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ABSTRACT

This work proposes a new way of combining independently trained
classifiers over space and time. Combination over space means that
the outputs of spatially distributed classifiers are aggregated. Com-
bination over time means that the classifiers respond to streaming
data during testing and continue to improve their performance even
during this phase. By doing so, the proposed architecture is able
to improve prediction performance over time with unlabeled data.
Inspired by social learning algorithms, which require prior knowl-
edge of the observations distribution, we propose a Social Machine
Learning (SML) paradigm that is able to exploit the imperfect mod-
els generated during the learning phase. We show that this strategy
results in consistent learning with high probability, and it yields a
robust structure against poorly trained classifiers. Simulations with
an ensemble of feedforward neural networks are provided to illus-
trate the theoretical results.

Index Terms— Distributed classification, social learning, com-
bination of classifiers, neural networks.

1. INTRODUCTION AND RELATED WORK

Social learning strategies allow the classification of unlabeled fea-
tures by a heterogeneous network of agents [1–8]. The heterogene-
ity of the network is twofold: first, agents may be observing dif-
ferent (possibly non-overlapping) sets of attributes of the same un-
derlying phenomenon; second, their statistical models need not be
the same, e.g., two agents may be observing the same attribute from
different perspectives. Neighboring agents share statistics about the
observed features and diffuse this information across the network to
arrive at a conclusion on the nature of the observed phenomenon.

Many social learning approaches exist in the literature that have
been shown to yield correct asymptotic learning of the true state of
nature under mild identifiability assumptions [1, 3–5, 7, 8]. These
results, however, come at a cost: the strategies require prior knowl-
edge of the true underlying distributions for the features. In prac-
tice we often have access to feature data only, or to some approx-
imate models for the distributions. For example, uncertain likeli-
hoods in social learning have been considered in [9], albeit only for
multinomial distributions. In this work, we will allow for a fairly
broad class of distributions.

Another distinguishing aspect is that we will consider cooper-
ation among spatially distributed classifiers, and aggregation over
time of the inference produced from streaming data. An ensemble
of classifiers is known to be a more robust structure than an isolated,
perhaps poorly trained, classifier [10]. Examples of ensemble ap-
proaches are Bagging [11] and Boosting [12], in which classifiers
combine weighted decisions across space. Boosting requires la-
beled samples to tune the combinations weights. Both bagging and
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boosting methods do not address the streaming data case. Other ex-
amples include localized Gaussian Process Regression (GPR) meth-
ods [13–15], which require labeled samples for online training and
focus on kernel-based classifiers. In our work, we are interested in
more general classifier structures.

We therefore propose the Social Machine Learning (SML) ap-
proach: a decentralized algorithm for combining the outputs of a
heterogeneous network of classifiers over space and time, based on
the adaptive diffusion algorithm proposed in [7, 16, 17]. The SML
structure inherits the following qualities from social learning: the
ability to combine classifiers with different dimensions and statisti-
cal models, while providing asymptotic performance guarantees in
addition to continuous performance improvement even during the
prediction phase. We show that i) with high probability, consis-
tent learning occurs despite the imperfectly trained models; and ii)
poorly trained classifiers can leverage the networked setup to im-
prove their performance. We exploit these results particularly for
the setup of a network of feedforward neural networks (FNN).

Notation: Random variables are written in bold font and de-
terministic variables in normal font. Ex(·) and Px(·) respectively
denote the expectation and probability measure computed with re-
spect to the single random variable x.

2. THE DECISION-MAKING PROBLEM

A network of K agents is engaged to accomplish the following
decision-making task. There is a true underlying binary state of
nature represented by an equiprobable binary random variable γ ∈
{−1,+1} , Γ. As time progresses, each agent collects stream-
ing data arising from the true state of nature. More specifically,
agent k = 1, 2, . . . ,K observes at times i = 1, 2, . . . , the random
feature vectors hk,i ∈ Hk, which are independent and identically
distributed (i.i.d.) over time (but not necessarily across the agents).
The features hk,i at agent k, given the underlying true hypothesis
γ, form a sequence of i.i.d. random vectors distributed according to
some conditional distribution (or likelihood):

hk,i ∼ Lk(h|γ), h ∈ Hk, γ ∈ Γ. (1)

We allow the feature vectors to have different dimensions and at-
tributes across the agents. The goal of the decision learning task is
to let each agent learn, as i→∞, the right hypothesis γ.

If agent k knows the true joint distribution of features and la-
bel, it can then apply the paradigm of Bayes classifiers [18]. The
Bayes classifier is the solution to a maximum-a-posteriori (MAP)
problem, where the label estimated by classifier k is the label γ that
maximizes pk(γ|hk,1,hk,2, . . . ,hk,i), i.e., the posterior probabil-
ity of γ given the sequence of features {hk,j}ij=1. However, agents
might not have enough information to solve this classification prob-
lem alone, e.g., if the signals at agent k are not informative enough
(for example, it may be the case that Lk(h| − 1) = Lk(h|+ 1) for
all h ∈ Hk). If however the network as a whole possesses enough
information, under the weaker assumption of global identifiability,
then a social learning scheme can be used and allows agents to learn
the truth [1, 4, 5, 7, 8].



In practice, the statistical characterization (1) of the features
and/or labels is often unknown. We will see next how the individual
classifiers can be trained to approximate the unknown distributions.

3. LOCAL INSTANTANEOUS CLASSIFIERS

The fundamental assumption of this work is that the likelihoods
Lk(h|γ) are unknown. To circumvent this lack of knowledge, we
assume that each agent is able to train locally some standard bi-
nary classifier during a training phase. In order to avoid confusion,
the random variables pertaining to the training set are topped with
a sign ∼. Whenever we are dealing with the training phase of the
classifiers, feature vectors and labels are indexed with the time sub-
script n. For the prediction (i.e., testing) phase, we use the time
subscript i.

Agent k is trained by collecting Nk examples constituted by
pairs {h̃k,n, γ̃n}Nk

n=1. Labels γ̃n are uniformly distributed over Γ =

{+1,−1} so the pair (h̃k,n, γ̃n) is distributed according to the joint
distribution:

pk(h, γ) = pk(γ)Lk(h|γ), h ∈ Hk, γ ∈ Γ, (2)

with the uniform prior pk(γ) = 1/2 for γ ∈ Γ. We are interested
in the following statistic:

log
pk(+1|hk,i)
pk(−1|hk,i)

(a)
= log

Lk(hk,i|+ 1)

Lk(hk,i| − 1)
(3)

where the equality in (a) follows from the Bayes rule and the uni-
form priors assumption. The log-likelihood ratio on the RHS of
(3) is positive whenever the observation hk,i is more likely to have
come from class +1 and negative when it is more likely to have
originated from class −1. This is the same sufficient statistic ag-
gregated over space and time in social learning [7,17] and in signal
detection schemes [16, 19, 20].

After training, the classifier will generate approximate posterior
models p̂k(γ|h). Thus, instead of (3), we will rely on the following
logit statistic:

log
p̂k(+1|hk,i)
p̂k(−1|hk,i)

= log
p̂k(+1|hk,i)

1− p̂k(+1|hk,i)
, fk(hk,i). (4)

The function fk belongs to a specific class of functions Fk : Hk 7→
R that depends on the choice of classifier. For example, in logistic
regression with h ∈ RM , Fk is parameterized by a vector w ∈
RM , and we have the linear logit function fk(h;w) = w>h [18].
Since the logit in (4) operates on the feature vector collected by an
individual agent in a single time instant, we will refer to (4) as a
local instantaneous logit.

The local instantaneous classifiers are trained by choosing the
function f within Fk that minimizes a suitable risk functionRk(f).
We define this optimal function as the target model:

fok , arg min
f∈Fk

Rk(f). (5)

In this work we focus on the logistic risk:

Rk(f) = Ehk,γ log
(

1 + e−γ̃nf(h̃k,n)
)
, (6)

which is commonly used for binary classification tasks for tradi-
tional classifiers such as logistic regression or more complex struc-
tures such as neural networks with softmax output layers. Note that
the expectation is computed under the (unknown) joint distribution
of the pair (h̃k,n, γ̃). Since all agents rely on a finite set of training
samples, they will solve instead an empirical optimization problem:

f̃Nk , arg min
f∈Fk

R̃N
k (f), (7)
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Fig. 1. Social Machine Learning (SML) diagram.

where the empirical risk is in the form of an empirical logistic risk:

R̃N
k (f) =

1

Nk

Nk∑
n=1

log
(

1 + e−γ̃nf(h̃k,n)
)
, (8)

which is computed over the training set. Since agents solve (7)
until convergence, we assume they reach an empirical minimizer
f̃Nk that is close enough to the target fok for sufficiently large Nk
under ergodicity assumptions. Next, we introduce the algorithm
that allows these classifiers to be combined within a network.

4. SOCIAL MACHINE LEARNING

The network is modeled as a strongly connected graph (i.e., where
there is always a path in both directions between any two agents
and at least one self-loop) with a left-stochastic combination matrix
A, whose elements a`k are nonnegative, and a`k = 0 if agent ` /∈
Nk, where Nk denotes the neighborhood of agent k. Under this
condition, we define the Perron eigenvector π as [21]:

Aπ = π,
∑K
k=1 πk = 1, πk > 0, for all k = 1, 2, . . . ,K. (9)

During the prediction phase, agents are observing unlabeled stream-
ing private features hk,i. In Fig. 1, we show a diagram depicting the
SML approach. After the training phase, the posterior models are
used in the prediction phase to form the individual agent’s decisions
in a social learning setup.

In [7,17], an adaptive version of social learning was introduced,
where agents update their beliefs (or opinions) ϕk,i(γ) as1:

ψk,i(γ) =
ϕ1−δ
k (γ)Lδk(hk,i|γ)∑

γ′∈Γϕ
1−δ
k (γ′)Lδk(hk,i|γ′)

(10)

ϕk,i(γ) =
exp

{∑K
`=1 a`k logψ`,i(γ)

}
∑
γ′∈Γ exp

{∑K
`=1 a`k logψ`,i(γ′)

} (11)

where 0 < δ � 1 is a small step-size parameter. In (10), the agent
uses its private observation hk,i to update its belief into an inter-
mediate belief ψk,i(γ). In (11), the agent combines the intermedi-
ate beliefs coming from neighbors into its updated belief ϕk,i(γ).
Note that these relations rely on knowledge of the exact likelihood
functions Lk(h|γ), whereas in this work these likelihoods will be
estimated during the training phase. The objective is to show that
with minimal pre-training, the estimated likelihoods will enable the
social learning algorithm to classify unlabeled data correctly with
high probability and, moreover, the confidence of the classifier in
its decisions will continually grow over time in response to stream-
ing data. This property is fundamentally different from existing
static testing phases for traditional classifiers, where classification
decisions are instantaneous and are not exploited to improve perfor-
mance.

1The belief ϕk,i(γ) quantifies the confidence of agent k at instant i that
γ is the true state of nature.



An equivalent way of representing (10) and (11) is in the form
of an adaptive diffusion strategy:

λk,i = (1− δ)
K∑
`=1

a`kλ`,i−1 + δ

K∑
`=1

a`kc`,i, (12)

where we defined λk,i , log[ϕk,i(+1)/ϕk,i(−1)] and ck,i is
taken as the log-likelihood ratio seen in the RHS of (3). Eq. (12)
has moreover the form of a distributed stochastic gradient algorithm
with step-size δ and with a quadratic cost function – see [16, 21].
The algorithm in (12) constructs the aggregate classification vari-
able λk,i from the past information, in the shape of λk,i−1, and the
present information ck,i received from neighboring classifiers. The
structure in (12) will enable cooperation over space and time.

In our approach, in the place of ck,i, we will consider the
local instantaneous logit statistic fk(hk,i). We also assume that
each agent performs a debiasing operation before sharing the statis-
tic fk(hk,i), by discounting its empirical mean over the training
dataset. We define this empirical training mean as:

µ̃Nk (fk) =
1

Nk

Nk∑
n=1

fk(h̃k,n). (13)

The diffusion strategy in (12) is then run with the choice:

ck,i = fk(hk,i)− µ̃Nk (fk) (14)

Note that ck,i contains two independent sources of randomness.
The first, introduced by fk(hk,i), contains the randomness from the
prediction sample hk,i. The second source of randomness comes
from the training samples h̃k,n, which are introduced in the term
µ̃Nk (fk). The prediction and training feature vector samples are
independent of each other.

The instantaneous decision of agent k, namely γ̂k,i, is taken
according to the rule:

γ̂k,i = sign (λk,i) , (15)

where sign(x) = +1, if x ≥ 0 and sign(x) = −1 otherwise.
This choice is motivated by the fact that the logarithmic ratios in (4)
are positive whenever the fiducial posterior probability p̂k(+1|h)
exceeds 1/2, and are negative otherwise.

From previous work [7] we know that, for sufficiently small
values of the step-size δ, the adaptive diffusion strategy in (12) with
decision rule in (15) is able to learn consistently2 the true hypothesis
under the following condition. Let

µ+
k (fk) , ELk(h|+1)fk(hk,i), µ−k (fk) , ELk(h|−1)fk(hk,i),

(16)

where the notation ELk(h|γ) indicates that the expectation is com-
puted under the distribution Lk(h|γ). Let also

µ+(f) ,
K∑
k=1

πkµ
+
k (fk), µ−(f) ,

K∑
k=1

πkµ
−
k (fk), (17)

where we use the compact notation f to indicate the dependency of
the above averages on the group of functions f1, f2, . . . , fK . Then,
consistent learning is achieved if:

µ+(f) > µ̃N (f) and µ−(f) < µ̃N (f). (18)

For each agent, the result of the training phase is the optimal em-
pirical classifier function f̃Nk . Therefore, we are interested in deter-
mining if both events described in (18) are likely to simultaneously
occur when the classifier functions are given by f̃N , i.e., by the
group of functions f̃N1 , f̃N2 , . . . , f̃NK .

2In our setting, consistent learning means that the classification error

4.1. SML Consistency

In Theorem 1, we will show that the SML strategy consistently
learns the truth with high probability, as the number of training sam-
ples grows and for a moderately complex classifier structure. The
complexity of the classifier structure is related to the complexity of
the class of functions Fk. The latter is quantified by using the con-
cept of Rademacher average (initially introduced as Rademacher
penalty in [22]). We follow the definition in [23] and introduce, for
a class of functions F andN samples x1, x2 . . . , xN ∈ X, the set of
vectors F

(
xN1
)

as (f(x1), f(x2), . . . , f(xN )) with f ∈ F. Then,
the (empirical) Rademacher average associated with F

(
xN1
)

is:

R
(
F
(
xN1

))
, Er

∣∣∣∣∣sup
f∈F

1

N

N∑
n=1

rnf(xn)

∣∣∣∣∣ , (19)

where rn are independent and identically distributed Rademacher
random variables, i.e., with P(rn = 1) = P(rn = −1) = 1/2.

Theorem 1 (SML Consistency). For the logistic loss, assume that
R(fo) < log 2 and that fk(hk) < B for every hk ∈ Hk and k =

1, 2, . . . ,K, with B > 0. For any d ∈ (0,− log(eR(fo) − 1)), we
have the following bound for the probability of consistent learning:

P
(
µ+(f̃N ) > µ̃N (f̃N ) , µ−(f̃N ) < µ̃N (f̃N )

)
≥ 1− 2

K∑
k=1

exp


−
(
d− ρ(k)

N

)2

Nk

2B2


−

K∑
k=1

exp


−
(

∆−R(fo)
2

− ρ(k)
N

)2

Nk

2B2

 , (20)

with ∆ , log(1 + e−d), R(fo) =
∑K
k=1 πkRk(fok ) and

ρ
(k)
N , 2EhkR(Fk(h

Nk
1 )). (21)

�

Sketch of proof: The proof cannot be included for space limita-
tions, but we present some insights for it. First, define the average
network risk as R(f) ,

∑K
k=1 πkRk(fk). We have that:

R(f̃N )
(a)
≥

K∑
k=1

πk log
(

1 + exp
(
− Ehk,γγf̃

N
k (hk,i)

))
(b)
≥ log

(
1 + exp

(
−

K∑
k=1

πkEhk,γγf̃
N
k (hk,i)

))
= log

(
1 + exp

(
− (µ+(f̃N )− µ−(f̃N ))

2

))
, (22)

where in (a) and (b) we used Jensen’s inequality with the convexity
of log(1 + ex). The inequality in (22) translates into:

R(f̃Nk ) ≤ log
(
1 + e−d

)
=⇒ µ+(f̃N )− µ−(f̃N )

2
≥d. (23)

If now the risk in (23) is sufficiently close to the risk R(fo) <
log 2, we see that d > 0. In other words, a good generalization
capability of the trained classifiers f̃Nk , i.e., a lower risk, implies
a larger gap between means µ+ and µ−. In view of (18), this gap

probability can be made arbitrarily small by suitably reducing the value of
the step-size δ.
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Fig. 2. Network classifiers for handwritten digits classification. Leftmost panel: Network topology. Middle panel: Empirical risk evolution
for agent 1 (in blue), the rest of the agents (different shades of gray) and for the network average empirical risk (in red). Rightmost panel:
Decision variable of agent 1 over the prediction phase, where the dashed line indicates the decision boundary between digits 1 and 0.

can be sufficient to achieve consistent learning, provided that the
concentration error of the empirical training mean around the true
mean has a maximum error of d.

According to these observations, in order to obtain (20), it is
necessary to examine the statistical concentration properties of the
risk and of the empirical training mean. This task is complicated by
the fact that both quantities depend on random functions fNk . For
this reason, we must resort to uniform (w.r.t. the class of functions)
laws of large numbers. These types of concentration results are
based notably on McDiarmid’s inequality [24].

In what concerns the expression in (20), the term ρ
(k)
N contains

the complexity of the chosen classifier structure, which depends it-
self on the training set size Nk. We will see in the next section that
it evolves as O(1/

√
Nk) for feedforward neural networks. There-

fore as Nk grows, we can neglect ρ(k)
N . Now, since by assumption

d ∈ (0,− log(eR(fo)−1)), both terms d and ∆−R(fo) are strictly
positive. This implies that both exponential terms in (20) vanish,
which in turn implies that the probability of consistent learning for
the proposed strategy approaches 1, as the training sets grow.

4.2. Neural Network Complexity

In this section, we complement the result from Theorem 1 by show-
ing that the term ρ

(k)
N in (21), which depends on the Rademacher

complexity of the classifier, vanishes with an increasing number of
training samples in the case of feedforward neural networks (FNN).
Assume that one classifier has the structure of a FNN with L layers
(excluding the input layer) and activation function σ. We drop in-
dex k as we are referring to a single FNN. Each layer ` consists of
n` nodes, equivalently the size of layer ` is given by n`.

At each node m = 1, 2, . . . , n` of layers ` = 2, 3, . . . , L, the
following function g(`)

m is implemented:

g(`)
m (h) =

n`−1∑
j=1

w
(`)
mjσ

(
g

(`−1)
j (h)

)
− θ(`)

m . (24)

The parameters w(`)
mj correspond to the elements of the weight ma-

trix W` of dimension n`×n`−1. The offset parameters θ(`)
m are the

elements of a vector θ(`) of dimension n`. For the first layer, the
function implemented at node m is of the form:

g(1)
m (h) =

n0∑
j=1

w
(1)
mjhj − θ

(1)
m , (25)

where the input vector h has dimension n0.
For a FNN whose purpose is to solve a binary classification

problem, we denote the output at layer L by z ∈ R2, where zm =

g
(L)
m (h) for m = 1, 2. The final output is given by applying the

softmax function to z. In this case the logit function is given by:

fNN(h) = log
p̂(+1|h)

p̂(−1|h)
= z1 − z2 (26)

where we say that fNN belongs to a class of functions FNN, which
is parameterized by matrices W` and bias vectors θ(`), for ` =
1, 2, . . . , L, according to (24), (25) and (26).

We are interested in finding an expression for the Rademacher
complexity of class FNN described above. An upper bound for this
complexity can be found in Lemma 1 inspired by results from [25]
(proof is omitted due to space limitations).

Lemma 1 (Rademacher Complexity of FNNs). Consider an
L-layered feedforward neural network, satisfying ‖w(`)

m ‖1 ≤ b,
|θ(`)(m)| ≤ a, for every node m = 1, 2, . . . , n` and every layer
` = 1, 2, . . . , L. Assume that the input vector h ∈ Rn0 satisfies
‖h‖∞ ≤ c3, that the activation function σ(x) is Lipschitz with
constant Lσ and that σ(0) = 0. Then the Rademacher average for
the set of vectors FNN(hN1 ) is bounded by:

R(FNN(hN1 ))≤ 2√
N

[
(2bLσ)L−1bc

√
2 log(2n0)+

L−1∑
`=0

(2bLσ)`a

]
.

(27)

�
5. SIMULATION RESULTS

To illustrate the proposed strategy, we consider a network of 10
agents, whose topology can be seen in Fig. 2. The combination
matrix is generated using an averaging rule [21], and we ensure that
at least one agent possesses a self-loop.

We consider the MNIST dataset [26], using digits 0 and 1 for a
binary classification task. Feature vectors are the 784 pixels of each
image of the handwritten digits. Each agent disposes of 98 train-
ing samples for each class of digits. With this dataset, each agent
trains its own classifier, which has the structure of a feedforward
neural network with one hidden layer with 64 nodes, and activation
function arctan(·). To illustrate the robustness of the network of
classifiers, we purposely tamper with the dataset for Agent 1, high-
lighted in the leftmost panel of Fig. 2. To obtain a poor training
performance, we provide agent 1 with only digits 1 during training
and randomly assigned labels.

The training phase is run using mini-batch iterates of 10 sam-
ples, over 15 epochs. The empirical risk evolution at the individ-
ual agents as training progresses is shown in Fig. 2 (middle panel),
where we can see how the training performance of agent 1 is much
worse than the performance of other agents. The average empirical
risk, which is given by

∑K
k=1 πkR̃

N (f̃N ), is hardly affected by the
deviating behavior of agent 1.

In the prediction phase, all agents are receiving streaming ob-
servations, i.e., images of digits. Agents are observing digits 0 until
the time instant 500, from which they start observing digits 1. In
the rightmost panel of Fig. 2, we see the classification variable λ1,i

of agent 1 over time, showing that, although agent 1 has a poorly
trained model, it is able to learn consistently the true state.

3‖x‖∞ denotes the `∞-norm defined as ‖x‖∞ , maxi |xi|.
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