shows that our model achieved high overlap ratio between our 3D segmentation result and

the ground truth in di↵erent subjects. However, one significant failure mode can be observed

around the region of pulmonary veins. One possible reason might be that the number and the

length of pulmonary veins vary from person to person, making it too hard for the network to1025

learn from limited cases.
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Figure 3.5: 3D visualization of three samples from the validation set. Blue objects are the
ground truth, and the green ones are the predicted segmentation of the proposed method.

For the Atrial Segmentation Challenge 2018, we adopted an ensemble method called Boostrap

Aggregating (Bagging) [135] to improve our model’s performance in the test phase. We noticed

that samples in the dataset were collected from multiple sites while a large portion is from The

University of Utah. In that case, domain shift or domain bias may exist when we use a model1030

trained on one certain subset from a limited dataset to predict data from another subset as

they may have di↵erent intensity distributions. Therefore, we trained the same model 5 times,

each with a random subset and then averaged the class probabilities produced by these five

models for prediction. Our ensembled results on a set of 54 test cases given by the organizers

improved from an averaged Dice score of 0.9197 to 0.9206. Besides, the total processing pro-1035

cedure (inference + post-processing) for each whole 3D MRI predicted by our network took

only approximately 10 seconds on average on one Nvidia Titan Xp GPU. It is therefore much

more e�cient than those atlas-based methods which typically take eight minutes [140].

3.1.5 Conclusion

In this section, we proposed a deep 2D fully convolutional neural network to automatically1040

segment the left atrium from GE-MRI images. By applying multi-task learning to utilize the

auxiliary non-imaging patient information, our network demonstrated improved segmentation

accuracy on the unseen test set compared to a baseline U-net method. In addition, we showed

that contrast augmentation is an e�cient and e↵ective way to enhance our model’s robustness

and e�ciency when analyzing images with various image contrast. Yet, the proposed network1045

can still fail to segment subtle structures, i.e., pulmonary veins where the number and the

length of pulmonary veins vary from person to person. Since the network segments images
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in the slice-by-slice fashion, it does not fully utilize the global spatial information across the

volume. Extending the current 2D network to a 3D network could be one solution to help the

network better understand the shape anatomy for each subject for precise segmentation.1050
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3.2 Learning shape priors for robust cardiac MR seg-

mentation from multi-view images

3.2.1 Introduction

Accurate segmentation of cardiovascular magnetic resonance (CMR) images is fundamental for

assessing cardiac morphology and diagnosing heart conditions [5]. Manual segmentation of the1055

anatomical structures is tedious, time-consuming and prone to subjective errors, which is not

suitable for large-scale studies such as UK Biobank3 [4]. Therefore, it is essential to develop

automated, fast and accurate CMR segmentation techniques.

Recently, CNN based methods have achieved very good performance for cardiac image

segmentation in terms of both speed and accuracy [4, 6, 37]. However, they may still produce1060

sub-optimal segmentation results in some circumstances. For example, in the ACDC [6], the

top segmentation methods (all CNN-based) achieve high overall segmentation scores for mid-

ventricular short-axis slices. However, they sometimes produce poor results or even fail to locate

the myocardium in basal slices (due to its more complex shape) and apical slices (due to its

small size). This problem is not uncommon and has been reported in the related literature [6,1065

71, 84]. Methods based on 2D networks, trained in a slice-by-slice fashion, are particularly

a↵ected by this problem since they do not incorporate spatial context from neighboring short-

axis (SAX) images or long-axis (LAX) views. On the other hand, 3D networks are capable

of incorporating 3D spatial information to perform the segmentation task. Yet the 3D spatial

context can be a↵ected by potential inter-slice motion artifacts [156] and the low through-1070

plane spatial resolution in cardiac SAX stacks, thus limiting their segmentation performance.

Compared to 2D ones, 3D networks usually contain more parameter and are prone to over-

fitting especially when the training set is limited in size since they use 3D volumes rather than

2D slices as input, significantly reducing the number of training samples.

Experienced clinicians are able to assess the cardiac morphology and function from multiple1075

3https://imaging.ukbiobank.ac.uk/
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standard views, using both SAX and LAX images to form an understanding of the cardiac

anatomy. Inspired by this, we propose a method which learns the anatomical prior knowledge

across four standard views as auxiliary information and leverages this to assist the segmentation

on 2D SAX images. The intuition behind our work is that the representation learned from

multiple standard views is beneficial for the segmentation task on the SAX slices as di↵erent1080

views should share the same representation of the 3D anatomy if they are from the same subject.

The main contributions of this work are the following: a) we developed a novel encoder-

decoder architecture (Shape MAE) which learns latent representation of cardiac shapes from

multiple standard views; b) we developed a segmentation network (multi-view U-net, adap-

ted from [32]), which is capable of incorporating the anatomical shape priors learned from1085

multi-view images to guide the segmentation on SAX images; c) we assessed the segmentation

accuracy and the data e�ciency of the proposed segmentation method against common 2D and

3D segmentation baselines by limiting the number of training images, demonstrating that the

proposed method is more robust, and less dependent on the size of training data.

3.2.2 Related work1090

A large number of methods have been developed to improve the robustness of the cardiac

segmentation. One approach is to learn an ensemble model where the predictions of a 2D and

a 3D network are combined [38]. This method is capable of producing accurate results, but

has a relatively high computational cost and requires an extra post-processing step to merge

the predictions from the two networks. Another approach is to incorporate cardiac anatomical1095

prior knowledge into segmentation networks [44, 157]. In [44], the learned representation of

the 3D cardiac shape is employed to constrain the segmentation model to predict anatomically

plausible shapes. The main bottleneck of this method is the requirement of fully annotated

3D high-resolution MR images which are free from inter-slice motion artifacts and have high

through-plane spatial resolution. However, compared to the standard 2D imaging protocol,1100

the 3D one requires the subjects to hold their breath for a relatively long time and therefore

is often not feasible for patients with cardiovascular diseases. Instead of using 3D images, we
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exploit routinely acquired 2D standard views to learn the shape representation of the cardiac

structures. The learned representation is then injected into a segmentation network to improve

its performance on SAX MR images. Of note, the approach in [158] also injects shape priors1105

produced from an autoencoder into a segmentation network. However, the aim of that approach

is to generate multiple segmentation hypotheses for ambiguous images, and cannot be readily

employed to learn shape priors from di↵erent views to enhance cardiac segmentation.

3.2.3 Methodology

The proposed method consists of two novel architectures: 1) A shape-aware multi-view1110

convolutional neural network (Shape MV-CNN) which aims at learning anatomical shape

priors from standard cardiac acquisition planes incl. short-axis and long-axis views and 2) a

multi-view U-net which performs cardiac short-axis image segmentation by incorporating

anatomical priors learned by Shape MV-CNN into a modified U-net architecture.

Figure 3.6: (a) Overview of Shape MV-CNN. (b) Detailed architectures of each encoder

and each decoder. Each rectangle represents one or a series of convolutional (Conv) or transposed
convolutional (Deconv) layers, where the number in the square box represents the number of filters for
each layer. A ‘Res block’ (pink rectangles) consists of two convolutional layers (3⇥ 3) with a residual
connection that adds its input to the features from the second layer. Instance normalization and leaky
ReLU activation are applied throughout the network. A sigmoid function is applied to the latent code
z to bound its range.
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3.2.3.1 Shape MV-CNN: Shape-aware multi-view convolutional neural network.1115

As illustrated in Fig. 3.6, we first present a novel architecture named shape-aware multi-view

convolutional neural network (Shape MV-CNN) which learns anatomical shape priors from

standard cardiac views through multi-task learning. Given a source view Xi, the network

learns the low-dimensional representation zi of Xi that best reconstructs all the j target views

segmentations Yj. In this work, we employ four source views Xi (i = 1, . . . , 4) which are three1120

LAX images - the two-chamber view (LA1), three-chamber view (LA2), the four-chamber view

(LA3) - and one mid-ventricular slice (Mid-V) from the SAX view. The target segmentations

views Yj (j = 1, . . . , 6) correspond to the four previous views plus two SAX slices: the apical

one and the basal one. All encoders Ei : zi = Ei(Xi) and all decoders Dj : Yj = Dj(zi) in the

Shape MV-CNN share the same architecture (see Fig. 3.6 b).1125

The loss function LShape MAE for the whole network is defined as follows:

LShape MAE = Lintra + ↵Linter + �Lreg (3.4)

The first two terms of Eq. 3.4 are defined as the cross entropy loss Fce between the predicted

myocardium segmentation Ŷi!j = Dj(Ei(Xi)) for the target view j given a source image Xi

of the same subject and its ground truth segmentation Yj. Lintra denotes the segmentation

loss when the source view Xi and the target view Yj correspond to the same view: Lintra =1130

P4
i=1,i=j Fce(Yj, Ŷi!j), whereas the second term Linter denotes the loss when two views are

di↵erent: Linter =
P4

i=1

P6
j=1,i 6=j Fce(Yj, Ŷi!j). The third term is a regularization term on the

latent representations zi, zi 2 Z: Lreg = 1
|Z|

P4
i=1 ||zi � z̄||

2, which penalizes the L2 distance

between zi and z̄, with z̄ = 1
|z|

P4
i=1 zi being the average z for a subject. Although the latent

shape codes from di↵erent views of the same subject are not directly shared, this regularization1135

term forces them to be close to each other. We use coe�cients ↵ and � to control the relative

importance of Linter and Lreg.

The principle behind the proposed network is that di↵erent views require independent func-

tions to map them to the latent space that describes global shape characteristics; whereas
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translating this latent space to another view or plane also requires a specific projection func-1140

tion. Predicting the shape of the myocardium based on the six target views instead of a single

view encourages the network to learn and exploit correlations between di↵erent views, result-

ing in a global, view-invariant shape representation rather than a local representation for a

particular view. All the encoders and the decoders in this framework are trained jointly in

a multi-task learning fashion, with the benefit of avoiding over-fitting and encouraging model1145

generalisation [159].

Figure 3.7: (a) Overview of the proposed MV U-net. (b) Architecture of the ‘Fuse Block’. SAX:
short-axis; LA: long-axis; Mid-V: mid-ventricle slice. The number of shown feature map blocks of the
U-net is reduced for clarity of presentation. Batch normalization and ReLU activations are applied
throughout the network. For each subject, the shape code of each view is reshaped to 1 ⇥ 8 ⇥ 8 ⇥ 8
and then concatenated with the other three along the second axis to form an input of 1⇥ 32⇥ 8⇥ 8
to the Fuse Block.

3.2.3.2 MV U-net: Multi-view U-net.

As shown in Fig. 3.7, we propose a segmentation network called multi-view U-net (MV U-net)

based on the original U-net [32] for cardiac SAX image segmentation. The proposed network is1150

capable of incorporating the anatomical shape priors learned by Shape MV-CNN. Similar to the

original architecture, the proposed architecture comprises 4 down-sampling blocks and 4 up-
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sampling blocks to learn multi-scale features. Di↵erently from the original U-net, we reduced

the number of filters at each level by four times to account for the fact that cardiac segmentation

is simpler than the lesion segmentation (with multiple candidates) which was the task that the1155

original U-net was applied to. In addition, a module called ‘Fuse Block’ is introduced in the

bottleneck of the network (see Fig. 3.7 b) to inject the latent codes into the segmentation

network. This fusing approach is di↵erent from that in [158] where the latent codes are simply

concatenated with U-net activations. The proposed module consists of two convolutional kernels

(3 ⇥ 3) and a residual connection to combine the shape representations from di↵erent views1160

through learnable weights. Thanks to this module, given an arbitrary short-axis image slice Ip

from a subject p and its correspondent shape representations z
p
1 , z

p
2 , z

p
3 , z

p
4 obtained by Shape

MV-CNN (one for each of the four standard views), the network can predict a segmentation

S
p = fMVU-Net(Ip, z

p
1 , z

p
2 , z

p
3 , z

p
4 ; ✓) by distilling the prior knowledge to the high-level features of

the network, allowing it to e�ciently refine the segmentations through multi-view information.1165

The network is trained using standard training procedure with a cross entropy loss to optimise

the parameters ✓ of the MV U-net.

3.2.4 Experiments

Experiments were performed on a dataset4 acquired from 734 subjects from UK Biobank

study [5]. For each subject, a stack of 2D SAX slices and three orthogonal 2D LAX im-1170

ages are available. All the LV myocardium were annotated on the SAX images as well as the

LAX images at the end-diastolic (ED) frame using an automated method followed by manual

quality control. All the images were acquired using one scanner. The spatial resolution of the

images is 1.8⇥ 1.8⇥ 10 mm.

In our experiments, the dataset was randomly split into two subsets: a training set (5701175

cases), a test set (164 cases). All LAX images were registered to a template subject using

rigid transformation with MIRTK toolkit5. All 2D SAX slices have been cropped to the size of

128⇥128 pixels where the left ventricle is roughly in the center of every image. Benefiting from

4The cardiac multi-view image dataset has been provided under UK Biobank Access Application 18545.
5https://mirtk.github.io/
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the view planning (which is a standard step during the cardiac image acquisition), we simply

use the intersection point of the three orthogonal LAX images on every SAX slice to determine1180

its center of the interest region. All the networks were trained for 200 epochs on an NVIDIA®

GeForce® 2080 Ti, using an Adam optimizer with a batch size of 10. The learning rate for

Shape MV-CNN was set to 0.0001 whereas the learning rate for the segmentation network was

set to 0.001. In our experiments, ↵ was empirically set to 0.5 and � to 0.001 in the LShape MAE.

The proposed algorithm was implemented in Pytorch.1185

3.2.5 Results

To evaluate the segmentation accuracy, we use two measurements: the Dice score and the

Hausdor↵ distance (HD). The proposed method is compared against: a 2D U-net [32], a state-

of-the-art 2D FCN for cardiac MR image segmentation [4], and a 3D U-net [35]. For fairness and1190

ease of comparison, all models were set with the same number of filters at each level (starting

with 16 filters in the first layer) and trained with the same pre-processing and training schedule.

For the 3D network, we resampled SAX images to a voxel size of 1.8⇥1.8⇥1.8 mm and cropped

each to a size of 128⇥ 128⇥ 64 during pre-processing. We trained MV U-net and the baseline

networks with two settings: in one case we used 10% of the training set, while in the other one1195

we used 100%. Of note, in each setting, we first trained a Shape MV-CNN and then trained

a MV U-net where shape priors of four standard views were obtained using corresponding

encoders in the Shape MV-CNN.

We visualize the output of the trained Shape MV-CNN network in Fig. 3.8 in the two

settings. We can see that given only one source view (the first column) as input, the proposed1200

Shape MV-CNN is able to predict the myocardium shapes on the six target views (column 2

to column 7). This indicates that the proposed approach has the potential to encode the global

shape characteristics of the myocardium in the latent space instead of a local embedding for a

particular view of a subject.

Quantitative results on the U-nets’ segmentation on the test set are shown in Table 3.3.1205
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(a) Trained with 10% data (b) Trained with 10% data

(c) Trained with 100% data (d) Trained with 100% data

Figure 3.8: Exemplar results of the proposed shape MV-CNN. Here, for each training setting,
two examples are shown for illustration.

Table 3.3: Segmentation performance of the baseline models and the proposed method.

Reported values are the mean and the standard deviation of Dice score and HD distance (mm) obtained
on the test set (n=164). The comparison has been carried out separately for apical, mid-ventricular,
and basal slices.

Method # Training subjects
Dice" HD#

Apex Middle Base Apex Middle Base

2D U-net 57 (10%) 0.898 (0.090) 0.932 (0.035) 0.923 (0.077) 3.239 (6.918) 2.337 (2.913) 3.617 (9.058)
2D FCN 57 (10%) 0.873 (0.113) 0.926 (0.041) 0.919 (0.069) 3.088 (3.882) 2.317 (1.440) 2.948 (2.691)
3D U-net 57 (10%) 0.890 (0.083) 0.923 (0.043) 0.923 (0.043) 2.839 (3.980) 3.573 (9.05) 4.469 (10.02)
MV U-net 57 (10%) 0.905 (0.076) 0.932 (0.025) 0.926 (0.088) 2.487 (3.022) 2.093 (0.577) 2.758 (3.697)

2D U-net 570 (100%) 0.937 (0.029) 0.955 (0.016) 0.948 (0.071) 1.917 (0.294) 1.888 (0.178) 2.327 (2.566)
2D FCN 570 (100%) 0.934 (0.032) 0.958 (0.015) 0.949 (0.078) 1.913 (0.297) 1.890 (0.347) 2.161 (1.068)
3D U-net 570 (100%) 0.913 (0.112) 0.945 (0.078) 0.933 (0.093) 2.104 (1.24) 1.957 (0.68) 2.722 (3.57)
MV U-net 570 (100%) 0.938 (0.027) 0.958 (0.013) 0.952 (0.079) 1.903 (0.345) 1.874 (0.142) 2.146 (1.004)

Approx. # of conv weights (million) 2D U-net: 0.8 2D FCN: 1.0 3D U-net: 2.5 MV U-net: 1.2

From the table, it can be observed that the proposed method outperforms the baseline models

in both the low-data setting and the high-data setting, with improved Dice scores at the apex,

middle, and base of the left ventricular myocardium. In particular, when only 10% data was
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used, the proposed method reduces the mean HD from 3.24 to 2.49 mm on the apical slices,

from 2.34 to 2.09 on the middle slices and from 3.62 to 2.76 on the basal slices, compared1210

to the 2D U-net. Fig. 3.9 and Fig. 3.10 show examples of the segmentation results from all

the networks in both low data setting and high data setting. We can observe that in both

data settings, the proposed method not only produces more robust segmentation across slices

compared to the results from the 2D networks, but also achieves more anatomically plausible

results in comparison to the 3D one (see the red arrows in this figure).1215

Figure 3.9: Visualization of ground truth (GT) and corresponding predicted segmentations

from the baseline models and MV U-net. All methods were trained using 10% training subjects.
Here we present predicted segmentation and corresponding GT on an apical, a mid-ventricular, and
a basal slice from one patient. Compared to the baseline models, MV U-net produces more accurate
segmentation with stronger spatial coherence.

Ablation study. To further quantify the e↵ectiveness of the learned shape priors, we compared

the proposed method to its downgraded version by setting priors to be all zeros. Results of

this ablation study in the low-data setting is shown in Table 3.4. It is clearly observed that the

improvement of segmentation accuracy mainly comes from the learned shape knowledge from

auxiliary multiple standard views rather than the increased network capacity.1220
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Figure 3.10: Example results of the proposed segmentation method (MV U-net) and the

baseline models. All methods were trained using 100% training data. Representative improvements
for cardiac image segmentation can be observed when using the proposed method. For example,
baseline models produce poor results when there are unexpected artifacts on the image (see the region
inside the cyan ellipse). By contrast, the proposed method can properly identify the correct contours.

Table 3.4: Ablation study results. Incorporating shape priors into the network improves seg-
mentation accuracy, especially on apical and basal slices. The student’s t-test has been conducted to
compute p-values for statistical significance analysis.

Dice" HD#
Overall Dice"

Apex Middle Base Apex Middle Base
w/o shape priors 0.898 (0.086) 0.932 (0.032) 0.916 (0.101) 3.542 (10.269) 2.272 (1.844) 3.060 (3.896) 0.905 (0.026)
w/ shape priors 0.905 (0.076) 0.932 (0.025) 0.926 (0.088) 2.487 (3.022) 2.093 (0.577) 2.758 (3.697) 0.913 (0.021)
p-value  0.05  0.1  0.05  0.05  0.05  0.05  0.05
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3.2.6 Conclusion

In this work, we presented a shape-aware multi-view CNN, a neural network capable of learning

anatomical shape priors from multiple standard views, and a multi-view U-net, a modification

of the original U-net architecture that incorporates the learned shape priors to improve the

robustness of cardiac segmentation. In contrast to existing works which treat long-axis CMR1225

segmentation and short-axis CMR segmentation as two separate tasks [4, 97], our approach, to

the best of our knowledge, is the first trial in deep learning that exploits the spatial context from

the long-axis images to guide the segmentation on the short-axis images. The reported exper-

imental results show that the proposed segmentation method not only demonstrates superior

segmentation accuracy over state-of-the-art 2D baseline methods [4, 32], but also outperforms1230

a 3D U-net [35]. This improvement is particularly evident on the basal and apical slices in

the low-data setting, as expected. When training data is limited, segmenting these challenging

slices particularly benefits from the auxiliary anatomical information extracted from the LAX

views and injected into the segmentation network.

Of note, our approach does not require a dedicated acquisition protocol since LAX images1235

are routinely acquired in most CMR imaging schemes. Moreover, the proposed MV U-net

maintains the computational advantage of a 2D network, using fewer parameters (⇠ 1.2 million

weights) than the 3D U-net (⇠ 2.5 million weights) during training. This advantage also

contributes to the data e�ciency of our method, achieving high segmentation performance

with limited training data. Importantly, our method could be extended in the future to multi-1240

structure cardiac segmentation. The proposed approach could also be potentially adopted to

other medical image segmentation tasks. It is also interesting to exploit and compare other

approaches that learn and leverage the shape priors from multi-view images, such as a 2.5D

network with a multi-branch encoder [160]. We will leave it for future work.
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Chapter 41245

Learning with Unlabeled Data

This chapter contains material from

1. C. Chen, C. Qin, H. Qiu, C. Ouyang, S. Wang, L. Chen et al., ‘Realistic adversarial

data augmentation for MR image segmentation,’ in Medical Image Computing and

Computer Assisted Intervention – MICCAI 2020, Springer International Publish-

ing, 2020, pp. 667–677. doi: 10.1007/978-3-030-59710-8_65 [15]

2. a C. Chen, C. Ouyang, G. Tarroni, J. Schlemper, H. Qiu, W. Bai et al., ‘Unsuper-

vised multi-modal style transfer for cardiac MR segmentation,’ in Statistical Atlases

and Computational Models of the Heart. Multi-Sequence CMR Segmentation - 10th

International Workshop, STACOM 2019, Held in Conjunction with MICCAI 2019,

Shenzhen, China, October 13, 2019, Revised Selected Papers, ser. Lecture Notes in

Computer Science, vol. 12009, Springer International Publishing, 2019, pp. 209–

219. doi: 10.1007/978-3-030-39074-7_22 [14]

aThis is a joint work with Ouyang Cheng, and both authors contributed equally.

Labeling large datasets for network training requires a considerable amount of resources,

time, and e↵ort, limiting the adoption and application of neural networks. In this chapter, we

aim to utilize both labeled and unlabeled images to improve model generalization on unseen test1250

data. Compared to a labeled dataset which requires expertise to annotate, an unlabeled dataset

69
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is easier and cheaper to acquire. Therefore it is of great practical value to develop learning

algorithms that can utilize unlabeled data to regularize the model for improved performance. In

Sec. 4.1, we present an adversarial data augmentation approach, which finds e↵ective bias fields

to augment labeled and unlabeled data of the same domain. We then utilize these augmented1255

samples for consistency regularization, which encourages the network to produce consistent

predictions over similar input images as a way of enhancing model generalization. In Sec. 4.2,

we present a GAN-based image style transfer for unsupervised cardiac LGE segmentation,

where we have a set of labeled bSSFP images and a set of unlabeled LGE images. We utilize

the two sets to learn a GAN-based image style translator, so that labeled bSSFP images can1260

be translated into LGE-like images automatically. In this way, we augment the data with a set

of synthetic labeled LGE datasets to facilitate the segmentation network training.

4.1 Realistic adversarial data augmentation for MR im-

age segmentation

4.1.1 Introduction1265

Deep learning-based approaches in general require a large-scale labeled dataset for training, in

order to achieve good model generalization ability and robustness on unseen test cases. How-

ever, acquiring and manually labeling such large medical datasets is extremely challenging,

due to the di�culties that lie in data collection and sharing, as well as to the high labeling

costs [161]. To address the aforementioned problems, one of the commonly adopted strategies is1270

data augmentation, which aims to increase the diversity of the available training data without

collecting and manually labeling new data. Conventional data augmentation methods mainly

focus on applying simple random transformations to labeled images. These random transform-

ations include intensity transformations (e.g., pixel-wise noise, image brightness and contrast

adjustment) and geometric transformations (e.g., a�ne, elastic transformations). Recently,1275

there is a growing interest in developing generative network-based methods for data augment-
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ation [162–165], which have been found e↵ective for one-shot brain segmentation [162] and

low-shot cardiac segmentation [164]. Unlike conventional data augmentation, which generates

new examples in an uninformative fashion and does not account for complex variations in data,

this generative network-based method is data-driven, learning optimal image transformations1280

from the underlying labeled and unlabeled data distribution in the real world [164]. However, in

practice, training generative networks is not trivial due to their sensitivity to hyper-parameters

tuning [166] and it can su↵er from the mode collapse problem.

In this work, we introduce an e↵ective adversarial data augmentation method for medical

imaging without resorting to generative networks. Specifically, we introduce a realistic intensity1285

transformation function to amplify intensity non-uniformity in images, simulating potential im-

age artifacts that may occur in clinical MR imaging (i.e. bias field). Our work is motivated by

the observations that MR images often su↵er from low-frequency intensity corruptions caused

by inhomogeneities in the magnetic field. This artifact cannot be easily eliminated [167, 168]

and can be regarded as a physical-world attack to neural networks, which have been reported1290

to be sensitive to intensity perturbations [169, 170]. To e�ciently improve the model gener-

alization and robustness, we apply adversarial training to directly search for optimal intensity

transformations that benefit model training. This optimization process can be applied to both

labeled and unlabeled data. By continuously generating these realistic, ‘hard’ examples, we

prevent the network from over-fitting and, more importantly, encourage the network to defend1295

itself from intensity perturbations by learning robust semantic features for the segmentation

task.

Our main contributions can be summarized as follows: (1) We introduce a realistic ad-

versarial intensity transformation model for data augmentation in MRI, which simulates in-

tensity inhomogeneities which are common artifacts in MR imaging. The proposed data aug-1300

mentation is complementary to conventional data augmentation methods. (2) We present a

simple yet e↵ective framework based on adversarial training to learn adversarial transform-

ations and to regularize the network for segmentation robustness, which can be used as a

plug-in module in general segmentation networks, see Sec. 4.1.3.2. More importantly, unlike

conventional adversarial example construction [109, 171], generating adversarial bias fields does1305
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not require manual labels, which makes it applicable for both supervised and semi-supervised

learning. (3) We demonstrate the e�cacy of the proposed method on a public cardiac MR

segmentation dataset in challenging low-data settings. In this scenario, the proposed method

greatly outperforms competitive baseline methods, see Sec. 4.1.5.

4.1.2 Related work1310

Recent studies have shown that adversarial data augmentation, which generates adversarial

data samples during training, is e↵ective to improve model generalization and robustness[132,

171]. Most existing works are based on designing attacks with pixel-wise noise, i.e. by adding

gradient-based adversarial noise [109, 169, 172–174]. More recently, there have been studies

showing that neural networks can also be fragile to other, more natural form of transform-1315

ations that can occur in images, such as a�ne transformations [110, 175, 176], illumination

changes [176], and small deformations [170, 177]. In medical imaging, designing and con-

structing realistic adversarial perturbations, which can be used for improving medical image

segmentation networks, has not been explored in depth.

4.1.3 Methodology1320

In this work, we aim at generating realistic adversarial examples to improve model general-

ization ability and robustness, given a limited number of training examples and a number of

unlabeled images if applicable. To achieve the goal, we first introduce a physics-based in-

tensity transformation model that can simulate intensity inhomogeneities in MR images. We

then propose an adversarial training method, which finds e↵ective adversarial transformation1325

parameters to augment training data, and then regularizes the network with a distance loss

function which penalizes network’s sensitivity to such adversarial perturbations. Since our

method is based on virtual adversarial training (VAT) [174], we will first briefly review VAT

before introducing our method.
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4.1.3.1 Virtual adversarial training1330

Figure 4.1: Adversarial example construction and adversarial training. (A) Adversarial
example construction with additive gradient-based noise in VAT [174]; (B) Adversarial example con-
struction with a multiplicative control point-based bias field (proposed); (C) Adversarial training with
bias field perturbation.

VAT is a regularization method based on adversarial data augmentation, which can prevent

the model from over-fitting and improve the generalization performance and robustness[174].

Given an input image x 2 RH⇥W⇥C (H,W,C denote image height, width, and number of

channels, respectively) and a classification network fcls(·; ✓), VAT first finds a small adversarial

noise radv 2 RH⇥W⇥C to construct its adversarial example xadv = x + radv (as shown in1335

Fig.4.1A), with the goal of maximising the Kullback�Leibler (KL) divergence DKL between

an original probabilistic prediction fcls(x; ✓) and its perturbed prediction fcls(x+ radv; ✓). The

adversarial example is then used to regularize the network for robust feature learning.

The adversarial noise can be generated by taking the gradient of DKL with respect to a ran-

dom noise vector: radv = ✏ ·
r0

kr0k2 ,r0 = rrDKL[f (x; ✓) k f (x+ r; ✓)]. Here ✏ is a hyper-parameter1340

that controls the strength of perturbation. After finding adversarial examples, one can utilize

them for robust learning, which penalizes the network’s sensitivity to local perturbations. This

is achieved by adding DKL to its main objective function.

4.1.3.2 Adversarial training by modeling intensity inhomogeneities

In this work, we extend the VAT approach by introducing a new type of adversarial attack,1345

namely intensity inhomogeneities (bias field) that often occur in MR imaging. In MR imaging,

a bias field is a low frequency field that smoothly varies across images, introducing intensity
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non-uniformity across the anatomy being imaged. The model for the intensity non-uniformity

can be defined as follows [167, 178]: xbias = Gbias(x; c) = x⇥�bias(c). Here, the intensity of the

image x is perturbed with a multiplication with the bias field �bias
2 RH⇥W . As the bias field1350

is typically composed of low frequencies and thus slowly varying across the image, it can be

modelled using a set of uniformly distributed k by k points c = {c(i)}1...k⇥k [167], see Fig. 4.1B.

A smooth bias field at the finest resolution is obtained by interpolating scattered control points

with a third-order B-spline smoothing [179].

While one can repeatedly sample random bias fields for data augmentation, this might be1355

computationally ine�cient as it may generate images which are of no added value for model

optimization. We therefore would like to construct adversarial examples (perturbed by bias

field as described above) targeting the weakness of the network in an intelligent way. This

allows the use of the generated adversarial examples to improve the model performance and

robustness, which can be achieved via the following min-max game:1360

min
✓

max
c

Dcomp[fseg(x; ✓), fseg(Gbias(x; c); ✓)]

subject to 8(x, y) 2 R2
, �bias

(x,y) > 0; |�bias
� 1|1  ↵, 0 < ↵ < 1.

(4.1)

As shown in Fig. 4.1C, given a segmentation network fseg(·; ✓) and an input image x, we first

find optimal values for control points c in the search space to construct an adversarial bias

field, so that it maximizes the distance measured by Dcomp between the original prediction

and the prediction after perturbation: p = fseg(x; ✓), p̂ = fseg(Gbias(x; c); ✓), with ✓ fixed. We

then optimize the parameters ✓ in the network to minimize the distance between the original1365

prediction and the prediction after the generated adversarial bias attack fseg(Gbias(x; cadv); ✓).

4.1.3.3 Finding adversarial bias fields

To find the optimal values for the control points c for adversarial example construction, we

use the gradient descent algorithm and search the values of control points in its log space for

numerical stability [167, 178], which allows to produce positive bias fields. Specifically, similar1370

to the projected gradient decent (PGD) attack construction in [171], we first randomly initialize
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the values of control points and then apply a projected gradient ascent algorithm to iteratively

update c with n steps: c ⇧(c+⇠ ·c0/kc0k2) where c0 = rcDcomp[fseg(x; ✓), fseg(Gbias(x; c); ✓)].

⇧ denotes the projection function which projects c onto the feasible set, and ⇠ is the step size.

For neural networks, gradients c0 can be e�ciently computed with back-propagation. �bias is1375

updated by first interpolating the coarse-grid control points (log values at the current iteration)

to its finest grid using B-spline convolution, and then taking the exponential function for value

recovering. Finally, the generated bias field is rescaled to meet the magnitude constraint in

Eq. 4.1.

4.1.3.4 Composite distance function1380

Here, we propose a composite distance function Dcomp to enhance its discrimination ability

between the original prediction p (short for fseg(x; ✓)) and the prediction after perturbation p̂,

for semantic segmentation tasks. This composite loss consists of (1) the original DKL used in

VAT, which measures the di↵erence between distributions and (2) a contour-based loss func-

tion Dcontour [14] which is specifically designed to capture mismatch between object boundaries:1385

Dcomp(p, p̂) = DKL[p || p̂]+wDcontour(p, p̂); Dcontour(p, p̂) =
P

m2M
P

S2{Sx,Sy} kS(p
m)� S(p̂m)k2.

M denotes foreground channels, Sx, Sy denote two Sobel filters in x- and y-direction for edge

extraction and w controls the relative importance of both terms.

4.1.3.5 Optimizing segmentation network

After constructing the adversarial examples, one can compute Dcomp and apply it to regularizing1390

the network, encouraging the network to be less sensitive to adversarial perturbations, and thus

produce consistent predictions. Since this algorithm uses probabilistic predictions (produced

by the network) rather than manual labels for adversary construction, it can be applied to both

labeled (l) and unlabeled data (u) for supervised and semi-supervised learning [174]. The loss

functions for the two scenarios are defined as: LSU = Lseg(p(l)
,y(l)

gt )+�lDcomp(p(l)
, p̂(l)); LSE =1395

LSU + �uDcomp(p(u)
, p̂(u)). Lseg denotes a general task-related segmentation loss function for

supervised learning (e.g., cross-entropy loss) and y(l)
gt denotes ground truth.



76 Chapter 4. Learning with Unlabeled Data

4.1.4 Experiments

To test the e�cacy of the proposed method, we applied it to training a segmentation network

for the left ventricular myocardium from MR images in low-data settings. We compared the1400

results with several competitive baseline methods.

ACDC dataset. Experiments were performed on a public benchmark dataset for cardiac MR

image segmentation: The Automated Cardiac Diagnosis Challenge (ACDC) dataset [6] 1. This

dataset was collected from 100 subjects which were evenly classified into 5 groups: 1 normal

group (NOR) and 4 pathological groups with cardiac abnormalities: dilated cardiomyopathy1405

(DCM); hypertrophic cardiomyopathy (HCM); myocardial infarction with altered left ventricu-

lar ejection fraction (MINF); abnormal right ventricle (ARV). The left ventricular myocardium

in end-diastolic and end-systolic frames were manually labeled.

Image pre-processing. We used the same image preprocessing as in [164]. In addition, all

images were centrally cropped into 128 ⇥ 128, given that the heart is generally located in the1410

center of the image. This saves computational costs.

Random data augmentation (Rand Aug). We applied a strong random data augmenta-

tion method to our training data as a basic setting. Random a�ne transformation (i.e. scaling,

rotation, translation), random horizontal and vertical flipping, random global intensity trans-

formation (brightness and contrast) [164] and elastic transformation were applied.1415

Training details. For ease of comparison, same as [164], we adopted the commonly-used

2D U-net as our segmentation network, which takes 2D image slices as input. The Adam

optimizer with a batch size of 20 was used to update network parameters. For the proposed

method, we first trained the network with the default data augmentation (Rand Aug) for

10,000 iterations (learning rate=1e�3), and then finetuned the network by adding the proposed1420

adversarial training using a smaller learning rate (1e�5) for 2,000 iterations. The common

standard cross-entropy loss function was used as Lseg . For bias field construction, we adopted

the B-spline convolution kernel (order=3) with 4 ⇥ 4 control points. The kernel was provided

by AirLab library [180]. We empirically set: ↵ = 0.3, w = 0.5, �l = 1 and �u = 0.1. Besides,

1https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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we found that in our experiments, one step searching in the inner loop produced su�cient1425

improvement. Thus, we set n = 1, ⇠ = 1 to save computational cost. All the experiments

were performed on an Nvidia® GeForce® 2080 Ti with Pytorch. Our code is available on the

GitHub 2.

4.1.5 Results

4.1.5.1 Experiment 1: low-shot learning1430

In this experiment, the proposed method was evaluated in both supervised learning and semi-

supervised learning scenarios, where only 1 or 3 labeled subjects are available. Specifically, we

used the same data splitting setting as in [164]. The ACDC dataset was split into 4 subsets: a

labeled set (where Nl images were sampled from for training), unlabeled training set (N=25),

validation set (N=2), test set (N=20). N denotes the number of subjects. Details of the low-1435

data setting can be found in [164]. For one-shot learning (Nl=1) and three-shot learning (Nl=3)

in both supervised and semi-supervised settings, we trained the network for five times, each

with a di↵erent labeled set.

We compared the proposed method (Adv Bias) with several competitive data augmentation

methods including VAT [174], an e↵ective data mixing-based method (Mixup) [181] for super-1440

vised learning and the state-of-the-art semi-supervised generative model-based method(cGANs) [164].

For VAT and Mixup, we used the set of hyperparameters that achieved the best performance on

the validation set and applied the same training procedure. For cGANs, we report the results

of one-shot and three-shot learning in their original paper for reference, which were tested on

the same test set. Table 4.1 compares the segmentation accuracy obtained by di↵erent data1445

augmentation methods.

In the supervised learning setting (no access to unlabeled images), when only one or three

labeled subject was available, the proposed method clearly outperformed all baseline methods.

For semi-supervised learning, the proposed methods outperformed VAT, especially when only

2https://github.com/cherise215/AdvBias
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Table 4.1: Segmentation performance of the segmentation network using the proposed

method (Adv Bias) and other data augmentation methods. Each reported value is the
average Dice score of 20 test cases.

Setting Method
# labeled subjects

1 3

Supervised

No Aug 0.293 0.544
Rand Aug 0.560 0.796

+Mixup[181] 0.575 0.801
+VAT[174] 0.570 0.811
+Adv Bias 0.650 0.826

Semi-supervised
+VAT[174] 0.625 0.826
+Adv Bias 0.692 0.830

cGANs[164] 0.710 0.823

Table 4.2: Segmentation performance of the proposed method and baseline methods across

five populations. All were trained with NOR cases only. Reported values are the average Dice score
of each test population.

Population Rand Aug +Mixup +VAT
+Adv Bias
(Proposed)

NOR 0.911 0.901 0.909 0.912

DCM 0.831 0.803 0.843 0.871
HCM 0.871 0.881 0.891 0.890
MINF 0.805 0.789 0.824 0.847
ARV 0.843 0.844 0.843 0.853

Average 0.841 0.833 0.853 0.868

one labeled subject is available (0.686 vs 0.625). The proposed method achieves competitive1450

results compared to the semi-supervised GAN-based method (cGANs) as well. Of note, cGANs

adopts two additional GANs to sample geometric transformations and intensity transformations

from unlabeled images. This is why it was only compared in the semi-supervised learning

setting here. On the contrary, our approach is applicable to both low-shot supervised learning

and semi-supervised learning. In addition, cGANs contains more parameters than our method1455

and thus it is less computationally e�cient.
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Figure 4.2: Boxplots of the segmentation results across five di↵erent populations. Each
dot represents the Dice score for each test subject, and its color indicates its group. Our method
(column 4) produces more accurate segmentation on unseen pathological cases than the baselines.
This indicates that the proposed method can improve the model robustness for abnormal cases, even
the network was only trained with normal cases (NOR).

4.1.5.2 Experiment 2: learning from limited population

In this experiment, we trained the network using only normal healthy subjects (NOR) and

evaluated its performance on pathological cases (80 cases in total). 20 healthy subjects were

split into 14/2/4 subjects for training, validation and test. This setting simulates a practical1460

data scarcity problem, where pathological cases are rarer, compared to healthy data. As shown

in Table 4.2 and corresponding box-plots in Fig. 4.2, while the conventional method (Rand Aug)

achieved excellent performance on the test healthy subjects (NOR), its performance dropped

on pathological cases. Interestingly, applying Mixup did not help to solve this population

shift problem, but rather slightly reduced the average performance compared to the baseline,1465

from 0.841 to 0.833. This might be due to the fact that Mixup generates unrealistic images

through its linear combination of paired images, which may modify semantic features and

a↵ect representation learning for precise segmentation. By contrast, our method outperformed

both Mixup and VAT, yielding substantial and consistent improvements across five di↵erent

populations. Notably, we attained evident improvement on the most challenging MINF images1470

(0.805 vs 0.847), where the shape of the myocardium is clearly irregular. As shown in Fig. 4.3,

the proposed method not only generates adversarial examples during training, but also increases
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Figure 4.3: Visualization of generated adversarial examples and failed network predictions.

Before/After: network prediction before/after bias field attack (Adv Bias Field).

the variety of image styles while preserving the shape information. Augmenting images with

various styles can encourage the network to learn high-level shape-based representation instead

of texture-based representation, leading to improved network robustness on unseen classes, as1475

discussed in [182]. By contrast, VAT only introduces imperceptible noise, failing to model

realistic image appearance variations.

4.1.5.3 Ablation study

Table 4.3: Random bias field vs Adversarial bias field

Method Distance Loss Dice" HD # VolumeSim "

Rand Bias Dcomp 0.852 6.25 0.941
Adv Bias Dcomp 0.868 5.91 0.957

HD: Hausdor↵ distance; VolumeSim: Volume similarity
index [183]. Reported values are average scores across all
test subjects from five populations (20 ⇥ 4 + 4 = 84 sub-
jects). The same applies to Table 4.4.

To get a better understanding of the e↵ectiveness of adversarial bias field, we compared it to

data augmentation using random bias field, using experiment setting 2. Results clearly showed1480

that training with adversarial bias field improved the model generalization ability, increasing the

Dice score from 0.852 to 0.868, (see Table 4.3). As visualized in Fig. 4.4, while the di↵erence

between the random and the adversarial bias field is mild, the proposed method is stronger

at attacking the network. Therefore, adding these adversarial examples during training will

encourage the network to learn more robust features for precise segmentation.1485
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Figure 4.4: Performance of adversarial bias field attack (Adv Bias) vs random bias field

attack (Rand Bias).

On the other hand, applying Dcomp to regularize the network improved the average Dice

score from 0.859 to 0.868, compared to the one trained with only DKL (see Table 4.4). Unlike

random-based approach, constructing adversarial attacks considers both the posterior probabil-

ity information estimated by the model and semantic information from images. In experiments,

we found these attacks focused on attacking challenging images on which the network was un-1490

certain, e.g., object boundary is not clear or there is another similar structure presented, see

Fig. 4.3. In the same spirit of online hard example mining, utilizing these borderline examples

during training helps the network to improve its generalization and robustness ability.

Table 4.4: Dcomp vs DKL.

Method Distance Loss Dice" HD# VolumeSim "

VAT DKL 0.853 6.678 0.949
VAT Dcomp 0.856 6.331 0.946

Adv Bias DKL 0.859 6.330 0.949
Adv Bias Dcomp 0.868 5.912 0.957

4.1.6 Discussion and conclusion

In this work, we presented a realistic adversarial data augmentation method to improve the1495

generalization and robustness of neural network-based medical image segmentation methods.
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We demonstrated that by modeling the bias field and introducing adversarial learning, the

proposed method could promote learning robust semantic features for cardiac image segment-

ation. This method can be used in both supervised and semi-supervised settings, leveraging

unlabeled data to improve generalization. It can also alleviate the data scarcity problem, as1500

demonstrated in the low-data setting and cross-population experiments. The proposed method

does not rely on generative networks but instead employs a small set of explainable and con-

trollable parameters to augment data with image appearance variations that are realistic for

MR. It can be easily extended for multi-class segmentation and used in general segmentation

networks for improving model generalization and robustness. In this work, we only consider1505

constructing bias fields. It is also worthwhile to model other domain-specific intensity artifacts

to increase the variety of data augmentation, such as motion artifacts [184].
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4.2 Unsupervised multi-modal style transfer for cardiac

MR segmentation

4.2.1 Introduction1510

Cardiac segmentation from late-gadolinium enhanced (LGE) cardiac magnetic resonance (CMR)

images which highlights myocardial infarcted tissue is of great clinical importance, enabling

quantitative measurements useful for treatment planning and patient management. To this

end, the segmentation of the myocardium is an important first step for myocardial infarction

analysis.1515

Figure 4.5: The di↵erences of (a) image appearance and (b) intensity distributions in the

cardiac region between LGE images and bSSFP images. Here the cardiac region covers the
union of LV, MYO, and RV.

Since manual segmentation is tedious and likely to su↵er from inter-observer variability,

it is of great interest to develop an accurate automated segmentation method. However, this

is a challenging task due to the fact that 1) the infarcted myocardium presents an enhanced

and heterogeneous intensity distribution di↵erent from the normal myocardium region and 2)

the border between infarcted myocardium and blood pool appears blurry and ambiguous [185].1520

While the borders of the myocardium can be di�cult to delineate on LGE images, they are

clear and easy to identify on the balanced steady-state free precession (bSSFP) CMR images,

which have high signal-to-noise ratio and whose contrast is less sensitive to pathology (see

red arrows in Fig. 4.5 (a)). In clinical practice, it is common to acquire both bSSFP images
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and LGE images for patients that su↵er from myocardial infarction, where bSSFP imaging1525

captures cardiac motions with clear cardiac structures and LGE imaging highlights the infarcts

over the cardiac region. Conventional methods [186, 187] use the segmentation result from

the bSSFP CMR of the same patient as prior knowledge to assist the segmentation on LGE

CMR images. These methods generally require accurate registration between the bSSFP and

LGE images, which can be challenging as the imaging field-of-view (FOV), image contrast and1530

resolution between the two acquisitions can vary significantly [185, 188]. Fig. 4.5 (b) visualizes

the discrepancy between the intensity distributions of the two imaging modalities in the cardiac

structures (specifically, left ventricle (LV), myocardium (MYO), and right ventricle (RV)).

Most recently, a deep neural network-based method has been proposed to segment the three

cardiac structures directly from LGE images [48], reporting superior performance. However,1535

this supervised segmentation method requires a large amount of labeled LGE data. Because of

the heterogeneous intensity distribution of the myocardium in LGE images and the scarcity of

experienced image analysts, it is di�cult to perform accurate manual segmentations on LGE

images and collect a large training set, compared to that on bSSFP images.

In this work, we present a fully automatic framework that addresses the above mentioned1540

issues by training a segmentation model without using manual annotations on LGE images.

This is achieved by transferring the anatomical knowledge and features learned on annotated

bSSFP images, which are easier to acquire. Specifically, given a set of labeled bSSFP images,

and a set of unlabeled LGE images, a generative image style translation network is trained to

model the conditional image distribution, so that labeled bSSFP images can be translated into1545

LGE-like images automatically. We then use these synthetic LGE images to train a network

for LGE image segmentation. Our framework mainly consists of two neural networks:

• A GAN-based multi-modal image translation network: this network is used for translating

annotated bSSFP images into LGE images through style transfer. Of note, the network

is trained in an unsupervised fashion where the training bSSFP images and LGE images1550

are unpaired. In addition, unlike common one-to-one translation networks, this network

allows the generation of multiple synthetic LGE images conditioned on a single bSSFP
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image;

• A cascaded segmentation network for LGE images consisting of two U-net [32] models

(Cascaded U-net): Inspired by curriculum learning [149], the segmentation network is first1555

trained using the labeled bSSFP images and then fine-tuned using the synthetic LGE

data generated by the image translation network. This allows the network to transfer

the learned shape knowledge from the easy task to the hard task for improved model

generalization.

The main contributions of our work are the following: 1) we employ a translation network1560

that can generate realistic and diverse synthetic LGE images given a single bSSFP image.

This network enables generative model-based data augmentation for unsupervised domain ad-

aptation, which not only closes the domain gap between the two modalities, but also improves

the generalization properties of the following segmentation network by increasing data variety;

2) we demonstrate that the proposed two-stage cascaded network, which takes both anatomical1565

shape information and image appearance information into account, produces accurate seg-

mentation on LGE images, greatly outperforming baseline methods; 3) the proposed framework

can be easily extended to other unsupervised cross-modality domain adaptation applications

where labels of one modality are not available.

4.2.2 Methodology1570

The proposed method aims at learning an LGE image segmentation model using labeled bSSFP

{(xb,yb)} and unlabeled LGE {xl} only. Specifically, the proposed method is a two-stage

framework. In the first stage, an unsupervised image translation network is trained to

translate each bSSFP image xb into multiple instances of LGE-like images, noted as {xbl}. In

the second stage, these LGE-stylized bSSFP images are used together with their original labels1575

{(xbl,yb)} to adapt an image segmentation network pre-trained on labeled bSSFP images

to segment LGE images.
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4.2.2.1 Image translation

We employ the state-of-the-art multi-modal unsupervised image-to-image translation network

(MUNIT) [189] as our multi-modal image translator. Let {xl} and {xb} denote unpaired images1580

from the two di↵erent imaging modalities (domains): LGE and bSSFP, given an image drawn

from one domain as input, the network is able to change the appearance (i.e. image style) of the

image to that of the other domain while preserving the underlying anatomical structure [190].

This is achieved by learning disentangled image representations.

Figure 4.6: Overview of the multi-modal image translation network. The network employs the
structure of MUNIT [189], which consists of two encoder-decoder pairs for the two domains: bSSFP
and LGE, respectively.

As shown in Fig. 4.6, each image x is disentangled into (a) a domain-invariant content1585

code c: c = E
c(x) and (b) a domain-specific style code s: s = E

s(x) using the content

encoder E
c and the style encoder E

s relative to its domain where the content code captures

the anatomical structure and the style code carries the information for rendering the structure

which is determined by the imaging modality. The image-to-image translation from one domain

to the other is achieved by swapping latent codes in two domains. For example, translating1590

a bSSFP image xb to be stylized as LGE, is achieved by feeding the content code cb for the

bSSFP image and the style code sl into the LGE decoder Dl: xbl = Dl(cb, sl).

We apply a bidirectional reconstruction loss to train the image translation network, con-
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sisting of an image reconstruction loss computed on the image space x:

L
x
recon = Exl2{xl}

⇥
kDl (Ec

l (xl) , Es
l (xl))� xlk1

⇤
+ Exb2{xb}

⇥
kDb (Ec

b (xb) , Es
b (xb))� xbk1

⇤
, (4.2)

and two latent code reconstruction losses computed on c and s, respectively. They are:1595

L
c
recon = Ecl⇠p(cl),sb⇠q(sb) [kE

c
b (Db (cl, sb))� clk1] + Ecb⇠p(cb),sl⇠q(sl) [kE

c
l (Dl (cb, sl))� cbk1], (4.3)

L
s
recon = Ecl⇠p(cl),sb⇠q(sb) [kE

s
b (Db (cl, sb))� sbk1] + Ecb⇠p(cb),sl⇠q(sl) [kE

s
l (Dl (cb, sl))� slk1]. (4.4)

Minimizing L
c
recon and L

s
recon forces the network to produce the same latent code (style and

content) on reconstructed images to the one that is used for image reconstruction, respectively.

We further employ GANs [49] to ensure that the distribution of translated images matches

the distribution of target domain. This is achieved by employing two discriminator networks Fb,1600

Fl that learn to distinguish between translated images and real images in their corresponding

domains. We apply the adversarial training to the translation network and the two discrimin-

ators wherein the translation network is optimized to minimize the following two adversarial

losses. The two discriminators are optimized to maximize their corresponding losses:

L
xlb
GAN = Ecl⇠p(cl),sb⇠q(sb) [log (1� Fb (Db (cl, sb)))] + Exb⇠p(xb) [logFb (xb)] , (4.5)

1605

L
xbl
GAN = Ecb⇠p(cb),sl⇠q(sl) [log (1� Fl (Dl (cb, sl)))] + Exl⇠p(xl) [logFl (xl)] . (4.6)

The total loss is a weighted sum of the adversarial losses and the bidirectional reconstruction

losses. The encoders and decoders in the translation network and the two discriminators are

jointly trained via the min-max optimization:

min
El,Eb,Dl,Db

max
Fl,Fb

L (El, Eb, Dl, Db,Fl,Fb) = L
xlb
GAN + L

xbl
GAN+

�xL
x
recon + �cL

c
recon + �sL

s
recon

. (4.7)

Here, �x,�c,�s are coe�cients that control the importance of corresponding reconstruction

terms.1610

Of note, during training, each style encoder is trained to embed images into a latent space

that matches the standard Gaussian distributionN (0, I), minimizing the Kullback-Leibler (KL)
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divergence between the two. This allows to generate an arbitrary number of synthetic LGE

images xbl given a single bSSFP image during inference. Although this prior distribution is

unimodal, the distribution of translated images in the output space is multi-modal thanks to1615

the nonlinearity of the decoder[189]. For more details about training the translation network,

readers are referred to the original work by Huang et al. [189].

4.2.2.2 Image segmentation

Let xl be an observed LGE image, the aim of the segmentation task is to estimate label maps

yl having observed xl by modeling the posterior p(yl|xl). Inspired by curriculum learning [149]1620

and transfer learning, we first train a segmentation network using annotated bSSFP images

(source domain; easy examples) and then fine-tune it to segment LGE images (target domain;

hard examples). Since labeled LGE images {(xl,yl)} are not available for finetuning, we use

a synthetic dataset Xbl : {(xbl,yb)}1..N generated by the aforementioned multi-modal image

translator. Specifically, given the labelled bSSFP set, we can generate a synthetic labeled LGE1625

dataset Xbl : {(xbl,yb)}1..N , where xbl is a reconstructed image using the original content code

cb from a labeled bSSFP image xb: cb = Eb(xb) and a randomly sampled style code sl drawn

from N (0, I):xbl = Dl(cb, sl), sl ⇠ N (0, I). Here, N is the number of sampling. Ideally, the

posterior modeled by the network p(yb|xbl) matches p(yl|xl) when image space and label space

are shared. For simplicity, we use x and y to denote an image and its corresponding label map1630

from the synthetic dataset in the following paragraphs.

The segmentation network is a two-stage cascaded network which consists of two U-nets [32],

see Fig. 4.7. Specifically, given an image x as input, the first U-net (U-net 1) aims at predicting

four-class pixel-wise probabilistic maps p1 = f
1
U-net(x; ✓) for the three cardiac structures (i.e.

LV, MYO, RV) and the background class (BG). Inspired by the auto-context architecture [191],1635

we combine these learned probabilistic maps p1 from the first network with the raw image x

to form a 5-channel input to train the second U-net (U-net 2) for fine-grained segmentation:

p2 = f
2
U-net(x,p1;�). By combining the appearance information from the image x with the

shape prior information from the initial segmentation p1 as input, the cascaded network has
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Figure 4.7: Overview of the two-stage cascaded segmentation network. The architecture
of each U-net is the same as the one of the vanilla U-net [32], except for two main di↵erences: (1)
batch normalization is applied after each convolutional layer; (2) a dropout layer (dropout rate=0.1)
is applied after each concatenation operation in the network’s expanding path to encourage model
generalizability. Of note, in this diagram, we simplify the training procedure by omitting the pre-
training procedure using labeled bSSFP images.

the potential to produce more precise and robust segmentations even in the presence of unclear1640

boundaries for the di↵erent cardiac structures.

To train the network, we use a composite segmentation loss function Lseg which consists

of two loss terms:

Lseg = Lwce + �Ledge. (4.8)

The first term Lwce is a weighted cross entropy loss:

Lwce = �
X

m

!
mym log (pm) (4.9)

where w
m denotes the weight for class m and pm is the corresponding predicted probability1645

map. We set the weight for myocardium !
MYO to be higher than the weights for the other

three classes to address class imbalance problem since there is a lower percentage of pixels that

corresponds to the myocardium class in CMR images. The second term Ledge is an edge-based

loss which penalizes the disagreement on the contours of the cardiac structures. Specifically,

we apply two 2D 3 ⇥ 3 Sobel filters [192] Sk (k=1,2) to the soft prediction maps p as well as1650
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the one-hot heatmaps y of the ground truth to extract edge information along horizontal and

vertical directions.

The edge loss is then computed by calculating the l2 distance between the predicted edge

maps and the ground truth edge maps: Ledge =
P

m,m 6=BG

P
k=1,2 kfSk

(pm)� fSk
(ym)k22, where

fSk
(pm) is the edge map extracted by applying the sobel filter Sk to the predicted probabilistic1655

map pm for foreground class m.

By using the edge loss together with the weighted cross entropy for optimization, the network

is encouraged to focus more on the contours of the three structures and the myocardium, which

are usually more di�cult to delineate. In our experiments, we set � = 0.5 to balance the

contribution of the two losses.1660

4.2.2.3 Post-processing

At inference time, each slice from a previously unseen LGE stack is fed to the cascaded network

to get the probabilistic maps for the four classes. Dense conditional random field (CRF) [193]

is then applied to refine the 2D predicted segmentation mask slice by slice. After that, 3D

morphological dilation and erosion operations are applied to the whole segmentation stack to1665

further improve the global smoothness. In particular, we perform the operations in a hierarch-

ical order: first we apply them to the binary map covering all the three structures, then to the

MYO and the LV labels, separately.

4.2.3 Experiments

4.2.3.1 Data1670

The framework was trained and evaluated on the 2019 Multi-sequence Cardiac MR Segment-

ation Challenge (MS-CMRSeg) dataset3. We used a subset of 40 bSSFP and 40 LGE images

to train the image translation network. Then, we created a synthetic dataset by applying the

3https://zmiclab.github.io/mscmrseg19/
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learned translation network to 30 labeled bSSFP images. Specifically, for each bSSFP image,

we randomly sampled the style code from N (0, I) five times (N = 5), resulting in a set of 1501675

synthetic LGE images in total. This synthetic dataset and the original 30 bSSFP images with

corresponding labels formed the training set for the segmentation network. Exemplar results

of these synthetic LGE images are provided in the supplemental material. For validation, we

used a subset of 5 annotated LGE images provided by the challenge organizers. Our method

was finally tested on a hold-out test set with 40 cases.1680

4.2.3.2 Implementation details

Image preprocessing. To deal with the di↵erent image size and heterogeneous pixel spa-

cing between di↵erent imaging modalities, all images were resampled to a pixel spacing of

1.25 mm⇥1.25 mm and then cropped to 192⇥192 pixels, with the heart roughly at the center

of each image. This spatial normalization would reduce the computational cost and task com-1685

plexity in the following training procedure of image translation and segmentation, making the

networks focus on the relevant regions. To identify the heart, we trained a localization network

based on U-net using the 30 annotated bSSFP images in the training set to produce rough seg-

mentations for the three structures. The localization network employs instance normalization

layers which perform style normalization [194], encouraging the network invariance to image1690

style changes (e.g., image contrast). As a result, the network is able to produce coarse masks

localizing the heart on all bSSFP images and most LGE images even though it was trained

on bSSFP images only. In case that this network might fail to locate the heart on certain

LGE slices, we summed the segmentation masks across slices in each volume and then cropped

them according to the center of the aggregated mask. After cropping, each image was intensity1695

normalized.

Network training. (1) For the image translation network, we used the o�cial implementation4

of [189]. Network configuration and hyper-parameters were kept the same as in [189] except the

4https://github.com/NVlabs/MUNIT
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input and output images are 2D, single-channel. It was trained for 20k iterations with a batch1700

size of 1. (2) For the segmentation network, we first trained the first U-net with the labeled

bSSFP images and then fine-tuned it with synthetic LGE images. This procedure was replicated

to train the second U-net with the parameters of the first U-net being fixed. Both networks

were optimized using the composite loss Lseg where the Adam optimization algorithm [65] was

used for stochastic gradient descent. The learning rate was initially set to 0.001 and was then1705

decreased to 1 ⇥ 10�5 for fine-tuning. The weights for BG, LV, MYO, and RV in Lwce were

empirically set to 0.2 : 0.25 : 0.3 : 0.25. During training, we applied data augmentation on the

fly. Specifically, elastic deformations, random scaling and random rotations as well as gamma

augmentation [12] were used. The algorithm was implemented using python and PyTorch and

was trained for 1000 epochs in total on an NVIDIA® Tesla P40 GPU.1710

4.2.4 Results and discussion

To evaluate the accuracy of segmentation results, the Dice metric and the average surface dis-

tance (ASD) between the automatic segmentation and the corresponding manual segmentation

for each volume were calculated.

We compare the proposed method with two baseline methods: (1) a registration-based1715

method and (2) a single U-net. Specifically, for the registration-based method, each LGE

segmentation result was obtained by directly registering the corresponding bSSFP labels to the

LGE image using MIRTK toolkit 5 for ease of comparison. The transformation matrix was

learned by applying mutual information-based registration (Rigid+A�ne+FFD) between the

two images. For U-net, we trained it with two settings: a) U-net: trained on labeled bSSFP1720

images only; b) U-net with fine-tuning (FT): trained on labeled bSSFP images and then

fine-tuned using the synthetic LGE data, which is the same training procedure of the proposed

method. Quantitative and qualitative results are shown in Table 4.5 and Fig. 4.9.

While the registration-based method (MIRTK) outperforms the U-net (see row 1 and row

2 in Table 4.5), it still fails to produce accurate segmentation on the myocardium (see the red1725

5https://mirtk.github.io/
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Figure 4.8: Exemplar synthetic LGE images generated by the multi-modal image trans-

lation network This is achieved by reconstructing images using the same content code

from the given labeled bSSFP images and a style code repeatedly sampled from the

uniform Gaussian distribution. Given one bSSFP image (column 1), the translation network
translates the image into multi-modal LGE-like images (column 2 to 4). These translated images
di↵er in image brightness, contrast, and intensity distribution in the cardiac region while preserving
the same cardiac anatomy. Together with the annotations on the original bSSFP images (the last
column), these synthetic images contribute to the synthetic dataset used to fine-tune the proposed
segmentation network.

number in row 1), indicating the limitation of this registration-based method. However, by

contrast, neural network-based methods (row 3-5) fine-tuned using the synthetic LGE data-

set significantly improves the segmentation accuracy, increasing the Dice score for MYO by

⇠ 15%. This improvement demonstrates the learned translation network is capable of gener-

ating realistic LGE images while preserving the domain-invariant structural information that1730

is informative to optimize the segmentation network, see Fig. 4.8. In particular, compared to

U-net (FT), the proposed Cascaded U-net (FT) achieves more accurate segmentation per-

formance with improvement in terms of both Dice and ASD (see blue numbers). The model

even produces robust segmentation results on the challenging apical and basal slices (please

see the last column in Fig. 4.9). This demonstrates the benefit of integrating the high-level1735
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shape knowledge and low-level image appearance to guide the segmentation procedure. In addi-

tion, the proposed post-processing further refines the segmentation results through smoothing,

reducing the average ASD from 1.37 to 1.26 (see the last row in Table 4.5).

Table 4.5: Segmentation performance of the proposed segmentation method (Cascaded

U-net) and baseline methods on the validation set. Reported values are the mean Dice scores
and ASD (mm). Blue numbers indicate the best scores among the results obtained by those methods
before post-processing (PP) whereas red numbers are those mean Dice scores under 0.700. FT: fine-
tuning using the synthetic LGE dataset. N/A means that the ASD value cannot be calculated due to
missing predictions for that cardiac structure.

Dice" ASD#
Method

LV MYO RV AVG* LV MYO RV AVG*

MIRTK 0.819 0.665 0.831 0.772 2.56 1.65 2.11 2.11
U-net 0.624 0.441 0.577 0.547 10.03 6.07 N/A N/A
U-net (FT) 0.874 0.781 0.896 0.850 1.78 1.50 1.28 1.52
Cascaded U-net (FT) 0.895 0.812 0.898 0.868 1.41 1.46 1.23 1.37
Cascaded U-net (FT) + PP 0.897 0.816 0.895 0.869 1.17 1.42 1.18 1.26

* For ease of comparison, we calculate the average (AVG) Dice score and the average ASD
score over the three structures for each method.

Finally, we applied ensemble learning to improve our model’s performance in the test phase.

Specifically, we trained the proposed segmentation network for multiple times, each time regen-1740

erating a new synthetic LGE dataset for fine-tuning. We trained four models in total. Our final

submission result for each test image was obtained by averaging the probabilistic maps from

these models and then assigning to each pixel the class with the highest score. In the testing

stage of the competition, the method achieves very promising segmentation performance on a

relative large test set (40 subjects), with an average Dice score of 0.92 for LV, 0.83 for MYO,1745

and 0.88 for RV; an ASD of 1.66 for LV, 1.76 for MYO, and 2.16 for RV.

4.2.5 Conclusion

In this work, we utilized labeled bSSFP images and unlabeled LGE images to learn a multi-

modal image translation network for data augmentation. We showed that synthesizing multi-

modal LGE images from labeled bSSFP images to fine-tune a pre-trained segmentation network1750

shows impressive segmentation performance on LGE images even though the network has not

seen real labeled LGE images before. We also demonstrated that the proposed segmentation
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Figure 4.9: Visualization of segmentation results produced by the proposed Cascaded

U-net and the baseline approaches. Our proposed method (the right-most column) produces
more anatomically plausible segmentation results on the images, greatly outperforming the baseline
methods, especially in the challenging cases: the apical (the top row) and the basal slices (the bottom
row).

network (Cascaded U-net) outperformed the baseline methods by a significant margin, suggest-

ing the benefit of integrating the high-level shape knowledge and low-level image appearance to

guide the segmentation procedure. More importantly, our cascaded segmentation network is in-1755

dependent of the particular architecture of underlying convolutional neural networks. In other

words, the basic neural network (U-net) in our work can be replaced with any state-of-the-art

segmentation network to improve prediction accuracy and robustness potentially. Moreover,

the proposed solution based on unsupervised multi-modal style transfer is not only limited to

the cardiac image segmentation but can be extended to other multi-modal image analysis tasks1760

where the manual annotations of one modality are not available. Future work will focus on the

application of the method to the problems such as domain adaptation for multi-modality brain

segmentation. The current limitation of the proposed method is that it still requires su�cient

bSSFP images and LGE images (unlabelled) in order to avoid the discriminator overfitting and

allow the generator to reconstruct images with diverse image appearance. In our case, we used1765
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40 training subjects of each sequence. Training GAN with limited data (e.g. 5 subjects) is not

easy and is still an active research area. Potential solutions such as incorporating advanced

regularization on the discriminator [195] in together with e↵ective data augmentation [196]

could be adopted in the current framework to alleviate this problem.
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Learning From Limited Data

This chapter contains material from

1. C. Chen, W. Bai, R. H. Davies, A. N. Bhuva, C. H. Manisty, J. B. Augusto et al.,

‘Improving the generalizability of convolutional neural Network-Based segmentation

on CMR images,’ Frontiers in Cardiovascular Medicine, vol. 7, p. 105, Jun. 2020,

issn: 2297-055X. doi: 10.3389/fcvm.2020.00105 [7]

2. C. Chen, K. Hammernik, C. Ouyang, Q. Chen, W. Bai and D. Rueckert, ‘Co-

operative training and latent space data augmentation for robust segmentation,’ in

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021,

arXiv:2107.01079, Springer International Publishing, 2021 [16]

In this chapter, we are concerned with a worst-case scenario in model generalization, where

a model aims to perform well on many unseen domains while there is only one dataset collected

from a single domain (e.g., one scanner, one hospital) for training. Learning robust networks1775

from single-domain data and limited data is of great practical value for medical imaging re-

search. Due to data privacy issues, as well as the high data storing and collection costs, it is

likely that only data from a single site is available for training. To alleviate the data scarcity

problem, a natural solution is to apply data augmentation as a way of increasing the size and

diversity of training data. In this chapter, we explore two ways of data augmentation: image1780

97
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space data augmentation and latent space data augmentation. In Sec. 5.1, we present a gen-

eral training/testing pipeline with a proper design of data normalization and image space data

augmentation to improve a CNN-based cardiac segmentation generalization ability. We demon-

strated that this method can achieve good segmentation accuracy across images from various

unseen scanners at di↵erent sites despite the training images being collected from only one scan-1785

ner. However, this method still has some limitations, such as high sensitivity to images with

poor quality, e.g., images with artifacts. In Sec. 5.2, we present a latent space data augmenta-

tion approach to enhance cross-domain generalization further, and in particular, demonstrate

its improved model robustness against unseen imaging artifacts.

5.1 Improving the generalizability of convolutional neural1790

network-based segmentation on CMR images

5.1.1 Introduction

Automatic cardiac segmentation algorithms provide an e�cient way for clinicians to assess the

structure and function of the heart from CMR images for the diagnosis and management of a

wide range of abnormal heart conditions [6]. Recently, CNN-based methods have become state-1795

of-the-art techniques for automated cardiac image segmentation [2, 6]. However, related work

[4] has shown that the segmentation accuracy of a CNN may degrade if the network is directly

applied to images collected from di↵erent scanners or sites. For instance, CMR images from

di↵erent scanners using di↵erent acquisition protocols can exhibit di↵erences in terms of noise

levels, image contrast, and resolution [197–199]. Moreover, images coming from di↵erent sites1800

may comprise di↵erent population demographics in terms of cardiovascular diseases, resulting

in the clinically appreciable di↵erence not only in cardiac morphology but also in image quality

(e.g., irregular heartbeat can a↵ect image quality) [197, 200, 201]. Thus, a CNN learned from a

limited dataset may not be able to generalize over subjects with heart conditions outside of the

training set. All these di↵erences pose challenges for deploying CNN-based image segmentation1805
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algorithms in real-world practice.

In general, a straightforward way to address this problem is to fine-tune a CNN learned from

one dataset (source domain) with additional labeled data from another dataset (target domain).

Nevertheless, collecting su�cient pixel-wise labeled medical data for every scenario can be

di�cult, since it requires domain-specific knowledge and intensive labor to perform manual1810

annotation. To alleviate the labeling cost, unsupervised deep domain adaptation (UDDA)

approaches have been proposed [202]. Compared to fine-tuning, UDDA does not require labeled

data from the target domain. Instead, it only uses either feature-level information [203–205]

or image-level information [205] to optimize the network performance on the target domain.

However, these methods usually require hand-crafted hyper-parameter tuning for each scenario,1815

which may be di�cult to scale to highly heterogeneous datasets. Therefore, it is of great interest

to explore how to learn a network that can be successfully applied to other datasets without

the requirement of additional model tuning.

In this work, we investigate the possibility of building a generalisable model for cardiac

MR image segmentation, given a training set from only one scanner in a single site. Instead1820

of fine-tuning or adapting to get a new model for each particular scenario, our goal is to find

a generalizable solution that can analyze ‘real-world’ test images collected from multiple sites

and scanners. These images consist of various pathologies and cardiac morphologies that may

not be present in the training set, reflecting the complexity of a real-world clinical setting.

To achieve this goal, we choose the U-net [32] as the fundamental CNN architecture, which is1825

the most popular network for medical image segmentation. We apply this network to segment

the cardiac anatomy from CMR images (short-axis view), including the left ventricle (LV), the

myocardium (MYO), and the right ventricle (RV). An image pre-processing pipeline is pro-

posed to normalize images across sites before feeding them to the network in both training and

testing stages. Data augmentation is employed in the pipeline during the training to improve1830

the generalization ability of the network. Although there has been a number of works [31, 69]

which have already applied data normalization and data augmentation in their pipelines, these

methods are particularly designed for one specific dataset and the importance of applying data

augmentation for model generalization ability across datasets is less explored. Here we demon-
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strate that the proposed data normalization and augmentation strategies can greatly improve1835

the model performance in the cross-dataset setting (section 5.1.5.2). The main contributions

of the work are as follows:

• To the best of our knowledge, this is the first work to explore the generalizability of CNN-

based methods for cardiac MR image multi-structure segmentation, where the training

data is collected from a single scanner but the test data comes frommultiple scanners1840

and multiple sites.

• The proposed pipeline which employs data normalization and data augmentation (sec-

tion 5.1.3.4) is simple yet e�cient and can be applied to training and testing of many

state-of-the-art CNN architectures to improve the model segmentation accuracy across

domains without necessarily sacrificing the accuracy in the original domain. Experiment1845

results show that the proposed segmentation method is capable of segmenting multi-

scanner, multi-vendor and multi-site datasets (section 5.1.5.3 and 5.1.5.4).

• Our work reveals that significant cardiac shape deformation caused by cardiac pathologies

(section 5.1.5.5), low image quality (section 5.1.5.5), and inconsistent labeling protocols

among di↵erent datasets (section 5.1.6) are still major challenges for generalizing deep1850

learning-based cardiac image segmentation algorithms to images collected across di↵erent

sites, which deserve further study.

5.1.2 Related work

Table 5.1: Related work that applies CNN-based CMR image segmentation models across

multiple datasets.

Methods Target domain 6= Source domain Need Finetuning Test on Total size of test set(s)

Tran [4] Yes Yes
LV/MYO/RV
separately

<200

Bai et al. [4] Yes Yes LV+MYO+RV <100
Khened et al.[71] Yes No MYO <200

Our work Yes No LV+MYO+RV 699

There have been a great number of works which develop sophisticated deep learning ap-
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proaches to perform CMR image segmentation tasks on a specific dataset [4, 6, 31, 69]. While1855

these models can achieve overall high accuracy over the samples from the same dataset, only a

few have been validated in cross-dataset settings. Table 5.1 shows a list of related works that

demonstrate the segmentation performance of their proposed method by first training a model

from one set (source domain) and then testing it on other datasets (target domain). However,

these approaches requires re-training or fine-tuning to improve the performance on the target1860

domain in a fully supervised fashion. To the best of our knowledge, when we conducted this

study, there were few studies reported in the literature which investigate the generalization

ability of the cardiac segmentation networks that can directly work across various sites.

One work [37] in this line of research has been recently presented, which integrates training

samples from multiple sites and multiple vendors [37] to improve segmentation performance1865

across sites. Their results show that the best segmentation performance on their multi-scanner

test set was achieved when the data used for training and testing are from the same scanners.

Nevertheless, their solution requires collecting annotated data from multiple vendors and sites.

For deployment, this may not always be practical because of the high data collection and

labelling costs as well as data privacy issues.1870

Another direction to improve model generalization is to optimise the CNN architecture. In

the work of [71], the authors proposed a novel network structure with residual connections to

improve the network generalizability. They pointed out that networks with a large number of

parameters may easily su↵er from over-fitting problem with limited data [71]. They demon-

strated that their light-weight network trained on a limited dataset outperformed the U-net [32],1875

achieving higher accuracy on LV, myocardium, and RV. Moreover, model generalization was

demonstrated by directly testing this network (without any re-training or fine-tuning) on the

LV-2011 dataset [206]. As a result, this model produced comparable results to the results from

a network that had been trained on the LV-2011, achieving a high mean Dice score for the

myocardium (0.84). However, because of the lack of RV labels in their test set, their network’s1880

generalization ability for the RV segmentation task is unclear. In fact, segmenting the RV is

considered to be harder than segmenting the LV because the RV has a more complex shape

with higher variability across individuals, and its walls are thinner, making it harder to delin-
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Table 5.2: General descriptions of the three datasets used in this study.

Name
Number of
Subjects

Cohort Sites Scanners
Image Spatial
Resolution

UKBB 4875 General population 1 1.5 T, Aera, Siemens (100%)

in-plane resolution:
1.8 mm

2 /pixel;
slice thickness:
8 mm

ACDC 100

Without cardiac disease (20%);
Dilated cardiomyopathy (20%);
Hypertrophic cardiomyopathy (20%);
Myocardial infarction with altered left
ventricular ejection (20%);
Abnormal right ventricle (20%)

1
1.5 T, Area, Siemens (67%)
3 T, Trio Tim, Siemens (33%)

in-plane resolution:
1.34 - 1.68 mm

2 /pixel;
slice thickness:
5 -10 mm

BSCMR-AS 599 Aortic stenosis 6

1.5 T, Ingenia, Philips (5.2%);
1.5 T, Intera, Philips (17.9%);
1.5 T, Sonata, Siemens (6.2%);
1.5 T, Aera, Siemens (0.5%);
1.5 T, Avanto, Siemens (56.6%);
3 T, Achieva, Philips (0.7%);
3 T, Skyra, Siemens (3.8%);
3 T, Verio, Siemens (5.0%);
3 T, TrioTim, Siemens (4.2%);

in-plane resolution:
0.78 - 2.3 mm

2;
slice thickness:
5 - 10 mm

eate from its surroundings. Because of the high shapes variability and complexity, it is more

di�cult to generalize a model to segment the RV across domains.1885

In this study, we evaluate the generalizability of the proposed method not only on the car-

diac left ventricle segmentation but also on the right ventricle segmentation. Di↵erent from the

works in [37, 71], the proposed method demonstrates model generalizability in a more chal-

lenging but realistic setting: our training data was collected from only one scanner (most of

them are healthy subjects) while test data was collected from various unseen sites and scanners,1890

which covers a wide range of pathologies, reflecting the spectrum of clinical practice.

5.1.3 Methodology

5.1.3.1 Data

Three datasets are used in this study and the general descriptions of them are summarised in1895

Table 5.2.

UK Biobank dataset. The UK Biobank (UKBB) is a large-scale data set that is open to

researchers worldwide who wish to conduct a prospective epidemiological study. The UKBB
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study covers a large population, which consists of over half a million voluntary participants aged

between 40 and 69 from across the UK. The UKBB study performs comprehensive MR imaging1900

for nearly 100,000 participants, including brain, cardiac and whole-body MR imaging. An over-

view of the cohort characteristics can be found on the UK Biobank’s website1. All CMR images

we used in this study are balanced steady-state free precession (bSSFP) sequences, which were

collected from one 1.5 Tesla scanner (MAGNETOM Aera, syngo MR D13A, Siemens, Erlangen,

Germany). Detailed information about the imaging protocol can be found in [207]. Pixel-wise1905

segmentations of three essential structures (LV, MYO and RV) for both end-diastolic (ED)

frames and end-systolic (ES) frames are provided as ground truth [5]. Subjects in this dataset

were annotated by a group of eight observers and each subject was annotated only once by

one observer. After that, visual quality control was performed on a subset of data to assure

acceptable inter-observer agreement.1910

ACDC dataset. The Automated Cardiac Diagnosis Challenge (ACDC) dataset is part

of the MICCAI 2017 benchmark dataset for CMR image segmentation2. This dataset is com-

posed of 100 CMR images, acquired using bSSFP imaging in breath hold with a retrospective

or prospective gating [6]. The patients covered in this study have been divided into 5 groups:1915

dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), myocardial infarction

with altered left ventricular ejection fraction (MINF), abnormal right ventricle (ARV) and pa-

tients without cardiac disease (NOR). Each group has 20 patients. Detailed information about

the classification rules and the characteristics of each group can be found in the benchmark

study [6] as well as its website (see footnote 2). All images were collected from one hospital1920

in France. The LV, MYO and RV in this dataset have been manually segmented for both ED

frames and ES frames. Images in this dataset were labelled by two cardiologists with more

than 10 years of experience 3.

BSCMR-AS dataset. The British Society of Cardiovascular Magnetic Resonance Aortic1925

1http://imaging.ukbiobank.ac.uk/
2https://www.creatis.insa-lyon.fr/Challenge/acdc/
3https://www.creatis.insa-lyon.fr/Challenge/acdc/evaluation.html
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Stenosis (BSCMR-AS) dataset [208] consists of CMR images of 599 patients with severe aortic

stenosis (AS), who had been listed for surgery. Images were collected from six hospitals across

the UK with 9 types of scanners, (see Table 5.2). Specifically, these images are bSSFP sequences,

which were acquired using standard imaging protocols [208]. Although the primary pathology

is AS, several other pathologies coexist in these patients (e.g., coronary artery disease, amyl-1930

oid) and have led to a variety of cardiac phenotypes including left ventricular hypertrophy, left

ventricular dilatation and regional infarction [208]. A more detailed report on patients charac-

teristics can be found in [208]. In this dataset, no subjects were excluded due to arrhythmi. A

significant amount of diversity in image appearance and image contrast can be observed in this

dataset. Di↵erent from the above two data sets, images in this dataset are partially labelled.1935

Only the left ventricle in ED frames and ES frames, as well as the myocardium in ED frames,

have been annotated manually. The contours on each slice were refined by an expert.

Ethics approval and consent to participate. The UK Biobank data has approval from

the North West Research Ethics Committee (REC reference: 11/NW/0382). The ACDC data

is a publicly available dataset for cardiac MR image analysis which has approval from the local1940

ethics committee of Hospital of Dijon (France)4. The BSCMR-AS data has approval from the

UK National Research Ethics Service (REC reference:13/NW/0832), and has been conformed

to the principles of the Declaration of Helsinki. All patients gave written informed consent.

5.1.3.2 Training set and test sets1945

In this study, we use the UKBB dataset for training and intra-domain testing, and use the

ACDC data and BSCMR-AS dataset for cross-domain testing. Following the same data split-

ting strategy in [4], we split the UKBB dataset into three subsets, containing 3975, 300 and 600

subjects for each set. Specifically, 3975 subjects were used to train the neural network while

300 validation subjects were used for tracking the training progress and avoid over-fitting. The1950

subset consisting of remaining 600 subjects was used for evaluating models’ performance in

4https://acdc.creatis.insa-lyon.fr/description/databases.html
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the intra-domain setting. In addition, we directly tested this trained network on the other two

unseen cross-domain datasets: ACDC and BSCMR-AS datasets without any further re-training

or fine-tuning process. The diversity of pathology observed in the ACDC dataset and the di-

versity of scanners and cardiac morphologies in the BSCMR-AS set make them ideal test sets1955

for evaluating the proposed method’s segmentation performance across sites.

5.1.3.3 Network architecture

In this work, the U-net architecture [32] is adopted to perform the cardiac multi-structure

segmentation task since it is the most successful and commonly used architecture for biomedical1960

segmentation. The structure of our network is illustrated in Fig. 5.1A. The network structure

is as same as the one proposed in the original paper [32], except for two main di↵erences: (1)

we apply batch normalization (BN) [147] after each hidden convolutional layer to stabilise the

training; (2) we apply dropout regularization [130] after each concatenating operation to avoid

over-fitting and encourage generalization.1965

While both 2D U-net and 3D U-net architectures can be used to solve volumetric segment-

ation tasks [38, 69], we opt for 2D U-net for several reasons. Firstly, performing segmentation

tasks in a 2D fashion allows the network to work with images even if they have di↵erent slice

thickness or have severe respiratory motion artefacts between the slices (which is not uncom-

mon). Secondly, 3D networks require much more parameters than 2D networks. Therefore, it1970

is more memory-consuming and time-consuming to train a 3D network than a 2D one. Thirdly,

the manual annotation for images in the three datasets were done in 2D (slice-by-slice) rather

than 3D. Thus, it is natural to employ a 2D network rather than a 3D network to learn seg-

mentation from those 2D labels.

1975
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Figure 5.1: Overview of the network structure and image pre-processing pipeline at train-

ing and testing. (A) Overview of the network structure. Conv: Convolutional layer. BN: Batch
normalization. ReLU: Rectified linear unit. The U-Net takes a batch size of N 2D CMR images as
input at each iteration, learning multi-scale features through a series of convolutional layers, max-
pooling operations. These features are then combined through upsampling and convolutional layers
from coarse to fine scales to generate pixel-wise predictions for the 4 classes (background, LV, MYO,
RV) on each slice. (B) Image pre-processing at training and testing.

5.1.3.4 Training and testing pipeline

Since training images and testing images in this study were collected from various scanners, it

is vital to normalise the input images before feeding them into the network. Fig. 5.1B shows an
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overview of the pipeline for image pre-processing during training and testing. Specifically, we1980

employ image resampling and intensity normalization to normalise images in both the training

and testing stages while online data augmentation is applied for improving the model general-

ization ability during the training process.

Image resampling. Observing that the size of the heart in images with di↵erent resolution1985

can vary significantly, we propose to perform image resampling both in the training and testing

phases before cropping. The main advantage is that after image resampling, the proportion of

the heart and the background is relatively consistent, which can help to reduce the task com-

plexity of the follow-up segmentation. However, image re-sampling is not a lossless operation,

and di↵erent interpolation kernels can also a↵ect the quality of reconstructed images [209]. In1990

the experiments, we resampled all the images to a standard resolution of 1.25 ⇥ 1.25 mm
2,

which is a median value of the pixel spacings in our datasets. Following [38], images are res-

ampled using the bilinear interpolation and the label maps are resampled using nearest-neighbor

interpolation.

Here we only perform image resampling within the short-axis plane, without changing the1995

slice thickness along the z-axis. This is consistent with the preprocessing step in other existing

2D CNN-based approaches for cardiac image segmentation [6, 38, 69]. Also, in our experiments,

we found that the slice thickness does not have a significant impact on the model perform-

ance. The model performs consistently well across test images of di↵erent slice thicknesses (see

Table in the appendix), while it was only trained using images of 8 mm slice thickness.2000

Data augmentation. Data augmentation has been widely used when training convolutional

neural networks for computer vision tasks on natural images. While di↵erent tasks may have

di↵erent domain-specific augmentation strategies, the common idea is to enhance model’s gen-

eralization by artificially increasing the variety of training images so that the training set

distribution is more close to the test set population in the real world.2005

In this study, the training dataset is augmented in order to cover a wide range of geometrical

variations in terms of the heart pose and size. To achieve this goal, we apply:
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• random horizontal and vertical flips with a probability of 0.5 to increase the variety of

image orientation;

• random rotation to increase the diversity of the heart pose. The range of rotation is2010

determined by a hyper-parameter search process. As a result, each time, the angle for

augmentation is randomly selected from [�30,+30];

• random image scaling with a scale factor s: s 2 [0.7, 1.4] to increase variations of the

heart size;

• random image cropping. The random cropping crops images to acceptable sizes required2015

by the network structure while implicitly performing random shifting to augment data

context variety without black borders. Note that cropping is done after all other image

augmentations. As a consequence, all images are cropped to the same size of 256 ⇥ 256

before being sent to the network.

We also experimented with contrast augmentation [12] (random gamma correction where2020

the gamma value is randomly chosen from a certain range) to increase image contrast variety,

but only minor improvements were found in the experiments. Therefore, it is not included in

the pipeline. For each cropped image, intensity normalization with a mean of 0 and a standard

deviation of 1 is performed, which is a common practice for training deep neural networks.

2025

Training. After pre-processing, batches of images are fed to the network for training. To track

the training progress, we also use a subset (validation set) from the same dataset to validate

the performance of the segmentation and to identify possible over-fitting. Specifically, we apply

the same data augmentation strategy on both the training and validation sets and record the

average accuracy (mean intersection of union between predicted results and ground truth) on2030

the validation set for each epoch. The model with the highest accuracy is selected as the best

model. This selection criterion works as early stopping and has the benefit of allowing the

network to explore if there is further opportunity to generalise better before it reaches to the

final epoch.
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2035

Testing. For testing, 2D images extracted from volume data are first re-sampled and centrally

cropped to the same size as the one of the training images. Again, intensity normalization is

performed on each image slice which is then passed into the network for inference. After that,

bilinear up-sampling or down-sampling is performed on the outputs of the network to recover

the resolution back to the original one. Finally, each pixel of the original image is assigned to2040

the class that has the highest probability among the four classes (background, LV, myocardium,

RV). As a result, a final segmentation map for one input image is generated.

5.1.4 Experiments

During training, a random batch of 20 2D short-axis slices were fed into the network for each2045

iteration after data pre-processing. The dropout rate for each dropout layer is set to be 0.2. In

every iteration, cross entropy loss was calculated to optimize the network parameters through

back-propagation. Specifically, the stochastic gradient descent (SGD) method was used during

the optimization, with an initial learning rate of 0.001. The learning rate was decreased by

a factor of 0.5 every 50 epochs. The method was implemented using Python and PyTorch.2050

We trained the U-net for 1,000 epochs in total which took about 60 hours on one NVIDIA

Tesla P40 GPU using our proposed training strategy. During testing, the computation time for

segmenting one subject is less than a second.

Evaluation metrics. The performance of the proposed method was evaluated using the Dice2055

score (3D version) which was also used in the ACDC benchmark study [6] and [4]. The Dice

score evaluates the overlap between automated segmentation A and manual segmentation B,

which is defined as: Dice = 2|A\B|
|A|+|B| . The value of a Dice score ranges from 0 (no overlap between

the predicted segmentation and its ground truth) to 1 (perfect match).

We also compared the volumetric measures derived from our automatic segmentation results2060
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and those from manual ones (see section 5.1.5.6), since they are essential for cardiac function

assessment. Specifically, for each manual ground truth mask and its corresponding automatic

segmentation mask, we calculated the volumes of LV and RV at ED frames and ES frames, as

well as the mass of myocardium estimated at ED frames. The myocardium mass around the

LV is estimated by multiplying the LV myocardial volume with a density of 1.05 g/mL. After2065

that, Bland-Altman analysis and correlation analysis for each pair were conducted. Of note,

for Bland-Altman analysis, we removed the outlying mean values that fall outside the range

of 1.5 ⇥ IQR (interquartile range) in order to avoid the standard deviation of mean di↵erence

being biased by extremely large values. These outliers are often associated with poor image

quality. As a result, < 3% subjects were removed in each comparison.2070

The statistical analysis was performed using python with public packages: pandas5, scipy.stats 6,

and statsmodel 7.

5.1.5 Results analysis

To demonstrate the improvement of model generalization performance, we directly tested the2075

proposed segmentation method across three sets: the UKBB test set, the ACDC set, and the

BSCMR-AS set, and compared the segmentation accuracy to the performance of the segment-

ation method in our previous work [4]. Specifically, in [4], a fully convolutional neural network

(FCN) was proposed, which was specifically designed to automatically segment a large scale

of scans for the same cohort study (i.e. UKBB study) with maximum accuracy whereas the2080

proposed method in our study focuses on improving the robustness of the neural network-based

segmentation method (using the same UKBB training set as training data) for data from dif-

ferent domains (e.g., non-UKBB data). The comparison results are shown in Table 5.3. While

both methods achieve very similar Dice scores on the intra-domain UKBB test set with high

accuracy, the proposed method significantly outperforms the previous approach on the two2085

5https://pandas.pydata.org/
6https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
7https://www.statsmodels.org/stable/index.html
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Table 5.3: Comparison results of segmentation performance between a baseline method

and the proposed method across three test sets. Both methods were trained using the same
UKBB training set where images were all collected from a single scanner. The results were evaluated
on three sets from multiple scanners at di↵erent sites. Numbers listed in the table are the means and
standard deviation of Dice scores.

UKBB Test set (n=600) ACDC set (n=100) BSCMR-AS set (n=599)
Method Training set LV MYO RV LV MYO RV LV MYO*

Bai et al.[4] UKBB training set 0.94 (0.04) 0.88 (0.03) 0.90 (0.05) 0.81 (0.22) 0.70 (0.20) 0.68 (0.31) 0.82 (0.21) 0.74 (0.17)
Ours UKBB training set 0.94 (0.04) 0.88 (0.03) 0.90 (0.05) 0.90 (0.10) 0.81 (0.07) 0.82 (0.13) 0.89 (0.09) 0.83 (0.07)

*: The myocardium segmentation performance on the BSCMR-AS set was only evaluated on ED
frames because of the lack of annotation at ES frames, whereas the performance on the other two
datasets was evaluated on both ED and ES frames. For simplicity, Dice scores for the myocardium on
the BSCMR-AS in the following tables were calculated in the same way without further illustration.

Figure 5.2: Boxplots of the average Dice scores between the results of our previous work

(Bai et al., 2018 [4]) and the results of the proposed method on the three datasets. For
simplicity, we calculate the average Dice score over the three structures (LV, MYO, RV) for each
image in the three datasets. The boxplots in orange are the results of the proposed method whereas
the boxplots in blue are the results of the previous work. The green dashed line in each boxplot shows
the mean value of the Dice scores for the segmentation results on one dataset.

cross-domain datasets: ACDC set and BSCMR-AS set. Compared to the results predicted

using the method in [4] on the ACDC data, the proposed one achieves higher mean Dice scores

for all of the three structures: LV (0.90 vs 0.81), myocardium (0.81 vs 0.70), and RV (0.82 vs

0.68). On the BSCMR-AS dataset, the proposed method also yields higher average Dice scores

for the LV cavity (0.89 vs 0.82) and the myocardium (0.83 vs 0.74). Fig. 5.2 compares the2090

distributions of Dice scores for the results obtained by the proposed method and the previous
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work. From the results, the boxplots of the proposed method are shorter than those of the pre-

vious method and have higher mean values, which suggests that the proposed method achieves

comparatively higher overall segmentation accuracy with lower variance on the three datasets.

In order to identify what contributes to the improved performance, we further compare the2095

proposed method with [4] in terms of methodology. Two main di↵erences are spotted:

• Network structure and capacity. Compared to the U-net we used in this study,

FCN in [4] has a smaller number of filters at each level. For example, the number of

convolutional kernels (filters) in the first layer of FCN is 16 whereas the one in the U-net

is 64. In addition, in the decoder part, FCN directly upsamples the feature map from2100

each scale to the finest resolution and concatenates all of them, whereas the U-net adopts

a hierarchical structure for feature aggregation.

• Training strategy in terms of data normalization and data augmentation. Com-

pared to the image pre-processing pipeline in the previous work, the proposed pipeline

adopts image resampling and random image flip augmentation in addition to the general2105

data augmentation based on a�ne transformations.

In order to study the influence of the network structure as well as the data normalization and

augmentation settings on model generalizability, extensive experiments were carried out and

the results are shown in the next two sections.

5.1.5.1 The influence of network structure and capacity2110

To investigate the influence of network structure on model generalization, we trained three

additional networks:

• FCN-16: the FCN network presented in [4] which has 16 filters in the first convolutional

layer.

• FCN-64: a wider version of FCN where the number of filters in each convolutional layer2115

is increased by 4 times.
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• UNet-16: a smaller version of U-net where the number of filters in each convolutional

layer is reduced by four times. Same as FCN-16, it has 16 filters in the first layer.

All of them were trained using the same UKBB training set and with the same training hyper-

parameters. These networks were then compared to the proposed network (UNet-64). Table 5.4

Table 5.4: Cross-dataset segmentation performances of four di↵erent network architec-

tures. All the networks were trained using the same UKBB training set with the proposed data
normalization and augmentation strategy for 1,000 epochs. Results listed in the table are the means
and standard deviation of the Dice scores evaluated on the three sets. Numbers in red denote mean
Dice scores below 0.70, whereas numbers in the bold font style denote the highest mean Dice scores
among the results of the four networks.

UKBB Test set (n=600) ACDC set (n=100) BSCMR-AS set (n=599)
Network Structure

num of conv
weights (aprox.) LV MYO RV LV MYO RV LV MYO

FCN-16 0.98 million 0.92 (0.04) 0.84(0.04) 0.88(0.05) 0.80(0.20) 0.67(0.19) 0.68(0.27) 0.84(0.14) 0.77(0.11)
FCN-64 15.6 million 0.94 (0.04) 0.87(0.03) 0.89(0.05) 0.87(0.12) 0.78(0.11) 0.77(0.17) 0.85(0.12) 0.79(0.10)
UNet-16 0.84 million 0.92 (0.04) 0.83(0.04) 0.87(0.05) 0.87(0.12) 0.66(0.14) 0.67(0.22) 0.85(0.11) 0.73(0.11)

Ours (UNet-64) 13.4 million 0.94 (0.04) 0.88(0.03) 0.90(0.05) 0.90(0.10) 0.81(0.07) 0.82(0.13) 0.88(0.09) 0.83(0.07)

2120

compares the performances of the four di↵erent networks over the three di↵erent test sets. It

can be seen that while there is no significant performance di↵erence among the four networks on

the UKBB test set, small networks: UNet-16 and FCN-16 perform much more poorly than their

wider versions: UNet-64 and FCN-64, on the ACDC set (see red numbers in Table 5.4). This

may indicate that in order to accommodate more variety of data augmentation for generaliza-2125

tion, the network requires a larger capacity. It is also worth noticing that UNet-64 outperforms

FCN-64 on all of the three test sets, while UNet-64 contains fewer parameters than FCN-64.

This improvement may result from U-net’s special architecture: skip connections with its step-

by-step feature upsampling and aggregation. The results indicate that the network structure

and capacity can a↵ect the segmentation model generalizability across datasets.2130

5.1.5.2 The influence of di↵erent data normalization and data augmentation tech-

niques

In this section, we investigate the influence of di↵erent data normalization and augmentation

techniques on the generalizability of the network, including image resampling (data normaliz-2135
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Table 5.5: Cross-dataset segmentation performances of U-Nets with di↵erent training

configurations. All experiments were performed with the standard U-Net architecture: UNet-64.
Each U-Net was trained using the same UKBB training set for 200 epochs to save computation.
Statistics listed in the table are the means and standard deviation of the Dice scores evaluated on the
three sets. Numbers in red are those mean Dice scores below 0.70.

Configurations UKBB Test set (n=600) ACDC set (n=100) BSCMR-AS set (n=599)

Image
Resample

Rotation
Aug

Flip
Aug

Scale
Aug

LV MYO RV LV MYO RV LV MYO

X X X X 0.923 (0.041) 0.847 (0.038) 0.878 (0.048) 0.873 (0.101) 0.744 (0.104) 0.750 (0.187) 0.851 (0.113) 0.783 (0.095)
X X X 0.916 (0.046) 0.836 (0.041) 0.864 (0.053) 0.811 (0.179) 0.614 (0.186) 0.575 (0.270) 0.798 (0.172) 0.673 (0.162)

X X X 0.922 (0.042) 0.848 (0.038) 0.878 (0.050) 0.869 (0.117) 0.733 (0.117) 0.722 (0.210) 0.853 (0.118) 0.784 (0.093)
X X X 0.924 (0.041) 0.849 (0.037) 0.881 (0.049) 0.858 (0.115) 0.705 (0.142) 0.681 (0.266) 0.862 (0.110) 0.779 (0.092)
X X X 0.921 (0.047) 0.845 (0.039) 0.876 (0.050) 0.785 (0.188) 0.640 (0.187) 0.596 (0.279) 0.834 (0.148) 0.752 (0.125)

ation), scale, flip and rotation augmentation (data augmentation). We focus on these four op-

erations because convolutional neural networks are designed to be translation-equivariant [210]

but they are not rotation-equivariant, nor scale and flip-equivariant [211, 212]. This means that

if we rotate the input, the networks cannot be guaranteed to produce the same predictions with

the corresponding rotation, indicating that they are not robust to geometrical transformations2140

on images. Current methods to improve these networks’ ability to deal with rotation/flip/scale

variations still heavily rely on data augmentation while intensity-level di↵erence might be ad-

dressed by further doing domain adaptation techniques such as style transfer or adaptive batch

normalization [213].

To investigate the influence of these four operations on model generalization, we trained2145

additional three U-nets using the UKBB training set, each of them was trained with the same

settings except that only one operation was removed. To save the computational time for this

ablation study, each network was trained for 200 epochs, which still took 10 hours for each

network since the training set from the UKBB dataset was considerably large (3,975 subjects).

The test results on the UKBB test set, the ACDC dataset, and the BSCMR-AS dataset are2150

shown in Table 5.5. It can be observed that while the results on the test data from the same

domain (UKBB) with di↵erent settings do not vary much, there are significant di↵erences on

the other two test sets, demonstrating the importance of the four data augmentation operations.

For example, image resampling increases the averaged Dice score from 0.673 to 0.783 for the RV

segmentation on the BSCMR-AS set, whereas augmentation by scaling improves the mean Dice2155

score from 0.596 to 0.750 for the RV on the ACDC set. The best segmentation performance
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over the three sets is achieved by combining all the four operations.

These results suggest that increasing variations regarding pixel spacing (image scale aug-

mentation), image orientation (flip augmentation), heart pose (rotation augmentation) as well

as data normalization (image resampling) can be beneficial to improve model generalisabilty2160

over unseen cardiac datasets. While one may argue that there is no need to do image resampling

if scale augmentation is performed properly during training, we found that image resampling

can significantly reduce the complexity of real-world data introduced by heterogeneous image

pixel spacings, such that training and testing data are more similar to each other, bringing

benefits to both model learning and prediction. In the following sections, for the sake of simpli-2165

city, we will use ‘UKBB model’ to refer to our best model (the U-net which was trained using

the UKBB training set with our proposed training strategy).

5.1.5.3 Segmentation performance on images from di↵erent types of scanners

Table 5.6: Segmentation performance of the UKBB model across di↵erent scanners. Tests
were performed on the BSCMR-AS dataset and ACDC dataset. This table presents the mean and
standard deviation (numbers in the brackets) of the Dice score.

Dataset
MRI Scanner
Attributes

Scanners
# of
subjects

LV MYO RV

BSCMR-AS
Manufactures

Philips 142 0.89 (0.07) 0.85 (0.04) -
Siemens 457 0.88 (0.10) 0.83 (0.08) -

Magnetic Field Strengths
1.5T 517 0.88 (0.09) 0.83 (0.09) -
3 T 82 0.88 (0.09) 0.84 (0.09) -

ACDC Magnetic Field Strengths
1.5T 65 0.89 (0.09) 0.81 (0.06) 0.80 (0.09)
3 T 29 0.91 (0.06) 0.82 (0.05) 0.80 (0.08)

In this section, UKBB model’s segmentation performance is analysed according to di↵erent2170

manufacturers (Philips and Siemens) and di↵erent magnetic field strengths (1.5 Telsa and 3

Telsa). The results on the two datasets (BSCMR-AS and ACDC) are listed in Table 5.6. For

ACDC data, only the results regarding scans imaged using di↵erent magnetic strengths are

reported since these scans are all from Siemens. Furthermore, results in the ACDC dataset

with Dice scores below 0.50 are not taken into account for this evaluation. This is because2175

the number of subjects from a 3T scanner in the ACDC is so small (33 subjects) that the

averaged performance can be easily a↵ected given only a few cases with extreme low Dice
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scores. Here, six subjects were excluded. The final results show that the model trained only

using 1.5T Siemens data (UKBB data) could still produce similar segmentation performance

on other Siemens and Philips data (top two rows in Table 5.6). Similar results are found on2180

those images acquired from 1.5T scanners and those acquired from 3T scanners (see the bottom

four rows in Table 5.6). This indicates that the proposed method has the potential to train a

model capable of segmenting images across various scanners even if the training images are

only from one scanner.

2185

5.1.5.4 Segmentation performance on images from di↵erent sites

Table 5.7: Segmentation performance of the UKBB model across di↵erent sites. This table
presents the mean and the standard deviation (numbers in the brackets) of Dice scores for each site.

Dataset Site # of subjects LV MYO RV

ACDC site A 100 0.91 (0.07) 0.81 (0.08) 0.82 (0.11)

BSCMR-AS

site B 28 0.88 (0.09) 0.83 (0.04) -
site C 74 0.88 (0.09) 0.83 (0.04) -
site D 150 0.89 (0.07) 0.85 (0.04) -
site E 122 0.86 (0.11) 0.81 (0.08) -
site F 64 0.88 (0.09) 0.84 (0.08) -
site G 160 0.89 (0.09) 0.85 (0.08) -

We also evaluate the performance of the UKBB model across seven sites: one from ACDC

data, six sites from BSCMR-AS data. Results are shown in Table 5.7. From the results, no

significant di↵erence is found when evaluating the LV and the myocardium segmentation per-

formances among the seven sites (A-G) while the generalization performance for RV segmenta-2190

tion still needs further investigation when more data with annotated RV becomes available for

evaluation.

5.1.5.5 Segmentation performance on images belonging to di↵erent pathologies

We further report the segmentation performance of the proposed method on five groups of2195

pathological data and the group of normal subjects (NOR), see Table 5.8. Surprisingly, the

UKBB model achieves satisfying segmentation accuracy over the healthy group as well as DCM
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Table 5.8: Segmentation performance of the UKBB model across the five groups of patho-

logical cases and normal cases (NOR). This table presents the mean and standard deviation of
the Dice score. Red numbers are those mean Dice scores below 0.80.

Dataset Group # of subjects LV MYO RV

NOR 20 0.91 (0.05) 0.83 (0.04) 0.85 (0.14)
DCM 20 0.94 (0.04) 0.81 (0.05) 0.82 (0.11)
HCM 20 0.84 (0.12) 0.84 (0.03) 0.84 (0.08)
MINF 20 0.92 (0.05) 0.81 (0.04) 0.78 (0.13)

ACDC

ARV 20 0.86 (0.13) 0.74 (0.11) 0.79 (0.16)
BSCMR-AS AS 599 0.88 (0.09) 0.83 (0.07) -

Figure 5.3: Visualization of good segmentation examples selected from 3 patient groups.

Three groups are NOR (without cardiac disease), DCM (dilated cardiomyopathy), AS (aortic stenosis).
Row 1: Ground truth (manual annotations); row 2: predicted results by the UKBB model. Each block
contains a slice from ED frame and its corresponding ES one for the same subject. This figure shows
that the UKBB model produced satisfying segmentation results not only on healthy subjects but also
on those DCM and AS cases with abnormal cardiac morphology. The AS example in this figure is
a patient with aortic stenosis who previously had a myocardial infarction. Note that this AS case is
from BSCMR-AS dataset where the MYO and RV on ES frames were not annotated by experts.

images and those images diagnosed with AS, indicating the model is capable of segmenting

not only those with normal cardiac structures but also some abnormal cases with the cardiac

morphological variations in those HCM images and AS images, see Fig. 5.3. However, the2200

model fails to segment some of the other pathological images, especially those in the HCM,

MINF, and ARV pathology groups where lower Dice scores are observed. For example, the mean

Dice score for LV segmentation on HCM images is the lowest (0.84). Fig. 5.4 demonstrates

some of the worst cases produced by the proposed method. The first column in Fig. 5.4, shows a

failure case where the UKBB model underestimated the myocardium and overestimated the LV2205
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Figure 5.4: Examples of the worst cases that have pathological deformations. Row 1:
Ground truth; row 2: predicted results by the UKBB model. HCM: hypertrophic cardiomyopathy;
MINF: myocardial infarction with altered left ventricular ejection fraction; ARV: abnormal right
ventricle. Column 1 shows that the UKBB model underestimates the myocardium in patients with
HCM. Column 2 shows that the model struggles to predict the cardiac structure when certain sections
of the myocardium are extremely thin. Column 3 shows a failure case where an extremely large right
ventricle is shown in the image. All these images are from the ACDC dataset.

when a thickened myocardial wall is present in a patient with HCM. Also, the model struggles

to segment cardiac structure on a patient with MINF which contains the abnormal myocardial

wall with non-uniform thickness (the second column in Fig. 5.4). Compared to images in the

other four groups with pathology, images from patients with ARV seem to be more di�cult for

the model to segment as the model not only achieves a low mean Dice score on the RV (0.79)2210

but also a low averaged value on the myocardium (0.74).

One possible reason for these unsatisfactory segmentation results might be the lack of patho-

logical data in the current training set. In fact, the UKBB data only consists of a small amount

of subjects with self-reported cardiovascular diseases, and the majority of the data are healthy

subjects in middle and later life [4, 5, 214]. This indicates that the network may not be able2215

to ‘learn’ the range of those pathologies that are seen in everyday clinical practice, especially

those abnormalities which are not currently represented in the UKBB dataset.
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Failure mode analysis. We also visually inspected the images where the UKBB model

produces poor segmentation masks. In general, there are two main failure modes we identified,

apart from the failure found on the abnormal pathological cases which we have discussed above:2220

• Apical and basal slices. These slices are more error-prone than mid-ventricle slices,

which has also been reported in [6]. Segmenting these slices is di�cult because apical slices

have extremely tiny objects which can be hard to locate and segment (see Fig. 5.5A)

whereas basal slices with complex structures increase the di�culty of identifying the

contour of the LV (see Fig. 5.5B);2225

• Low image quality. Images with poor quality are found both in 1.5T and 3T images

(see Fig. 5.5C and 5.5D). As reported in [197, 198], 1.5T images are more likely to have

low image contrast than 3T images due to the low signal-to-noise (SNR) limits, whereas

3T images can have more severe imaging artefact issues than 1.5T images. These artefacts

and noise can greatly a↵ect the segmentation performance.2230

5.1.5.6 Statistical analysis on clinical parameters

We further compare the proposed automatic method with manual approach on five clinical

parameters, including the end-diastolic volume of LV (LVEDV ), the end-systolic volume of

LV (LV ESV ), the left ventricular mass (LVM), the end-diastolic volume of right ventricle

(RV EDV ), and the end-systolic volume of RV (RVESV ).2235

Figure 5.6 shows the Bland-Altman plots for the five clinical parameters on the three data-

sets. The Bland-Altman plot is commonly used for analysing agreement and bias between two

measurements. Here, each column shows the comparison results between automated measure-

ments and manual measurements for one particular parameter, including the mean di↵erences

(MD) with corresponding standard deviation (SD) and the limits of agreement (LOA). In ad-2240

dition, we also conducted the Bland-Altman analysis for the automatic method (FCN) in our

previous work [4], for comparison.
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Figure 5.5: Examples of worst segmentation results found on challenging slices. Left: Image,
middle: ground truth (GT), right: prediction from the UKBB model. (A) Failure to predict LV when
the apical slice has a very small LV. (B) LV segmentation missing on the basal slice (ES frame). This
sample is from the BSCMR-AS dataset where only the LV endocardial annotation is available. (C)
Failure to recognize the LV due to a stripe of high-intensity noise around the cardiac chambers in this
1.5T image. This sample is an ES frame image from the BSCMR-AS dataset. (D) Failure to estimate
the LV structure when unexpected strong dark artifacts disrupt the shape of the LV in this 3T image.
Note that this image is an ED frame image from the BSCMR-AS dataset where RV was not annotated
by experts.

From the first two columns in the Fig. 5.6, one can see that both FCN and the proposed

method achieve excellent agreements with human observers on the UKBB dataset, indicating

both of them can be used interchangeably with manual measurements. For the other two2245

datasets, by contrast, the proposed method achieves much better agreement than FCN, as the

LOA between the proposed method and manual results is narrower. For example, for LVM on

the ACDC dataset, the LOA between the proposed method and the manual approach is from
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Figure 5.6: Agreement of clinical measurement from automatic and manual segmentation.

Figures A-Z are Bland Altman plots (automatic - manual) on the three sets. In each Bland-Altman
plot, the x-axis denotes the average of two measurements, whereas the y-axis denotes the di↵erence
between them. The solid line in red denotes the mean di↵erence (bias) and the two dashed lines in green
denote ±1.96 standard deviations from the mean. The title of each plot shows the mean di↵erence
(MD) and its standard deviation (SD) for each pair of measurements. FCN: the automatic method
in our previous work [4], LV/RV: left/right ventricle, EDV/ESV: end-diastolic/systolic volume, LVM:
left ventricular mass. Best viewed in color and zoom in.
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5.07 to -39.93 (MD =-17.43) while the LOA between the FCN and the manual method is from

3.45 to -64.66 (MD = -30.61), see Fig. 5.6O and Fig. 5.6P, respectively.2250

Table 5.9: Spearman’s rank correlation coe�cients of clinical parameters derived from the

automatic measurements and the manual measurements on the three sets. All segmenta-
tions are produced by the U-Net trained with the UKBB training set.

Comparison Test set LVEDV LVESV LVM RVEDV RVESV

Automatic vs Manual UKBB (n=600) 0.97 0.91 0.93 0.96 0.91
Automatic vs Manual ACDC (n=100) 0.97 0.94 0.96 0.79 0.83
Automatic vs Manual BSCMR-AS (n=599) 0.94 0.92 0.92 - -

Note: Each coe�cient reported in this table has a P-value below 0.0001.

Finally, we calculate the Spearman’s rank correlation coe�cients (r2) of the five clinical para-

meters derived from the automatic segmentation using the proposed method and the manual

segmentation, which are reported in Table 5.9. From the results, it can be observed that the

clinical measurements based on the LV segmentation and the myocardium segmentation derived

by our automatic model are highly positively correlated with the manual analysis (� 0.91), al-2255

though the RV correlation coe�cients on the ACDC dataset are relatively lower.

5.1.6 Discussion

In this work, we developed a general training/testing pipeline based on data normalization

and augmentation for improving the generalizability of neural network-based CMR image seg-2260

mentation methods. We also highlighted the importance of the network structure and capacity

(section 5.1.5.1) as well as the data normalisation and augmentation strategies (section 5.1.5.2)

for model generalizability. Extensive experiments on multiple test sets were conducted to valid-

ate the e↵ectiveness of the proposed method. The proposed method achieves promising results

on a large number of test images from various scanners and sites even though the training set is2265

from one scanner, one site (section 5.1.5.3, 5.1.5.4). Besides, the network is capable of segment-

ing healthy subjects as well as a group of pathological cases from multiple sources although it

had only been trained with a small portion of pathological cases.
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The limitation of the current method (the UKBB model) is that it still tends to underes-

timate the myocardium especially when the size of the myocardium becomes larger (see points2270

in the right part of Fig. 5.6R. Again, we conclude this limitation is mainly due to the lack of

pathological cases in the training set.

Besides, we found that the di↵erence (bias) between the automatic measurements and the

manual measurements in the cross-domain test sets: ACDC and BSCMR-AS, are more sig-

nificant than the di↵erence in the intra-domain set: UKBB test set. The larger bias may be2275

caused by not only those challenging pathological cases we have discussed above, but also inter-

observer bias and the inconsistent labelling protocols used in the three datasets. The evident

inter-observer variability when delineating myocardial boundaries on apical and basal slices in

a single dataset has been reported in [215]. In this study, however, there are three datasets

which were labelled by three di↵erent groups of observers. Each group followed an independent2280

labelling protocol. As a result, significant variations of RV labels and MYO labels on the basal

planes among the three datasets are found. This inter-dataset inconsistency of the RV labels

on basal planes has been reported in [84]. The mismatch of RV labels can partially account

for the negative MD values for the RV measurements in the ACDC dataset (see Fig. 5.6 V).

The di↵erences in the labelling protocols together with inter-observer variability in di↵erent2285

datasets pose challenges to evaluate the model generalizability across domains accurately.

In the future, we will focus on improving the segmentation performance of the neural net-

work by increasing the diversity of the training data in terms of pathology. A promising way of

doing it, instead of collecting more labelled data, is to synthesize pathological cases by trans-

forming existing healthy subjects with pathological deformations. A pioneering work [216] in2290

this direction has successfully transported pathological deformations from certain pathological

subjects (i.e. HCM, DCM) to healthy subjects, which can help to increase the number of patho-

logical cases. Similarly, one can also adopt other types of learning-based data augmentation

approaches (e.g., generative adversarial network based data augmentation [164], adversarial

data augmentation [217]) to improve the model robustness on challenging cases, generating2295

more realistic and challenging images (e.g., apical/basal slices, images with di↵erent types of

artefacts) for the network to learn. Another direction, is to add a post-processing module to
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correct those failed predictions with anatomical constraints [46, 218]. Both of these approaches

can be easily integrated in the proposed training pipeline without significant modifications. Last

but not least, for clinical deployment, it is necessary to alert users when failure happens. In this2300

regard, future work can be integrating the segmentation approach with an automatic quality

control module, providing automatic segmentation assessment (e.g., estimated segmentation

scores [219], model uncertainty maps [220]) to clinicians for further verification and refinement.

5.1.7 Conclusion2305

In this work, we proposed a general training/testing pipeline for neural network-based cardiac

segmentation methods and revealed that a proper design of data normalization and augment-

ation, as well as network structure, play essential roles in improving its generalization ability

across images from various domains. We have shown that a neural network (U-net) trained

with CMR images from a single scanner has the potential to produce competitive segmenta-2310

tion results on multi-scanner data across domains. Besides, experimental results have shown

that the network is capable of segmenting healthy subjects as well as a group of pathological

cases from multiple sources, although it had only been trained with the UK Biobank data,

which has only a small portion of pathological cases. Although it might still have limitations

in segmenting images with low quality and some images with significant pathological deforma-2315

tions, higher segmentation accuracy for these subjects could be further achieved by increasing

the diversity of training data regarding image quality and pathology in the future. Also, for

simplicity, our current data normalization step consists of a image in-plane re-sampling and a

standard intensity normalization step to harmonize images from unseen sites. More advanced

techniques on data harmonization could be considered to improve the model performance on2320

unseen test images across di↵erent scanners and sites. These include image correction methods

for reduced imaging artifacts [167], and other learning-based image normalization methods to

unify the spatial resolutions [221, 222], and to adjust intensity distributions for unified image

appearance with improved image quality [223–225]. One should note that these approaches
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generally require an iterative process at test time [167] or training a model (e.g., an intensity2325

normalization network) to optimize its parameters before deployment [221, 222, 224].
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5.2 Cooperative training and latent space data augment-

ation for robust segmentation

5.2.1 Introduction

Segmenting anatomical structures from medical images is an important step for diagnosis,2330

treatment planning and clinical research. In recent years, deep convolutional neural networks

(CNNs) have been widely adopted to automate the segmentation procedure [3, 226]. However, a

major obstacle for deploying deep learning-based methods to real-world applications is domain

shift during clinical deployment, which includes changes of image appearance and contrasts

across medical centers and scanners as well as various imaging artifacts. Recent works on2335

domain generalization provide a promising direction to address this issue [227–231]. A majority

of them require training data from multiple domains to learn domain-invariant features for

segmentation. Multi-domain datasets, however, may not always be feasible due to data privacy

concerns and collection costs. Learning robust networks from single-domain data and limited

data is of great practical value for medical imaging research.2340

In this work, we propose a novel cooperative training framework for learning a robust

segmentation network from single-domain data. We make the following contributions. (1) First,

to improve model performance on unseen domains, we design a cooperative training framework

where two networks collaborate in both training and testing. This is inspired by the two-system

model in human behavior sciences [232], where a fast-thinking system makes intuitive judgment2345

and a slow-thinking system corrects it with logical inference. Such a collaboration is essential

for humans to deal with unfamiliar situations. In our framework, a fast-thinking network

(FTN) aims to understand the context of images and extracts task-related image and shape

features for an initial segmentation. Subsequently, a slow-thinking network (STN) refines the

initial segmentation according to a learned shape prior. (2) We introduce a latent space data2350

augmentation method, which performs channel-wise and spatial-wise masking for the latent

code learned from FTN in random and targeted fashions. Reconstructing images with masked

latent codes generates a diverse set of challenging images and corrupted segmentation maps to
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reinforce the training of both networks. Experimental results on cardiac imaging datasets show

that the cooperative training mechanism with generated challenging examples can e↵ectively2355

enhance FTN’s segmentation capacity and STN’s shape correction ability, leading to more

robust segmentation. (3) The proposed method alleviates the need for multi-domain data,

making it applicable to a wide range of applications.

5.2.2 Related work

Our work is conceptually related to data augmentation, multi-task learning (MTL) and multi-2360

stage learning. a) data augmentation applies transformations or perturbations to improve the

diversity of training data, which is e↵ective for improving model generalization [133]. A large

number of the works focuses on image-space data augmentation, including both intensity and

geometric transformation functions [7, 233] and patch-wise perturbations [234–237]. Adversarial

data augmentation has also been explored, which takes the segmentation network into account2365

and generates adversarial examples that can fool the network [15, 174, 238, 239]. A major

novelty of our work is that we perform data augmentation in the latent space. The latent space

contains abstract representation of both image and shape features and challenging examples can

be generated by manipulating this space. Di↵erent from existing latent DA methods used in

metric learning [240], our method is based on feature masking rather than feature interpolation2370

(i.e. linear combination) and thus does not require paired images from the same/di↵erent

categories to generate synthetic data. To the best of our knowledge, our work is the first to

explore latent space DA for robust segmentation with single domain data. b) MTL is extremely

beneficial when training data is limited [236, 237, 241]. MTL enhances network capacity by

encouraging the learning of common semantic features across various tasks. c) Our work is also2375

related to multi-stage learning, which consists of two stages of segmentation: a first network for

coarse segmentation from images and a second network for refinement [46, 242]. For example,

in [242], manually designed functions are used to generate poor segmentation and a denoising

autoencoder is independently trained for segmentation refinement. Another novelty of our

work is that we seek the mutual benefits of a segmentation network and a denoising network2380
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by training them cooperatively, using hard examples constructed from latent space.

5.2.3 Methodology

Given a training dataset from one, single domain Dtr = {(xi,yi)}ni=1, with pairs of images

xi 2 R
H⇥W and one-hot encoded C-class label maps yi 2 {0, 1}H⇥W⇥C as ground truth (GT),

our goal is to learn a robust segmentation network across various ‘unseen’ domains with di↵erent2385

image appearance and/or quality. Here, H,W denote image height and width, respectively.

5.2.3.1 Overview of the framework

Figure 5.7: Visual demonstration of the proposed cooperative training framework and

latent space data augmentation. (a) The proposed cooperative training framework, which consists
of a fast-thinking network (FTN) and a slow-thinking network (STN). (b) Hard example generation
in the latent space. Latent code masking is performed for generating both corrupted images and
segmentations for cooperative training.

An overview of the proposed framework is illustrated in Fig. 5.7 (a). At a high level, our

framework consists of a fast-thinking network (FTN) and a slow-thinking network (STN). Given

an image x, the FTN extracts task-specific shape features zs to perform the segmentation task2390

and image contextual features zi to perform the image reconstruction task. This network con-

sists of a shared encoder E✓, a feature decoupler H and two task-specific decoders D�s and D�i

for image segmentation and reconstruction tasks. We apply the latent code decoupler H to zi,

so that task-unrelated information (e.g., image texture information, brightness) is deactivated

in zs. This encourages a sparse latent code zs, which is beneficial for model robustness [243]. H2395
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employs a stack of two convolutional layers followed by a ReLU activation function. STN is a

denoising autoencoder network C , which corrects the segmentation predicted by FTN by using

a learned shape prior encoded in C . At inference time, we first employ FTN to perform fast

segmentation for a given image x: p = D�s(H(E✓(x))), and then STN to refine the prediction

for improved segmentation quality: p0 = C (p).2400

5.2.3.2 Standard training

To train the two networks, we propose a standard approach which jointly trains the three

encoder-decoder pairs with a supervised multi-task loss function for image reconstruction Lrec,

image segmentation Lseg and shape correction Lshp . The loss is defined as:

Lstd = E(x,y)2Dtr
[Lrec(x

0,x) + Lseg(p,y) + Lshp(p
0,y) + Lshp(y

0,y)], (5.1)

where Lrec is the mean squared error (MSE) between the original input image x and the2405

reconstructed image x0 = D�i(E✓(x)), Lseg and Lshp are cross-entropy loss functions between

ground truth y and predicted segmentation. The predicted segmentation can be the initial

prediction p = D�s(H(E✓(x))), or the reconstructed prediction p0 = C (p) or reconstructed

ground-truth map y0 = C (y). Di↵erent from Lseg , optimizing Lshp(p0
,y) will trigger gradient

flows from STN to FTN. This allows STN to transfer shape knowledge to FTN to improve2410

model generalizability.

5.2.3.3 Latent space data augmentation for hard example generation

Standard training is likely to su↵er from over-fitting when training data is limited. To solve

this problem, a novel latent space data augmentation method is proposed which allows FTN

to automatically construct hard examples. As shown in Fig. 5.7(b), the proposed method re-2415

quires a mask generator G to produce a mask m on the latent code z. The masked latent code

ẑ = z · m is then fed to the decoders to reconstruct a corrupted image x̂ = D�i(ẑi) and seg-

mentation p̂ = D�s(ẑs). Here, · denotes element-wise multiplication. In our work, we use latent
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code masking for data augmentation. This di↵ers from existing latent code dropout techniques

for explicit regularization [131, 244]. By dynamically masking the latent code, the proposed2420

method can generate samples with a wide diversity of image appearances and segmentations,

which are not bound to specific image transformation or corruption functions. Below we in-

troduce three latent-code masking schemes: random dropout Gdp , and two targeted masking

schemes, channel-wise targeted mask generation Gch and spatial-wise targeted mask generation

Gsp .2425

(1) Random Masking with Dropout A näıve approach for latent code masking is random

channel-wise dropout [131], which is an enhanced version of the original dropout method. An

entire channel of the latent code can be masked with all zeros at a probability of p at training.

Mathematically, this can be viewed as sampling a mask from a Bernoulli distribution:2430

Gdp(m
(i); p) =

8
><

>:

p m
(i) = 0 2 Rh⇥w

1� p m
(i) = 1 2 Rh⇥w;

8i 2 1, ..., c. (5.2)

The masked code at i-th channel is obtained via ẑ(i) = z(i) ·m(i). In the following, we will use

i-j-k to denote the three coordinates of latent code z 2 Rc⇥h⇥w.

(2) Targeted Masking Inspired by the recent success on latent code masking for domain gen-

eralized image classification algorithm [244], we propose targeted latent code masking schemes2435

which takes gradients as a clue to identify ‘salient’ features to mask. Following the common

practice in adversarial data augmentation [109, 171], we take task-specific losses (image recon-

struction loss and image segmentation loss) to calculate the gradients gzi , gzs for zi and zs

respectively, formulated as: gzi = rziLrec(D�i(zi),x), gzs = rzsLseg(D�s(zs),y). By ranking

the values of task-specific gradients, we can identify most predictive elements in the latent space2440

to attack. We hypothesize that the elements with high response to task-specific loss functions

are leading causes to performance drop under unforeseen domain shifts. We therefore focus

on attacking these primary elements to simulate strong data distribution shifts. Two types

of targeted masking are implemented, which mask features in latent code z along the channel
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dimension and spatial dimension. They are:2445

a) channel-wise mask generator:

Gch(m
(i);gz, p) =

8
><

>:

m
(i) = a1 2 Rh⇥w if E[g(i)

z ] � zchp

m
(i) = 1 2 Rh⇥w if E[g(i)

z ] < zchp ;
8i 2 1, ..., c, (5.3)

b) spatial-wise mask generator:

Gsp(m
(j,k);gz, p) =

8
><

>:

m
(j,k) = a1 2 Rc if E[g(j,k)

z ] � zspp

m
(j,k) = 1 2 Rc if E[g(j,k)

z ] < zspp ;
8j 2 [1, h], 8k 2 [1, w]. (5.4)

Thresholds zchp , z
sp
p 2 R are top p-th value across the channel means and spatial means. a is

an annealing factor randomly sampled from (0,0.5) to create soft masks. Compared to hard-

masking (a=0), soft-masking generates more diverse corrupted data (see Fig. 5.8 and 5.9).2450

Channel-wise masked code at i-th channel is obtained via ẑ(i) = z(i) ·m(i). Spatial-wise masked

code at (j, k) position is obtained via ẑ(j,k) = z(j,k) ·m(j,k).

Figure 5.8: Visualization of generated corrupted images. Three types of latent code masking
schemes generate a diverse set of challenging images with unseen mixed artifacts, e.g. ‘dark dots’,
‘checkerboard artifacts’, ‘blurring’. a: the annealing factor in Eq. 5.3 and Eq. 5.4.
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Figure 5.9: Visualization of generated corrupted segmentation maps. Three types of latent
code masking schemes generate various over-segmented and under-segmented predictions at di↵erent
thresholds p. Compared to hard-masking, soft-masking produces milder but more diverse corrupted
images and segmentation maps. a: the annealing factor in Eq. 5.3 and Eq. 5.4

5.2.3.4 Cooperative training

During training, we randomly apply one of the three mask generators to both zi, zs. This

process generates a rich set of corrupted images x̂ and segmentations p̂ on-the-fly. It allows2455

us to train our dual-network on three hard example pairs, i.e. corrupted images-clean images

(x̂,x), corrupted images-GT (x̂,y), corrupted prediction-GT (p̂,y). The final loss for the

proposed cooperative training method is a combination of losses defined on easy examples and

hard examples: Lcooperative = Lstd + Lhard , where Lhard is defined as:

Lhard = Ex̂,p̂,x,y[Lrec(D�i(E✓(x̂)),x) + Lseg(p̄,y) + Lshp(C (p̂),y) + Lshp(C (p̄),y)]. (5.5)

Here, p̄ = D�i(H(E✓(x̂))) is FTN’s predicted segmentation on x̂.2460

5.2.4 Experiments

To evaluate the e�cacy of the proposed method, we apply it to the cardiac image segment-

ation task to segment the left ventricle cavity, left ventricular myocardium and right vent-

ricle from MR images. Three datasets are used: the Automated Cardiac Diagnosis Challenge
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dataset (ACDC)8 [6], Multi-centre, Multi-vendor & Multi-disease Cardiac Image Segmentation2465

Challenge (M&Ms) dataset 9 [245] and corrupted ACDC, named as ACDC-C. For all experi-

ments, the training set is a single-site set of only 10 subjects from ACDC. 10 and 20 subjects

from ACDC are used for validation and intra-domain test. The multi-site M&Ms dataset (150

subjects from 5 di↵erent sites) is used for cross-domain test. The ACDC-C dataset is used

for evaluating the robustness of the method for corrupted images. Challenging scenarios are2470

simulated, where 20 ACDC test subjects are augmented three times with four di↵erent types of

MR artefacts: bias field, ghosting, motion and spike artifacts [184] using the TorchIO10 toolkit.

This produces 4 subsets with 60 subjects, named as RandBias, RandGhosting, RandMotion,

RandSpike in experiments.

Figure 5.10: Structures of the Unet-like encoder-decoder pairs, and the feature decoupler

used in our experiments. We used the same structures for encoders and decoders accordingly.
E: # of input channel(s), D: # of output channel(s). ResConv: Convolutional Block with residual
connections [246]. Conv: Standard convolutional kernels. Of note, our framework is generic, other
encoders and decoders can also be used.

8https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
9https://www.ub.edu/mnms/

10https://github.com/fepegar/torchio
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5.2.4.0.1 Implementation and evaluation. We employed the image pre-processing and2475

default data augmentation pipeline described in [15], including common photo-metric and geo-

metric image transformations. Our encoder and decoder pairs support general structures.

Without loss of generality, we used a U-net like structure[32]. Fig.5.10 visualizes detailed

structures of encoder-decoder pairs as well as the latent space decoupler. For mask generation,

we randomly select one type of the masking scheme described above at training, where p is2480

randomly selected from [0% , 50%]. We use the Adam optimizer with a batch size of 20 to

update network parameters, with a learning rate=1e�4. Our code is available on the Github11.

For all methods, we trained the same network three times using a set of randomly selected 10

ACDC subjects (600 epochs each run, on an Nvidia®, using Pytorch). The average Dice score

is reported for segmentation performance evaluation.2485

5.2.5 Results and discussion

Figure 5.11: Boxplots of average Dice scores on the intra-domain test set, cross-domain

test set, and unseen corrupted testsets. All networks were trained using only 10 subjects.
Compared to standard training, cooperative training with self-generating hard examples greatly im-
proves the segmentation performance on various unseen, challenging domains (p-value< 0.01, average
improvement: 15%).

5.2.5.1 Experiment 1: standard training vs cooperative training

We compared the proposed cooperative training method with the standard training method

(using Lstandard only) using the same backbone network structure. Fig. 5.11 shows the box-plots2490

11https://github.com/cherise215/Cooperative_Training_and_Latent_Space_Data_Augmentation
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for each method. While both methods achieve comparable performance on the intra-domain

test set (p-value> 0.1), it is clear that cooperative training with dual-network (FTN+STN)

yields the best performance across out-of domain test sets (see dark green boxes). Consistent

improvements made by STN can be clearly observed across all domains. By contrast, STN with

standard training fails to provide significant improvements on some datasets (p-value> 0.1).2495

This indicates the superiority of cooperative training with latent space data augmentation.

5.2.5.2 Experiment 2: latent space data augmentation vs image space data aug-

mentation

Figure 5.12: Visualization of augmented images using input space data augmentation and

the proposed latent space data augmentation. DA: data augmentation. Adv: Adversarial.

Table 5.10: Comparison results of segmentation performances of the proposed latent space

data augmentation and competitive image space data augmentation methods for domain

generalization. The proposed latent space augmentation method improves the performance on out-
of-domain datasets compared to image space data augmentation methods. AVG: average Dice scores
across six datasets. Red numbers are average Dice scores under 0.5.

Method ACDC M&Ms RandBias RandGhosting RandMotion RandSpike
AVG
(FTN)

AVG
(FTN+STN)

Standard training 0.7681 0.3909 0.4889 0.6964 0.7494 0.4901 0.5970 0.6018

Rand MWM [236] 0.7515 0.3984 0.4914 0.6685 0.7336 0.5713 0.6024 0.6131
Rand Conv [247] 0.7604 0.4544 0.5538 0.6891 0.7493 0.4902 0.6162 0.6404
Adv Noise [174] 0.7678 0.3873 0.4903 0.6829 0.7543 0.6244 0.6178 0.6276
Adv Bias [15] 0.7573 0.6013 0.6709 0.6773 0.7348 0.3840 0.6376 0.6604

Proposed w. x̂ 0.7497 0.5154 0.5921 0.6921 0.7417 0.6633 0.6591 0.6709
Proposed w. x̂, p̂ 0.7696 0.5454 0.6174 0.7073 0.7643 0.6226 0.6711 0.6901
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We compared the proposed latent space based method to other competitive image space data2500

augmentation methods: a) random multi-window in-and-out masking (Rand MWM) [236, 237],

which uses an enhanced variant of Cutout [234] and Patch Gaussian [235] to introduce patch-

wise perturbation to images; b) random convolutional kernels (Rand Conv) [247], which applies

various random convolutional kernels to augment image texture and appearance variations; c)

adversarial noise (Adv Noise) [174]; d) adversarial bias field (Adv Bias) [15], which augments2505

image styles by adding realistic intensity inhomogeneities. We visualize augmented images

using above methods in Fig. 5.12. For methods under comparison, we used their o�cial code

implementation if available and ran experiments using the same backbone network for fairness.

Results are shown in Table 5.10.

Figure 5.13: Boxplots of segmentation results in the large training data setting. In the
large training data setting (70 ACDC subjects for training), when compared to the baseline method
(standard training), our cooperative training method can further improve not only intra-domain seg-
mentation accuracy (with reduced variance) but also robustness against various domain shifts. Adv
bias, by contrast, fails to provide consistent improvement. This reveals our method’s great potential
to be applied to a wide range of scenarios for both improved generalization and robustness.

Surprisingly, with limited training data, both random and adversarial data augmentation2510

methods do not necessarily improve the network generalization on all datasets. While AdvBias

achieves the best performance on M&Ms dataset and RandBias, this method has a side e↵ect,

making it more sensitive to the spiking artifacts (Dice score 0.4901 vs 0.3840). By contrast,

the proposed latent space data augmentation achieves the top average performance across six

datasets, without any dramatic failures (Dice score < 0.5). Similar results can be found in2515

a large training setting, see Fig. 5.13. Our method can generate not only perturbed images

but also realistically corrupted segmentations with increased uncertainty (Fig. 5.14). These

corrupted segmentations attribute to the increased model generalization (AVG Dice: 0.6709 vs
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0.6901). While one may argue that characterizing and combining various image-space DAs and

corruptions together could be an interesting direction to improve cross-domain performance,2520

it is time-consuming and computationally ine�cient to find the optimal data augmentation

policy [248], and has the risk of sacrificing intra-domain performance [249].

5.2.5.3 Experiment 3: ablation study

Table 5.11: E↵ectiveness of the targeted masking, latent code decoupler H and cooperative

training.

Methods FTN FTN+STN

w.o. Gch ,Gsp 0.6344 0.6584

share code (a) (zi = zi, zs = zi) 0.6625 0. 6868
share code (b) (zi = zs, zs = zs) 0.6343 0.6587

Separate Training [242] 0.6020 0.6077

Proposed 0.6711 0.6901

We further investigate three key contributions: 1) the proposed targeted masking; 2) latent2525

code decoupler H; 3) cooperative training. Results are shown in Table 5.11. We can see

that disabling Gch ,Gsp drops the average Dice score from 0.6901 to 0.6584, highlighting the

e↵ectiveness of targeted masking. Fig. 5.8 and 5.9 shows that targeted masking focuses more

on attacking cardiac structures, resulting in more challenging images with mixed artifacts and

under or over-segmented predictions. We compared the proposed network architecture to its2530

two variants, where zi and zs are shared in two di↵erent ways. Both variants lead to inferior

performance. This suggests the benefit of H for a more sparse zs code. Image reconstruction

requires low-level information, whereas image segmentation relies on more concentrated high-

level information. Introducing H explicitly defines a hierarchical feature structure to improve

model generalization. Lastly, we compared our method to the state-of-the-art denoising auto-2535

encoder-based shape refinement method (Separate Training) [242] where FTN and STN are

trained independently. It has been shown that this learning-based method can outperform

the commonly used non-learning-based condition random field-based refinement method [250].

Results show that our method can greatly outperform this advanced method by a large margin
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Figure 5.14: Visualization of corrupted segmentations and corresponding entropy maps

generated with the proposed three latent space masking schemes. The first row and the
second row in each block display the examples of corrupted segmentation and corresponding entropy
maps, respectively. Latent masking schemes generate realistic poor segmentation with increased en-
tropy, which is beneficial to train our denoising autoencoder (STN) for shape correction. Latent
masking schemes generate realistic poor segmentation with increased entropy, which is beneficial to
train our denoising autoencoder (STN) for shape correction.

(Dice score 0.6901 vs. 0.6077), highlighting the benefits of the cooperative training strategy for2540

enhancing learning-based shape refinement and correction.

5.2.6 Conclusion

We present a novel cooperative training framework together with a latent space masking-based

data augmentation method. Experiments show that it greatly improves model generalizability

and robustness against unforeseen domain shifts, despite the training data being collected from2545

only one domain. Unlike existing methods which require multi-domain datasets or domain
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knowledge to specify particular forms of image transformation and corruption functions, our

latent space data augmentation method requires little human e↵ort, and it has the potential to

be applied to other data-driven applications. Although we only demonstrate the performance

for cardiac image segmentation, our generic framework has the potential to be extended to2550

a wide range of data-driven applications. However, as also noted by [251], one limitation of

the two-stage approach with shape refinement is that it may not be suitable for abnormality

segmentation (e.g., tumor, lesion segmentation) where the region-of-interests are of higher shape

complexity and wider shape variety across di↵erent subjects compared to anatomical structures.

In that case, STN could fail to learn a generalized shape prior knowledge for shape correction2555

and refinement.
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Chapter 6

Conclusion

In this thesis, we have presented three ways to improve the generalization performance of deep

learning models with limited labeled data: a) exploiting auxiliary data using multi-task learning,2560

b) exploiting unlabeled data for semi-supervised learning and unsupervised domain adaptation,

c) maximizing the value of limited labeled data by designing e↵ective data augmentation. We

have designed and validated our methods on medical image segmentation applications, wherein

the scarcity of labels is a significant problem due to the high labeling costs. A summary of

thesis achievements and some potential future works are presented in the following.2565

6.1 Summary of thesis achievements

Multi-task learning with auxiliary data from related tasks improves model gener-

alization.

In real-world applications, while there is limited labeled data for a particular task, there are also

auxiliary data available for other related tasks that can provide complementary information to2570

each other. In Chapter 3, we introduced two works that successfully extract useful contexts

from auxiliary data and leverage them to help the main image segmentation task. In the first

part of Chapter 3, we presented a multi-task U-net for left atrial MR segmentation (Sec. 3.1),

which performs image classification (pre-ablation/post-ablation) and segmentation simultan-

141
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eously, using a shared feature encoder and two di↵erent task-specific decoders. We compared2575

the proposed multi-task U-net to a single-task U-net without the classification branch. Results

show that multi-task learning improved model generalization, as it can encourage the network

to learn shared representations across the two tasks. In the second work, we presented a multi-

view shape prior aware segmentation network for cardiac myocardium segmentation from SAX

images (Sec. 3.2). In particular, we introduced a novel shape-aware multi-view convolution2580

neural network that learns latent cardiac shape priors from multiple standard views by per-

forming the cross-view shape prediction task. We then presented a multi-view U-Net where we

introduced a ‘fuse block’ to the bottleneck of the network so that it can automatically incor-

porate the learned anatomical shape priors in the latent feature space. In this way, the learned

features (shape priors) from other tasks can be explicitly shared with the main segmentation2585

tasks to improve the segmentation robustness. Experimental results show that adding shape

priors is especially useful when segmenting challenging slices where the image contrast is low

or boundaries of anatomical structures are unclear.

To summarize, we have presented two ways to enable knowledge sharing across multiple

related tasks with auxiliary data, either by parameter sharing or feature sharing. Our results2590

suggest that knowledge sharing across multiple related tasks can help the network obtain higher

accuracy on unseen test data when compared to the standard approach learned from a single

task.

Utilizing unlabeled data for semi-supervised learning/unsupervised domain ad-

aptation The second contribution we made is developing two learning frameworks to utilize2595

unlabeled data for enhancing model generalization. Labeling medical images requires expertise,

and can be super expensive and time consuming. It is more economical to just label a small set

of images and then utilize a large number of unlabeled images for enhancing neural networks.

In Chapter 4 Sec 4.1, we developed an adversarial data augmentation method, which can be ap-

plied to both labeled and unlabeled images to facilitate semi-supervised learning. This method2600

takes segmentation network and image information into account, simulating e↵ective intensity

homogeneity (bias fields) to perturb images so that the neural network is fooled to produce

inconsistent predictions. By forcing the network to produce consistent predictions on clean
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images and perturbed images, we enhance the network robustness against bias fields, and more

importantly, utilize unlabeled data to improve the accuracy on unseen test data in the same2605

domain.

The above method works under the assumption where the labeled and unlabeled images

are from the same domain. In Sec. 4.2, we also demonstrated a learning framework that can

transfer knowledge learned from one domain with a set of labeled images to a di↵erent domain

with unlabeled images only. The two domains consist of images from two di↵erent imaging2610

sequences (bSSFP vs LGE imaging) where large di↵erences in terms of image appearances can

be observed. We demonstrated that an image style translation network based on a generative

model (i.e.GAN) is capable of modeling the conditional image distribution so that labeled

bSSFP images can be translated into LGE-like images automatically. These synthetic LGE-

like labeled images make it easy to train a segmentation network for LGE images, even without2615

any manually labeled LGE images. In addition, we proposed a cascaded network, which consists

of two U-nets where the second U-net utilizes the predicted probabilistic maps produced by

the first U-net as shape information to assist the segmentation. The proposed method greatly

outperformed several baseline methods and other unsupervised learning methods, achieving

the state-of-the-art segmentation accuracy on the target domain in the public multi-sequence2620

cardiac MR segmentation challenge [11]1.

Constructing e↵ective data augmentation for limited single-domain data to

improve cross-domain generalization.

In the worst case of data scarcity, there is only one single domain data with limited data

diversity for training. In order to improve model performance across various unseen domains,2625

we developed a general training/testing pipeline for improving the generalization of neural

network-based CMR image segmentation methods. With cardiac imaging, we highlighted that

it is important to perform data normalization and augmentation (section 5.1.5.2) to align and

expand training data distribution for e↵ective training. We also highlighted that the network

structure and capacity also matter for model generalization (section 5.1.5.1). The proposed2630

method achieves promising results on a large number of test images from various scanners and

1https://zmiclab.github.io/projects/mscmrseg19/index.html
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sites even though the training set is from one scanner, one site. Besides, the trained network is

capable of segmenting healthy subjects as well as a group of pathological cases from multiple

sources while it had only been trained with a small portion of pathological cases. This proposed

method has been adopted in the winner algorithm in the public multi-center, multi-vendor and2635

multi-disease cardiac image segmentation challenge (M&Ms2), as a strong base to improve

cross-domain segmentation performance [245, 252]. However, one limitation of our method is

that it requires domain knowledge, expertise to design the data augmentation strategy in the

training and testing pipeline. Also, results show that the trained segmentation network still

has some limitations, such as high sensitivity to images with poor quality, e.g., images with2640

artifacts.

To further enhance model robustness against unseen domain shifts and imaging artifacts,

we presented a novel cooperative training framework in together with a latent space masking-

based data augmentation method in Sec. 5.2. The latent space data augmentation method

performs channel-wise and spacial-wise masking in self-discovering image content and shape-2645

related latent code space. Specifically, we developed methods to mask latent codes in both

random and adversarial fashions. Images are reconstructed with those masked latent codes to

form a diverse set of challenging images and corrupted segmentation maps, which are used to

reinforce neural networks’ training. By training a cardiac segmentation using training data

from only one hospital and evaluating the network on multiple di↵erent datasets from di↵erent2650

sources, we demonstrated that the proposed method could improve cross-site segmentation

performance and particularly increased robustness against various unforeseen imaging artifacts

compared to strong baseline methods.

A more generalized, robust cardiac segmentation model for cardiac imaging applic-

ations Last but not least, our works provide several fully automated cardiac MR segmentation2655

frameworks based on CNN, with improved model generalization and robustness against unseen

domain shifts. Such a segmentation model can be used as a tool to accelerate the analysis of

massive images collected at various unseen sites, providing the visualization of cardiac anatomy,

volume quantification, and valuable functional information such as ejection fraction measure-

2https://www.ub.edu/mnms/



6.2. Future work 145

ment and assisting the diagnosis of cardiovascular diseases. The provided segmentation results2660

can also be used to support follow-up clinical research studies, such as shape modeling and

analysis [45], cardiac motion analysis [253], treatment planning and therapy response predic-

tion [20], as well as survival prediction [253].

6.2 Future work

In this section, we will discuss potential research directions that build upon our work, as well as2665

the limitations and open challenges of deep learning that could be considered as future research

topics.

Beyond medical image segmentation So far, all works we presented have only been applied

to medical imaging segmentation tasks. However, most of our works have the potential to be

applied to other medical imaging tasks, such as medical image classification, detection, and2670

image registration, and reconstruction for improved model generalization. For example, in this

thesis, we have presented four di↵erent ways to augment data to alleviate data scarcity, which

are based on:

• Hand-crafted transformations with random sampling : applying a stack of traditional im-

age transformation functions to increase the variation of image appearances and geometry,2675

including gamma correction-based image contrast augmentation, a�ne transformation,

Sec. 3.1, Sec. 5.1;

• Gradient-based data augmentation: taking the gradients of the network to optimize im-

age transformations parameters so that augmented images can challenge the network to

produce inconsistent predictions. These challenging images can then used to regularize2680

the network better, Sec. 4.1;

• Generative model-based data augmentation: employing a generative model (i.e., GAN) to

translate images across di↵erent image sequences, Sec. 4.2;
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• Latent space-based data augmentation: applying random/adversarial-based masking schemes

in the latent spaces and then using masked latent codes to generate corrupted images and2685

predictions as hard examples to inform network training, Sec. 5.2.

The above data augmentation frameworks are generic and thus have the potential to be adapted

to other data-driven methods for improved generalization. For example, our gradient-based

data augmentation (i.e., adversarial bias field data augmentation) can also be applied to image

registration, which can encourage the network to produce robust deformation fields regardless2690

of the presence of intensity inhomogeneity in fixed and moving images. Also, it is interesting to

extend the adversarial bias field data augmentation with other forms of image transformations

(e.g., a�ne transformation, di↵eomorphic transformation), to increase the data diversity of

augmented data for enhanced regularization 3.

Learning from heterogeneous labeled datasets In this thesis, all labeled datasets for2695

training are labeled by the same group of observers/physicians using a consistent labeling

protocol. In this case, label inconsistency is minimized as expected. However, in real-world

applications, training and testing images are often gathered from di↵erent sources in order to

have substantial data diversity to reflect the spectrum of real-world diversity. These images are

often labeled by di↵erent groups of observers for various reasons (e.g., save time). As a result,2700

it is likely to have large inter-observer variability and inconsistent label quality with such a

large volume. A number of works have reported the existence of missing labels and inconsistent

labeling protocols across di↵erent cardiac image datasets [7, 84]. These inconsistencies can be

a major obstacle for transferring, evaluating, and deploying deep learning models trained from

one domain (e.g., hospital) to another. Therefore, it is of great interest to develop an automated2705

tool to combine existing public datasets from multiple sources and then to harmonize them to

a unified, high-quality dataset for training and evaluation. This tool can not only open the

door for crowd-sourcing but also enable the rapid deployment of those DL-based applications.

Improving model interpretability and explainablity As introduced in Sec. 2.3.3, most

deep learning systems have poor interpretability and explainability, as they are ‘black-box’ in2710

3A work built upon this idea has been submitted to Medical Image Analysis [254] recently.
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nature. Compared to traditional symbolic machine learning systems, deep learning systems are

in general di�cult to interpret their predictions, i.e., why certain decisions or predictions have

been made. This issue makes the model intractable for model verification and ultimately un-

trustworthy. In the future, we will look into developing deep learning algorithms with improved

interpretability and explainability to support the development of safety-critical medical imaging2715

applications. Theoretically, we could build causality into neural networks to understand cause

and e↵ect, e.g., knowing why a model might fail [255]. There are several emerging fields on this

topic, such as explainable artificial intelligence (XAI), and causal artificial intelligence [256].

Three main streams for enhancing model explainability and interpret-ability are feature im-

portance estimation [117], causal e↵ects of model components [256, 257], and counterfactual2720

explanation [256, 258]. Yet, many works on this topic are still conceptual, as it is not easy to

verify causal interpretability. Another direction is to add a failure awareness module into the

deployed networks. This can be achieved by providing users with quantified measures, such as

prediction quality scores [219], uncertainty maps [78] and attention maps [259].
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5349.



180 BIBLIOGRAPHY

[218] H. Wei, W. Xue and D. Ni, ‘Left ventricle segmentation and quantification with attention-

enhanced segmentation and shape correction,’ in Proceedings of the Third International3595

Symposium on Image Computing and Digital Medicine, ISICDM 2019, Xi’an, China,

August 24-26, 2019, 2019, pp. 226–230.

[219] R. Robinson, V. V. Valindria, W. Bai, O. Oktay, B. Kainz, H. Suzuki, M. M. Sanghvi,

N. Aung, J. M. Paiva, F. Zemrak, K. Fung, E. Lukaschuk, A. M. Lee, V. Carapella, Y. J.

Kim, S. K. Piechnik, S. Neubauer, S. E. Petersen, C. Page, P. M. Matthews, D. Rueckert3600

and B. Glocker, ‘Automated quality control in image segmentation: Application to the

UK biobank cardiovascular magnetic resonance imaging study,’ Journal of Cardiovas-

cular Magnetic Resonance, vol. 21, no. 1, p. 18, 2019, issn: 1097-6647, 1532-429X. doi:

10.1186/s12968-019-0523-x.
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[252] P. M. Full, F. Isensee, P. F. Jäger and K. H. Maier-Hein, ‘Studying robustness of se-3725

mantic segmentation under domain shift in cardiac MRI,’ in Statistical Atlases and

Computational Models of the Heart. M&Ms and EMIDEC Challenges - 11th Interna-

tional Workshop, STACOM 2020, Held in Conjunction with MICCAI 2020, Lima, Peru,

October 4, 2020, Revised Selected Papers, E. Puyol-Antón, M. Pop, M. Sermesant, V. M.

Campello, A. Lalande, K. Lekadir, A. Suinesiaputra, O. Camara and A. A. Young, Eds.,3730



BIBLIOGRAPHY 185

ser. Lecture Notes in Computer Science, vol. 12592, Springer, 2020, pp. 238–249. doi:

10.1007/978-3-030-68107-4_24.

[253] G. A. Bello, T. J. W. Dawes, J. Duan, C. Bi�, A. de Marvao, L. S. G. E. Howard, J. S. R.

Gibbs, M. R. Wilkins, S. A. Cook, D. Rueckert and D. P. O’Regan, ‘Deep learning

cardiac motion analysis for human survival prediction,’ Nature Machine Intelligence,3735

vol. 1, pp. 95–104, 2019, issn: 2522-5839. doi: 10.1038/s42256-019-0019-2.

[254] C. Chen, C. Qin, C. Ouyang, S. Wang, H. Qiu, L. Chen, G. Tarroni, W. Bai and D.

Rueckert, ‘Enhancing MR image segmentation with realistic adversarial data augment-

ation,’ arXiv Preprint, 2021, arXiv:2108.03429.

[255] D. C. Castro, I. Walker and B. Glocker, ‘Causality matters in medical imaging,’ Nature3740

Communications, vol. 11, no. 1, p. 3673, 2020. doi: 10.1038/s41467-020-17478-w.

[256] G. Xu, T. D. Duong, Q. Li, S. Liu and X. Wang, ‘Causality learning: A new perspective

for interpretable machine learning,’ arXiv Preprint, 2020, arXiv:2006.16789.

[257] T. Narendra, A. Sankaran, D. Vijaykeerthy and S. Mani, ‘Explaining deep learning

models using causal inference,’ arXiv Preprint, 2018, arXiv:1811.04376.3745

[258] S. Barocas, A. D. Selbst and M. Raghavan, ‘The hidden assumptions behind counter-

factual explanations and principal reasons,’ in FAT* ’20: Conference on Fairness, Ac-

countability, and Transparency, Barcelona, Spain, January 27-30, 2020, M. Hildebrandt,

C. Castillo, E. Celis, S. Ruggieri, L. Taylor and G. Zanfir-Fortuna, Eds., ACM, 2020,

pp. 80–89. doi: 10.1145/3351095.3372830.3750

[259] J. Heo, H. B. Lee, S. Kim, J. Lee, K. J. Kim, E. Yang and S. J. Hwang, ‘Uncertainty-

Aware attention for reliable interpretation and prediction,’ in Advances in Neural In-

formation Processing Systems 31: Annual Conference on Neural Information Processing

Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, S. Bengio, H.
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Supplementary material

Below is the supplementary material for the work presented in Sec. 5.1.

Table A1: Segmentation performance across images of di↵erent slice thicknesses. The
average Dice scores and standard deviation are reported for each group. While the segmentation
network was trained only using images of 8 mm slice thickness, this network produces satisfactory
performances on images of di↵erent slice thicknesses.

Test dataset Slice thickness (mm) Number of images
LV MYO RV

mean std mean std mean std

ACDC

5 24 0.89 0.06 0.76 0.09 0.82 0.09
6.5 2 0.93 0.03 0.81 0.00 0.83 0.03
7 2 0.85 0.09 0.69 0.05 0.82 0.06
10 172 0.90 0.10 0.82 0.06 0.82 0.14

BSCMR-AS

5 4 0.89 0.08 0.85 0.04 - -
6 94 0.86 0.12 0.83 0.09 - -
7 486 0.88 0.1 0.83 0.07 - -
8 294 0.89 0.09 0.83 0.07 - -
10 318 0.89 0.07 0.85 0.04 - -
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