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Abstract
We obtain a generalisation of the Stroock–Varadhan support theorem for a large class of systems of subcritical singular
stochastic PDEs driven by a noise that is either white or approximately self-similar. The main problem that we face
is the presence of renormalisation. In particular, it may happen in general that different renormalisation procedures
yield solutions with different supports. One of the main steps in our construction is the identification of a subgroup
H of the renormalisation group such that any renormalisation procedure determines a unique coset 𝑔 ◦ H. The
support of the solution then only depends on this coset and is obtained by taking the closure of all solutions obtained
by replacing the driving noises by smooth functions in the equation that is renormalised by some element of 𝑔 ◦ H.
One immediate corollary of our results is that theΦ4

3 measure in finite volume has full support and that the associated
Langevin dynamic is exponentially ergodic.
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1. Introduction

The purpose of this article is to provide a far-reaching generalisation of the support theorem of Stroock
and Varadhan [SV72]. Recall that this result can be formulated as follows. Let {𝑉𝑖}𝑚𝑖=0 be a finite collection
of vector fields on R𝑛 that have bounded first and second derivatives and consider the solution 𝑥 to the
system of stochastic differential equations given by

𝑑𝑋 = 𝑉0 (𝑋) 𝑑𝑡 +
𝑚∑︁
𝑖=1
𝑉𝑖 (𝑋) ◦ 𝑑𝑊𝑖 (𝑡) , (1.1)

where the𝑊𝑖 are i.i.d. standard Wiener processes and ◦ denotes Stratonovich integration [Str64]. Write
P𝑥 for the law of the solution to (1.1) with initial condition 𝑋0 = 𝑥 on C(R+,R𝑛). It follows from the
Wong–Zakai theorem that, if we write 𝑋 (Y) for the solution to the random ODE

¤𝑋 (Y) = 𝑉0 (𝑋 (Y) ) +
𝑚∑︁
𝑖=1
𝑉𝑖 (𝑋 (Y) ) ¤𝑊 (Y)

𝑖
, (1.2)
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for𝑊 (Y) a smooth approximation to𝑊 (for example convolution with a smooth mollifier), then 𝑋 (Y) → 𝑋

in probability. On the other hand, for any fixed Y > 0, the topological support of the law P(Y)
𝑥 of 𝑋 (Y) is

contained in the closure 𝑅𝑥 of the range of the continuous map I𝑥 : C1 (R+,R𝑚) → C(R+,R𝑛) which
maps any C1 function𝑊 (Y) to the solution to (1.2).
Since the topological support is lower semi-continuous under weak convergence, this immediately

implies that one also has supp P𝑥 ⊂ 𝑅𝑥 . What Stroock and Varadhan proved in [SV72] is that one actually
has supp P𝑥 = 𝑅𝑥 . Our aim is to generalise such a statement to a wide class of singular stochastic PDEs.
The general framework used in this article is that of [BHZ19, BCCH17]. Loosely, speaking, we

consider systems of SPDEs of the form

𝜕𝑡𝑢𝑖 = L𝑖𝑢𝑖 + 𝐹𝑖 (𝑢,∇𝑢, . . .) +
∑︁
𝑗≤𝑛

𝐹
𝑗

𝑖
(𝑢,∇𝑢, . . .)b 𝑗 , 𝑖 ≤ 𝑚 (1.3)

where theL𝑖 denote homogeneous differential operators on R𝑑 , the spatial variable takes values in the
torus T𝑑 , and the b𝑖 denote driving noises that are of the form b𝑖 = K𝑖 ★ [𝑖 where [𝑖 denotes space-time
white noise (or possibly noise that is white in space and constant in time) andK𝑖 is a kernel which is
self-similar in a neighbourhood of the origin and smooth otherwise. The 𝐹 𝑗

𝑖
are local nonlinearities

in the sense that the value of 𝐹 𝑗
𝑖
(𝑢,∇𝑢, . . .) at a given space-time point is a smooth function of 𝑢 and

finitely many of its derivatives evaluated at that same point. We will assume throughout that the system
(1.3) is locally subcritical in the sense of [BHZ19].

Remark 1.1 The choice b𝑖 = K𝑖 ★ [𝑖 covers many interesting examples in which b𝑖 is the solution of a
linear equation driven by [𝑖; in this caseK𝑖 should be chosen as the Green’s function. For our support
theorem we do not need thatK𝑖 is actually the Green’s function of a PDE, but we do need the kernel to
be homogeneous under rescaling. This assumption will be used heavily throughout this article, compare
Assumption 4.

It was shown in [BHZ19] that one can associate to such an equation in a natural way a nilpotent
Lie group G−, usually called the renormalisation group in this context, as well as a construction of the
following type. Write X for a suitable space of right-hand sides for (1.3) (i.e. an element of X consists
of the nonlinearities 𝐹𝑖 as well as 𝐹

𝑗

𝑖
that can be described by a regularity structure built from a fixed

complete subcritical “rule” as in [BHZ19, Sec. 5]) and write X0 ⊂ X for the “deterministic right-hand
sides”, i.e. those elements such that 𝐹 𝑗

𝑖
≡ 0.

One then has a map Υ : G− × X→ X0 such that (𝑔, 𝐹) ↦→ 𝐹 + Υ(𝑔, 𝐹) yields a representation of G−
on X. (See Remark 1.3 for more details.)
Furthermore, given any natural regularisation b Y of b, one can find a sequence of elements 𝑔Y ∈ G−

such that the solutions to

𝜕𝑡𝑢
Y
𝑖 = L𝑖𝑢

Y
𝑖 + 𝐹𝑖 (𝑢Y ,∇𝑢Y , . . .) +

∑︁
𝑗≤𝑛

𝐹
𝑗

𝑖
(𝑢Y ,∇𝑢Y , . . .)b Y𝑗 +

(
Υ(𝑔Y , 𝐹)

)
𝑖
(𝑢Y ,∇𝑢Y , . . .) , (1.4)

subject to suitable initial conditions 𝑢Y
𝑖
(0, ·) = 𝑢Y, (0)

𝑖
, converge to a limit 𝑢. (The convergence takes place

in probability in a space of Hölder continuous trajectories with possible finite-time blow-up.) These
limits have a restricted uniqueness property in the sense that, for any other regularisation b̃ Y of b one
can find a sequence of elements �̃�Y ∈ G− such that the solutions to (1.4) with b Y replaced by b̃ Y and 𝑔Y
replaced by �̃�Y converge to the same limit.

Remark 1.2 As in [BCCH17, Sec. 2.7], the initial condition 𝑢Y, (0)
𝑖

is dependent on Y and taken of the
form 𝑢Y, (0) = 𝑣 (0) +S−

Y (b) (0, ·), where S−
Y (b) is a stationary process representing the rough part (i.e. the

non function-valued part) of the solution. In particular, it is in general not possible to choose as initial
condition a deterministic smooth function unless solutions themselves are function-valued in which
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case S−
Y ≡ 0. An interesting equation where this happens is the so-called Φ4

4−𝛿 equation, see [BCCH17,
Sec. 2.8.2] and Sections 1.2.1 and C.2. For many interesting examples, including generalised KPZ and
generalised PAM, this issue is not apparent and the initial condition can be chosen as any deterministic
function (or even distribution) with sufficient regularity. An exceptional case is Φ4

3 where S
−
Y ≠ 0 but one

can compensate this by choosing 𝑣 (0) appropriately, compare Section C.1.

Remark 1.3 Writing T− for the set of trees of negative degree associated to the class of SPDEs under
consideration (see Section 2.2.1 below), one can explicitly set

Υ : (𝑔, 𝐹) ↦→
∑︁
𝜏∈T−

𝑔(𝜏)
𝑆(𝜏)Υ

𝐹 [𝜏] ,

where the space of nonlinearities P𝔏+ , combinatorial factor 𝑆(𝜏) and evaluation map Υ𝐹 are defined in
[BCCH17, Sec. 2.7]. In the right-hand side, we identify elements of G− with maps T− → R (characters
on the free unital algebra generated by T−).
In this context, the purpose ofΥ is to provide a formula for the counterterms required to renormalise our

equation. As already noted in [BCCH17], the same map also provides an expression for the expansion of
the “abstract solution” to our SPDE in the corresponding regularity structure. This is strongly reminiscent
of the expression of the Taylor expansion of the solution to an ODE in terms of a sum over trees [But72].

We call a choice of (b Y , 𝑔Y)Y>0 a renormalisation procedure and we consider two such procedures to
be equivalent if they yield the same limit process for any system of SPDEs driven by b Y belonging to
a suitable class of systems of the same form as the original one. (See [BCCH17] for the definition of
this class of equations given a “rule” in the sense of [BHZ19].) Given two renormalisation procedures
(b Y , 𝑔Y) and (b̃ Y , �̃�Y), it turns out that it is always possible to find one single element 𝑓 ∈ G− such that
(b̃ Y , �̃�Y) is equivalent to (b Y , 𝑓 ◦ 𝑔Y). Given any fixed choice of compactly supported kernelK𝑖 such
that (𝜕𝑡 −L𝑖)K𝑖 = 𝛿 in a neighbourhood of the origin and any choice b Y of smooth approximation to b
(by convolution with a compactly supported mollifier, but this could in principle be more general), there
is a distinguished choice of 𝑔 (Y)BPHZ (depending on b Y), which we call the “BPHZ renormalisation”, see
[BHZ19]. In particular, this has the property that the (b Y , 𝑔 (Y)BPHZ) are all equivalent for different choices of
b Y , so that we can talk about “the” BPHZ solution to (1.3).
At first sight, the natural generalisation of Stroock and Varadhan’s result for a system of equations of

the type (1.3) may be that the support of the solutions starting at 𝑢 coincides with the closure 𝑅𝑢 of the
set of all solutions to (1.3) with the b 𝑗 replaced by smooth controls. A moment of thought reveals that
this cannot be the case for the simple reason that the formal expression (1.3) only determines a solution
theory up to a choice of renormalisation procedure and different renormalisation procedures may produce
solutions with different supports. This is already apparent in the case of SDEs where an expression like

¤𝑥 = 𝑉0 (𝑥) +𝑉𝑖 (𝑥) b𝑖 ,

(summation over repeated indices is implicit) may be interpreted either in the Itô sense or in the
Stratonovich sense, yielding solution theories with distinct supports in general.
It is also not difficult to see that in general one cannot hope to obtain the support of (1.3) as the closure

𝑅
𝑔
𝑢 of the set of all solutions to (1.4) with the b Y𝑗 replaced by smooth controls and 𝑔Y replaced by some
fixed element 𝑔 of the renormalisation group. Indeed, consider the system of SPDEs given by

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + b , 𝜕𝑡𝑣 = 𝜕

2
𝑥𝑣 + (𝜕𝑥𝑢)2 . (1.5)

The relevant part of the renormalisation group for this equation is simply (R, +), with the renormalised
equation being of the form

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + b , 𝜕𝑡𝑣 = 𝜕

2
𝑥𝑣 +

(
(𝜕𝑥𝑢)2 − 𝑐

)
. (1.6)
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For any fixed value of 𝑐, solutions to (1.6) with smooth b and vanishing initial condition are such that 𝑣 is
bounded below by −𝑐𝑡. However, the solution to (1.5) should really be interpreted as the limit as Y → 0
to the solution to (1.6) with b replaced by bY and 𝑐 replaced by 𝑐Y for a suitable choice of 𝑐Y → +∞.
Furthermore, it was already remarked in [Hai13] (in a slightly different setting) that, for any fixed

smooth ℎ, the solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + ℎ + 𝑎Y−1 cos(Y−1𝑥) , 𝜕𝑡𝑣 = 𝜕

2
𝑥𝑣 + (𝜕𝑥𝑢)2 − 𝑐 , (1.7)

converge as Y → 0 to those of

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + ℎ , 𝜕𝑡𝑣 = 𝜕

2
𝑥𝑣 + (𝜕𝑥𝑢)2 − (𝑐 − 𝑐𝑎2) ,

for some fixed positive constant 𝑐. In other words, it is possible to emulate a decrease in the renormalisation
constant 𝑐 (but not an increase!) by adding a small (in a distributional sense) highly oscillatory term to ℎ.
This suggests that the support of the solution to (1.5) is given by the closure of the set of all solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + ℎ , 𝜕𝑡𝑣 = 𝜕

2
𝑥𝑣 + (𝜕𝑥𝑢)2 − 𝑐 , (1.8)

for any choice of smooth function ℎ and any choice of constant 𝑐 ∈ R. As a matter of fact, by considering
perturbations of ℎ of the type (1.7), but with an additional modulation of the highly oscillatory term, we
will see in Theorem 1.15 below that, whatever the choice of renormalisation procedure, solutions to (1.5)
have full support, so that this example exhibits some weak form of “hypoellipticity”.

1.1. The main theorem

We consider subcritical SPDEs of the form (1.3) such that Assumptions 2 and 3 below hold. Subcriticality
ensures that one can construct a problem dependent regularity structure as in [BHZ19], and Assumptions 2
and 3 guarantee by [CH16, Thm. 2.33] the convergence of the sequence of admissible models �̂� Y to a
random limit model �̂� , where �̂� Y denotes the renormalised canonical lift of the regularised noise b Y ,
see Section 2.2.2. Furthermore, we can only expect a support theorem to hold if the integration kernels
associated to our equations are homogeneous on small scales, and in order to not overcomplicate the
presentation, we assume that our Green’s functions are self-similar under rescaling, compareAssumption 4.
For convenience we also restrict to the case of independent (space or space-time) Gaussian white noises
b𝑖 (but compare Remark 2.5). Our assumptions ensure that equation (1.3) can be lifted to an abstract
fixed point problem as in [Hai14, Thm. 7.8]. Finally, we need a technical assumption on the trees that
appear in our regularity structure, which for ease of this introduction we will not comment on and instead
refer the interested reader to Assumptions 5 and 6 in Section 2.5.
In order to have a well behaved solution map, it is convenient to be in the slightly more restrictive

setting of [BCCH17], which guarantees in particular that the reconstructed solution to the abstract fixed
point problem for �̂� Y satisfies the regularised and renormalised SPDE (1.4). We thus assume for the sake
of the main results, Theorems 1.6 and 1.7, that the full assumptions of [BCCH17] are satisfied.

Assumption 1 We assume that [BCCH17, Eqn. 2.5, Ass. 2.6, Ass. 2.8, Ass. 2.13, Ass. 2.15, Ass. 2.16] are
satisfied and that Assumptions 2–5 given in Section 2 and Assumptions 7 and 8 given in Section 3.1 hold.

Remark 1.4 We will show in Section 4 below that Assumptions 7 and 8 are implied by Assumptions 2–6
(without requiring the additional assumptions of [BCCH17]).

Our main result then is a support theorem for the BPHZ renormalised model �̂� or indeed any model
differing from �̂� by the action of an element of the renormalisation group G− associated to the class of
equations under consideration. If we denote by 𝑍 (ℎ) the canonical lift of any ℎ ∈ C∞

0 , a slightly informal
version of our main result reads as follows
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Theorem 1.5 There exists a subgroup H ⊂ G− and a left coset 𝑔Hof H such that

supp �̂� = {Rℎ𝑍 ( 𝑓 ) : 𝑓 ∈ C∞
0 , ℎ ∈ 𝑔H} .

One important remark here is that H is not determined solely by the regularity structure of the
problem. Instead, it also incorporates information about the symmetries satisfied by the integration
kernels associated to the problem. Extracting this “rigid” algebraic data out of “soft” analytic data is one
of the main difficulties of this article.
We also have a more concrete statement at the level of solutions which we state now. Regarding

solutions, our support theorem applies for 𝑢 in any space X =
⊕

𝑖 X𝑖 such that the solution operator
(mapping the space of admissible models for the regularity structure T into X) is continuous. For
instance, one could define the space X𝑖 as a version of the usual Hölder spaces allowing for finite time
blow up as in [BCCH17]. In situations where we know a priori that the solution survives until some
deterministic time 𝑇 > 0 almost surely, one can take alternatively for X𝑖 the usual Hölder–Besov spaces

C
− |𝔰 |

2 +𝛽𝑖−^
𝔰Λ

((0, 𝑇) × T𝑒). (Here 𝛽𝑖 > 0 and the scaling 𝔰Λ : {0, . . . , 𝑒} → N are determined by the linear
part 𝜕𝑡 −L𝑖 of our equations, see Assumption 4. The statement holds for any ^ > 0.) The main theorem
of this article is the following description of the topological support of 𝑢.

Theorem 1.6 Under Assumption 1, let 𝑢Y denote the classical solutions to the regularised and renor-
malised equation (1.4) with noise b Y and renormalisation constants 𝑐Y𝜏 = ℎ ◦ 𝑔YBPHZ (𝜏) for some fixed
ℎ ∈ G−, and let 𝑢 := limY→0 𝑢

Y . Then, one has the identity

supp 𝑢 =
⋂
Y>0

⋃
𝛿<Y

supp 𝑢𝛿

in X.

In Theorem 3.14 below we show that Assumptions 2–5 and 7, 8 imply an analogous support theorem
for the random models associated to 𝑢 and 𝑢𝛿 . More precisely, we show that

supp �̂� =
⋂
Y>0

⋃
𝛿<Y

supp �̂� 𝛿 , (1.9)

where �̂� 𝛿 denotes the BPHZ model associated to the noise b 𝛿 and �̂� denotes its limit, namely the BPHZ
model associated to the limiting white noise b.
Once we know (1.9), Theorem 1.6 is a direct consequence of the continuity of the solution operator

given in [BCCH17, Thm 2.21], combined with the fact that, given a measure ` and a continuous map 𝐹,
supp 𝐹∗` is given by the closure of 𝐹 (supp `). It will become clear from our proof that for a “tweaked”
choice of renormalisation constants 𝑐Y𝜏 = 𝑘 Y ◦ ℎ ◦ 𝑔YBPHZ (𝜏) with 𝑘 Y → 1∗ as Y → 0 one can show that,
denoting by �̃�Y the classical solution to the system (1.3) with renormalisation constants 𝑐Y , one still has
�̃�Y → 𝑢 in probability in X, but one has the stronger statement

supp �̃�Y ⊆ supp 𝑢

for any Y > 0.
We also have a characterisation of the support in the spirit of Stroock and Varadhan’s support theorem

for SDEs [SV72]. The “correct” way to resolve the issue of divergent renormalisation constants in such a
description turns out to be the following.

Theorem 1.7 Under Assumption 1, let ℎ ∈ G− and 𝑢 be as in Theorem 1.6. There exists a Lie subgroup
H ⊆ G− of the renormalisation group and a character 𝑓 ∈ G− independent of the choice of ℎ in
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Theorem 1.6 such that the following holds. The support supp 𝑢 is given by the closure of all solutions 𝜑 to

𝜕𝑡𝜑𝑖 = L𝑖𝜑𝑖 + 𝐹𝑖 (𝜑,∇𝜑, . . .) +
∑︁
𝑗≤𝑛

𝐹
𝑗

𝑖
(𝜑,∇𝜑, . . .)𝜓 𝑗 +

(
Υ𝑖𝑘

)
(𝜑,∇𝜑, . . .) , (1.10)

for any character 𝑘 ∈ ℎ ◦ 𝑓 ◦ H, initial condition 𝜑(0, ·) ∈ Φ𝑘0 1, and smooth deterministic functions
𝜓 𝑗 , 𝑗 = 1, . . . , 𝑛 (depending only on space if b 𝑗 is purely spatial white noise). Here we write Υ𝑖𝑘 :=
(Υ𝑀𝑘Ω𝐹)𝑖 for simplicity.

Theorem 1.7 follows from Proposition 3.8 below, the properties of the shift operator, Theorem 2.4, and
the continuity of the solution operator. The Lie subgroupH is given as the annihilator of a finite number
of linear “constraints” between the renormalisation constants. We refer the reader to Definition 3.3 for
a precise definition. The tweaking by 𝑓 is necessary, since the BPHZ characters only respect these
constraints up to order 1 (a by-product of the fact that we use truncated integration kernels for its
definition.)

Remark 1.8 In case that we are in a situation in which we are allowed to choose the initial condition
𝑢Y, (0) = 𝑣 (0) deterministically and independent of Y, the initial condition of the control problem (1.10)
has to coincide with this choice, so that we have to set Φ𝑘0 = {𝑣 (0) }.
In order to cover also the case that the initial condition 𝑢Y, (0) is a perturbation to S−

Y (b) (0, ·), compare
Remark 1.2, we make use of the fact thatS−

Y can be written as an explicit continuous function of the model
�̂� Y , compare [BCCH17, Prop. 5.22, Eqn. 6.10]. In the notation of that paper we define Φ𝑘0 as the set of
all functions of the form 𝑣 (0) + (R𝑍P𝑍�̃�) (0, ·) ∈ (C∞ (T𝑒))𝑚 where 𝑍 is a renormalised canonical lift
𝑍 = R𝑘𝑍c (𝜓) with 𝜓 ∈ C∞

𝑐 (R × T𝑒)𝑛. (The fact that we can choose the initial condition independently
of the 𝜓 𝑗 ’s appearing in (1.10) comes from the fact that (R𝑍P𝑍�̃�) (0, ·) only depends on the value of 𝜓
on negative times, while in the equation (1.10) only the behaviour of 𝜓 for positive times matters.)

Remark 1.9 It suffices to prove Theorems 1.6 and 1.7 for ℎ = 1∗. This follows, since by [BCCH17,
Thm. 2.13] there exists a action (𝐹, ℎ) ↦→ ℎ ◦ 𝐹 of the renormalisation group G− onto the collection
of vector fields 𝐹 = (𝐹𝑖), which leaves the class of vector fields consider in [BCCH17] invariant, and
is such that 𝐹𝑖 + Υ𝑖 (ℎ ◦ 𝑔) = ℎ ◦ 𝐹𝑖 + Υ𝑖𝑔 for any ℎ, 𝑔 ∈ G−. Therefore, changing renormalisation can
simply be viewed as changing the non-linearity.

Remark 1.10 The set 𝑓 ◦ Hused in Theorem 1.7 is in some sense the largest set of characters such that
we can guarantee that the solution to (1.10) is in the support of 𝑢. In many situations we know a-priori that
there exists a smooth approximation b Y = b ★ 𝜌Y as above with the property that the BPHZ characters 𝑔Y
take values in a fixed subset 𝐾 ⊆ 𝑓 ◦ H. In this case, combining Theorem 1.6 and Theorem 1.7 implies
that the support supp 𝑢 is given by the closure of the set of all solutions to the control problem (1.10)
with 𝑘 ∈ 𝐾 .

Remark 1.11 The classical Stroock–Varadhan support theorem can be viewed as the case 𝑑 = 0 of our
result withL𝑖 = 0. In this case, one has G− ≃ (R, +)2 and, in the notations of Theorem 1.7,

(Υ𝑖𝑐) (𝑢) = 𝑐𝐹 𝑗𝑘 (𝑢)𝜕𝑘𝐹
𝑗

𝑖
(𝑢) , 𝑐 ∈ R ≃ G− ,

with summation over 𝑗 and 𝑘 implied. Furthermore, using the BPHZ model (and therefore setting ℎ = 0)
leads to solutions in the Itô sense. Since there is only one renormalisation constant in this case and the
“heat kernel” is given by the Heaviside function which is non-trivial, Definition 3.3 readily leads us to the
conclusion that J is the unit ideal, so that its annihilator is given byH= {0}.

1See Remark 1.8 below for the definition of this set.
2Strictly speaking one has G− ≃ (R𝑛×𝑛 , +) , but only multiples of the identity matrix preserve the natural symmetries given by invariance under

permutation of indices.
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Theorem 1.7 then states that there exists some constant 𝑐 such that the support of the Itô solutions to

𝑑𝑢𝑖 = 𝐹𝑖 (𝑢) 𝑑𝑡 +
∑︁
𝑗≤𝑛

𝐹
𝑗

𝑖
(𝑢) 𝑑𝑊 𝑗 ,

is given by the closure of all solutions to

¤𝑢𝑖 = 𝐹𝑖 (𝑢) +
∑︁
𝑗≤𝑛

𝐹
𝑗

𝑖
(𝑢) 𝜓 𝑗 + 𝑐

∑︁
𝑘≤𝑚

∑︁
𝑗≤𝑛

𝐹
𝑗

𝑘
(𝑢)𝜕𝑘𝐹 𝑗𝑖 (𝑢) , (1.11)

with smooth controls 𝜓 𝑗 . Note that the correct value of 𝑐 (corresponding to the character 𝑓 in the
statement) is not specified by the theorem. On the other hand, one can explicitly compute the “BPHZ
character” in this case and show that (again identifying G− with R) it converges as Y → 0 to − 1

2 , and we
conclude from Remark 1.10 that 𝑐 = − 1

2 in (1.11), thus recovering the Stroock–Varadhan support theorem.

Before we proceed, let us briefly discuss how these results compare to the existing literature. There
are of course many support theorems for stochastic PDEs that do not require renormalisation, see for
example [BMS95, CWM01, CM11, DVSS14]. In all of these cases, the statement is the one that one
would expect, namely that the support is given by the closure of all solutions obtained by replacing the
noises by suitable controls. In the case of singular SPDEs, information on the support follows in some
special cases. For example, Jona-Lasinio and Mitter [JLM85] construct solutions to a type of Langevin
equation for the Φ4

2 measure by using Girsanov’s theorem, which yields full support as an immediate
byproduct. One of the earliest result on the support in cases that cannot be dealt with in this way is the
work [CF18] by Chouk and Friz where the authors consider a generalised parabolic Anderson model of
the form 𝜕𝑡𝑢 = Δ𝑢 + 𝑔(𝑢)b in dimension 2 and show that a suitably renormalised version of it has support
given by the closure of all solutions to control problems of the type 𝜕𝑡𝑢 = Δ𝑢 + 𝑔(𝑢)𝜙 + 𝑐(𝑔𝑔′) (𝑢) with
𝜙 a smooth function (constant in time) and 𝑐 an arbitrary constant. This can be viewed as a special case
of our result in a situation whereH= G≈ (R, +). The way we deal with the presence of renormalisation,
while inspired by [CF18], substantially differs from the construction given there. See the discussion at
the start of Section 5 for more details.
Using similar techniques, Tsatsoulis and Weber [TW18] showed that the Φ4

2 dynamic has full support.
Finally, proofs of support theorems for stochastic ordinary differential equations based on rough path
techniques are by now very classical. It was already mentioned in [Lyo98] that the continuity properties
of the solution map can be used for a straightforward proof of a support theorem, provided one has a
support theorem for the enhanced Brownian motion. The latter was shown in a series of results, see for
instance [LQZ02] (for a support theorem for rough paths in the p-variation topology), [Fri05] (in Hölder
topology), [FV06] (for enhanced fractional Brownian motions) and [FV10a] (for an implementation
using deterministic shifts). For an introduction to the topic and more details see [FH14, Sec. 9.3] or
[FV10b, Cha. 19].

1.2. Applications

1.2.1. The Φ𝑝

𝑑
equation

The Φ𝑝

𝑑
equation formally is given by

𝜕𝑡𝑢 = Δ𝑢 +
∑︁

1≤𝑘≤𝑝−1
𝑎𝑘𝑢

𝑘 + b (1.12)

with space-time white noise b onD = R×T𝑑 . This equation is subcritical in the sense of [Hai14, BHZ19]
provided that 𝑝 < 2𝑑/(𝑑 − 2). As pointed out above, in a formal sense, one can also consider (1.12) in
dimension “𝑑−Y”, either by replacingΔ by−(−Δ)1+Y or by convolving b with a slightly regularising Riesz
kernel. We will restrict ourselves here to the cases 𝑑 = 2 and 𝑝 even, 𝑑 = 3 and 𝑝 = 4, as well as 𝑑 = 4−Y
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and 𝑝 = 4. We denote by “the” solution to (1.12) the BPHZ solution in the sense of [BHZ19, CH16] for
any fixed truncation 𝐾 of the heat kernel. All statements below are independent of the choice of cutoff.
Note that in dimension 𝑑 = 2 Assumption 6 below is violated, but as pointed out in Remark 2.23,

Assumption 6 can be replaced by Assumptions 7 and 8, which are trivially true in this case (one has
J := {0} and H = G−). In dimension 𝑑 = 3 all assumptions are satisfied. However, the ‘black-box’
theorem of [BCCH17] only allows us to start the approximate equation at a perturbation of S−

Y (b) (0, ·),
compare Remark 1.2 (in this caseS−

Y (b) (0, ·) is in law a smooth approximation to the Gaussian free field).
As was already noticed in [Hai14, Sec. 9.4], this issue can be circumvented, but this requires to work with
a model topology which is slightly stronger than the usual one. We show in Section C.1 that the support
theorem still holds for this topology. If we emulate dimension 𝑑 = 4−Y by slightly regularising the noises,
then our assumptions on the noises are violated (since they are no longer white), but it is again possible to
resolve this issue, see Section C.2. We will be interested in showing ergodicity of (1.12), so that we will
always assume that 𝑎𝑝−1 < 0. Under this condition, we have the following consequence of Theorem 1.7.

Theorem 1.12 Let 𝑢0 ∈ C[ (T3), where [ > − 2
3 if 𝑑 = 2, 3 and [ > −(Y ∧ 2

3 ) if 𝑑 = 4 − Y. Let 𝑢 denote
the solution to the Φ𝑝

𝑑
equation with the combinations of 𝑝 and 𝑑 mentioned above, with initial condition

𝑢0 +S− (b) (0, ·) (in the sense of Remark 1.2). Then for any 𝑇 > 0 𝑢 has full support in C𝛼𝔰 ((0, 𝑇) × T𝑑)
for 𝛼 = 2−𝑑

2 − ^ for any ^ > 0.
For 𝑑 = 2, 3, let 𝛼 as above and consider the solution 𝑢 with fixed initial condition 𝑢0 ∈ C[ (T3) for

some [ ∈ (− 2
3 , 𝛼]. Then, 𝑢 has support in C( [0, 𝑇], C[ (T𝑑)) given by all functions with value 𝑢0 at

time 0.

Proof. Global existence for these equation was shown in [TW18] in 𝑑 = 2 and [MW17, MW20] in
𝑑 = 3. For 𝑑 = 4 − Y it will be a consequence of a forthcoming paper [CMW19]. The first statement then
follows directly from Theorem 1.7, which shows that any trajectory can be realised since the equation is
driven by additive noise.
The second statement does not follow immediately since the topology of our model space is too

weak for the solution map to be continuous as a map with values in C( [0, 𝑇], C[ (T𝑑)). We show in
Section C.1 below that one can endow it with a slightly stronger topology in such a way that the solution
map becomes continuous and our support theorem still holds.

A particular application of our support theorem in dimension 𝑑 ≤ 3 is to the uniqueness of the
invariant measure and exponential convergence to this measure.

Corollary 1.13 Assume that 𝑝, 𝑑 ≤ 3 and 𝑎𝑝−1 are as above. Then the Φ
𝑝

𝑑
equation admits a unique

invariant measure ` on C𝛼 (T𝑑).
Moreover, if 𝑝 ≥ 4, then we have uniform exponential convergence of the dynamical model to the

invariant measure in the following sense. Let 𝑢 be the solution starting from 𝑢0 as in Theorem 1.12. Then

∥(𝑢𝑡 )∗P − `∥TV ≤ 1 ∧ 𝐶 exp(−_𝑡) , (1.13)

for some 𝐶, _ > 0, uniformly over 𝑡 ≥ 0 and 𝑢0 ∈ C𝛼 (T𝑑). (Here, 𝑓∗P denotes the pushforward of the
measure P under the random variable 𝑓 .)

Proof. It follows from Doeblin’s theorem (see for instance [Hai16a, Thm. 3.6] with𝑉 = 0) that it suffices
to show that for some 𝑡 > 0 one has3

∥(𝑢𝑣𝑡 )∗P − (𝑢𝑤𝑡 )∗P∥TV ≤ 1 − 𝛿 (1.14)

for some 𝛿 > 0 and all 𝑣, 𝑤 ∈ C𝛼 (T𝑑). Here 𝑢𝑣 denotes the solution to (1.12) with initial condition 𝑣.

3We normalise the total variation norm so that mutually singular probability measures have distance 1.



10 Martin Hairer and Philipp Schönbauer

As a consequence of the “coming down from infinity” property, see [TW18, Eq. 3.24] for 𝑑 = 2,
[MW17, Eq. 1.27] for 𝑑 = 3 (see also [MW20]), there exists a compact set 𝐾 ⊆ C𝛼 (T𝑑) such that

inf
𝑣∈C𝛼 (T𝑑)

P[𝑢𝑣1 ∈ 𝐾] ≥ 1
2
.

By the strong Feller property for Φ𝑝

𝑑
shown in [HM18] (see also [TW18] for 𝑑 = 2), the transition

probabilities are continuous in the total variation norm, so that for some Y > 0 one has

∥(𝑢𝑣1 )∗P − (𝑢𝑤1 )∗P∥TV ≤ 1
2

for any 𝑣, 𝑤 in the centred Y-ball 𝐵Y in C𝛼 (T𝑑). Again by continuity of the transition probabilities and
compactness of 𝐾 the infimum

𝜌 := inf
𝑣∈𝐾

P[𝑢𝑣1 ∈ 𝐵Y]

is attained for some �̄� ∈ 𝐾 and, by Theorem 1.12, one has 𝜌 > 0. It follows that (1.14) holds for 𝑡 = 3
with 𝛿 = 1

4 𝜌.

Remark 1.14 We have to restrict to 𝑑 ≤ 3 in Corollary 1.13 since it is not known that the solution to
Φ4

4−Y is a Markov process (although it is expected). Actually, at the current state it is even unclear if one
can start the equation at a fixed deterministic initial condition (compare Remark 1.2 for a discussion of
this issue) or evaluate the solution at a fixed positive time.

1.2.2. The generalised KPZ equation
A natural analogue to the class of SDEs (1.1) is given by the class of stochastic PDEs recently studied in
[Hai16b, BGHZ19] that can formally be written as

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + ℎ(𝑢) +

𝑚∑︁
𝑖=1

𝜎𝑖 (𝑢) b𝑖 , (1.15)

where 𝑢 : R+ × 𝑆1 → R𝑛, the b𝑖 denote independent space-time white noises, ℎ : R𝑛 → R𝑛 and
𝜎𝑖 : R𝑛 → R𝑛 are smooth functions and Γ is a smooth map from R𝑛 into the space of symmetric bilinear
maps R𝑛 ×R𝑛 → R𝑛. This should be viewed as a connection on R𝑛, which is why we use the customary
symbol Γ for it, and it gives rise to a notion of covariant differentiation:

(∇𝑋𝑌 )𝑖 (𝑢) = 𝑋 𝑗 (𝑢)𝜕 𝑗𝑌 𝑖 (𝑢) + Γ𝑖𝑗 ,𝑘 (𝑢)𝑋
𝑗 (𝑢)𝑌 𝑘 (𝑢) , (1.16)

for any two smooth vector fields 𝑋,𝑌 : R𝑛 → R𝑛.
One problem when trying to even guess the form of a support theorem for an equation like (1.15) is

that there is typically no canonical notion of solution associated to it. Instead, one has a whole family
of solution theories that can be parametrised by a renormalisation group G−. This already happens for
SDEs where one has a natural one-parameter family of solution theories which include solutions in the
sense of Itô, Stratonovich, backwards Itô, etc, so that G− = (R, +) in this case. While G− is always a
finite-dimensional Lie group, it can be quite large in general: even after taking the 𝑥 ↔ −𝑥 symmetry and
the fact that the noises b𝑖 are Gaussian and i.i.d. into account, one has G− = (R54, +) in the case of (1.15)
(at least for 𝑛 large enough, see [BGHZ19, Prop. 6.8]). Furthermore, there is typically no naïve analogue
of the Wong-Zakai theorem: if one simply replaces b by a mollified version b (Y) , the resulting sequence
of solutions 𝑢 (Y) typically fails to converge to any limit whatsoever. Instead, one needs to modify the
right-hand side of the equation in an Y-dependent way in order to obtain a well-defined limit.
In some cases, imposing additional desirable properties on the solution theory results in a reduction

of the number of degrees of freedom, but still leads to mollifier-dependent counterterms. For example, it
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is shown in [BGHZ19] that (1.15) admits a natural one-parameter family of solution theories, all of them
which satisfy all of the following properties simultaneously:

• The usual chain rule holds in the sense that, if 𝑢 solves (1.15) and 𝑣 = 𝜙(𝑢) for some diffeomorphism
𝜙 : R𝑛 → R𝑛, then 𝑣 solves the equation obtained from (1.15) by formally performing the
corresponding change of variables as if the b𝑖 were smooth. (This is analogous to the property of
Stratonovich solutions to SDEs.)

• If {�̃�𝑗 }�̃�𝑗=1 is a collection of smooth vector fields on R𝑛 such that

𝑚∑︁
𝑖=1

𝜎𝑖 (𝑢) ⊗ 𝜎𝑖 (𝑢) =
�̃�∑︁
𝑗=1
�̃�𝑗 (𝑢) ⊗ �̃�𝑗 (𝑢) ,

then the solution to (1.15) is identical in law to the solution with the 𝜎𝑖 replaced by the �̃�𝑖 . (This is
analogous to the property of Itô solutions to SDEs.)

• Given (1.15), there exists a collection of 12 vector fields4 𝑊𝑖 on R𝑛 such that, for any mollifier
𝜌, there exist constants 𝑐 (Y)

𝑖
such that, setting b (Y)

𝑖
= 𝜌Y ★ b𝑖 , solutions to (1.15) are given by

𝑢 = limY→0 𝑢Y with

𝜕𝑡𝑢Y = 𝜕
2
𝑥𝑢Y + Γ(𝑢Y) (𝜕𝑥𝑢Y , 𝜕𝑥𝑢Y) + ℎ(𝑢Y) +

𝑚∑︁
𝑖=1

𝜎𝑖 (𝑢Y) b (Y)𝑖
−

12∑︁
𝑗=1
𝑐
(Y)
𝑗
𝑊 𝑗 (𝑢Y) . (1.17)

Furthermore, the𝑊 𝑗 are such that, for every 𝑢★ ∈ R𝑛 such that Γ(𝑢★) = 0 and 𝐷𝜎𝑖 (𝑢★) = 0 (for
𝑖 > 0), one has𝑊 𝑗 (𝑢★) = 0 for every 𝑗 .
Given (1.15), we then define a number of auxiliary vector fields. First, for `, a = 1, . . . , 𝑚, we set

𝑋`a (𝑢) = (∇𝜎`𝜎a) (𝑢) ,

and we also write 𝑉★ for the vector field 𝐻Γ,𝜎 defined in [BGHZ19, Eq. 1.9]. We then use the 𝑋`a to
define two additional vector fields as follows:

𝑉 = 𝑋`` , �̂� = ∇𝑋`a𝑋`a ,

with implied summation over repeated indices.
As already mentioned above, this class of equations admits a one-parameter canonical family of

solution theories that combine the formal properties of both “Stratonovich” and “Itô” solutions. We fix
once and for all one of these solution theories and call it henceforth “the” solution to (1.15). Again, our
statement is independent of the precise choice of solution theory as long as it belongs to the canonical
family. (Actually, this can be further weakened, see Section C.3.) Under the assumption that Γ, ℎ and 𝜎
are smooth functions, we have the following result, the proof of which is postponed to Section C.3.

Theorem 1.15 Let 𝑢 be the solution to (1.15) with deterministic initial condition 𝑢(0) = 𝑢0 ∈ C𝛼 (T)
for some 𝛼 ∈ (0, 1

2 ). Then, there exists a constant 𝑐 such that the support of the law of 𝑢 in C𝛼 (R+ × T)
is given by the closure of all solutions to

𝜕𝑡𝑢
𝑖 = 𝜕2

𝑥𝑢
𝑖 + Γ𝑖𝑗 ,𝑘 (𝑢)𝜕𝑥𝑢

𝑗𝜕𝑥𝑢
𝑘 + ℎ𝑖 (𝑢) (1.18)

+ 𝑐�̂� 𝑖 (𝑢) + 𝐾★𝑉 𝑖★(𝑢) + 𝐾𝑉 𝑖 (𝑢) + 𝜎𝑖` (𝑢)[`

for arbitrary smooth controls [` and arbitrary constants 𝐾, 𝐾★.

4The number 12 is the dimension of the space Vnice in [BGHZ19, Sec. 1.2, Rem. 3.13]
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Remark 1.16 The appearance of the additional constants 𝐾 and 𝑐 in (1.18) may seem strange at first,
although we have of course already seen in the discussion preceding (1.8) that one cannot expect to
obtain the support of 𝑢 by simply replacing noises by smooth controls in (1.18).

Remark 1.17 At this stage, we do not know whether one actually has 𝑐 = 0 (which would be natural) or
whether the description given above even depends on the value of 𝑐. We do however know that both
terms 𝑉★ and 𝑉 are required for the result to hold, as follows from the example

𝜕𝑡𝑢1 = 𝜕2
𝑥𝑢1 + b , 𝜕𝑡𝑢2 = 𝜕2

𝑥𝑢2 + (𝜕𝑥𝑢1)2 , 𝜕𝑡𝑢3 = 𝜕2
𝑥𝑢3 + (𝜕𝑥𝑢2)2 ,

with 𝑢(0) = 0 say. In this case, 𝑉 ∝ (0, 1, 0) and 𝑉★ ∝ (0, 0, 1), so that Theorem 1.15 (when combined
with Lemma C.4 below) shows that the law of 𝑢 has full support, while we would have 𝑢2 (𝑡) ≥ 𝐶2𝑡,
𝑢3 (𝑡) ≥ 𝐶3𝑡 if we placed some constraints on the possible values of 𝐾★ and 𝐾 .

1.3. Outline

All equations in our setting can be lifted to abstract fixed point problems [Hai14, Thm. 7.8] in a problem
dependent regularity structure T. Exploiting the continuity of the solution map (mapping the space of
admissible modelsM0, see Section 2.2.1, continuously into some solution space X), we can redirect
our focus towards showing Theorem 3.14, which gives a characterisation of the topological support of
random models in complete analogy with Theorem 1.6. We are interested in random models �̂� obtained
as the limit of a sequence of smooth random models �̂� = limY→0 �̂�

Y . The upper bound for the support of
�̂� then follows from elementary probability theory arguments. The basic idea to show the lower bound
is to fix a deterministic model 𝑍 (for which we want to show 𝑍 ∈ supp �̂�) and to construct a sequence
of “shifts” b + Z𝛿 of the underlying Gaussian noise b by a smooth random function Z𝛿 = Z𝛿 (b) such
that the “shifted model” �̂�𝛿 , formally given by �̂�𝛿 (b) = �̂� (b + Z𝛿), converges to 𝑍 almost surely as
𝛿 → 0. Since supp �̂�𝛿 ⊆ supp �̂� for any 𝛿 > 0 (this is not completely obvious since Z𝛿 is not adapted in
general so Girsanov’s theorem need not apply, but see Lemma 3.12 for a proof) and supp �̂� is closed,
this shows that 𝑍 ∈ supp �̂� . While this is the broad strategy already used in [BMS95, CF18, TW18], the
identification of a suitable shift Z𝛿 is significantly more involved in this case.
We want to consider random shifts for reasons outlined in detail below (most crucially, our shifted

noises are still of the type considered [CH16]). It is then not even clear a priori what we mean by “shifted
model”, since the law of b + Z𝛿 (b) is not necessarily absolutely continuous with respect to the law of b,
so that simply evaluating the random limit model �̂� at b + Z𝛿 (b) is in general not well-defined. Instead we
rely on a purely analytic shift operator 𝑇 𝑓 (Theorem 2.4, see also [HM18, Thm. 3.1]), acting continuously
on the space of admissible models and satisfying �̂� (b + 𝑓 ) = 𝑇 𝑓 �̂� (b) for deterministic, smooth, compactly
supported functions 𝑓 (in which case �̂� (b + 𝑓 ) is well-defined by the Cameron-Martin theorem), and we
call �̂�𝛿 (b) := 𝑇Z𝛿 ( b ) �̂� (b) the shifted model. From the deterministic continuity of the shift operator we
infer in particular that any shift maps the support of �̂� into itself (this also works for random shifts, see
Lemma 3.12), so that we are left to find the set of models 𝑍 for which a shift as above can be constructed.
For the type of statement we are looking for, it suffices to consider models 𝑍 of the form 𝑍 = Rℎ𝑍c ( 𝑓 )

for some tuple of smooth functions 𝑓 = ( 𝑓𝑖)𝑖≤𝑚, where 𝑓𝑖 ∈ C∞
𝑐 (R × T𝑒) for any 𝑖 ≤ 𝑚, and some

character ℎ in the renormalisation group G−. (See Section 2.2 for the notation used here; 𝑓 ↦→ 𝑍c ( 𝑓 )
denotes the canonical lift,R : G− ×M0 → M0 denotes the action of the renormalisation group onto the
set of admissible models.) In fact, since the shift operator commutes with the action of the renormalisation
group (Theorem 2.4), it suffices to consider 𝑓 = 0 in the sense that we aim to find a set 𝐻 ⊆ G− which is
as large as possible such that for any ℎ ∈ 𝐻 one can find a sequence of smooth random shifts Z𝛿 such that

lim
𝛿→0

𝑇Z𝛿 �̂� (b) = Rℎ𝑍c (0) , (1.19)
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where the limit is taken in the sense of convergence in probability in the space of models. Actually, since
our proof draws on the results of [CH16], we will automatically have convergence in 𝐿 𝑝 for any 𝑝 ≥ 1.
Since the limit we aim for as 𝛿 → 0 is deterministic, we are left to choose Z𝛿 in such a way that the

variance of the models goes to zero, while the expected value has the correct behaviour in the limit. The
first point is ensured if b + Z𝛿 → 0 in a strong enough sense, which will be formalised in Definition 2.13.
Note that the space of noises introduced there is a subset of the one used in [CH16], and our distance
(2.21) is stronger, see Lemma 2.18. Our noises always live in a fixed inhomogeneous Wiener chaos with
respect to some fixed Gaussian noise, which in particular allows us to work with a linear space of noises
and our distance is an actual norm on this space. The main issue is then to obtain (3.6), namely to “control”
the expected value Υ̂𝛿𝜏 := E𝑇Z𝛿 �̂�b 𝜏(0) of the finite number of trees T− of negative homogeneity, so
that in the limit 𝛿 → 0 they equal ℎ(𝜏). Here �̂�b denotes the renormalised canonical lift of b and 𝑇Z𝛿 is
as above the shift operator acting on the space of admissible models.
These two properties are obviously necessary for the convergence (1.19) in 𝐿2 in the space of models.

To see this, note that if we write𝚷𝑔 for the modelR𝑔𝑍c (0), then one has𝚷𝑔𝜏(0) = 𝑔(𝜏) for any 𝜏 ∈ T−.
With a bit more effort (Proposition 3.21) it is possible to see that they are also sufficient. At this stage
there are two main problems left to be solved, which we address respectively in Sections 4 and 5.
1. What is the set 𝐻 of characters ℎ such that we can find a shift Z𝛿 as above? In particular, we have
to show that this set is large enough to “almost” contain the BPHZ character 𝑔Y (up to an 𝑜(1)
tweaking, see the remark below Theorem 1.6 or the second statement of Theorem 3.14).

2. Given ℎ ∈ 𝐻, how does one construct a shift Z𝛿 such that b + Z𝛿 → 0 in some suitable space of
admissible noises𝔐0 (see Definition 2.13 below) and such that lim𝛿→0 E𝑇Z𝛿 �̂�b 𝜏(0) = ℎ(𝜏) for
every 𝜏 ∈ T−?

Let us first discuss the second question, since our solution to this problem motivates the choice of 𝐻. It
is natural to make the ansatz Z𝛿 = −b 𝛿 + 𝑘 𝛿 , see Section 5.1, where b 𝛿 is a smooth approximation of b
at scale 𝛿 and 𝑘 𝛿 is a random, centred, stationary, and smooth function living only on high frequencies,
or equivalently on small scales (think of scales much smaller than 𝛿). The last property will ensure weak
convergence of 𝑘 𝛿 to 0 as 𝛿 → 0. If we simply chose 𝑘 𝛿 = 0, then the quantity Υ̂𝛿𝜏 of some fixed tree
𝜏 ∈ T− would in general blow up, as shown in the following example.

Example 1.18 Consider the “cherry” 𝜏 = appearing in the regularity structure associated to the Φ4
3

equation. Setting Z𝛿 = −b 𝛿 (so 𝑘 𝛿 = 0) and using the fact that by definition of the BPHZ character one
has E�̂�b (0) = 0, one has

Υ̂𝛿 = −2
𝛿

+
𝛿 𝛿

≃ −𝛿−1. (1.20)

Here we use Feynman diagrams on the right-hand side to encode real constants in the same way as for
example in [Hai18] or [Hai14, Sec. 10.5]. Straight lines represent the heat kernel, dotted lines represent
the 𝛿0-distribution, and wavy lines represent an approximation to 𝛿0 at scale 𝛿 > 0.

To see how a “high frequency perturbation” can solve this issue, consider adding a term of the form
𝑘 𝛿 = 𝑎 𝛿b_ with _ = _𝛿 ≪ 𝛿 and 𝑎 𝛿 ∈ R. Similar to (1.20) one obtains

Υ̂𝛿 = −2
𝛿

+
𝛿 𝛿

+ 2𝑎 𝛿
_

− 2𝑎 𝛿
_ 𝛿

+ (𝑎 𝛿)2
_ _

≃ −2𝛿−1 + 𝛿−1 + 2𝑎 𝛿_−1 − 2𝑎 𝛿𝛿−1 + (𝑎 𝛿)2_−1.

Fix now a number ℎ( ) ∈ R. Then provided _ ≪ 𝛿 one can find 𝑎 𝛿 such that Υ̂𝛿 = ℎ( ). To see
this, observe that in the regime _ ≪ 𝛿 and 𝑎 𝛿 ≪ 1 one has 𝛿−1 ≪ _−1 and (𝑎 𝛿)2 ≪ 𝑎 𝛿 , so that the
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third term above dominates all other terms, and one can solve the fixed point problem

𝑎 𝛿 =
1
2
( _ )−1 (

ℎ( ) + 2
𝛿

−
𝛿 𝛿

+ 2𝑎 𝛿
_ 𝛿

− (𝑎 𝛿)2
_ _ )

.

Remark 1.19 In the above example the term that ended up dominating the quantity Υ̂𝛿 was the tree
in which exactly one white noise was replaced by the highly oscillating perturbation 𝑘 𝛿 , while all other
noises remained white. We will tailor our shift so that the trees with this property will always represent
the dominating part, see Sections 5.2 and 5.4, in particular Lemma 5.10 and Lemma 5.17.

This strategy is complicated by two hurdles. Firstly, one has to control various trees simultaneously,
and it is a priori not clear that a perturbation designed to control one tree does not destroy the desired
expected value of another. Indeed, it is not hard to see that with our strategy we are in general not able to
control all trees 𝜏 ∈ T− at the same time to arbitrary values ℎ(𝜏), but we have to respect certain linear
constraints between them. See Examples 4.2–4.5 for examples of such linear constrains in the context
of various interesting SPDEs. (It is a crucial insight that these constraints are “almost” satisfied by the
BPHZ character, see the outline below and Assumption 8.)
The second problem comes from the fact that we also have to bound the expected values of trees

with more than two leaves. If one tries to use high frequency perturbations which are Gaussian, then in
general trees with one white noise replaced by such a perturbation would not dominate the expression
Υ̂𝛿𝜏. There are even trees for which these expressions vanish identically for any Gaussian shift Z𝛿 . An
example is the tree from the Φ5

2 equation, for which we obtain (in case of a Gaussian shift Z𝛿)

Υ̂𝛿 = Υ̂𝛿en
(
4 +

)
. (1.21)

Here, red nodes are new noise types and should be thought of as placeholders for the shift Z𝛿 . Formally,
the trees on the right-hand side of (1.21), which we call “shifted trees”, are elements of an enlarged
regularity structure T, see Section 5.1. The renormalisation group G− acts naturally on T by only
considering contractions of original trees. In this way one can build for any Y, 𝛿 > 0 a “renormalised”
model �̂�bY ,Z𝛿

en , which converges in the limit Y → 0 to a model �̂�b ,Z𝛿
en , and we introduce the notation

Υ̂𝛿en𝜏 := E�̂�b ,Z𝛿
en 𝜏(0). (Note that �̂�b ,Z𝛿

en is very different from the BPHZ renormalisation �̂�bY ,Z𝛿 on
the large regularity structure, in which case these quantities would vanish by definition of the BPHZ
character.) We will define just after (5.3) below a shift operatorS : T→ T, formally given by replacing
blue nodes with red nodes in all possible ways, and we will show in Lemma 5.1 that Υ̂𝛿 = Υ̂𝛿enS .
In the above example Υ̂𝛿en vanishes on any “shifted” tree which does not appear on the right-hand side

of (1.21). To clarify why, let us write ΥY, 𝛿en 𝜏 := E𝚷bY ,Z𝛿𝜏(0), where 𝚷bY ,Z𝛿 denotes the canonical lift of
(bY , Z𝛿) (think of Y ≪ 𝛿) to a model in the enlarged regularity structure. Using Eq. 5.4 below one shows
that

Υ̂𝛿en = lim
Y→0

(
Υ
Y, 𝛿
en − 3ΥY, 𝛿en Υ

Y, 𝛿
en

)
= 0. (1.22)

The second identity in (1.22) only holds if Z𝛿 is Gaussian in general. This can be seen by using Wick’s
rule of calculating the expected values of all trees involved, which shows that it identically vanishes for
any fixed Y > 0. Note also that the renormalisation constant of this tree vanishes identically, i.e. one has
𝑔[ ( ) = 0 for any smooth Gaussian noises [ and the BPHZ character 𝑔[ , but the expectation after
shifting the noise does not vanish and with the choice Z𝛿 = −b 𝛿 would blow up as 𝛿 → 0.
One could now try to use shifted trees with more than one shifted noise to dominate the expression,

which however leads to two issues which seem difficult to resolve. First, in general it would now be
subtrees of 𝜏 that dominate the behaviour of the shifted tree (in the example above, it would be ), and
one may see constraints between these trees. Contrary to the constraints we end up with, such constraints
(between trees of different homogeneity with different number of leaves) are not seen at the level of
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the BPHZ characters. Second, while the equation we needed to solve above for was a perturbation
of a linear equation, we would now have to solve a polynomial equation, which introduces non-linear
constraints (for example (𝑎 𝛿)2 is always positive) and it is not clear if these polynomial equation can be
solved (to worsen the matter, recall that we need to control various trees simultaneously, so that we end
up with a system of polynomial equations).
We opt for a different way. We introduce a shift 𝑘 𝛿 such that trees with one noise replaced by a

shifted noise gives a non-vanishing contribution. We ensure this by choosing 𝑘 𝛿 such that the cumulant
of (𝑘 𝛿 , b, . . . , b), with 𝑚(𝜏) := #𝐿 (𝜏) − 1 instances of white noise b, does not vanish. (Here 𝐿 (𝜏)
denotes the number of “leaves” of 𝜏.) The easiest way to guarantee this is to choose 𝑘 𝛿 in the 𝑚(𝜏)-th
homogeneous Wiener chaos with respect to b.

Example 1.20 Consider the tree 𝜏 = from the generalised KPZ equation, where we draw and
to distinguish two different (hence independent) noise types. In this case we would choose our shift

𝑘 𝛿 := 𝑎 𝛿𝐽[ , , ] ( ) ,

where ∈ C̄∞
𝑐 (D̄ × D̄3) is a suggestive way to write a kernel of the form

(𝑥; 𝑥1, 𝑥2, 𝑥3) = 𝐾 (𝑥 − 𝑥1)𝐾 (𝑥 − 𝑥2)𝐾 (𝑥 − 𝑥3)

for some kernels 𝐾, 𝐾, 𝐾 ∈ C∞
𝑐 (D̄), and 𝐽[ , , ] denotes a third order stochastic integral with respect

to the joint law of (b , b ), see (2.9). One then has the following graphical representation

Υ̂𝛿en = 𝑎 𝛿 + 𝑎 𝛿 . (1.23)

(Here, a dark red node represents an instance of 𝑘 𝛿 .) We would now rescale the kernels 𝐾, 𝐾, 𝐾 to

a scale _ = _𝛿 ≪ 𝛿 at a homogeneity 𝛼 which is determined by the homogeneity | |𝔰 = −^ and

𝑚( ) = 3, see (5.7).
(See Section 2.1 for the definition of the domain D̄.)

The strategy outlined above is implemented in Section 5 as follows. In Section 5.1 we will construct
an enlarged regularity structure, containing additional noise types (5.2), large enough to be able to
represent the regularised noise b 𝛿

Ξ
(for any noise type Ξ) and the highly oscillating perturbation 𝑘 𝛿(Ξ,𝜏)

(for any tree 𝜏 and noise type Ξ ∈ 𝔱(𝐿 (𝜏)) appearing in 𝜏). We will will so construct the shift operator
S : T→ T as in (5.3) below. We determine the set of treesS ↑[𝜏] in the image of the shift operator
which will dominate the expected value in Definition 5.2. In Section 5.2 we construct in (5.12) a “highly
oscillating perturbation” [𝛿(Ξ,𝜏) in the 𝑚(𝜏)-th Wiener chaos for any tree 𝜏 ∈ 𝔗− (see below for the
definition of 𝔗− ⊆ T−) and any Ξ ∈ 𝔱(𝐿 (𝜏)). The kernel 𝐾 𝛿(Ξ,𝜏) (with respect to Gaussian integration)
of this perturbation will be a rescaled version of a fixed kernel Φ(Ξ,𝜏) , see (5.6), at a homogeneity 𝛼(Ξ,𝜏) ,
see (5.7), to a scale _𝛿𝜏 (we will discuss shortly the choice of these scales). The kernels Φ(Ξ,𝜏) will be
chosen along the lines of Example 1.20 above (there is a slight subtlety here in case of log-divergencies,
see Example 5.7 below, which we ignore for the sake of this introduction).
A key result is Lemma 5.10 which determines the behaviour of the “dominating” trees 𝜏 ∈ S ↑[𝜏]. It

will be useful to introduce the function 𝐹𝜏 (𝑎, _) := Υ̂𝛿𝜏 for 𝜏 ∈ 𝔗−, see (5.20), where 𝑎 = 𝑎 𝛿𝜏 and _ = _𝛿𝜏 ,
𝜏 ∈ 𝔗−. In Proposition 5.19 in Section 5.4 we will then, for fixed _, recast the equation 𝐹𝜏 (𝑎, _) = ℎ(𝜏)
for 𝜏 ∈ 𝔗− into a fixed point problem for 𝑎. This problem will be a small perturbation of a solvable linear
problem (linear because of the definition of 𝑘 𝛿 , solvable thanks to Lemma 5.10, small perturbation
thanks to Lemma 5.17) which is therefore straightforward to solve. The tricky issue is that in order for
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Lemma 5.17 to hold one needs to choose the scales _𝛿𝜏 carefully. In Section 5.3 we will determine an
order ≤ on the set of trees 𝔗−, and we will choose the scales such that _𝛿𝜏 ≪ _𝛿

�̃�
whenever 𝜏, 𝜏 ∈ 𝔗−

with 𝜏 ≤ 𝜏. To formalise this idea, we introduce in Definition 5.14 the notion of an attainable statement,
and we show at the end of Section 5.4 that the necessary bound of Lemma 5.17 is attainable in this sense.
We now outline how we will address the first point above, i.e. how to define the set 𝐻, which we will

do in Section 4. Every tree 𝜏 ∈ Tcan be mapped onto a functionK𝜏 : R(𝑑+1)𝐿 (𝜏) → R, see (3.1). One
should think ofK𝜏 as the function obtained by anchoring the root to the origin and integrating out all
other vertices, except for the leaves.

Example 1.21 In the case of the Φ4
3 equation, one has for instance(

K
)
(𝑥1, . . . , 𝑥4) =

∫
𝑑𝑦𝐾 (𝑥1)𝐾 (𝑦)𝐾 (𝑥2 − 𝑦)𝐾 (𝑥3 − 𝑦)𝐾 (𝑥4 − 𝑦),

where we identify the set of leaves 𝐿 ( ) ≃ {1, 2, 3, 4} with ‘1’ denoting the leaf directly attached to the
root, and where 𝐾 denotes a truncation of the heat kernel.

Denote now by K̂𝜏 the function defined in same way, but with 𝐾 replaced by the actual (i.e. not truncated)
heat kernel �̂� (we will later writeK�̂�𝜏 for this). It is a priori not clear that these integrals are well-defined
on large scales, but we will show in Theorem 4.19 that at least for trees 𝜏 of non-positive homogeneity
this is always the case. Let us furthermore writeKsym𝜏 and K̂sym𝜏 for the kernels obtained fromK𝜏 and
K̂𝜏 by symmetrisation under spatial reflections (𝑡, 𝑥) ↦→ (𝑡,−𝑥) and permutation of the variables. (If 𝜏
contains more than one noise type, one should only symmetrise variables corresponding to the same
noise type.)
From the discussion above, it is clear that we cannot hope to control two trees 𝜏, 𝜏 independently if

K̂sym𝜏 and K̂sym𝜏 are linearly dependent. To make this more clear, consider the following example.

Example 1.22 Continuing Example 1.20, one has

Υ̂𝛿en = 2𝑎 𝛿
∫

𝑑𝑥1 · · · 𝑑𝑥4

(
Ksym

)
(𝑥1, . . . , 𝑥4) (𝑥3; 𝑥1, 𝑥2, 𝑥4) . (1.24)

where we identify the leaves of 𝜏 := with {1, 2, 3, 4} from left to right. Since one should think of
as being rescaled to scales _ ≪ 𝛿, only the small scale behaviour of Ksym𝜏 matters, which is (essentially)
the behaviour of the self-similar kernel K̂sym𝜏. (The last statement is justified by Lemma 5.10, where we
show that the difference between (1.24) with Ksym and K̂sym vanishes in the limit 𝛿 → 0.) It follows that
if 𝜏 ∈ T− is another tree carrying the same noise types as 𝜏 and such that K̂sym𝜏 = 𝑐K̂sym𝜏 for some
𝑐 ∈ R, then the shifted trees which are dominating (i.e. elements of S ↑[𝜏] and S ↑[𝜏]) satisfy the same
linear relation in the limit 𝛿 → 0.

Motivated by this example, we introduce in Definition 3.3 an ideal J ⊂ T− generated by linear
combination of trees 𝜎 ∈ Tcarrying the same noise types and such that K̂sym𝜎 = 0. Here we introduce
the notationT− for the free, unital, commutative algebra generated byT−. We recall at this point [BHZ19]
that T− is naturally endowed with a Hopf algebra structure with coproduct Δ− (the character group of T−
is precisely the renormalisation group G− already mentioned above), see Section 2.2.1 for details and
precise references.
We show in Section 4 that J is a Hopf ideal, see Assumption 7. The crucial implication is that its

annihilator H is a Lie subgroup of G−. We show further Assumption 8, which states that the BPHZ
character 𝑔Y of the regularised noise b Y “almost” belongs to this group, in the sense that one has
𝑔Y ∈ 𝑓 Y ◦ H, for a sequence of characters 𝑓 Y ∈ G− which converges to a finite limit 𝑓 b as Y → 0. It is
crucial to note that we show this also for a class of non-Gaussian approximations b Y which is rich enough
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to contain the shift Z𝛿 . Assumption 8 finally justifies the assertion made above that 𝑔Y “almost” satisfies
the linear constraints. (In a perfect world, 𝑔Y would satisfy these constraints precisely. The discrepancy
stems from the fact that we use truncated kernels to define 𝑔Y .) Moreover, we have identified that the set
𝐻 ⊆ G− for which we can construct a shift as above is equal to the coset 𝑓 b ◦ H. It may be useful to
observe that while the character 𝑓 b is not uniquely defined, the coset 𝑓 b ◦ H is unique.
Section 4 shows that a under a technical Assumption 6 the Assumptions 7 and 8 always hold. The latter

two are formulated as assumptions (rather than theorems), since there are a range of interesting equations
in which Assumption 6 is violated, while one can simply show Assumptions 7 and 8 by hand. (Examples
are theΦ𝑝

2 equations discussed in Section 1.2.1 and the 2D parabolic Anderson model.) The general proof,
assuming Assumption 6 and given in Section 4, is motivated and outlined at the beginning of this section.
We are left to link the two constructions outlined above. In Definition 3.18 we will define a set

𝔗− ⊆ T− which is a maximal set with the property that Vec𝔗− and J are linearly independent (in
other words, one has Vec𝔗− ⊕ J = T− where ⊕ denotes the direct sum of vector spaces). For any
fixed character ℎ ∈ 𝑓 b ◦ Hwe will tailor a shift of the noise in Section 5 (see outline above) such that
Υ̂𝛿𝜏 → ℎ(𝜏) as 𝛿 → 0 for any 𝜏 ∈ 𝔗−. Using the fact that Vec𝔗− has a complement in Vec T− which
is a subset of the ideal J, we will show in Proposition 3.21 that the sequence of shifted models converge
toRℎ𝑍c (0) almost surely, which shows in particular that

{Rℎ𝑍c ( 𝑓 ) : ℎ ∈ 𝑓 b ◦ H, 𝑓 ∈ C∞
𝑐 } ⊆ supp �̂� .

Philosophically, Proposition 3.21 fills in the “gap” between 𝔗− and T−, in the sense that we do not need
any a priori information how the shifted models behaves on trees 𝜏 ∈ T−\𝔗−. This step relies of course
on the relation between the set 𝔗− and the ideal J, and the fact that we choose ℎ ∈ 𝑓 b ◦ H, whereH is
the annihilator of J. What is less obvious, it also uses crucially the fact that H is indeed a subgroup
of G− (see Assumption 7). By Assumption 8, the “tweaked” BPHZ character 𝑓 b ◦ ( 𝑓 Y)−1 ◦ 𝑔Y is an
element of 𝑓 b ◦ H for any Y > 0, and using that 𝑓 b ◦ ( 𝑓 Y)−1 → 1∗ as Y → 0 concludes the proof.

2. Notations and assumptions

2.1. Conventions on notation

For any integer 𝑀 ∈ N we write [𝑀] := {1, . . . , 𝑀} with the convention that [0] = #̸. We fix a spatial
dimension 𝑒 ≥ 1 and a space-time domain D := R × T𝑒. We assume that either all noises b 𝑗 in (1.3) are
space-time white noises, or they are all purely spatial white noises. In the first case, we define D := D as
the space-time domain with dimension 𝑑 := 𝑒 + 1, while in the second case we let D := T𝑒 be the purely
spatial domain with dimension 𝑑 := 𝑒. In either case, we define D̄ := R𝑑 , so that D can be identified with
the factor space of D̄ modulo a suitable discrete group of translations. Given a distribution 𝑢 on D we
can naturally view 𝑢 as a distribution on D̄ by periodic extension.
For any integer 𝑚 ∈ N we write D′(R𝑚) for the space of distributions and C∞

𝑐 (R𝑚) for the space
of compactly supported, smooth functions on R𝑚. For any distribution 𝑢 and any multiindex 𝑘 ∈ N𝑑
we denote by 𝐷𝑘𝑢 the 𝑘th distributional derivative of 𝑢. In the sequel, test functions that are compactly
supported in the difference of their variables but invariant under simultaneous translations of all their
arguments will play an important role. We capture this in the following definition.

Definition 2.1 For any finite set 𝐿 we define the space C̄∞
𝑐 (D̄𝐿) as the set of smooth functions

𝜙 ∈ C∞ (D̄𝐿) such that both of the following properties are satisfied.
1. The function 𝜙 is invariant under simultaneous translation of all variables by any vector ℎ ∈ D̄. In
other words, we postulate that one has the identity

𝜙((𝑥𝑢)𝑢∈𝐿) = 𝜙((𝑥𝑢 + ℎ)𝑢∈𝐿)

for any ℎ ∈ D̄ and any 𝑥 ∈ D̄𝐿 .
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2. There exists 𝑅 > 0 such that 𝜙((𝑥𝑢)𝑢∈𝐿) = 0 for any 𝑥 ∈ D̄𝐿 such that for some 𝑢, 𝑣 ∈ 𝐿 one has
|𝑥𝑢 − 𝑥𝑣 | > 𝑅.

We will consider the usual topology of test-functions on this space.

Scalings
We write 𝔰Λ for the scaling on D (which we used already in the formulation of our main results,
Theorems 1.6 and 1.7). Here 𝔰Λ is determined by the integration kernels, see Assumption 4. We will
mostly work with the scaling 𝔰 : [𝑑] → N, defined by restricting 𝔰Λ to D. We write |𝔰 | :=

∑𝑑
𝑖=1 𝔰(𝑖) for

the effective dimension. For a multi-index 𝑘 ∈ N{1,...𝑑 } we write |𝑘 |𝔰 :=
∑𝑑
𝑖=1 𝔰(𝑖)𝑘𝑖 , and for 𝑧 ∈ D we

write |𝑧 |𝔰 :=
∑𝑑
𝑖=1 |𝑧𝑖 |

1
𝔰 (𝑖) . We use the convention that sums of the form∑︁

|𝑘 |𝔰≤𝑟
(· · · )

always run over all multi-indices 𝑘 ∈ N𝑑 with |𝑘 |𝔰 ≤ 𝑟. Finally, for any 𝑥 ∈ D̄, 𝜙 ∈ C∞ (D̄) and _ > 0
we define _−𝔰𝑥 ∈ D̄ and 𝜙 (_) ∈ C∞ (D̄) by

(_−𝔰𝑥)𝑖 := _−𝔰 (𝑖)𝑥𝑖 , 𝑖 ≤ 𝑑 and 𝜙 (_) (𝑥) := _−|𝔰 |𝜙(_−𝔰𝑥). (2.1)

Multisets
Let 𝐴 be a finite set. A multiset m with values in 𝐴 is an element of N𝐴 (i.e. a map 𝐴 → N
counting the number of occurrences of each element). Given two multisets m, n ∈ N𝐴 we write
(m \ n)𝑎 := (m𝑎 − n𝑎) ∨ 0 for any 𝑎 ∈ 𝐴. We also naturally identify a subset 𝐵 ⊆ 𝐴 with the multiset
I𝐵 : 𝐴 → {0, 1}. Given a function 𝑓 : 𝐴 → R we write 𝑓 (m) :=

∑
𝑎∈m 𝑓 (𝑎) :=

∑
𝑎∈𝐴 m(𝑎) 𝑓 (𝑎).

Given any finite set 𝐼 and a map 𝜑 : 𝐼 → 𝐴 we write [𝐼, 𝜑] for the multiset with values in 𝐴 given by

[𝐼, 𝜑]𝑎 := #{𝑖 ∈ 𝐼 : 𝜑(𝑖) = 𝑎} (2.2)

for any 𝑎 ∈ 𝐴. Given a finite multisetm, it will be useful to define the index set

d(m) := {(𝑎, 𝑘) : 𝑎 ∈ 𝐴, 1 ≤ 𝑘 ≤ m(𝑎)} ⊂ 𝐴 × N . (2.3)

It will be useful to consider functions 𝑓 with the property that their domain is intuitively given
by 𝑀m for some set 𝑀 and some multiset m. Given sets 𝑀 and 𝑁 , we write 𝑓 : 𝑀m → 𝑁 as a
shorthand for a function 𝑓 : 𝑀d(m) → 𝑁 which is symmetric in the sense that 𝑓 (𝑥 𝑗 ) = 𝑓 (𝑥𝜎 ( 𝑗) ) for
every permutation 𝜎 of d(m) preserving the “fibres” {𝑎} × N for all 𝑎 ∈ 𝐴. Note that if m = [𝐼, 𝜑],
then any 𝑓 : 𝑀 [𝐼,𝜑 ] → 𝑁 can be identified with a function 𝑓𝐼 : 𝑀 𝐼 → 𝑁 by choosing any bijection
𝜓 : 𝐼 → d(m) with the property that 𝜓1 = 𝜑, and setting 𝑓𝐼 ((𝑥𝑖)𝑖∈𝐼 ) := 𝑓 ((𝑥𝜓−1 (𝑎,𝑘) ) (𝑎,𝑘) ∈d(m) ). The
symmetry of 𝑓 guarantees that 𝑓𝐼 is independent of the choice of bijection 𝜓. If 𝑀 and 𝑁 are subsets of
the Euclidean space, we use the notation C∞ (𝑀m, 𝑁), etc., with the obvious meaning.
Another way of viewing a multisetm : 𝐴→ N is to fix an arbitrary total order ⪯ on 𝐴 and implicitly

identify m with the tuple m̃ ∈ 𝐴#m defined as the (unique) order preserving map m̃ : [#m] → 𝐴

such that #{𝑖 : m̃𝑖 = 𝑎} = m(𝑎) for every 𝑎 ∈ 𝐴.

Remark 2.2 We now have three equivalent representations of multisets:m : 𝐴→ N, d(m) ⊆ 𝐴 × N
and m̃ : [#m] → 𝐴. We will mostly working with the first, but depending on the context, it will be
helpful to have the notations d(m) and m̃ at hand.

2.2. Regularity structures

Our driving noises b are indexed by a finite sets of noise types 𝔏−. These noises bΞ, Ξ ∈ 𝔏−, should be
thought of as independent Gaussian noises whose law is self-similar under rescaling. For simplicity, we
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will restrict to Gaussian space or space-time white noises (but see Remark 2.5). The components of our
equation are indexed by a finite set of kernel-types 𝔏+ and to any component 𝔱 ∈ 𝔏+ we associate an
integration kernel 𝐾𝔱 ∈ C∞

𝑐 (D̄ \ {0}) satisfying the “usual” assumptions, see Section 2.2.2. We equip
𝔏 := 𝔏+ ⊔ 𝔏− with two homogeneity assignments | · |𝔰 : 𝔏★ → R★ and 8 · 8𝔰 : 𝔏★ → R★ ⊔ {0} for
★ ∈ {+,−}, where we think of 8 · 8𝔰 as the “real homogeneity” of the noises (for instance |Ξ|𝔰 = − |𝔰 |

2 for
space-time white noise), and we assume that

|𝔱 |𝔰 = 8𝔱8𝔰 , for 𝔱 ∈ 𝔏+ |Ξ|𝔰 = 8Ξ8𝔰 − ^ , for 𝔱 ∈ 𝔏+

for some ^ > 0 (small enough).
Recall [BHZ19, Def. 5.7] that a rule 𝑅 is a collection (𝑅(𝔱))𝔱∈𝔏+ that assigns to any kernel-type

𝔱 ∈ 𝔏+ a set 𝑅(𝔱) of multisets with values in 𝔏 × N𝑑 . In order to lift our problem to the abstract level
of regularity structures, we assume that we are given a normal, subcritical (with respect to | · |𝔰) and
complete (c.f. [BHZ19, Def. 5.7, Def. 5.14, Def. 5.22]) rule 𝑅 which is “rich enough” to treat the system
at hand. (Such a rule is not hard to work out by hand in situations which are simple enough. For more
involved examples we refer the reader to [BCCH17].)
In [BHZ19, Def. 5.26] the authors constructed an (extended) regularity structure Tex based on the

rule 𝑅. We also write T ⊆ Tex for the reduced regularity structure obtained as in [BHZ19, Sec. 6.4].
(We will actually work with a slightly simplified extended decoration, compare Section 2.2.1 below.)
We extend the homogeneity assignments | · |𝔰 and 8 · 8𝔰 to homogeneity assignments | · |+ and 8 · 8+
(respectively | · |− and 8 · 8−) on Tex in the usual way, taking into account (respectively neglecting) the
extended decoration. On the reduced structure Twe set | · |𝔰 := | · |+ = | · |− and 8 · 8𝔰 := 8 · 8+ = 8 · 8−.
We also write T ex and T for the set of trees in Tex and T, respectively, so that Tex and Tare freely
generated by T ex and T as linear spaces.

2.2.1. Trees and algebras
Given a rooted tree 𝑇 , we define a total order ≤ on the vertex set 𝑉 (𝑇) of 𝑇 by setting 𝑢 ≤ 𝑣 if and only
if 𝑢 lies on the unique shortest path from 𝑣 to the root 𝜌𝑇 , and we write edges 𝑒 ∈ 𝐸 (𝑇) as order pairs
𝑒 = (𝑒↑, 𝑒↓) with 𝑒↑ ≥ 𝑒↓. If 𝑢 ∈ 𝑉 (𝑇)\{𝜌𝑇 }, then there exists a unique edge 𝑒 ∈ 𝐸 (𝑇) such that 𝑢 = 𝑒↑,
and in this case we write 𝑢↓ := 𝑒.
Basis elements 𝜏 ∈ T ex can be written as typed, decorated trees 𝜏 = (𝑇𝔫,𝔬

𝔢 , 𝔱), where 𝑇 is a rooted
tree with vertex set 𝑉 (𝑇), edge set 𝐸 (𝑇) and root 𝜌𝑇 , the map 𝔱 : 𝐸 (𝑇) → 𝔏 assigns types to edges, and
the decorations 𝔫,𝔢,𝔬 are maps 𝔫 : 𝑁 (𝑇) → N𝑑 , 𝔢 : 𝐸 (𝑇) → N𝑑 and 𝔬 : 𝑁 (𝑇) → (−∞, 0]. We call 𝔬
the extended decoration. Here we define the decomposition of the set of edges into 𝐸 (𝑇) = 𝐿 (𝑇) ⊔𝐾 (𝑇)
with 𝑒 ∈ 𝐿 (𝑇) (resp. 𝑒 ∈ 𝐾 (𝑇)) if and only if 𝔱(𝑒) ∈ 𝔏− (resp. 𝔱(𝑒) ∈ 𝔏+), and we write 𝑁 (𝑇) ⊆ 𝑉 (𝑇)
for the set of 𝑢 ∈ 𝑉 (𝑇) such that there does not exist 𝑒 ∈ 𝐿 (𝜏) such that 𝑢 = 𝑒↑. We will often abuse
notation slightly and leave the type map 𝔱 and the root 𝜌𝜏 implicit. Recall that it follows from the fact
that 𝑅 is normal (c.f. [BHZ19, Def. 5.7]) that elements 𝑢 ∈ 𝑉 (𝑇)\𝑁 (𝑇) are leaves of the tree 𝑇 .
Given a typed, decorated tree 𝜏 as above, 𝑘 ∈ N𝑑 and 𝔱 ∈ 𝔏+ we write J𝑘𝔱 𝜏 for the planted, decorated,

typed tree obtained from 𝜏 by attaching an edge 𝑒 = (𝜌(𝜏), 𝜌(J𝑘
𝔱
𝜏)) with type 𝔱 to the root 𝜌(𝜏) and

𝔢(𝑒) = 𝑘 , and moving the root 𝜌(J𝑘
𝔱
𝜏) to the new vertex.

We frequently use the Hopf algebras T− and Tex
− associated to negative renormalisation [BHZ19,

Eq. 5.23, Sec. 6.4]. The character group G− of T− is called renormalisation group, and we write ◦ for the
group product. We denote by T− the set of trees of 𝜏 ∈ T with |𝜏 |𝔰 < 0 and such that 𝜏 is not planted,
so that T− is freely generated as a unital, commutative algebra from T−. We will also frequently use the
algebras T̂− and T̂ex

− [BHZ19, Def. 5.26] which are freely generated as a unital, commutative algebra by
T and T ex, respectively.
Recall [BHZ19, Prop. 5.35, Cor. 6.37] that the algebras T− and Tex

− endowed with the coproduct Δ−
are Hopf algebras, and T̂ex

− with the coaction Δ− : T̂ex
− → Tex

− ⊗ T̂ex
− is a comodule. Finally, we write

Ã− : Tex
− → T̂ex

− for the twisted antipode [BHZ19, Prop. 6.6].
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With this notation, we make the following assumption, which guarantees that the analytic BPHZ
theorem of [CH16] can be applied.

Assumption 2 For any tree 𝜏 ∈ T with 𝐾 (𝜏) ≠ #̸ one has

|𝜏 |𝔰 >
(
− |𝔰 |

2
)
∨ max
𝑢∈𝐿 (𝜏)

|𝔱(𝑢) |𝔰 ∨
(
− |𝔰 | − min

Ξ∈𝔏−
|Ξ|𝔰

)
. (2.4)

We also impose that for any 𝜏 ∈ T and any 𝑒 ∈ 𝐾 (𝜏) one has |𝔱(𝑒) |𝔰 − |𝔢(𝑒) |𝔰 > 0.

We also make the simplifying assumption on the rule that we do not allow products or derivatives
of noises to appear on the right-hand side of the equation. As was already remarked in [CH16] and
[BCCH17], such an assumption does not seem to be crucial but simplifies certain arguments.

Assumption 3 We assume that for any 𝔱 ∈ 𝔏 and any 𝑁 ∈ 𝑅(𝔱) there exists at most one pair
(Ξ, 𝑘) ∈ 𝔏− × N𝑑+1 such that 𝑁 (Ξ,𝑘) ≠ 0, and in this case 𝑘 = 0 and 𝑁 (Ξ,0) = 1.

2.2.2. Kernels and models
We assume that for any 𝔱 ∈ 𝔏+ we are given a Green’s function 𝑃𝔱 ∈ C∞ (D̄\{0}), and we make the
following assumption.

Assumption 4 We assume that for any kernel-type 𝔱 ∈ 𝔏+ the kernel 𝑃𝔱 is invariant under rescaling in
the sense that

_−|𝔰Λ |+ |𝔱 |𝔰𝑃𝔱 (_−𝔰Λ ·) = 𝑃𝔱 .

for any _ > 0. Furthermore, in case that the bΞ’s are purely spatial white noises, we assume that
|𝔰 | − |𝔱 |𝔰 > 𝔰0.

The last property ensures that in case of purely spatial white noise the time integral �̂� 𝔱 (𝑥) :=∫ ∞
−∞ 𝑃𝔱 (𝑡, 𝑥)𝑑𝑡 is well-defined and self-similar under scaling _

−|𝔰 |+ |𝔱 |�̂� 𝔱 (_𝔰 ·) = �̂�𝔱 for any _ > 0. To
avoid case distinctions, we set �̂� := 𝑃 in case of space-time white noise.
It follows from Assumption 4 that �̂� 𝔱 can be decomposed into �̂� 𝔱 = 𝐾𝔱 + 𝑅𝔱 with 𝑅𝔱 ∈ C∞ (D̄) and

such that 𝐾𝔱 ∈ C∞
𝑐 (D̄\{0}) (smooth functions with bounded support) satisfies [Hai14, Ass. 5.1, Ass. 5.4].

It will be convenient in Section 4.6 to assume that 𝐾𝔱 = �̂�𝔱𝜙, where 𝜙 ∈ C∞
𝑐 (D̄) is symmetric under

𝑥𝑖 → −𝑥𝑖 for any 𝑖 ≤ 𝑑 and equal to 1 in a neighbourhood of the origin. Given the kernel assignment
(𝐾𝔱)𝔱∈𝔏+ we recall the definition of admissible models [Hai14, Def. 2.7, Def. 8.29]. We call a model
𝑍 = (Π, Γ) smooth if Π𝑥𝜏 ∈ C∞ (D) for any 𝜏 ∈ T ex and some (and therefore any) 𝑥 ∈ D, and we call
𝑍 reduced if Π𝑥𝜏 does not depend on the extended decoration of 𝜏.
Given an admissible [BHZ19, Def. 6.8] and reduced linear map 𝚷 : Tex → C∞ (D) we writeZ(𝚷)

for the model constructed as in [BHZ19, Eqs 6.11, 6.12], whenever this is well-defined, and we writeM∞
for the set of smooth, reduced, admissible models forTex. We writeM0 for the closure ofM∞ in the space
of models. We write Ω∞ := Ω∞ (𝔏−) := C∞ (D)𝔏− and, given 𝑓 ∈ Ω∞, we write 𝑍c ( 𝑓 ) = 𝑍 𝑓 = Z(𝚷 𝑓 )
for the canonical lift of 𝑓 to a model 𝑍 𝑓 ∈ M∞, c.f. [BHZ19, Rem. 6.12].

2.2.3. Renormalised models
Recall [BHZ19, Eq. 6.23] that for a smooth noise [ (which we assume to be stationary and centred,
with all its derivatives having moments of all orders) we can define a character Υ[ on T̂ex

− by setting
Υ[ := E(𝚷[𝜏) (0) for any tree 𝜏 ∈ T̂ex

− , and extending this linearly and multiplicatively, where 𝚷[

denotes the canonical lift of [ to an admissible random model. The BPHZ character 𝑔[ ∈ G− ⊂ (Tex
− )∗

is then given by

𝑔[ := Υ[Ã− , (2.5)
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with Ã− : Tex
− → T̂ex

− denoting the “twisted antipode” as given in [BHZ19, Eq. 6.8]. A character 𝑔 ∈ G−
defines a renormalisation map 𝑀𝑔 : Tex → Tex by

𝑀𝑔 := (𝑔 ⊗ Id)Δ−,

and we recall that the BPHZ renormalised model �̂� [ = Z(�̂�[) for a smooth noise [ is given by [BHZ19,
Thm. 6.17]

�̂�[𝜏 := 𝚷[𝑀𝑔[𝜏 (2.6)

for any 𝜏 ∈ Tex. Finally, note that one has a continuous action 𝑔 ↦→ R𝑔 of the renormalisation group G−
onto the spaceM0 of admissible models, given by

R𝑔Z(𝚷) := Z(𝚷𝑀𝑔). (2.7)

(The fact thatM0 is stable under this action is not obvious but was shown in [BHZ19, Thm. 6.15].)

Remark 2.3 We will work with the convention that the renormalisation group product on G− is given by

𝑔 ◦ ℎ := (𝑔 ⊗ ℎ)Δ−.

With this convention one obtains 𝑀ℎ◦𝑔 = 𝑀𝑔𝑀ℎ for any 𝑔, ℎ ∈ G−, which follows from a quick
computation

𝑀ℎ◦𝑔 = ((ℎ ◦ 𝑔) ⊗ Id) Δ− = (ℎ ⊗ 𝑔 ⊗ Id) (Δ− ⊗ Id)Δ− =

(ℎ ⊗ 𝑔 ⊗ Id) (Id ⊗ Δ−)Δ− = (ℎ ⊗ 𝑀𝑔)Δ− = 𝑀𝑔𝑀ℎ,

so that the groupℜ of “matrices”𝑀𝑔 acting onTis naturally identified with the opposite group Gop
− . Note

however that the actionR of G− onto the space of models satisfiesR𝑔◦ℎ = R𝑔Rℎ for any 𝑔, ℎ ∈ G−.

A central role will be played by the following “shift operator”.

Theorem 2.4 For any ℎ ∈ Ω∞ there exists a continuous operator 𝑇ℎ : M0 → M0 with the property that
for any 𝑓 ∈ Ω∞ and any 𝑔 ∈ G− the canonical lift 𝑍c ( 𝑓 ) of 𝑓 satisfies

R𝑔𝑍c ( 𝑓 + ℎ) = 𝑇ℎR𝑔𝑍c ( 𝑓 ) = R𝑔𝑇ℎ𝑍c ( 𝑓 ). (2.8)

Moreover, this operator is continuous as a map Ω∞ ×M0 → M0 : (ℎ, 𝑍) ↦→ 𝑇ℎ𝑍 where we endow
the space Ω∞ ×M0 with the product topology. We call 𝑇ℎ the shift operator.

Proof. The construction of 𝑇ℎ and the verification of (2.8) as well as its continuity are obtained very
similarly to the verification of Assumption 10 in the proof of [HM18, Thm. 5.1], so we only give a sketch
of the proof.
Consider first an enlarged set of types 𝔏 such that 𝔏+ = 𝔏+, but 𝔏− = {Ξ,Ξ : Ξ ∈ 𝔏}. In other words,

every original noise-type Ξ comes with a new “shifted” noise type Ξ. We then define a regularity structure
T in the same way as T, but from an enlarged rule 𝑅 obtained from 𝑅 by allowing to replace any number
of noises by their corresponding “shifted” noises. We also writeM0 for the space of admissible models
analogous toM0, but for T. Finally, we fix 𝑎 > 0 sufficiently large so that, setting degΞ = 𝑎 for every
shifted noise (the degrees of the original noises and kernels remain unchanged), one has T− = T−, i.e. all
newly added basis vectors of Thave strictly positive degree.
As a consequence of this last condition, it is straightforward to show by repeated invocations of

[Hai14, Prop. 3.31] and [Hai14, Thm. 5.14] that, given any modelZ(𝚷) ∈ M0 and any ℎ ∈ Ω∞, there
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exists a unique model Y(ℎ,𝚷) ∈ M0 with the property that

Y(ℎ,𝚷)𝜏 = 𝚷𝜏 , ∀𝜏 ∈ T− , Y(ℎ,𝚷)Ξ = ℎΞ , ∀Ξ ∈ 𝔏− .

Exactly as in [HM18, Eq. 5.9], one can then construct a continuous map Z: M0 → M0 which has
the effect of “adding the function represented by Ξ to the distribution represented by Ξ”. Setting
𝑇ℎ𝑍 = Z(Y(ℎ, 𝑍)), the claim now follows from [HM18, Eqns 5.10 & 5.11], combined with the
continuity of both Y and Z.

2.3. Driving noises

For simplicity we restrict to the case that our noises (bΞ)Ξ∈𝔏− are independent Gaussian white noises on
D, so that one has

E[bΞ (𝜑)bΞ′ (𝜑′)] = ⟨𝜑, 𝜑′⟩𝐿2 (D)IΞ=Ξ′ ,

and we set 8Ξ8𝔰 := − |𝔰 |
2 . We fix a smooth and compactly support function 𝜌 ∈ C∞

𝑐 (D̄) such that∫
𝜌(𝑥)𝑑𝑥 = 1, and, recalling for any Y > 0 the notation 𝜌 (Y) from (2.1), we define the random smooth

noise b Y by setting
b Y𝔱 := b𝔱 ★ 𝜌 (Y)

for any 𝔱 ∈ 𝔏−. .

Remark 2.5 We do this in order to not complicate the presentation unnecessarily. In principle the proof
we give in this paper will hold (modulo some minor modifications) in the case that b is a family of
independent, stationary, centred Gaussian noises with “self-similar” covariance structure and the property
that all smooth, compactly supported functions are included in the Cameron-Martin space. One can often
relate these situations back to our setting by introducing a new kernel type, see for instance Section C.2
where this is made precise for the Φ4

4−Y equation.

It is well known that b admits a version which is a random element of

Ω :=
⊕
Ξ∈𝔏−

C
|Ξ |𝔰
𝔰 (D) .

We denote the law of bΞ on C|Ξ |𝔰
𝔰 (D) byQ, and we write P :=

⊗
Ξ∈𝔏−

Q for the law of b onΩ. Since only
the law of bΞ is relevant in order to establish a support theorem, there is no loss of generality to assume
that b : Ω → Ω denotes the canonical process. We write 𝐻 := 𝐿2 (D)𝔏− ⊆ Ω for the Cameron-Martin
space of P and we recall the following well-known theorem.

Theorem 2.6 (Cameron-Martin) For any fixed ℎ ∈ 𝐻, the laws of b and b + ℎ under P are equivalent.

Since smooth noises Ω∞ are in general not in the Cameron-Martin space, we define the space of
compactly supported smooth noises Ω∞,𝑐 :=

⊕
Ξ∈𝔏−

C∞
𝑐 (D). It will often be convenient to identify

functions ℎ ∈ C∞
𝑐 (D̄) with the element of C∞

𝑐 (D) obtained by symmetrisation. We endow C∞
𝑐 (D)

with the usual topology (which induces convergence in the sense of test functions), and we define the
seminorms

∥ 𝑓 ∥𝛼,𝐾 := sup
𝑥∈𝐾

|𝐷𝛼 𝑓 (𝑥) |

for 𝐾 ⊆ D compact and 𝛼 ∈ N𝑑 .
Recall [Bog98, Nua06] that there is a canonical isomorphism ℎ ↦→ 𝐼 (ℎ) between the Cameron-Martin

space 𝐻 and a closed subspace H1 of 𝐿2 (Ω,P) with the property that (𝐼 (ℎ))ℎ∈𝐻 are jointly Gaussian
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random variables. This extends to isomorphisms 𝐼𝑚 between the symmetric tensor product 𝐻⊗𝑠𝑚 and
subspacesH𝑚 of 𝐿2 (Ω,P) by setting 𝐼𝑚 (ℎ ⊗ . . . ⊗ ℎ) = 𝐻𝑚 (𝐼 (ℎ), ∥ℎ∥𝐻 ), where 𝐻𝑚 (𝑥, 𝑐) denotes the
𝑚th Hermite polynomial with parameter 𝑐. These maps extend to contractions on the full tensor product
spaces 𝐻⊗𝑚 by setting 𝐼𝑚 (ℎ1 ⊗ . . . ⊗ ℎ𝑚) := 𝐼𝑚 (ℎ1 ⊗𝑠 . . . ⊗𝑠 ℎ𝑚). We call 𝐼𝑚 (ℎ) the iterated integral
of ℎ ∈ 𝐻⊗𝑚 with respect to P, and we write 𝐼𝑚 (ℎ) [b] if we want to emphasise the dependence of 𝐼𝑚 (ℎ)
on the noise b.
We write 𝜋Ξ : 𝐿2 (D) → 𝐻 for the isometry given by (𝜋Ξℎ)Ξ̃ = ℎ1Ξ̃=Ξ for any ℎ ∈ 𝐿2 (D). More

generally, given 𝑚 ≥ 1 and a map m̃ : [𝑚] → 𝔏− we write 𝜋m̃ :
⊗𝑚

𝐿2 (D) →
⊗𝑚

𝐻 for the
isometry which satisfies

𝜋m̃(ℎ1 ⊗ . . . ⊗ ℎ𝑚) := (𝜋m̃1ℎ1) ⊗ . . . ⊗ (𝜋m̃𝑚
ℎ𝑚).

We then introduce the notation

𝐼m̃(ℎ) := 𝐼𝑚 (𝜋m̃ℎ) . (2.9)

for any ℎ ∈
⊗𝑚

𝐿2 (D). We will mostly need a stochastic integral whose output is a smooth stationary
function on D rather than just a number, and we define

𝐽m̃(ℎ) (𝑧) := 𝐼m̃
(
ℎ(𝑧 − (·)1, . . . , 𝑧 − (·)𝑚)

)
. (2.10)

Finally, recall from Remark 2.2 that given a total order ⪯ on 𝔏− (which we assume to be fixed once
and for all) we obtain a map m̃ : [#m] → 𝔏− for any multisetm. We then abuse notation slightly and
write 𝐽m := 𝐽m̃.

2.4. Non-Gaussian noises

In this section, let 𝕷− be a finite set of noise types such that 𝔏− ⊆ 𝕷−. A possible choice is of course
𝕷− = 𝔏−, but we do not require this here. One should rather think of 𝕷− as an enlarged set of noise types,
see Section 5. The noises ([𝚵)𝚵∈𝕷− which we will consider always take values in a fixed inhomogeneous
Wiener chaos with respect to the (fixed) family of independent Gaussian white noises b = (bΞ)Ξ∈𝔏− . For
technical reasons we restrict ourselves to a class of noises [ such that the kernels of [Ξ (in the Wiener
chaos decomposition) has a relatively simple structure. For this we write C∞

𝑐,1 (D̄) ⊆ C∞
𝑐 (D̄) for the

space of smooth functions 𝜑 ∈ C∞
𝑐 (D̄) which are supported in a neighbourhood of | · |𝔰 radius 1 around

the origin. We also fix an integer 𝑟 ∈ N larger than |𝔰 |
2 , and given a homogeneity 𝛼 < 0 and a kernel

𝐾 ∈ C∞
𝑐 (D̄\{0}) we write ∥𝐾 ∥𝛼 ∈ [0,∞] for the smallest constant such that

|𝐷𝑘𝐾 (𝑥) | ≤ ∥𝐾 ∥𝛼 |𝑥 |𝛼−|𝑘 |𝔰𝔰 (2.11)

for any 𝑥 ∈ D̄\{0} and multi-index 𝑘 ∈ N𝑑 with |𝑘 |𝔰 < 𝑟, and such that∫
𝑥𝑘𝐾 (𝑥)𝑑𝑥 ≤ ∥𝐾 ∥𝛼 (2.12)

for any 𝑘 ∈ N𝑑 with |𝑘 |𝔰 ≤ ⌈−𝛼 − |𝔰 |⌉.

Definition 2.7 For 𝑛 ∈ N let Y𝑛
∞ denote the space

Y𝑛
∞ =

𝑛⊗
𝑖=0

C∞
𝑐,1 (D̄). (2.13)
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For any �̄� = (�̄�𝑖)𝑖=0,...,𝑛 ∈ R𝑛+1
− we define a norm on Y𝑛

∞ by

∥𝐾0 ⊗ . . . ⊗ 𝐾𝑛∥ �̄� :=
𝑛∏
𝑖=0

∥𝐾𝑖 ∥ �̄�𝑖 , (2.14)

Finally, given 𝛼 < 0 we define for 𝑛 ≥ 2 the norm

∥𝐾 ∥𝛼 := sup
�̄�

∥𝐾 ∥ �̄�, (2.15)

where the supremum on the right hand side runs over all �̄� ∈ R𝑛+1
− such that

∑𝑛
𝑖=0 �̄�𝑖 = 𝛼 − |𝔰 |,

�̄�0 > −|𝔰 | − 1 and �̄�𝑖 > −|𝔰 | for 𝑖 = 1, . . . , 𝑛. For 𝑛 = 1 we define ∥𝐾0 ⊗ 𝐾1∥𝛼 := ∥𝐾0 ★𝐾1∥𝛼.

Elements 𝐾 ∈ Y𝑛
∞ define kernels U𝐾 ∈ C∞

𝑐 (D̄𝑛) in the following way.

Definition 2.8 We define a linear map U : Y𝑛
∞ → C∞

𝑐 (D̄𝑛) by setting

U𝐾 (𝑥1, . . . , 𝑥𝑛) =
∫

D̄
𝑑𝑦𝐾0 (𝑦)𝐾1 (𝑥1 − 𝑦) . . . 𝐾𝑛 (𝑥𝑛 − 𝑦). (2.16)

We call kernels of the form U𝐾 simple kernels, and we writeK𝑛 for the linear space generated by simple
kernels in 𝑛 variables.

One should think of U𝐾 as a kernel with respect to stochastic integration, see Definition 2.13 below.

Remark 2.9 One has an obvious isomorphism between C∞
𝑐 (D̄𝑛) and C̄∞

𝑐 (D̄ × D̄𝑛) given by identifying
𝐾 and (𝑥, 𝑥1, . . . , 𝑥𝑛) ↦→ 𝐾 (𝑥 − 𝑥1, . . . , 𝑥 − 𝑥𝑛). It will sometimes be useful to view simple kernels as
elements of C̄∞

𝑐 (D̄ × D̄𝑛) in this way, which we will do implicitly below.

Remark 2.10 The “kernels” 𝐾𝑖 that we have in mind for 𝑖 = 1, . . . , 𝑛 are of the form 𝐾𝑖 = _𝛽+|𝔰 |𝜙 (_)
𝑖
for

some fixed test function 𝜙𝑖 and some _ > 0, where 𝛽 := 𝑛−1𝛼, while 𝐾0 will be of the form 𝐾0 := 𝜙 (_)
0

for some fixed test function 𝜙0 integrating to zero. One then has ∥𝐾𝑖 ∥ �̄�𝑖 ≃ _𝛽−�̄�𝑖 and ∥𝐾0∥ �̄�0 ≃ _−�̄�0−|𝔰 |

uniformly in 0 > �̄�𝑖 > −|𝔰 |, 0 > �̄�0 > −|𝔰 | − 1 and _ > 0, and thus

∥𝐾0 ⊗ . . . ⊗ 𝐾𝑛∥𝛼 ≲ 1 (2.17)

uniformly in _ > 0. This is the type of kernel we will use when we define the shift of the noise in Section 5.
But we want the space of noises to be rich enough to encode not only the shifts, but also an

approximation to white noise itself. In this case one cannot choose 𝐾0 to integrate to zero, which explains
the slightly different definition of the norm ∥ · ∥𝛼 on Y1

∞.

We fix a homogeneity 𝖘 : 𝕷− → R− with 𝖘 ≥ − |𝔰 |
2 − ^ for ^ > 0 small enough, and we set

𝛽𝚵m := 𝖘(𝚵) − #m |𝔰 |
2 for any 𝚵 ∈ 𝕷− and any multisetm.

Definition 2.11 For 𝑁 ∈ N we denote by 𝔜𝑁∞ the space of all families 𝐾 = (𝐾𝚵
m) where 𝚵 ∈ 𝕷− and

m runs over all multisets with values in 𝔏− such that #m ≤ 𝑁 , and such that 𝐾𝚵
m ∈ Y#m

∞ . On 𝔜𝑁∞ we
define the norm ∥ · ∥𝖘 by setting

∥𝐾 ∥𝖘 :=
∑︁
m,𝚵

∥𝐾𝚵
m∥𝛽𝚵m (2.18)

We write 𝔜𝑁0 for the closure of 𝔜
𝑁
∞ under this norm.
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Remark 2.12 We will shortly interpret the kernels 𝐾Ξ
m as “stochastic integration kernels” which define

a translation invariant noise in a fixed Wiener chaos, see Definition 2.13. The norm defined in (2.18) is
then the natural norm to put on elements of 𝔜𝑁∞ . In particular,

∥𝐾 ∥var := max
𝚵,m

∫
D̄#m

𝑑𝑥

∫
D̄
𝑑𝑦U𝐾𝚵

m(0, 𝑥1, . . . , 𝑥#m)U𝐾𝚵
m(𝑦, 𝑥1, . . . , 𝑥#m), (2.19)

which corresponds to [CH16, Eq. A.15], is automatically bounded by ∥𝐾 ∥𝖘 . See the proof of Lemma 2.18
for more details.

Definition 2.13 For 𝑁 ∈ N we denote by𝔐𝑁
∞ = 𝔐𝑁

∞ (𝕷−) the space of tuples [ = ([𝚵)𝚵∈𝕷− given by

[𝚵 := 𝐽𝚵 (𝐾) :=
∑︁
m

𝐽m(U𝐾𝚵
m) (2.20)

for some 𝐾 ∈ 𝔜𝑁∞ with 𝐽m as in (2.3). We call any [ ∈ 𝔐𝑁
∞ a smooth noise. On𝔐𝑁

∞ we define the norm

∥[∥𝖘 := inf
𝐾

∥𝐾 ∥𝔜𝑁∞ , (2.21)

where the infimum runs over all 𝐾 ∈ 𝔜𝑁∞ such that (2.20) holds, and we denote by𝔐𝑁
0 = 𝔐𝑁

0 (𝕷−) the
closure of the set of simple smooth noises under this norm. (The space𝔐𝑁

0 depends on 𝖘, but we hide
this dependence in the notation.) It will be convenient to write𝔐∞ :=

⋃
𝑁 𝔐𝑁

∞ and𝔐0 :=
⋃
𝑁 𝔐𝑁

0 .

Remark 2.14 We will see in Lemma 2.18 below that any smooth noise in our setting is a smooth noise
in the sense of [CH16], and the distance ∥·; ·∥𝔠 considered there is dominated by ∥ · ∥𝖘 (provided the
cumulant homogeneity 𝔠 is chosen appropriately, see below). One advantage of the restricted setting
introduced here is that the spaces𝔐∞ and𝔐0 form linear spaces and (2.21) is indeed a norm (this is
very different from [CH16], where ∥·; ·∥𝔠 is not even a distance in the metric sense.)

Remark 2.15 One motivation behind this definition is that cumulants formed by noises of this type are
represented by Feynman diagrams so we can use the results of [Hai18]. This is of particular importance
whenever we need results not covered in [CH16] (for instance bounds on their large scale behaviour or
conditions under which one does not see a log-divergence for the renormalisation constant of 0-order
trees).

In order to apply the results from [CH16] we will have to bound cumulants of orders higher than two.
The assumptions in [CH16] are formulated on objects called cumulant homogeneities, see [CH16, Def.
A.14]. We define now such a cumulant homogeneity 𝔠 consistent with 𝖘. (Later on we will show that the
shift of our noise is bounded uniformly by this cumulant homogeneity.)
Given a homogeneity assignment 𝖘 we define a cumulant homogeneity 𝔠 = 𝖘𝔠 as follows. For any

𝑀 ∈ N, any map 𝔱 : [𝑀] → 𝕷−, any spanning tree T for [𝑀] and any interior vertex a ∈ T◦ we define
the quantity

𝔠
(𝔱, [𝑀 ])
T (a) := −

( ∑︁
`∈CT (a)

max
𝑢∈𝐿 (T`)

𝖘(𝔱𝑢)
)
+ max
𝑢∈𝐿 (Ta)

𝖘(𝔱𝑢)Ia≠𝜌T , (2.22)

where CT (a) denote the set of children of a in T and 𝐿 (T`) denote the set of leaves 𝑢 of T such that
𝑢 ≥ ` with respect to the tree order. Note that in particular 𝐿 (T𝑢) = {𝑢} for any leaf 𝑢 ∈ 𝐿 (T).

Remark 2.16 In the notation of [CH16], we always set 𝔏cum := 𝔏all
cum.
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As a first result we check consistency [CH16, Def. A.16] of 𝖘 and 𝖘𝔠, and super-regularity of the
shifted trees 𝜏. Here we call a tree 𝜏 “shifted tree” if there exists 𝜏 = (𝑇𝔫

𝔢 , 𝔱) ∈ Tsuch that 𝜏 = (𝑇𝔫
𝔢 , 𝔱

′)
where 𝔱(𝑒) = 𝔱′(𝑒) for kernel-type edges 𝑒 ∈ 𝐾 (𝜏) and 𝔱′(𝐿 (𝜏)) ⊆ 𝕷−. (The basis vectors of the larger
regularity structure which we will construct in Section 5.1 will be shifted trees in this sense.) The next
lemma applies in particular in case of 𝕷− = 𝔏− and 𝖘 = 𝔰.

Lemma 2.17 The cumulant homogeneity 𝖘𝔠 is consistent with 𝖘. Moreover, provided that 𝖘(𝚵) ≥ − |𝔰 |
2 − ^

for any 𝚵 ∈ 𝕷−, any shifted tree is (𝖘𝔠, | · |𝖘)-super-regular.

Proof. We first check consistency in the sense of [CH16, Def A.16]. Let 𝑀 ∈ N and 𝔱 : [𝑀] → 𝕷−. The
fact that ∑︁

a∈T◦

𝖘𝔠
𝔱, [𝑀 ]
T (a) = −|𝔱( [𝑀]) |𝖘

follows directly from the definition. To see point 3 of [CH16, Def. A.16], let a ∈ T◦ such that a ≠ 𝜌T.
Then we have ∑︁

`∈T◦ ,`≥a

𝖘𝔠
𝔱, [𝑀 ]
T (`) = −

∑︁
𝑖∈𝐿 (Ta)

|𝔱𝑖 |𝖘 + max
𝑖∈𝐿 (Ta)

|𝔱𝑖 |𝖘 < −|𝔱(𝐿 (Ta)) |𝖘 .

To see the last point, let 𝑀 ≥ 3 and a ∈ T◦ with |𝐿 (Ta) | ≤ 3. Then∑︁
`∈T◦ ,`≥a

𝖘𝔠
𝔱, [𝑀 ]
T (`) < |𝔰 | ( |𝐿 (Ta) | − 1)

since by assumption one has |𝔱 |𝖘 > −|𝔰 | for any noise type 𝔱 ∈ 𝕷−.
We show next that any shifted tree 𝜏 = (𝑇𝔫

𝔢 , 𝔱) is super-regular. Let 𝜏 = (𝑇𝔫
𝔢 , 𝔱

′) be as in the definition
of shifted trees. Since the tree 𝜏 ∈ T− is 𝔰-super-regular by assumption, one has for any subtree 𝑆 ⊆ 𝑇
with the property that #𝐾 (𝑆) > 1 the estimate

| (𝑆0
𝔢 , 𝔱) |𝖘 ≥ |(𝑆0

𝔢 , 𝔱
′) |𝔰 > − |𝔰 |

2
.

Furthermore, we have in the notation of [CH16, Def A.24] the identity

ℏ𝖘𝔠 (𝔱(𝐿 (𝑆))) = − max
𝑢∈𝐿 (𝑆)

|𝔱(𝑢) |𝖘 . (2.23)

Choose now a noise type edge 𝑣 ∈ 𝐿 (𝑆) with the property that the maximum on the right-hand side of
(2.23) is attained for 𝑣. If 𝑣 is such that 𝔱(𝑣) ≠ 𝔱′(𝑣), then one has

| (𝑆0
𝔢 , 𝔱) |𝖘 ≥ |(𝑆0

𝔢 , 𝔱
′) |𝔰 + (|𝔱(𝑣) |𝖘 − |𝔱′(𝑣) |𝔰) > −ℏ𝖘𝔠 (𝐿 (𝑆)),

where we use the fact that by super-regularity of 𝜏 one has | (𝑆0
𝔢 , 𝔱) |𝔰 > |𝔱(𝑣) |𝔰 .

Finally, in the notation of [CH16, Def. 2.26] we have for any leaf-typed sets 𝐴 and 𝐵

𝑗𝐴(𝐵) ≥
|𝔰 |
2

− ^

and for ^ > 0 small enough we have − |𝔰 |
2 + ^ < | (𝑆0

𝔢 , 𝔱) |𝖘 .

We recall the notation ∥[∥𝑁,𝔠 and ∥[; [̄∥𝑁,𝔠 from [CH16, Def. A.18 & A.19].
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Lemma 2.18 Fix 𝑁, �̄� ∈ N. Let �̃� : 𝕷− → R− be a second homogeneity assignment such that
− |𝔰 |

2 − (�̄� + 1)^ < �̃� < 𝖘 − �̄�^ and let 𝔠 := �̃�𝔠. For any [ ∈ 𝔐𝑁
∞ and 𝐶 > 0 one has

∥[∥ �̄� ,𝔠 ≲ ∥[∥𝖘 (2.24)

uniformly over all noises [ ∈ 𝔐𝑁
∞ with ∥[∥𝖘 ≤ 𝐶.

If [̄ ∈ 𝔐𝑁
∞ is another smooth noise, then one has

∥[; [̄∥ �̄� ,𝔠 ≲ ∥[; [̄∥𝖘 (2.25)

uniformly over all noises [, [̄ with ∥[∥𝖘 ∨ ∥[̄∥𝖘 ≤ 𝐶.

Proof. We only show (2.24), the bound (2.25) follows similarly. Let 𝐾 ∈ 𝔜𝑁∞ be such that (2.20) holds and
such that ∥𝐾 ∥𝖘 ≤ 2∥[∥𝖘 . To continue the proof, we introduce some notation from [CH16]. Given 𝑀 ∈ N
we call T a spanning tree for 𝑀 if T is a binary, rooted tree with set of leaves given by 𝐿 (T) = [𝑀]. We
denote by

◦
T the set of interior nodes of T and we call an order-preserving map s :

◦
T → N a labelling.

Given a labelled spanning tree (T, s) and a map 𝔱 : [𝑀] → 𝕷− we introduce the notation

⟨𝔠𝔱, [𝑀 ]
T , s⟩ :=

∑︁
a∈

◦
T

𝔠
𝔱, [𝑀 ]
T (a)s(a),

and the set 𝐷 (T, 𝔰) ⊆ D̄𝑀 as the set of 𝑥 ∈ D̄𝑀 such the

𝐶−12−s(𝑘∧T𝑙) ≤ |𝑥𝑘 − 𝑥𝑙 | ≤ 𝐶2−s(𝑘∧T𝑙)

for any 1 ≤ 𝑘, 𝑙 ≤ 𝑀 and for some constant 𝐶 > 0 large enough. (Here 𝐶 > 0 is fixed but large enough
so that the sets 𝐷 (T,s) cover all of D̄𝑀 .) With this notation one has

∥[∥ �̄� ,𝔠 ≤ ∥𝐾 ∥var + max
𝑀≤�̄�

max
𝔱:[𝑀 ]→𝕷−

sup (T, s) sup
𝑥∈𝐷 (T,s)

|E𝑐 [([𝔱 (𝑘) (𝑥𝑘))𝑘≤𝑀 ] |2−⟨𝔠
𝔱, [𝑀 ]
T ,s⟩ ,

where the first supremum runs over all labelled spanning trees (T, s) for 𝑀 .
We fix from now on 𝑀 ≤ �̄� , a type map 𝔱 : [𝑀] → 𝕷− and a spanning tree T for 𝑀. Writing

E𝑐 (𝑋𝑘)𝑘≤𝑀 for the 𝑀th joint cumulant of a collection of random variables 𝑋𝑘 , the cumulant of the
noises [𝔱 (𝑘) (𝑥𝑘) can be bounded by

|E𝑐 [([𝔱 (𝑘) (𝑥𝑘))𝑘≤𝑀 ] | ≤
∑︁
m

|E𝑐 [𝐽m(𝑘) (U𝐾 𝔱 (𝑘)
m(𝑘) (𝑥𝑘))𝑘≤𝑀 ] |

where the sum runs over all families (m𝑘)𝑘∈[𝑀 ] where eachm𝑘 is a multiset with values in 𝔏−. We fix
such a family from now on. We then write 𝐾 (𝑘) := 𝐾 𝔱 (𝑘)

m𝑘
∈ Y

#m(𝑘)
∞ , so that it suffices to show that

|E𝑐 [𝐽m𝑘
(U𝐾 (𝑘) (𝑥𝑘))𝑘≤𝑀 ] | ≲

𝑀∏
𝑘=1

∥𝐾 (𝑘) ∥𝛽 (𝑘) 2⟨𝔠𝔱, [𝑀 ]
T ,s⟩ ,

uniformly over all labelling s and 𝑥 ∈ 𝐷 (T,s) , where 𝛽 (𝑘) := 𝛽𝚵(𝑘)
m𝑘

is as in (2.18). It suffices to show this
bound uniformly over all simple tensors 𝐾 (𝑘) = 𝐾 (𝑘)

0 ⊗ . . . ⊗ 𝐾 (𝑘)
𝑚𝑘 , where 𝑚𝑘 := #m𝑘 , the general case

follows from the definition of the tensor norm.
We define Λ := {(𝑘, 𝑙) : 1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑙 ≤ 𝑚(𝑘)}. We think of Λ as indexing the variables of

the kernels 𝐾 (𝑘) which are integrated out by stochastic integration. We define P as the set of pairings
𝑃 of Λ with the following properties. We require that for any {(𝑘, 𝑙), (𝑚, 𝑛)} ∈ 𝑃 one has 𝑘 ≠ 𝑚 and
𝚵(𝑃) := m̃𝑘 (𝑙) = m̃𝑚 (𝑛). (The first condition reflects the fact that our noises take values in homogeneous



28 Martin Hairer and Philipp Schönbauer

Wiener Chaoses, so that self contractions do not need to be considered, the second condition reflects the
fact that the Gaussian noises bΞ are independent.) We also require that the pairing is connected, in the
sense that if ∼ denotes the smallest equivalence relation on [𝑀] with the property that 𝑘 ∼ 𝑙 whenever
there exists some 𝑖, 𝑗 such that {(𝑘, 𝑖), (𝑙, 𝑗)} ∈ 𝑃, then all elements of [𝑀] are equivalent.
The cumulant can then be written as

E𝑐 [𝐽m𝑘
(U𝐾 (𝑘) (𝑥𝑘))𝑘≤𝑀 ] =

∑︁
𝑃∈P

𝐸𝑃 (𝑥),

where

𝐸𝑃 (𝑥) :=
∫

D̄Λ

𝑑𝑦Λ

𝑀∏
𝑘=1

U𝐾 (𝑘) ((𝑥𝑘 − 𝑦 (𝑘,𝑙) )𝑙≤𝑚𝔱 (𝑘) )
∏

𝑃={𝑎,𝑏}∈P
𝛿(𝑦𝑎 − 𝑦𝑏), (2.26)

and we will show that for any 𝑃 ∈ P one has

|𝐸𝑃 (𝑥) | ≲
𝑀∏
𝑘=1

∥𝐾 (𝑘) ∥𝛽 (𝑘) 2⟨𝔠𝔱, [𝑀 ]
T ,s⟩ . (2.27)

Let 𝐽 ⊆ [𝑀] denote the set of indices 𝑘 ≤ 𝑀 with 𝑚𝑘 > 1, and we write

𝐸𝑃 (𝑥) =
∫

D̄𝑀
𝑑𝑧𝑀

∏
𝑘∈𝐽

𝐾
(𝑘)
0 (𝑥𝑘 − 𝑧𝑘)

∏
𝑘∉𝐽

𝛿0 (𝑥𝑘 − 𝑧𝑘)�̃�𝑃 (𝑧)𝑑𝑧,

with

�̃�𝑃 (𝑧) :=
∫

D̄Λ

𝑑𝑦Λ

𝑀∏
𝑘=1

Ũ𝐾 (𝑘) ((𝑥𝑘 − 𝑦 (𝑘,𝑙) )𝑙≤𝑚𝔱 (𝑘) )
∏

𝑃={𝑎,𝑏}∈P
𝛿(𝑦𝑎 − 𝑦𝑏),

where we set

Ũ𝐾 (𝑘) :=

{
U(𝛿0 ⊗ 𝐾 (𝑘)

1 ⊗ . . . ⊗ 𝐾 (𝑘)
𝑚𝑘 ) if 𝑘 ∈ 𝐽

U(𝐾 (𝑘)
0 ⊗ 𝐾 (𝑘)

1 ) if 𝑘 ∉ 𝑗 .

It suffices to show that bound uniformly over kernels with ∥𝐾 (𝑘)
0 ∥−|𝔰 | = 1 for any 𝑘 . Then, it suffices

to show (2.27) with 𝐸𝑃 replaced by �̃�𝑃 , the bound for 𝐸𝑃 can be argued as in [CH16, Sec. B].
By definition, for every choice of homogeneities 𝛽 (𝑘)

𝑖
, 𝑘 = 1, . . . , 𝑀 , 𝑖 = 1, . . . , 𝑚𝑘 , with −|𝔰 | −I𝑘∉𝐽 <

𝛽
(𝑘)
𝑖

< 0 and
∑𝑚𝑘
𝑖=1 𝛽

(𝑘)
𝑖

= 𝛽 (𝑘) one has the bound

|�̃�𝑃 (𝑥) | ≲
(
𝑀∏
𝑘=1

𝑚𝑘∏
𝑖=1

∥�̃� (𝑘)
𝑖

∥
𝛽
(𝑘)
𝑖

) ∏
{(𝑘,𝑖) , (𝑙, 𝑗) }∈P

2−s(𝑘∧T𝑙)
(
(𝛽 (𝑘)
𝑖

+𝛽 (𝑙)
𝑗

+|𝔰 |)∧0
)
.

Here, we set �̃� (𝑘)
𝑖

:= 𝐾 (𝑘)
𝑖
if 𝑘 ∈ 𝐽 and �̃� (𝑘)

1 := 𝐾 (𝑘)
0 ★𝐾

(𝑘)
1 = Ũ(𝐾 (𝑘) ) if 𝑘 ∉ 𝐽.

Since by definition one has the estimate

𝑀∏
𝑘=1

𝑚𝑘∏
𝑖=1

∥�̃� (𝑘)
𝑖

∥
𝛽
(𝑘)
𝑖

≤
𝑀∏
𝑘=1

∥𝐾 (𝑘) ∥𝛽 (𝑘) ,
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it remains to find a choice of 𝛽 (𝑘)
𝑖
as above with the property that

−
∑̀︁
≥a

∑︁
𝑘,𝑙:(𝑘∧T𝑙)=`

(
(𝛽 (𝑘)
𝑖

+ 𝛽 (𝑙)
𝑗

+ |𝔰 |) ∧ 0
)
≤

∑̀︁
≥a

𝔠
𝑡 , [𝑀 ]
T (`) (2.28)

for any a ∈
◦
T. Let �̄� :

◦
T\{𝜌T} → [𝑀] be the injective map defined recursively by setting5 �̄� (a) :=

argmin𝑘∈𝐿 (Ta) �̃�(𝔱(𝑘)) if a is maximal in
◦
T, and

�̄� (a) := argmin
(
�̃�(𝔱(𝑘)) : 𝑘 ∈ 𝐿 (Ta)\{�̄� (`) : ` > a}

)
(2.29)

otherwise. (Recall that 𝐿 (Ta) denotes the set of leaves 𝑢 ∈ 𝐿 (T) such that 𝑢 ≥ a.) Note that
𝔠
𝔱, [𝑀 ]
T (a) = −�̃�(𝔱( �̄� (a))) for a ∈

◦
T\{𝜌T}. Denote moreover by 𝑘1, 𝑘2 ∈ [𝑀] the two distinct elements

of [𝑀] not in the range of �̄� , so that 𝔠𝑡 , [𝑀 ]
T (𝜌T) = −�̃�(𝑘1) − �̃�(𝑘2).

Conversely, denote by ā(𝑘) ∈
◦
T the interior node of T with the property that 𝐾 (𝑘) “collapses” at ā(𝑘),

i.e. ā(𝑘) is the maximum node a with the property that whenever {(𝑘, 𝑖), (𝑙, 𝑗)} ∈ 𝑃 one has 𝑘 ∧T 𝑙 ≥ a.
Since we only have to consider “connected” pairings, it is clear that

#{𝑘 ∈ [𝑀] : ā(𝑘) ≥ `} ≤ #𝐿 (T`) − 1

for any ` ∈
◦
T\{𝜌T}. Let finally 𝑖(𝑘) ∈ {1, . . . , 𝑚(𝑘)} denote some index such that {(𝑘, 𝑖(𝑘)), (𝑙, 𝑗)} ∈ 𝑃

for some (𝑙, 𝑗) ∈ Λ such 𝑘 ∧T 𝑙 = ā(𝑘).
We also choose an arbitrary index 𝑗 (𝑘) ∈ {1, . . . , 𝑚(𝑘)} such that 𝑗 (𝑘) ≠ 𝑖(𝑘) whenever 𝑘 ∈ 𝐽 (and

hence 𝑚(𝑘) > 1). With the choice

𝛽
(𝑘)
𝑖

:= − |𝔰 |
2

+ (𝖘(𝔱(𝑘)) + ^)I𝑖=𝑖 (𝑘) − ^I𝑖= 𝑗 (𝑘)

one has
∑
𝑖 𝛽

(𝑘)
𝑖

= 𝛽 (𝑘) and 𝛽 (𝑘)
𝑖

> −|𝔰 | − I𝑘∉𝐽 , so that it remains to show (2.28), which follows once we
show that ∑︁

𝑘:ā (𝑘) ≥a
𝖘(𝔱(𝑘)) − ^𝑀 ≥

∑̀︁
≥a

�̃�(𝔱( �̄� (`)))

It is clear from the fact that the numbers �̄� (`) where recursively chosen to maximise 𝖘(𝔱(𝑘)), so that for
any 𝐴 ⊆ 𝐿 (Ta) with #𝐴 ≤ #𝐿 (Ta) − 1 one has∑̀︁

≥a
�̃�(𝔱( �̄� (`))) ≤

∑︁
𝑘∈𝐴

�̃�(𝔱(𝑘)) ≤
∑︁
𝑘∈𝐴

𝖘(𝔱(𝑘)) + ^�̄� .

Since ā(𝑘) ≥ a implies 𝑘 ∈ 𝐿 (Ta), the proof is finished.

2.5. Additional technical assumptions

For the main result of this article we need a technical assumption that guarantees that “logarithmic” trees
which appear (modulo polynomial decoration) as a subtree of another “logarithmic” tree are such that the
BPHZ character vanishes automatically. This should also hold after we shift the noise. It turns out that in
some examples (for instance generalised KPZ, see Section C.3), this is not true if we would consider
arbitrary shifts. Instead we exploit certain (anti-)symmetries of our integration kernels, and for this we
need the expectation of our noise to be invariant under these symmetries. To make this more concrete,
we fix a finite symmetry group g ⊆ GL(𝑑) in 𝑑 dimensions. The typical case one should have in mind
(and suffices for our purpose) is when g is generated by finitely many spatial reflections.

5If the argmin is not unique, we choose a minimizer arbitrarily.
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To incorporate this symmetry into our definitions, we make the following definition.

Definition 2.19 We denote by Y
s,𝑛
∞ ⊆ Y𝑛

∞ the set of 𝐾 ∈ Y𝑛
∞ such that U𝐾 is invariant under

simultaneous transformation of all variables by any 𝐴 ∈ g. We also write 𝔜s,𝑁
∞ ⊆ 𝔜𝑁∞ for the space of

all 𝐾 = (𝐾Ξ
m) such that 𝐾Ξ

m ∈ Y
s,#m
∞ for anym and any Ξ, and we write 𝔜s,𝑁

0 ⊆ 𝔜𝑁0 for the closure of
𝔜

s,𝑁
∞ under the norm (2.18).

Later on it will be convenient to also introduce the notation Ys,𝑛
∞,★ ⊆ Y

s,𝑛
∞ for the linear space spanned

by 𝐾0 ⊗ . . . ⊗ 𝐾𝑛 ∈ Y
s,𝑛
∞ such that

∫
𝐾0 = 0. Note that for any 𝐾 ∈ Y

s,𝑛
∞ one can view U𝐾 as an element

C̄∞
𝑐 (D̄𝑛/g). Here, we let g act on D̄𝑛 via 𝐴(𝑥𝑖)𝑖≤𝑛 := (𝐴𝑥𝑖)𝑖≤𝑛 for any 𝐴 ∈ g. The following definition
will play an important role.

Definition 2.20 We write𝔐s
∞ ⊆ 𝔐∞ for the subspace of noises given as in (2.20) for some 𝐾 ∈ 𝔜

s,𝑁
∞ ,

and we write 𝔐s
0 ⊆ 𝔐0 for the closure of 𝔐s

∞ under the norm (2.21). We call a smooth noise
[ = ([Ξ)Ξ∈𝔏− ∈ 𝔐s

∞ a “shifted smooth noise”.

The terminology “shifted noise” will become clear in Section 5.2. In order to formulate our assumption,
let V denote the set of trees 𝜏 ∈ T− with 8𝜏8𝔰 = 0 and which are “subtrees” (modulo polynomial
decoration) of a larger tree of zero homogeneity. More precisely, for any 𝜏 ∈ V there exists another tree
𝜎 = 𝑆𝔫𝔢 ∈ T− with 8𝜎8𝔰 = 0, a proper sub tree 𝜏 = 𝑇𝔫

𝔢 ⊆ 𝜎 of 𝜎 (“proper” means that 𝐸 (𝜏) ⊊ 𝐸 (𝜎))
and a decoration �̃� : 𝑁 (𝜏) → N𝑑 such that 𝜏 = 𝑇 �̃�

𝔢 . We also assume that 𝜏 is connected to its complement
in 𝜎 with more than one node, so that #{𝑢 ∈ 𝑁 (𝜏) : ∃𝑒 ∈ 𝐸 (𝜎) \ 𝐸 (𝜏) with 𝑢 ∈ 𝑒} > 1.

Assumption 5 We assume that for any 𝜏 ∈ Vand (not necessarily Gaussian) shifted smooth noise [
one has 𝑔[ (𝜏) = 0.

Remark 2.21 The only place where Assumption 5 is used is the proof of Lemma 5.23 below. Loosely
speaking, it ensures that if 𝜏 is a tree of 0 homogeneity and only one of its noises is made slightly more
regular, then the renormalisation constant does not present any logarithmic divergences anymore. We
need this to ensure that renormalisation constants of “shifted” trees are bounded by a constant only
depending on the largest scale involved (we will have various shifts which are regularised on different
scales). The strategy we employ below relies on upper and lower bounds of the blow-up behaviour of
renormalisation constants, from which we deduce exactly which “shifted” tree is dominant. We do not
show such a lower bound for log-divergences, which is why we need an additional assumption ensuring
that there is only the “main” log-divergence and no log-subdivergence.

Finally, denote by V0 the set of 𝜏 ∈ T− with 8𝜏8𝔰 = 0 and #𝐿 (𝜏) = 2.

Assumption 6 We assume that for any 𝜏 ∈ V0 and (not necessarily Gaussian) shifted smooth noise [
one has 𝑔[ (𝜏) = 0.

Assumption 6 is needed in Section 4 since the stability under removing the large-scale cutoff given in
Theorem 4.19 fails in general for 𝜏 ∈ V0. Note that for 𝜏 ∈ V0 one has E𝚷[𝜏(0) = −𝑔[ (𝜏) = 0.

Remark 2.22 We give an informal reason why the previous assumption is needed in Theorem 4.19. In
this theorem we consider the evaluation from Definition 4.17, which defines a constant based on the idea
of integrating a tree 𝜏 with leaves 𝑢1, . . . , 𝑢𝑛 against a test function 𝜙(𝑢1, . . . , 𝑢𝑛). We will assume in
this context that 𝜙 is a function of the differences of its arguments and compactly supported in these
differences (i.e. there exists 𝑅 > 0 so that 𝜙(𝑢1, . . . , 𝑢𝑛) = 0 whenever there exists 𝑖, 𝑗 ≤ 𝑛 such that
|𝑢𝑖 − 𝑢 𝑗 | > 𝑅). Under this assumption we will show that this evaluation remains bounded as one removes
the large-scale cutoff from the integration kernels. The proof relies on a counting argument, which we use
to apply the results from the last section of [Hai18]. One can think of this as a generalisation of the fact
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that
∫
R𝑑 (1 + |𝑥 |) 𝑝𝑑𝑥 exists if and only if 𝑝 < −𝑑 to the case of generalised convolutions. In this analogy,

the case 𝜏 ∈ V0 is similar to the situation of trying to integrate (1+ |𝑥 |)−𝑑 , which diverges on large scales.
Note that we do not have this problem for trees with more than two leaves, even if they are

logarithmically divergent. This is because we assume that 𝜙 is compactly supported in all differences
between its arguments, which in some sense means that we “gain” a degree |𝔰 |

2 for every leaf, as far as
the power counting argument is concerned (equation (4.16) makes this more clear).

Remark 2.23 One can replaceAssumption 6 by theweakerAssumptions 7 and 8 introduced in Section 3.1
below. We will show in Section 4 that the former really implies the latter two. In some interesting
examples, including SDEs, Φ𝑝

2 , Yang–Mills and the parabolic Anderson in two spatial dimensions,
Assumptions 7 and 8 can be shown “by hand” relatively easily, even though all of these examples violate
Assumption 6 above. However, for many more convoluted examples, includingΦ4

4−Y , generalised KPZ or
the parabolic Anderson model in three dimensions, it seems difficult to show these assumptions by hand.
We actually expect Assumptions 7 and 8 always to hold, so that one should be able to drop Assumption 6
with a little more technical effort.

3. A support theorem for random models

Recall that we fix a Gaussian (space or space-time) white noise b = (bΞ)Ξ∈𝔏− , which we can view as
an element of𝔐s

0, see Definition 2.20. We also fix a smooth mollifier 𝜌 ∈ C∞
𝑐 (D̄/g) with

∫
𝜌 = 1, so

that b Y := b ★ 𝜌 (Y) ∈ 𝔐s
∞ for any Y > 0 and one has b Y → b in𝔐s

0. We write 𝑔
Y := 𝑔 b Y for the BPHZ

character (2.5) and �̂� Y := �̂� b Y and �̂�Y := �̂�b Y for the BPHZ-renormalised lift (2.6) of b Y

3.1. The ideal J

Let us first introduce the following notation, which we will use heavily in the forthcoming sections.
Given a kernel assignment (𝐺𝔱)𝔱∈𝔏+ with 𝐺𝔱 ∈ C∞

𝑐 (D̄\{0}) absolutely integrable, we define for any tree
𝜏 ∈ Ta functionK𝐺𝜏 : D̄𝐿 (𝜏) → R by

K𝐺𝜏(𝑥𝐿 (𝜏) ) :=
∫

D̄𝑁 (𝜏)
𝑑𝑥 𝛿(𝑥𝜌𝜏 )

∏
𝑒∈𝐾 (𝜏)

𝐷𝔢(𝑒)𝐺𝔱 (𝑒) (𝑥𝑒↓ − 𝑥𝑒↑)

×
∏

𝑢∈𝑁 (𝜏)
𝑥
𝔫 (𝑢)
𝑢

∏
𝑒∈𝐿 (𝜏)

𝛿(𝑥𝑒 − 𝑥𝑒↓) . (3.1)

We also write K̂ := K�̂� . Although �̂� does not have bounded support, this is well-defined as a limiting
distribution obtained by removing a cutoff, see Theorem 4.19 below. Given additionally a smooth function
𝜑 ∈ C̄∞

𝑐 (D̄𝐿 (𝜏) ) it will be useful to introduce the notation

⟨K𝐺𝜏 , 𝜑⟩ :=
∫

D̄𝐿 (𝜏)
𝑑𝑥K𝐺𝜏(𝑥)𝜑(𝑥) ∈ R . (3.2)

Example 3.1 We can graphically represent the action of K𝐺𝜏. For instance, we write (slightly informally)

(
K𝐺

)
(𝑥1, . . . , 𝑥4) =

𝑥1 𝑥2
𝑥3 𝑥4

,

where we leave 𝐺 implicit on the right-hand side.

For two different trees 𝜏, 𝜏 one has by definition 𝐿 (𝜏) ∩ 𝐿 (𝜏) = #̸, so that K𝐺𝜏 and K𝐺𝜏 have
disjoint domains of definition. However ifm := [𝐿 (𝜏), 𝔱] = [𝐿 (𝜏), 𝔱], then after symmetrising one can
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naturally viewK𝐺𝜏 andK𝐺𝜏 as being defined on the same space D̄m. In particular, the notation (3.2)
extends naturally to 𝜑 ∈ C̄∞

𝑐 (D̄m). This motivates the following definition.

Definition 3.2 We write Ψ̃ for the set of all families of test functions (𝜓m)m, indexed by multisets
m with values in 𝔏−, such that 𝜓m ∈ C̄∞

𝑐 (D̄m/g). We also write Ψ̃◦ for the set of 𝜓 ∈ Ψ̃ such that∫
𝜓m :=

∫
D̄m 𝛿(𝑥𝑝)𝜓m(𝑥m) = 0 for anym. Here we fix some arbitrary 𝑝 ∈ d(m) (it is clear that this

definition does not depend on the choice of 𝑝). We then define an evaluation ⟨K𝐺𝜏 , 𝜓⟩ for 𝜏 ∈ Tand
𝜓 ∈ Ψ̃ by setting

⟨K𝐺𝜏 , 𝜓⟩ := ⟨K𝐺𝜏 , 𝜓 [𝐿 (𝜏) ,𝔱]⟩.

With this notation we now define an ideal Jas follows.

Definition 3.3 We define J ⊆ T− as the ideal generated by all elements 𝜏 ∈ Vec T− such that
⟨K̂𝜏 , 𝜓⟩ = 0 for any 𝜓 ∈ Ψ̃◦. We then denote by H ⊆ G− the annihilator of J (given by the set of all
characters 𝑔 ∈ G− with the property that 𝑔(𝜎) = 0 for all 𝜎 ∈ J).

Note that by definition J is generated by linear combinations of trees (rather than linear combinations
of products of trees). We will use this fact heavily below.

Remark 3.4 There is a natural norm on ∥ · ∥K+ on large scale kernel assignments 𝑅, see (4.9), and
writingK+

0 for the closure of the space of smooth, compactly supported functions under this norm, one
has indeed �̂� − 𝐾 ∈ K+

0 . Moreover, it is not hard to show that ⟨K𝐾+𝑅𝜏 , 𝜓⟩ extends continuously to
𝑅 ∈ K+

0 for any 𝜏 ∈ T− and any 𝜓 ∈ Ψ̃◦, so that ⟨K̂𝜏 , 𝜓⟩ is well defined. The last claim follows from a
straightforward counting argument as in [Hai18, Sec. 4], which is carried out in Lemma 4.21 below.

Remark 3.5 We choose 𝜓 in the definition of Ψ̃◦ to integrate to zero, since the cumulants of our “shifts”
will satisfy this property. This is needed to ensure weak convergence of the shift to zero.

Example 3.6 Consider as an example the KPZ equation 𝜕𝑡ℎ = Δℎ + |𝜕𝑥ℎ |2 + b where T− is generated
by the trees

, , , , , .

We show that J is the ideal generated by { }. First note that we have ∈ J since K𝐺 = 0.
Next, we recall that J is generated by linear combinations of trees with the same number of leaves.
Furthermore, by simply rescaling 𝜙(𝑥) ↦→ 𝜙(Y−1𝑥), we see that J is generated by linear combinations
of trees of same number of leaves and same homogeneity. It follows that no linear combination
involving any of , or belongs to J. The only non-trivial part is to deal with the remaining

2 trees , . We sketch the proof that they can not form a linear combination that takes
values in J. For this fix test functions 𝜓𝑖, 𝑗 : D̄ → R and consider test functions 𝜙Y of the form
𝜙Y (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

∑
𝜎

∑
1≤𝑖< 𝑗≤4 𝜓

Y
𝑖, 𝑗
(𝑥𝜎 (𝑖) − 𝑥𝜎 ( 𝑗) ) where the first sum runs over all permutations 𝜎

of {1, 2, 3, 4}. Here 𝜓Y
𝑖, 𝑗
(𝑥) := Y− 3

2𝜓𝑖, 𝑗 (Y−𝔰𝑥) if (𝑖, 𝑗) ∈ {(1, 2), (3, 4)} and 𝜓Y
𝑖, 𝑗
(𝑥) := 𝜓𝑖, 𝑗 (𝑥) otherwise.

It is then not difficult to see that

⟨K̂ , 𝜙Y⟩ ∼ Y−1 and ⟨K̂ , 𝜙Y⟩ ∼ Y−2 .

The reason for this is that the first tree only contains one subdivergence of degree −1, while the
second tree contains two of them. From this it follows that no linear combination of these two trees can
be element of J, thus leading to the claim.
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We now state the two assumptions that we are going to need for this section. The first assumes that the
annihilatorHof J forms indeed a group.

Assumption 7 The ideal J is a Hopf ideal in T−. In particular, its annihilator H is a Lie subgroup of
the renormalisation group G−.

The next assumption relates the subgroup H to the BPHZ characters associated to smooth shifted
noise. We recall the notation𝔐s

∞ for the space of smooth shifted noises and𝔐s
0 for its closure under the

norm (2.21). In the following assumption we do not require the noise [ to be Gaussian.

Assumption 8 There exists a continuous map 𝔐s
0 ∋ [ ↦→ 𝑓 [ ∈ G− with the property that 𝑓 0 = 1∗, and

such that 𝑔[ ∈ 𝑓 [ ◦ H for any [ ∈ 𝔐s
∞. Here 0 denotes the 0-noise.

We will see in Corollary 3.23 below thatH is in fact the smallest Lie subgroup of G− that has the property
described in Assumption 8. As was already pointed out in Remark 2.23, we will show in Section 4 that
the two assumptions given above are implied by Assumption 6 (which is the only argument in the paper
where Assumption 6 is needed).

3.2. A support theorem for random models

From now on, we will always assume that Assumptions 2–5 and 7, 8 hold, except when specified
explicitly. The only exception is Section 4, where we prove that Assumptions 7 and 8 are implied by
Assumptions 2–6.
Setting �̂� Y = R𝑔Y𝑍c (b Y) for the renormalised approximate model and �̂� = limY→0 �̂�

Y for its limit,
we can rewrite it as

�̂� Y = 𝑇b YR
𝑔Y𝑍c (0).

Models obtained by acting on the canonical lift of 0 with the renormalisation operators will later play an
important role, so we introduce the following notation.

Definition 3.7 For any character 𝑔 ∈ G− we define the model Z (𝑔) by letting the renormalisation
operator act on the canonical lift of 0 to a model, i.e. we set

Z (𝑔) := R𝑔𝑍c (0).

We will see in Lemma 3.12 below that the action of the translation operator maps the support into
itself, so that the main part of the proof consists in understanding the set of characters 𝑔 ∈ G− such that
R𝑔𝑍c (0) ∈ supp �̂� . We will show that this set is a coset 𝑓 ◦Hof the Lie subgroupHof G− constructed
above.

Proposition 3.8 Let H be the Lie subgroup of G− defined in Definition 3.3 and let 𝑓 b ∈ G− be the
character defined in Assumption 8. Then for any character 𝑔 ∈ 𝑓 b ◦ H in the left coset determined by
𝑓 b and Hone has

Z (𝑔) ∈ supp �̂� .

Proposition 3.8 follows from Proposition 3.21 below, which in turn relies on the constructions carried out
in Sections 3.3 and 5. Before we prove Proposition 3.8 we show now that it implies a support theorem for
random models, see Theorem 3.14.

Remark 3.9 The converse of Proposition 3.8 is not true in general. An example of this is given by
the rough paths B = (𝐵,B + M) where B𝑖, 𝑗𝑠,𝑡 :=

∫ 𝑡
𝑠
(𝐵𝑖𝑟 − 𝐵𝑖𝑠) ◦ 𝑑𝐵

𝑗
𝑟 denotes the Stratonovich lift and

M𝑠,𝑡 = (𝑡 − 𝑠)𝑀 for a constant (in time) and skew-symmetric matrix 𝑀 . These rough paths are known to
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have support independent of 𝑀 butH= {1∗} is trivial in this case. We just sketch the argument here that
the support is really independent of 𝑀. Consider deterministic smooth shifts 𝐵𝑖𝑡 → 𝐵𝑖𝑡 + Y

1
2 cos(Y−1𝑡)

and 𝐵 𝑗𝑡 → 𝐵
𝑗
𝑡 + Y

1
2 sin(Y−1𝑡). The translation operator transforms the second component into

B𝑖, 𝑗 , Y𝑠,𝑡 = B𝑖, 𝑗𝑠,𝑡 + Y−
1
2

∫ 𝑡

𝑠

(𝐵𝑖𝑢 − 𝐵𝑖𝑠) cos(Y−1𝑢)𝑑𝑢+

Y
1
2

∫ 𝑡

𝑠

cos(Y−1𝑢) − cos(Y−1𝑠)𝑑𝐵𝑢 +
∫ 𝑡

𝑠

(cos(Y−1𝑢) − cos(Y−1𝑠)) cos(Y−1𝑢)𝑑𝑢.

The last term converges to a positive constant times (𝑡 − 𝑠) as Y → 0, while a quick computation shows
that the two terms in the centre vanish in this limit.

Remark 3.10 Proposition 3.8 also gives information about limit models obtained from a different choice
of renormalisation: For any 𝑘 ∈ G− and any 𝑔 ∈ 𝑘 ◦ 𝑓 b ◦ Hone has

Z (𝑔) ∈ suppR𝑘 �̂� .

Before we state the main theorem, we derive some immediate identities.

Lemma 3.11 For any character 𝑔 ∈ G− and any smooth noise ℎ ∈ 𝔐∞ one has the equality

R𝑔𝑍c (ℎ) = 𝑇ℎZ (𝑔).

In particular, one has the identity

�̂� Y [b] = 𝑇b YZ (𝑔Y)

almost surely for any Y > 0.

Proof. In order to see the first identity, it is enough to apply Theorem 2.4 to 𝑓 ≡ 0. The second claim
follows from the fact that �̂� Y = R𝑔Y𝑍 Y and 𝑍 Y [b] = 𝑇b Y𝑍c (0).

The next lemma crucially states that shifting the noises by a random smooth function maps the support
into itself.

Lemma 3.12 Let ℎ ∈ Ω∞. Then one has the identity

𝑇ℎ �̂� [b] = �̂� [b + ℎ]

almost surely. Moreover, if ℎ ∈ 𝔐∞ is any smooth random noise, then one has the identity

supp𝑇ℎ �̂� ⊆ supp �̂� .

Proof. We show the first statement. By Cameron-Martin’s Theorem 2.6 it follows that the laws of b and
b + ℎ are equivalent. In particular, the right-hand side is well-defined P-almost surely. To see the identity
claimed in the statement, we use the fact that 𝑇 is jointly continuous in ℎ and 𝑍 . We then have

�̂� [b + ℎ] = lim
Y→0

�̂� Y [b + ℎ] = lim
Y→0

𝑇ℎY �̂�
Y [b] = 𝑇ℎ �̂� [b] .

In order to see the second statement, let first ℎ ∈ Ω∞ be deterministic. In this case we exploit again
the fact that the laws of b and b + ℎ are equivalent, so that the laws of �̂� [b] and 𝑇ℎ �̂� [b] = �̂� [b + ℎ]
are equivalent as well and supp �̂� = supp𝑇ℎ �̂� . Using Lemma 3.13 below, it follows that the continuous
operator 𝑇ℎ maps the support of �̂� into itself.
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Let now ℎ ∈ 𝔐∞ be random and let 𝐴 ⊆ Ω be the set of full P-measure with the property that
�̂� (𝜔) ∈ supp �̂� for any 𝜔 ∈ 𝐴. It then follows for 𝜔 ∈ 𝐴 that 𝑇ℎ (𝜔) �̂� (𝜔) ∈ supp �̂� . In particular we have
𝑇ℎ �̂� ∈ supp �̂� almost surely.

In the previous proof we used the following lemma.

Lemma 3.13 Let 𝑋,𝑌 be two Polish spaces, let 𝑇 : 𝑋 → 𝑌 be a continuous map and let ` be a
probability measure on 𝑋 . Then supp𝑇∗` = 𝑇 (supp `).

Proof. Since 𝑥 ∈ supp ` for `-almost every 𝑥 ∈ 𝑋 , it follows that 𝑇 (𝑥) ∈ 𝑇 (supp `) `-almost surely, and
hence supp𝑇∗` ⊆ 𝑇 (supp `). To see the inverse inclusion, let 𝑦 = 𝑇 (𝑥) ∈ 𝑇 (supp `) with 𝑥 ∈ supp `,
and let 𝑈 be a neighbourhood of 𝑦 in 𝑌 . By continuity it follows that 𝑇−1 (𝑈) is a neighborhood of 𝑥
in 𝑋 and by the definition of the support, it follows that `{𝑥 : 𝑇 (𝑥) ∈ 𝑈} = `(𝑇−1 (𝑈)) > 0, and thus
𝑦 ∈ supp𝑇∗`. This show that 𝑇 (supp `) ⊆ supp𝑇∗` and concludes the proof.

Assuming Proposition 3.8, we can now state and prove the main theorem of this section.

Theorem 3.14 For any Y > 0 let �̂� Y denote the BPHZ renormalised lift of the regularised noise b Y to a
random admissible model and let 𝑘 ∈ G− be any character. Then one has the identity

suppR𝑘 �̂� =
⋂
Y>0

⋃
𝛿<Y

suppR𝑘 �̂� 𝛿 . (3.3)

Moreover, if we denote by 𝑓 Y := 𝑓 b
Y ∈ G− the sequence of characters defined in Assumption 8 (so that

𝑓 Y → 𝑓 b as Y → 0), then one has the stronger statement

suppR𝑘 �̂� =
⋃

Y∈(0,1)
suppR𝑘◦ 𝑓 b ◦( 𝑓 Y )−1

�̂� Y . (3.4)

Proof. (Assuming Proposition 3.8)We first argue that (3.3) follows from (3.4). To see this, we introduce
the sequence of characters 𝑙 Y ∈ G− via the identity 𝑘 ◦ 𝑓 b ◦ ( 𝑓 Y)−1 = 𝑙 Y ◦ 𝑘 , and we note that since
𝑘 ◦ 𝑓 b ◦ ( 𝑓 Y)−1 → 𝑘 in G− it follows that 𝑙 Y → 1∗. By Lemma 3.13 and the continuity of the action of
the renormalisation group it follows that suppR𝑘 �̂� can be written as

lim
Y→0

⋃
𝛿<Y

suppR𝑙Y◦𝑘 �̂� 𝛿 = lim
Y→0

R𝑙Y
⋃
𝛿<Y

suppR𝑘 �̂� 𝛿 =
⋂
Y>0

⋃
𝛿<Y

suppR𝑘 �̂� 𝛿 .

It remains to show (3.4). The fact that suppR𝑘 �̂� is contained in the right-hand side follows trivially
from the fact that

R𝑘◦ 𝑓 b ◦( 𝑓 Y )−1
�̂� Y → R𝑘 �̂�

in probability in the space of models, so it remains to show the inverse inclusion. By Lemma 3.11 we
have the identity

suppR𝑘◦ 𝑓 b ◦( 𝑓 Y )−1
�̂� Y = {𝑇ℎZ (𝑘 ◦ 𝑓 b ◦ �̂�Y) : ℎ ∈ Ω∞},

where we introduced the character �̂�Y ∈ G− via the identity 𝑓 Y ◦ �̂�Y = 𝑔Y . By Assumption 8 one has
�̂�Y ∈ H, so that Proposition 3.8 implies that

Z (𝑘 ◦ 𝑓 b ◦ �̂�Y) ∈ suppR𝑘 �̂� .

It remains to show that the translation operator 𝑇ℎ leaves the support ofR𝑘 �̂� invariant, in the sense that
for any smooth function ℎ ∈ Ω∞ one has

supp𝑇ℎR𝑘 �̂� = suppR𝑘 �̂� .
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This in turn is a corollary of Lemma 3.12, the fact that renormalisation and translation commute (see
Theorem 2.4) and Cameron–Martin’s theorem.

One consequence of Theorem 3.14 is that the support of the limit model does in general depend on
the choice of renormalisation 𝑘 ∈ G−. In the next result we show that for any fixed 𝑘 ∈ G− there exists a
Lie subgroupH𝑘 of G−, such that changing renormalisation from 𝑘 to 𝑙 ◦ 𝑘 for some 𝑙 ∈ H𝑘 does not
change the support. More precisely, we have the following result.

Corollary 3.15 For any 𝑘 ∈ G− let �̄� := 𝑘 ◦ 𝑓 b , and denote by H𝑘 the Lie subgroup of G− obtained
from Hby conjugation with �̄� , i.e. the subgroup given by

H𝑘 := �̄� ◦ H◦ �̄�−1.

Then, for any 𝑙 ∈ H𝑘 , one has
suppR𝑙◦𝑘 �̂� = suppR𝑘 �̂� .

Moreover, the groups H𝑘 are invariant under composing 𝑘 with any element of H𝑘 , i.e. one has
H𝑘 = H𝑙◦𝑘 for any 𝑙 ∈ H𝑘 .

Proof. The supports of R𝑘 �̂� and R𝑙◦𝑘 �̂� are respectively characterised as the closure of all smooth
translations of all models of the form Z (ℎ) and Z ( ℎ̃) for some ℎ ∈ �̄� ◦ H and some ℎ̃ ∈ 𝑙 ◦ �̄� ◦ H. We
are thus left to show that

𝑙 ◦ �̄� ◦ H= �̄� ◦ H,

which is true if and only if 𝑙 ∈ H𝑘 .
The fact thatH𝑘 is invariant under a change of renormalisation by 𝑙 ∈ H𝑘 follows from the fact that

H𝑙◦𝑘 = 𝑙 ◦ ( �̄� ◦ H◦ �̄�−1) ◦ 𝑙−1

⊆ �̄� ◦ H◦ �̄�−1 ◦ ( �̄� ◦ H◦ �̄�−1) ◦ �̄� ◦ H◦ �̄�−1 = H𝑘 ,

whence the claim follows.

Remark 3.16 A consequence of the previous corollary is that, writing 𝑒 for the unit in G−, the collection
of cosets {𝑘 ◦ H𝑒 : 𝑘 ∈ G−} yields a foliation of G− into a family of manifolds of fixed dimension with
the property that for any 𝑘 ∈ G−, the support ofR𝑙 �̂� is independent of 𝑙 ∈ 𝑘 ◦ H𝑒.

3.3. Renormalisation group argument

In light of the last section it remains to show Proposition 3.8. For this we fix from now on a character
ℎ ∈ 𝑓 b ◦ H and we will construct a sequence Z𝛿 ∈ 𝔐∞, 𝛿 > 0, of random smooth noises such that

𝑇Z𝛿 �̂� → Z (ℎ) in probability inM0

as 𝛿 → 0. Together with the continuity of the translation operator and Lemma 3.12, this immediately
implies Proposition 3.8. This convergence essentially relies on two conditions. The first condition (3.5)
guarantees that the noise cancels out in the limit 𝛿 → 0 and the second condition (3.6) guarantees the
correct behaviour of the expected values. Before stating the main proposition of this section, we introduce
the following notation.

Definition 3.17 Let ∼ denote the equivalence relation on T− given by setting 𝜏 ∼ 𝜏 if and only if
8𝜏8𝔰 = 8𝜏8𝔰 and one has that the identity [𝐿 (𝜏), 𝔱] = [𝐿 (𝜏), 𝔱] between multisets. We write T−/∼ for
the set of equivalence classes of T− with respect to ∼.
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We also fix an arbitrary total order ⪯ on T− with the property that 𝜏 ⪯ 𝜏 whenever 𝜏, 𝜏 ∈ T− are two
trees such that either #𝐸 (𝜏) < #𝐸 (𝜏), or #𝐸 (𝜏) = #𝐸 (𝜏) and ∑

𝑢∈𝑁 (𝜏) 𝔫(𝑢) ≤
∑
𝑢∈𝑁 ( �̃�) 𝔫(𝑢). We write

T ⪯𝜏
− ⊆ T− andT ≺𝜏

− ⊆ T− for the set of trees 𝜏 ∈ T− such that 𝜏 ⪯ 𝜏 and 𝜏 ≺ 𝜏, respectively. We denote
the unital subalgebras of T− generated by T ≺𝜏

− and T ⪯𝜏
− by T≺𝜏

− and T⪯𝜏
− respectively and we point out

that it follows from the properties of the coproduct Δ− that both of these algebras form Hopf algebras.
We use the total order ⪯ to select a subset of trees 𝔗− ⊆ T− in the following way.

Definition 3.18 For any equivalence class Θ ∈ T−/∼ we write T− (Θ) ⊆ Θ for the set of trees 𝜏 ∈ Θ

with the property that there exists a linear combination of trees 𝜎 ∈ Vec (Θ ∩ T ≺𝜏
− ) such that

𝜏 + 𝜎 ∈ J.

(Here, J is the ideal in T− defined in Definition 3.3.) We also write 𝔗− (Θ) := Θ\T− (Θ) and we define
𝔗− :=

⊔
Θ∈T−/∼ 𝔗− (Θ).

Later on in (3.8) we will be given a linear subspace 𝑋 of Vec T− for which we can show relatively
easily that J∩ Vec T− ⊆ 𝑋 , and our goal will be to show that 𝑋 = Vec T−. Definition 3.18 is set up so
that it suffices to show that 𝔗− ⊆ 𝑋 . The total order ⪯ is chosen in such a way that we can show this
inductively in the number of edges and the polynomial decoration of 𝜏 ∈ 𝔗−.

Example 3.19 Consider the case of 2D PAM equation, where

T− = { , , 1 1 , 2 2 }

and where J is the ideal generated by , − 1 1 − 2 2 . Here a bold edge with label 𝑘 = 1, 2 denotes
the derivative of the Poisson kernel with respect to 𝑥𝑘 , and a circle denotes an instance of spatial white
noise. In this case we can choose the total order by setting ⪯ ⪯ 1 1 ⪯ 2 2 . We then have
T−/∼= {{ }, { , 1 1 , 2 2 }}, and further 𝔗− ({ }) = #̸ and 𝔗− ({ , 1 1 , 2 2 }) = { , 1 1 }.

In particular, we have 𝔗− = { , 1 1 }.

In Section 5 we will show the following proposition (see Proposition 5.19 below), for which we recall
the notation Υ[ from Section 2.2.3 and the spaces𝔐s

∞ and𝔐0 of smooth shifted noises and (rough)
noises from Definition 2.13.

Proposition 3.20 There exists a sequence Z𝛿 ∈ 𝔐s
∞, 𝛿 > 0, of smooth random noises such that

b + Z𝛿 → 0 in 𝔐0, (3.5)

and such that for any 𝜏 ∈ 𝔗− one has

lim
𝛿→0

lim
Y→0

Υb
Y+Z𝛿𝑀𝑔Y𝜏 = ℎ(𝜏). (3.6)

Given Proposition 3.20, we can show the following result.

Proposition 3.21 Let Z𝛿 be the sequence given by Proposition 3.20. Then one has

lim
𝛿→0

𝑇Z𝛿 �̂� = Z (ℎ)

in probability in the space of admissible models.
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Proof. We denote as before the BPHZ character for b Y by 𝑔Y := 𝑔 b
Y , and we denote similarly by

𝑔Y, 𝛿 := 𝑔 b Y+Z𝛿 the BPHZ character for the smooth noise b Y + Z𝛿 . We define a character ℎY, 𝛿 ∈ G− via
the relation

ℎY, 𝛿 ◦ 𝑔Y, 𝛿 = 𝑔Y , (3.7)

where ◦ denotes the group product in G−. We show inductively with respect to ≺ that one has

lim
𝛿→0

lim
Y→0

ℎY, 𝛿 (𝜏) = ℎ(𝜏) (3.8)

Let first 𝜏 ∈ 𝔗−. Since for any tree 𝜏 ∈ T which contains at least one noise type edge one has

Υb
Y+Z𝛿𝑀𝑔Y,𝛿𝜏 → 0

in the limit Y → 0 and 𝛿 → 0 by Lemma 3.22 below, it follows that

ℎY, 𝛿 (𝜏) = Υb
Y+Z𝛿𝑀𝑔Y,𝛿𝑀ℎY,𝛿𝜏 − (ℎY, 𝛿 ⊗ Υb

Y+Z𝛿𝑀𝑔Y,𝛿 ) (Δ−𝔦 − Id ⊗ 1)𝜏
= Υb

Y+ℎ𝛿𝑀𝑔Y𝜏 + 𝑜(1) ,

where 𝑜(1) → 0 as Y → 0 and 𝛿 → 0, so that (3.8) follows from (3.6).
Let now 𝜏 ∈ T−\𝔗−. Let Θ ∈ T−/∼ be the equivalence class of 𝜏, and let 𝜏 ∈ Vec (Θ ∩ T ≺𝜏

− ) such
that 𝜎 := 𝜏 + 𝜏 ∈ J. We claim that ( 𝑓 Y)−1 ◦ ℎY, 𝛿 (𝜎) → 0 in the limit Y → 0 and 𝛿 → 0. Indeed, one has

( 𝑓 Y)−1 ◦ ℎY, 𝛿 ◦ 𝑓 Y, 𝛿 ◦ �̂�Y, 𝛿 = �̂�Y ,

where 𝑓 Y , �̂�Y and 𝑓 Y, 𝛿 , �̂�Y, 𝛿 are defined as in Assumption 8 for the noises b Y and b Y + Z𝛿 , respectively,
so that 𝑓 Y ◦ �̂�Y = 𝑔Y and 𝑓 Y, 𝛿 ◦ �̂�Y, 𝛿 = 𝑔Y, 𝛿 . By definition one has that �̂�Y, 𝛿 ∈ H and �̂�Y ∈ H, so that

( 𝑓 Y)−1 ◦ ℎY, 𝛿 ◦ 𝑓 Y, 𝛿 = �̂�Y ◦ (�̂�Y, 𝛿)−1 ∈ H . (3.9)

By Assumption 8 the characters 𝑓 Y and 𝑓 Y, 𝛿 converge to 𝑓 b and 1∗ in G−, respectively. At this stage we
would be done, if we knew a priori that lim𝛿→0 limY→0 ℎ

Y, 𝛿 exists in G− onT⪯𝜏
− . By induction hypothesis,

this is true on T≺𝜏
− , so that it remains to show that ℎY, 𝛿 (𝜏) converges to something in the limit Y → 0

and 𝛿 → 0. For this, note that (3.9) vanishes when applied to 𝜎, since 𝜎 ∈ J. On the other hand, one has

(Δ− ⊗ Id)Δ−𝜎 ∈ (1 ⊗ 𝜏 ⊗ 1) + (T⪯𝜏
− ⊗ T≺𝜏

− ⊗ T⪯𝜏
− ) ,

and we conclude using the induction hypothesis, which implies in particular that

( 𝑓 Y)−1 ⊗ ℎY, 𝛿 ⊗ 𝑓 Y, 𝛿

converges on T⪯𝜏
− ⊗ T≺𝜏

− ⊗ T⪯𝜏
− .

It follows that lim𝛿→0 limY→0 ( 𝑓 Y)−1 ◦ ℎY, 𝛿 = ( 𝑓 b )−1 ◦ ℎ onT⪯𝜏
− . SinceT⪯𝜏

− is a Hopf subalgebra of
T−, we conclude that one also has lim𝛿→0 limY→0 ℎ

Y, 𝛿 = ℎ onT⪯𝜏
− , and this concludes the proof of (3.8).

The remaining proof is now straightforward. We first compute

𝑇Z𝛿 �̂�
Y = R𝑔Y𝑍c (b Y + Z𝛿) = RℎY,𝛿R𝑔Y,𝛿 𝑍c (b Y + Z𝛿).

It follows from [CH16, Thm. 2.33] that lim𝛿→0 limY→0 R
𝑔Y,𝛿 𝑍c (b Y + Z𝛿) = 𝑍c (0) in probability in the

space of models. Using the fact that the renormalisation group G− acts continuously onto the space of
admissible models, together with the fact that lim𝛿→0 limY→0 ℎ

Y, 𝛿 = ℎ, we obtain

lim
𝛿→0

lim
Y→0

𝑇Z𝛿 �̂�
Y = Rℎ𝑍c (0) = Z (ℎ),
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and this concludes the proof.

Lemma 3.22 For any 𝜏 ∈ T the map [ ↦→ E𝚷[𝑀𝑔[𝜏(0) is continuous as a map from 𝔐0 into R.

Proof. The continuity of the map [ ↦→ E(𝚷[𝑀𝑔[𝜏) (𝜑) for any fixed test function 𝜑 ∈ C∞
𝑐 (D) is a

consequence of [CH16]. To show the lemma, it thus suffices to find, for any fixed 𝜏 ∈ T, a test function 𝜑
such that E𝚷[𝑀𝑔[𝜏(0) = E(𝚷[𝑀𝑔[𝜏) (𝜑) for any smooth noise [ ∈ 𝔐∞. For this we recall that one has

(�̂�[𝜏) (𝑧) ∼ (�̂�[ ⊗ 𝑔𝑧)Δ+𝜏(0), 𝑧 ∈ D, (3.10)

where Δ+ denotes the coproduct on the structure group G+ and 𝑔𝑧 ∈ G+ is defined by setting 𝑔𝑧 (𝑋𝑖) := 𝑧𝑖 ,
and 𝑔𝑧 (𝜏) = 0 for any non-polynomial 𝜏 ∈ T+ (in the language of [BHZ19, Def. 6.16] this follows from
the fact that �̂�[ is stationary). It follows that

E𝚷[𝑀𝑔[𝜏(𝑧) = ((E�̂�[) ⊗ 𝑔𝑧)Δ+𝜏(0) =: 𝑃[ (𝑧),

where 𝑃[ is a polynomial depending on [ with deg 𝑃[ ≤ ∑
𝑢∈𝑁 (𝜏) |𝔫(𝑢) |𝔰 . Since, for any fixed degree

𝑁 , one can find a test function 𝜑 integrating to 1 and such that
∫
𝑥𝑘𝜑(𝑥) 𝑑𝑥 = 0 for all 0 < |𝑘 | ≤ 𝑁 , we

conclude that 𝑃[ (0) =
∫
𝑃[ (𝑧)𝜑(𝑧), and thus

E𝚷[𝑀𝑔[𝜏(0) = E(�̂�[𝜏) (𝜑) ,

which finishes the proof.

3.4. Corollaries

We get the following characterisation ofH.

Corollary 3.23 The group H is the smallest Lie subgroup of G− with the property that the statement of
Assumption 8 holds.

Proof. Let K ⊆ G− be any Lie subgroup of G− such that the statement of Assumption 8 holds and
denote the corresponding characters for the noises b Y and b Y + Z𝛿 by 𝑓 Y and 𝑓 Y, 𝛿 . It then follows that
𝑓 b := limY→0 𝑓

Y exists and lim𝛿→0 limY→0 𝑓
Y, 𝛿 = 1∗.

Let ℎ ∈ 𝑓 b ◦Hbe any character and let Z𝛿 be the sequence of smooth shifts defined in Proposition 3.20.
Denoting as in the proof of Proposition 3.21 by 𝑔Y and 𝑔Y, 𝛿 the BPHZ characters for b Y and b Y + Z𝛿 and
ℎY, 𝛿 ∈ G− the character defined via the relation (3.7), then it follows from (3.8) that ℎY, 𝛿 → ℎ. On the
other handK is a subgroup, and by definition one has ( 𝑓 Y)−1 ◦ 𝑔Y ∈ Kand (𝑔Y, 𝛿)−1 ◦ 𝑓 Y, 𝛿 ∈ K, so that

( 𝑓 Y)−1 ◦ ℎY, 𝛿 ◦ 𝑓 Y, 𝛿 ∈ K.

Note now that since K is a Lie subgroup of a nilpotent (and therefore simply connected) Lie group,
it is closed, see for example the introduction of [MV93]. Since 𝑓 Y → 𝑓 b and 𝑓 Y, 𝛿 → 1∗, one has
ℎ ∈ 𝑓 b ◦K, whence it follows that

𝑓 b ◦ H ⊆ 𝑓 b ◦K .

Since the identity belongs toH andK is a group, we conclude that ( 𝑓 b )−1 ◦ 𝑓 b ∈ K and therefore that
H ⊆ K.

An interesting, although somewhat unrelated, corollary is the following statement.

Corollary 3.24 Let 𝑘, 𝑙 ∈ G− be two characters with 𝑘 ≠ 𝑙 and 𝑘 (Ξ) = 𝑙 (Ξ) = 0 for any noise type
Ξ ∈ 𝔏−. Then the laws of R𝑘 �̂� and R𝑙 �̂� are singular with respect to each other.
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Remark 3.25 Even though the laws ofR𝑘 �̂� andR𝑙 �̂� are mutually singular, their topological supports
may still be the same.

Proof. This is a Corollary of Proposition 3.21. Indeed, for any random smooth noise Z such that
Z : Ω → Ω∞ is continuous we denote by 𝑇Z : M→ M the continuous map

𝑇ZZ(𝚷) := 𝑇Z ( (𝚷Ξ)Ξ∈𝔏− )Z(𝚷).

This is well-defined since the map Z(𝚷) ↦→ (𝚷Ξ)Ξ∈𝔏− is continuous fromM into Ω. In particular, for
any 𝑘 ∈ G− which acts trivially on 𝔏− one has the identity

𝑇Z ( b )R
𝑘 �̂� (b) = 𝑇ZR𝑘 �̂� (b) .

If we now denote by Z𝛿 the sequence defined in Proposition 3.21, then it follows that, for a suitable
subsequence 𝛿 → 0 sufficiently fast, we have the P-almost sure limit

lim
𝛿→0

𝑇Z𝛿R
𝑘 �̂� = Z (𝑘) .

Since Z (𝑘) ≠ Z (𝑙) (and both are deterministic), the claim follows.

Remark 3.26 In case of space-time white noise, we believe that the same statement holds for the laws
ofR𝑘 �̂� andR𝑙 �̂� restricted to any open subset𝑈 of D which contains the initial time-slice {𝑡 = 0}.

4. Constraints between renormalisation constants

The goal of this section is to show that Assumption 6, which we assume to hold in this section, implies
Assumptions 7 and 8 made at the beginning of Section 3.

Proposition 4.1 Assumption 6 implies Assumptions 7 and 8.

Assumption 7 is proven in Corollary 4.63, Assumption 8 follows from Lemma 4.68 and Lemma 4.71. To
get a feeling for the ideal Jfirst we consider a couple of examples of generators.

Example 4.2 In the case of the three dimensional PAM equation, one has

− 1 1 − 2 2 − 3 3 ∈ J.

As above, a bold edge with label 𝑘 = 1, 2, 3 denotes the derivative of the Poisson kernel with respect to
𝑥𝑘 , and a circle denotes an instance of spatial white noise.The reason for this is the relation

𝐾 − 𝜕1𝐾 ∗ 𝜕1𝐾 − 𝜕2𝐾 ∗ 𝜕2𝐾 − 𝜕3𝐾 ∗ 𝜕3𝐾 = 0

for the Poisson kernel 𝐾 in three dimensions. Note that the corresponding linear combination between
the renormalisation constants does not vanish (since we work with a spatial truncation of the Poisson
kernel), but it is easy to see that it is bounded uniformly in the limit.

Example 4.3 Another possible source of constraints is given by “total derivatives”. For instance in case
of the generalised KPZ equation one has

+ + ∈ J,

where the white circles denote instances of white noise (the circles are allowed to denote different
instances of white noise, but with the convention that circles that appear at the same position in the three
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trees correspond to the same white noise). These two classes of constraints were recently used quite
systematically in [Ger20].

Example 4.4 A third possible constraint comes from symmetries, for instance in case of

𝜕𝑡𝑢 = −Δ2𝑢 + 𝑔(𝑢, 𝜕𝑥𝑢) (−Δ)1−^[

with [ spatial white noise in 2 dimensions and ^ > 0, one has

∈ J.

Here an edge denotes the (truncation of the) Green’s function for 𝜕𝑡 − Δ2, the bold edge denotes its
spatial derivative (say with respect to 𝑥1) and a node an instance of (−Δ)1−^[.

Example 4.5 Finally, a possible source of constraints comes from moving the root. For instance, if one
considers a couple of interacting forward-backward generalised KPZ equations, one has

− ∈ J

where a red edge denotes the backward heat kernel.

Remark 4.6 Forward-backward equations appear naturally in the context of the dual to the tangent
equation when studying existence of densities for solutions to stochastic equations, see [GL17, Sch18]
for this construction in the context of SPDEs. Consider e.g. the KPZ equation 𝜕𝑡ℎ = 𝜕2

𝑥ℎ + |𝜕𝑥ℎ |2 + b
with tangent equation 𝜕𝑡𝑣 = 𝜕2

𝑥𝑣 + 2𝜕𝑥ℎ𝜕𝑥𝑣 + 𝑓 , where 𝑓 denotes a Cameron-Martin function. The dual
of the tangent equation is given by −𝜕𝑡𝑤 = 𝜕2

𝑥𝑤 − 2𝜕𝑥ℎ𝜕𝑥𝑤 + 𝑔. Some of the trees needed to solve the
coupled equation for (ℎ, 𝑣, 𝑤) contain the backward heat kernel.

Remark 4.7 It is unclear at this point whether all constrains that show up in reasonable examples are of
the form described above. One could of course always construct more contrived examples by simply
choosing the integration kernels themselves to satisfy certain constraints. The approach chosen in this
article aims for the largest possible generality while avoiding having to explicitly characterise these
constraints. Instead, we show directly that the ideal generated by these constraints always has “nice”
algebraic properties (Assumption 7) and that the BPHZ characters are “well-behaved” in the sense that
they respect these constraints up to discrepancies of order 1 (Assumption 8).

We first generalise the notation (3.1) by including noises. We define the space𝔐★
∞ := 𝔐s

∞ ⊔ {1} and
its closure𝔐s

0 under the norm (2.21). Here, we let 1 act on any noise type Ξ ∈ 𝔏− by setting 1(Ξ) := 1.6
With this notation, we now make the following key definition.

Definition 4.8 Given a tree 𝜏 ∈ T, we define for any [ ∈ 𝔐★
∞, any 𝜓 ∈ Ψ̃ and any large-scale kernel

assignment 𝑅 = (𝑅𝔱)𝔱∈𝔏+ with 𝑅𝔱 ∈ C∞
𝑐 (D̄) the constant

Υ̃
[,𝜓

𝑅
𝜏 := ⟨K𝐾+𝑅𝜏 , Z⟩ (4.1)

where Z (𝑥) :=
(
E

∏
𝑒∈𝐿 (𝑇) [𝔱 (𝑒) (𝑥𝑒)

)
𝜓(𝑥). We will write Υ̃𝜓

𝑅
:= Υ̃

1,𝜓
𝑅
.

As was already remarked below Definition 3.3, we will show in Theorem 4.19 that for any 𝜏 ∈ T−
the limit Υ̃[,𝜓

𝑅
𝜏 does indeed exist as the smooth kernels 𝑅𝔱 approach �̂�𝔱 − 𝐾𝔱, and we denote this limit

by Υ̃[,𝜓. We write also Υ̃𝜓 := Υ̃1,𝜓. All operators introduced here are multiplicatively extended to
characters on the Hopf algebra T−.

6Note that 1 ∉ 𝔐∞, since E1 ≠ 0.
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Remark 4.9 Note that convergence when 𝑅𝔱 approaches �̂�𝔱 − 𝐾𝔱 relies on the smooth cut-off function
𝜓. This is the reason for introducing this cut-off in the definition (4.1).

The following lemma gives a useful alternative description of J.

Lemma 4.10 Under Assumption 6 the ideal J is generated by all 𝜏 ∈ Vec T− such that Υ̃[,𝜓𝜏 = 0 for
any [ ∈ 𝔐★

∞ and any 𝜓 ∈ Ψ̃.

Proof. Comparing (4.1) and Definition 3.3, we only have to show that

⟨K̂𝜏 , 𝜓⟩ = 0

for any 𝜏 ∈ J and any 𝜓 ∈ Ψ̃. Rescaling 𝜓 → 𝜓Y and exploiting the homogeneous behaviour of
the integration kernels �̂�𝔱 it suffices to consider linear combinations of trees 𝜏 =

∑
𝑖≤𝑟 𝑐𝑖𝜏𝑖 such that

[𝐿 (𝜏𝑖), 𝔱] and 𝛼 := 8𝜏𝑖8𝔰 do not depend on 𝑖 ≤ 𝑟. In particular, it suffices to consider the cases 𝜏𝑖 ∈ V0
for all 𝑖 ≤ 𝑟 or 𝜏𝑖 ∉ V0 for all 𝑖 ≤ 𝑟. In the former case Assumption 6 guarantees that ⟨K̂𝜏 , 𝜓⟩ = 0 for
any 𝜓 ∈ Ψ̃. In the latter case, note that 𝜏 ∈ J implies that

⟨K̂𝜏 , 𝜓⟩ = 𝑎(𝜏)
∫

𝜓 (4.2)

for some 𝑎(𝜏) ∈ R and all 𝜓 ∈ Ψ̃. However, the transformation 𝜓Y (𝑥) := Y−|𝔰 |𝜓(Y−𝔰𝑥) leaves the right
hand side (4.2) invariant, while the left hand side is transformed as ⟨K̂𝜏 , 𝜓Y⟩ = Y𝛼+( 1

2 #𝐿 (𝜏𝑖)−1) |𝔰 | ⟨K̂𝜏 , 𝜓⟩,
which is a contradiction unless 𝛼 = −#𝐿 (𝜏𝑖) |𝔰 |2 + |𝔰 |. Unless #𝐿 (𝜏𝑖) = 2 one has 𝛼 ≤ − |𝔰 |

2 , contradicting
Assumption 2. If #𝐿 (𝜏𝑖) = 2, then one has 𝛼 = 0 and thus 𝜏 ∈ V0, in contradiction with 𝜏 ∉ V0.

An important remark is that if the cutoff functions 𝜓 are chosen such that 𝜓 ≡ 1 in a large enough
neighbourhood of the origin, then one has the identity

Υ̃
[,𝜓

0 𝜏 = E𝚷[𝜏(0) =: Υ[𝜏

for any smooth noise [ ∈ 𝔐∞.
One may wonder what the function 𝜓 in this notation is trying to accomplish. We want to study the

limit of Υ̃[,𝜓
𝑅

𝜏 in which 𝑅𝔱 converges to �̂�𝔱 − 𝐾𝔱, where �̂�𝔱 : D̄ → R is the homogeneous extension of
the integration kernel to the whole space, see Section 2.2.2. Without the cutoff function 𝜓, this quantity
has no chance of converging in general. However, we will see that the presence of the cutoff 𝜓 is sufficient
for this limit to exist. The fact that we cannot get rid of the large-scale cutoff completely is no surprise.
Indeed, even for [ = 1 this is not true:

Example 4.11 Consider the cherry tree in Φ4
3. We obtain

Υ̃
𝜓

𝑅
=

∫
R+×R3

𝑑𝑥

∫
R+×R3

𝑑𝑦 (𝐾 + 𝑅) (𝑥) (𝐾 + 𝑅) (𝑦)𝜓(𝑥 − 𝑦)

where we identify 𝜓 ∈ C̄∞
𝑐 (D̄𝐿 (𝜏) ) ≃ C∞

𝑐 (D̄). We can only guarantee that this is finite as 𝑅 → �̂� − 𝐾 if
𝜓 is compactly supported.

On a more technical level, this issue is related to the bound on the degrees of tight partitions introduced
in [Hai18, Sec. 4].
There is however one big advantage of the large-scale cutoff introduced by 𝜓 over the one given by

simply choosing a compactly supported kernel 𝐾: the latter “sees” the interior structure of the tree 𝜏,
while the former only “sees” the noise type edges. When we work out properties of the ideal J later
on, this becomes crucial, as it can happen that two trees with the property that the evaluation (4.1) only
differs due to the large scale cutoff have distinct interior structure (compare e.g. Example 4.2). However,
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such trees will always carry the same multiset of noise types, so that the cutoff introduced by 𝜓 as in
(4.1) will affect each of them in precisely the same way, thus not destroying exact identities between their
renormalisation constants.

A motivating example
The main difficulty in proving Assumptions 7 and 8 is to determine the algebraic structure of a tree
𝜏 drawing only on the analytic information given by K�̂�𝜏. The strategy to show the first of these
results, namely that J is a Hopf ideal, and the second one, namely that the BPHZ characters 𝑔[ “almost”
annihilate J, are quite similar. The main step is to show how J interacts with the coproducts Δ− and
Δ−𝔦, compare (4.51) and (4.50) in Proposition 4.60 below. The interaction property of Jwith Δ− gives
immediately the Hopf ideal property, while the statement about the BPHZ characters needs a further
argument carried out in Section 4.6.
Consider as an example two trees coming from the generalised PAM equation in 3D. Recall that in

this equation we consider purely spatial white noise and the integration kernel is given by the 3D Poisson
kernel 𝑃. One then has

𝜏1 − 𝜏2 := − ∈ J , (4.3)

This can be seen by noting that 𝑃 is invariant under the transformation 𝑥 ↦→ −𝑥. Here we use different
colours to indicate different (hence independent) white noises. As part of the proof of Assumptions 7
and 8 we have to show respectively that

Δ−
(

−
)
∈ J⊗ T− + T− ⊗ J and

���𝑔[ ( ) − 𝑔[ ( )
��� ≲ 1, (4.4)

where the second statement is uniform over [ with ∥[∥𝔰 ≤ 𝐶.

Remark 4.12 The reason why we have to bound the linear difference (as opposed to the “difference”
with respect to the group operation) is that these two turn out to be the same in the present example. In
general the second bound in (4.4) does not hold and should be replaced with ( 𝑓 [ ◦ 𝑔[) (𝜏1 − 𝜏2) = 0
where | 𝑓 [ | ≲ 1. (Here 𝑓 [ = ( 𝑓 [)−1 is the group inverse of the character defined in Assumption 8. Since
𝑓 ↦→ 𝑓 −1 is a uniformly bounded operation on G−, bounding 𝑓 [ and 𝑓 [ are equivalent.) Of course,
boundedness is not quite sufficient and we will later show the stronger statement of continuity with
respect to ∥ · ∥𝔰 . (This is not equivalent since [ ↦→ 𝑓 [ is not a linear map.)

Let us first convince ourselves “by hand” that (4.4) holds. To see the first statement, it suffices to note
that

Δ−
(

−
)
=

(
−

)
⊗ 1 + 1 ⊗

(
−

)
+ ⊗

(
−

)
and − ∈ Jholds with the same argument as above. (In fact both of these trees are individually
elements of J for symmetry reasons. Actually, in this case one also has ∈ J for symmetry reasons.
Both of these statements are however not generic. They would for instance not hold if the Poisson kernel
was replaced by a non-symmetric kernel.) Here we draw a cross into the cricle to denote a polynomial
decoration, and a bold edge denotes an edge carrying a derivative decoration. For the second statement
in (4.4) one can calculate

𝑔[
(

−
)
= −E𝚷[

(
−

)
(0) + E𝚷[ (0) E𝚷[

(
−

)
(0) = 0. (4.5)

Note that the fact that this expression vanishes identically is not really intrinsic. For instance, the various
Poison kernels could be associated to different components of the equation, and in principle we could
choose different large-scale cutoff’s, which would make the expression above non-zero (but it would
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remain order 1). This may not seem like a natural thing to do, but it is sometimes unavoidable, compare
Example 4.2.
The goal of this section is to automatise these arguments, drawing only on the information that

Υ̃𝜓 (𝜏1 − 𝜏2) = 0 for any smooth function 𝜓 ∈ C̄∞
𝑐 (D̄[ , , , ]). We write elements in the domain

as 𝑥 = (𝑥1 , 𝑥2 , 𝑥1 , 𝑥2 ). Let 𝜙 ∈ C∞
𝑐 (D̄) be any smooth, symmetric (under 𝑥 ↦→ −𝑥) test function,

define 𝜙 (Y) := Y−3𝜙(Y−1·), and let 𝜓Y (𝑥1 , 𝑥2 , 𝑥1 , 𝑥2 ) := 𝜓(𝑥1 , 𝑥2 , 𝑥1 , 𝑥2 )𝜙 (Y) (𝑥1 , 𝑥2 ). We also
write �̌�(𝑥1 , 𝑥2 , 𝑥⋄) := 𝜓(𝑥⋄ , 𝑥⋄ , 𝑥1 , 𝑥2 ), and we denote by Υ̃�̌� and Υ̃�̌� the quantity defined
analogously to (4.1), but where the additional variable 𝑥⋄ corresponds to the node which was generated
by contracting the subtree (in the current examples, the only node without a noise). This rather ad hoc
notation is resolved later on by the introduction of legs, see below. We then arrive at the following diagram

Υ̃𝜓
Y − Υ̃𝜓

Y

= 0

− −

Υ̃𝜙
(Y)

Υ̃�̌� − Υ̃𝜙
(Y)

Υ̃�̌� = 0

≲ 1 ≲ 1

The equality in the first line is the analytic input we are given from (4.3). The uniform bounds on the
differences vertically are a consequence of the analytic BPHZ theorem [Hai18], see also Proposition 4.49
below. The equality on the second line is what we infer. Note that in a first step we only deduce a uniform
bound, however we can make use of the fact that the integration kernels are homogeneous functions, so
that we know a priori that the expressions in the second line are proportional to Y𝛼 for some homogeneity
𝛼 < 0. Both statements can hold simultaneously only if the quantity vanishes identically. It then follows
in particular that

Υ̃𝜙 Υ̃𝜓 − Υ̃𝜙 Υ̃𝜓 = 0 (4.6)

for any symmetric test function 𝜙, 𝜓 ∈ C∞
𝑐 (D̄) (here we naturally identify C̄∞

𝑐 (D̄[ , ]) and C̄∞
𝑐 (D̄[ , ])

with the space of symmetric functions in C∞
𝑐 (D̄)). Note that in general there may be more than one

divergent subtree. We then perform the strategy above with all possible divergent subtrees, by splitting
the multiset [ , , , ] in two parts in all possible ways (the derivation above would then correspond to
[ , ], [ , ]).
Comparing (4.6) and (4.5), and using the fact that the function 𝜙(𝑥 − 𝑦) := E[[(𝑥)[(𝑦)] is an element

of C∞
𝑐 (D̄), we deduce that

�̂�[
(

−
)
= 0

for any smooth, centred, stationary noise [. Here, �̂�[ is a character which is defined similarly to the
BPHZ character, but where the large-scale cutoff of the integration kernels is removed and instead a
large-scale cutoff is introduced between any pair of nodes, see Definition 4.17 above and (4.27) below.
Let us review the outline so far from a more algebraic perspective. We have essentially proven that,

assuming that

− ∈ J ⇒ Δ−𝔦
(

−
)
∈ J⊗ T̂− + T− ⊗ Ĵ, (4.7)

where Ĵ ⊆ T̂− is an ideal defined analogously to J. (We refrain from given a precise definition here,
since there are some subtleties; most notably the fact that Υ̃[ is in general not well-defined on trees of
positive homogeneity. We refer to Definition 4.54 for the definition of an ideal that mirrors this idea.) We
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then use that Δ− = (Id ⊗ p−)Δ−𝔦 and J= p−Ĵ to conclude that J is a Hopf ideal, which concludes the
outline of the proof of Assumption 7. The remaining argument to conclude the outline of the proof of
Assumption 8 is to bound the difference of 𝑔[ and �̂�[ with respect to the group product in G−, which we
will do in Section 4.6.

The problems ahead
There are several points that complicate this line of argument in general:

• One can have more complicated sub-divergencies, in particular one can have divergent sub-forests
instead of just single trees. To deal with this issue, we will introduce a test function for each pair of
noises (Definition 4.42), which will give us the flexibility to trigger any sub-divergence by rescaling
these test functions in all possible ways.

• A bigger issue is the presence of derivatives hitting the test function. Implementing the above strategy
without a proper algebraic framework leads to significant notational difficulties. Instead, we opt for a
systematic extension of the algebraic framework by introducing the notion of “legs”, against which
our test functions are integrated. Formally, we do this via an extension of the regularity structure, see
Section 4.1 for the details. The point here is that legs can have non-vanishing derivative decorations.

• Every leg has a unique partner leg, and we call a tree properly legged (Definition 4.23), if for
any pair of verices 𝑢 and 𝑣 with 𝑢 ≠ 𝑣, and both u and v carrying noises, there exists a unique
leg incident to 𝑢 such that its partner is incident to 𝑣. We ultimately need to understand how this
“properly legged” property interacts with the coproduct, which leads to the construction of algebras
Tpl
− and T̂ex,pl

− , which are related to the algebrasT− and T̂ex
− (we colour them to indicate that they

are spaces generated by trees containing legs, c.f. Sec. 4.1). We refer to Section 4.3 for details.
• Noises are in general indistinguishable. We need to distinguish them at the algebraic level to carry
out the argument above, and only afterwards factor out the necessary ideals given by “identifying”
noises that we made distinguishable (Definition 4.36). (Actually, it suffices for us to break the
symmetry at the level of legs.)

• We need to make precise what exactly we need to subtract in general in order to see the cancellations
inferred above. For this we need a general strategy of rescaling the test functions (c.f. (4.37),(4.40))
and a general bound in the spirit of the BPHZ theorem (c.f. Proposition 4.49). We draw here on the
results of [Hai18] rather than [CH16], since we deal with kernels of unbounded support.

• Finally, we have to show that the evaluation Υ̃[,𝜓𝜏 is well-defined, at least on a large enough set of
trees 𝜏. We refer the reader to Theorem 4.19 and Lemma 4.21.

Outline of the section
The plan is now as follows. We enlarge in Section 4.1 the regularity structures T to a regularity structure
T by adding a sufficient number of new types (which we call “leg types”, but are treated as noise types
with just slightly negative homogeneity) and we allow any number of them (up to a large enough constant)
to be incident to any node 𝑢 of any tree 𝜏 ∈ T. We then construct spacesT− and T̂ex

− analogously to T−
and T̂ex

− . We show that one can remove the large-scale cutoff in the sense that Υ̃[𝜏 exists (at least for
a large class of trees 𝜏) in Section 4.2. The most cumbersome subsection is Section 4.3, in which we
systematically factor out ideals inT− and T̂ex

− , arriving eventually at the following sequences of spaces

T−

𝑷⊙

→ T⊙
− ⊇ Tpl

−

𝑷sym

→ Tsym
−

Psym
♠→ T

sym
♠

T̂ex
−

�̂�ex,⊙

→ T̂ex,⊙
− ⊇ T̂ex,pl

−

𝑷ex,sym

→ T̂ex,sym
− .

The spacesT⊙
− and T̂ex

− , see Definition 4.26, are merely auxiliary spaces, and we will mostly be
working with the subspacesTpl

− and T̂ex,pl
− , see Definition 4.29, formed by properly legged trees. So

far symmetries of a tree, related to the fact that the same noise type appears multiple times, are not
reflected in the legs, and we remedy this inTsym

− and T̂ex,sym
− , see Definition 4.36. Finally, dropping

“non-essential” legs and identifying trees with non-vanishing derivative decoration on legs, we arrive
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at the space Tsym
♠ , see Lemma 4.40, which turns out to be isomorphic as a Hopf algebra to T−, see

Lemma 4.41. An analytic result generalising the “vertical” cancellations in the diagram on page 44 will
be derived in Proposition 4.49 in Section 4.4. A key result is Proposition 4.60 in Section 4.5, making
precise the idea of (4.7) and in particular concluding the proof of Assumption 7 that J is a Hopf ideal.
Finally, in Section 4.6 we compare the characters �̂�[ and 𝑔[ , and show that their difference is continuous
in the limit as [ approaches a rough limit noise, see Lemma 4.68 and Lemma 4.71

4.1. Extension of the regularity structure

We assume that we are given a finite set L, disjoint from 𝔏, elements of which we call leg types. From an
algebraic point of view, we treat L as a set of additional noise types, and we extend the homogeneity
assignments 8 · 8𝔰 and | · |𝔰 to 𝕷− := 𝔏− ⊔ L by setting 8l8𝔰 := 0 and |l|𝔰 := −^ for some ^ > 0 small
enough (to be specified shortly) whenever l ∈ L. From the extended set of types 𝕷 := 𝕷− ⊔ 𝔏+ we want
to build a regularity structureTex as in [BHZ19, Sec. 5.5], for which we specify a rule 𝑹.
Let 𝑀 ∈ N denote the maximum number of edges #𝐸 (𝜏) for any 𝜏 ∈ T−. We first define the rule �̃�

by setting

�̃�(𝔱) := {𝐴 ⊔ 𝐵 : 𝐴 ∈ 𝑅(𝔱) and 𝐵 ⊆ L × {0} is a set with #𝐵 ≤ 𝑀}, (4.8)

for any 𝔱 ∈ 𝔏+. Here 𝑅 denotes the rule used to construct the regularity structure T, see Section 2.2.
Note that in (4.8) we only allow 𝐵 to be a proper set (or equivalently a multiset satisfying 𝐵 ≤ 1), so
that any tree conforming to �̃� can be built from a tree conforming to 𝑅 by adding to every node up to
𝑀 edges of distinct types in L. Provided that ^ > 0 is small enough we obtain a normal and subcritical
[BHZ19, Def. 5.14] rule �̃� in this way, and we denote by 𝑹 its completion [BHZ19, Prop. 5.21].

Definition 4.13 We denote byTex (resp.T) the extended (resp. reduced) regularity structure constructed
as in [BHZ19, Sec. 5.5] from the rule 𝑹. Furthermore, we denote byTex

− and T̂ex
− the algebras constructed

as in [BHZ19, Def. 5.26, Def. 5.29] starting from the regularity structureTex.

As in [BHZ19, Prop. 5.35], the spaceTex
− forms a Hopf algebra. We will mostly work with the factor Hopf

algebraT− ofTex
− given by neglecting the extended decoration. We writeT−T−T− for the set of unplanted trees

𝜏 ∈ T of negative homogeneity, so thatT− is generated freely as a unital, commutative algebra fromT−T−T−.
For a tree 𝜏 ∈ Tex we denote by 𝐿L (𝜏) ⊆ 𝐸 (𝜏) the set of leg type edges, i.e. the set of 𝑒 ∈ 𝐸 (𝜏) such

that 𝔱(𝑒) ∈ L, and by 𝐿 (𝜏) ⊆ 𝐸 (𝜏) the set of noise type edges of 𝜏, i.e. the set of 𝑒 ∈ 𝐸 (𝜏) such 𝔱(𝑒) ∈ 𝔏−.
We will often call an edge of leg type simply a leg. We writeL(𝜏) ⊆ 𝑁 (𝜏) (resp.LL (𝜏) ⊆ 𝑁 (𝜏)) for
the set of nodes 𝑢 ∈ 𝑁 (𝜏) that are adjacent to at least one noise type (resp. leg type) edge, and we write
L̂(𝜏) ⊆ 𝑁 (𝜏) for the set of nodes 𝑢 ∈ 𝑁 (𝜏) with the property that 𝔬(𝑢) < 0.

Example 4.14 In the following example, taken from the KPZ equation, we coloured kernel-type edges
𝑒 ∈ 𝐾 (𝜏) grey (they are bold because they carry a derivative decoration), noise type edges 𝑒 ∈ 𝐿 (𝜏)
blue, we draw legs 𝑒 ∈ 𝐿L (𝜏) as wavy lines, we colour nodes blue if they are elements of L(𝜏), and we
draw nodes as squares (rather than circles) if they are elements of LL (𝜏)

.

This is the only example in this paper in which we make noise type edges explicit, since their position can
always be inferred by L(𝜏). We will always make legs explicit (note that their position cannot be inferred
from LL (𝜏), as there may be more than one leg incident to the same node). Conversely, since LL (𝜏) can
be inferred from 𝐿L (𝜏), we will not draw them explicitly as boxes in the forthcoming examples.

The space Tex can be identified with the linear subspace of Tex spanned by all trees 𝜏 ∈ Tex

without legs. Similarly, the spaces T̂ex
− , Tex

− , and T− have natural interpretations as subalgebras ofTex
− ,
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T̂ex
− andT−, respectively (in this interpretation the latter two are Hopf subalgebras). Given any tree
𝜏 = (𝑇𝔫,𝔬

𝔢 , 𝔱) ∈ Tex we define a tree 𝜋𝜏 ∈ Tex by simply removing all of its legs. The map 𝜋 extends to
a linear map 𝜋 : Tex → Tex, and to an algebra morphism from the algebrasTex

− , T̂ex
− andT− onto Tex

− ,
T̂ex
− and T−, respectively.
Finally, we denote by G− the character group of the Hopf algebraT−, which is canonically isomorphic

to the reduced renormalisation group constructed in [BHZ19, Thm. 6.28]. There exists a subgroup of G−

isomorphic to G−, given by the set of those characters that vanish on any tree 𝜏 with 𝐿L (𝜏) ≠ #̸. (The
isomorphism 𝜑 : G− ↩→ G− is given explicitly by mapping 𝑔 ∈ G− to a character 𝜑(𝑔) ∈ G− given by
setting 𝜑(𝑔) (𝜏) = 𝑔(𝜏) for 𝜏 ∈ T− and 𝜑(𝑔) (𝜏) = 0 for 𝜏 ∈ T−T−T−\T−.)

Remark 4.15 Since we view T− as a subspace of T−, the embedding G− → G− is actually not
“canonical”, although the projection G− → G−, given by restricting a character 𝑔 ∈ G− toT−, is canonical.
The construction in the previous paragraph uses indirectly the fact that T− is also naturally isomorphic to
a factor Hopf algebraT−/ker q, where q : T− → T− is defined by killing trees 𝜏 such that 𝐿L (𝜏) ≠ #̸.
However, in the sequel we will continue to view T− as a subalgebra ofT−.

4.2. Large scale behaviour of renormalised trees

We now fix a degree assignment deg∞ (𝔱) ∈ R− ⊔ {−∞} for kernel types 𝔱 ∈ 𝔏+. In order to avoid case
distinctions later on, we also set deg∞ (Ξ) := 0 for any noise type Ξ ∈ 𝔏− and deg∞ (l) := −∞ for any
leg type l ∈ L. We writeK+

∞ for the set of kernel assignments 𝑅 = (𝑅𝔱)𝔱∈𝔏+ such that 𝑅𝔱 : D̄ → R is
smooth and compactly supported for any 𝔱 ∈ 𝔏+. We endow this space with the topology generated by
the system of seminorms ∥ · ∥K+ ,𝔱 for 𝔱 ∈ 𝔏+, where the latter is defined as the smallest constant such that

|𝐷𝑘𝑅𝔱 (𝑥) | ≤ ∥𝑅∥K+ ,𝔱 (1 + |𝑥 |)deg∞ 𝔱 (4.9)

for any 𝑥 ∈ D̄ and 𝑘 ∈ N𝑑 with |𝑘 |𝔰 < 𝑟. We write K+
0 for the completion of K

+
∞ with respect to the

corresponding metric. We extend the notation of (3.1) and (3.2) to the extended regularity structure, with
𝐿 (𝜏) replaced by 𝐿 (𝜏) ⊔ 𝐿L (𝜏), so that in particular one hasK𝐺𝜏 : D̄𝐿 (𝜏)⊔𝐿L (𝜏) → R and the integral in
(3.2) ranges over D̄𝐿 (𝜏)⊔𝐿L (𝜏) . Furthermore, we introduce the following space in analogy to Definition 3.2.

Definition 4.16 We write Ψ for the set of all families of test functions (𝜓m)m, indexed by multisetsm
with values in L, such that 𝜓m ∈ C̄∞

𝑐 (D̄m/g).

With this notation, we now define the following evaluations.

Definition 4.17 We define for any tree 𝜏 = 𝑇𝔫,𝔬
𝔢 ∈ Tex, any smooth noise [ ∈ 𝔐★

∞, any 𝜓 ∈ Ψ, and any
large-scale kernel assignment 𝑅 = (𝑅𝔱)𝔱∈𝔏+ ∈ K+

∞ the constant

Ῡ
[,𝜓

𝑅
𝜏 := ⟨K𝐾+𝑅𝜏 , Z

[,𝜓,𝜏⟩ , (4.10)

where Z [,𝜓,𝜏 ∈ D̄𝐿 (𝜏)⊔𝐿L (𝜏) is defined by

Z [,𝜓,𝜏 (𝑥) :=
(
E

∏
𝑢∈𝐿 (𝑇)

[𝔱 (𝑢) (𝑥𝑢)
)
𝐷𝔢 |𝐿L (𝜏)𝜓 [𝐿L (𝜏) ,𝔱] (𝑥𝐿L (𝜏) )

for any 𝑥 ∈ D̄𝐿 (𝜏)⊔𝐿L (𝜏) . Moreover, we define the “renormalised” constant by

Υ̂
[,𝜓

𝑅
𝜏 := Ῡ

[,𝜓

𝑅
𝑀𝑔

[

BPHZ𝜏 (4.11)

Here, we use the notation 𝑔[BPHZ ∈ G− for the BPHZ-character of the noise [ in the renormalisation group
G−, which we view naturally as a character in G− as above. We also set Ῡ

𝜓

𝑅
:= Ῡ

1,𝜓
𝑅
and Ῡ𝜓 := Ῡ

1,𝜓
�̂�−𝐾 .
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Remark 4.18 One has 𝑔[BPHZ (𝜎) = 0 for any 𝜎 ∈ T− such that 𝐿L (𝜎) ≠ #̸, so that 𝑀𝑔
[

BPHZ maps 𝜏 onto
the span of trees 𝜏 with the property that [𝐿 (𝜏), 𝔱] = [𝐿 (𝜏), 𝔱] It follows that Υ̂[,𝜓

𝑅
𝜏 really only depends

on 𝜓 [𝐿L (𝜏) ,𝔱] . We finally note that these notations do not depend on the extended decoration 𝔬.

Our goal is to show that under some natural assumptions on the degree assignment deg∞ the map
Ῡ
[,𝜓

𝑅
extends continuously to any large-scale kernel assignment 𝑅 ∈ K+

0 , and Υ̂
[,𝜓

𝑅
extends continuously

to the set of pairs ([, 𝑅) ∈ 𝔐s
0 ×K+

0 . Such a statement can only be true if we make an assumption on the
degree assignment deg∞ and the positions of the legs, which is in complete analogy to [Hai18, Sec. 4].
We then consider partitions P of the node set 𝑁 (𝜏) such that #P ≥ 2 and such that there exists 𝑃 ∈ P

withLL (𝜏) ⊆ 𝑃. We call partitions of 𝑁 (𝜏) that satisfy these properties tight from now on. For any tight
partition Pwe denote by 𝐾 (P) the set of kernel-type edges 𝑒 ∈ 𝐾 (𝜏) with the property that there does
not exist 𝑃 ∈ P such that 𝑒 ⊆ 𝑃, and we set

deg∞ P :=
∑︁

𝑒∈𝐾 (P)
deg∞ 𝔱(𝑒) +

∑︁
𝑢∈𝑁 (𝜏)

|𝔫(𝑢) |𝔰 + |𝔰 | (#P− 1). (4.12)

Let𝔐★
0 denote the closure of𝔐

★
∞ under the norm ∥ · ∥𝔰 . The key result of this section is the following

theorem.

Theorem 4.19 Let 𝜏 ∈ TTT ex be such that deg∞ P < 0 for any tight partition P of 𝑁 (𝜏). Then for any
fixed 𝜓 ∈ Ψ and [ ∈ 𝔐★

0 the evaluation

𝑅 ↦→ Ῡ
[,𝜓

𝑅
𝜏 (4.13)

extends continuously to the space K+
0 . Moreover, the evaluation

([, 𝑅) ↦→ Υ̂
[,𝜓

𝑅
𝜏 (4.14)

extends continuously to the space 𝔐★
0 ×K+

0 . Finally, one has the bound

|Υ̂[,𝜓
𝑅

𝜏 | ≲ ∥[∥𝔰
( ∏
𝑒∈𝐾 (𝜏)

∥𝑅𝔱 (𝑒) ∥K+ ,𝔱 (𝑒) ,𝑟 + 1
)

(4.15)

for 𝑟 ∈ N any integer larger than −min{|𝜏 |𝔰 : 𝜏 ∈ T}, uniformly over all ([, 𝑅) ∈ 𝔐★
0 ×K+

0 .7

Remark 4.20 This theorem should be viewed as a generalisation of [Hai18, Thm. 4.3]. The main reason
why it does not follow directly from [Hai18, Thm. 4.3] is the presence of higher-order cumulants. In
principle, one could formulate a statement analogous to [Hai18, Thm. 4.3] for Feynman hyper-graphs
which would then imply the statement of the above theorem. However, such a formulation is rather
cumbersome, so that we refrain from carrying out this construction.

Proof. This follows very similar to [Hai18, Thm. 4.3]. See Section A.3 for a proof.

The large-scale kernel assignment that we are interested in is given by 𝑅𝔱 = �̂�𝔱 − 𝐾𝔱 for any 𝔱 ∈ 𝔏+,
so that we have to choose deg∞ 𝔱 := 8𝔱8𝔰 − |𝔰 | for any kernel-type 𝔱 ∈ 𝔏+. The next lemma shows that
the assumption of super-regularity implies that the condition of Theorem 4.19 holds automatically for a
large class of trees 𝜏 ∈ TTT ex.

Lemma 4.21 Let 𝜏 ∈ TTT ex be a tree with 8𝜏8+ ≤ 0 and such that L(𝜏) ∪ L̂(𝜏) ⊆ LL (𝜏). Assume
moreover that 𝜏 ∉ V0 (see Section 2.5). Then one has deg∞ P < 0 for any tight partition P of 𝑁 (𝜏).

7We set ∥1∥𝑁,𝔠 := 1.
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Proof. Let 𝜏 = 𝑇𝔫
𝔢 ∈ TTT ex, assume first that L̂(𝜏) = #̸, so that 8𝜏8+ = 8𝜏8𝔰 ≤ 0, and let P be a tight

partition of 𝑁 (𝑇). We denote by 𝑃★ ∈ P the set such thatLL (𝜏) ⊆ 𝑃★, and therefore, by assumption,
L(𝜏) ⊆ 𝑃★, and we write P★ := P\{𝑃★}. We need to show that

deg∞ (P) :=
∑︁

𝑒∈𝐾 (P)
deg∞ 𝔱(𝑒) +

∑︁
𝑢∈𝑁 (𝑇)

|𝔫(𝑢) |𝔰 + (#P− 1) |𝔰 | < 0.

Any 𝑃 ∈ P★ is a subset of 𝑁 (𝜏) and induces a subgraph 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃) of 𝜏, given by setting 𝑉𝑃 := 𝑃
and 𝐸𝑃 is the set of edges 𝑒 ∈ 𝐾 (𝜏) such that 𝑒 ⊆ 𝑃. It is sufficient to consider partitionsP that have the
property that this induced subgraph is connected for any 𝑃 ∈ P★ ; otherwise there exists a non-trivial way
to write 𝑃 = 𝑃1 ⊔ 𝑃2 such that there does not exist an edge 𝑒 with the property that 𝑒↑ ∈ 𝑃1 and 𝑒↓ ∈ 𝑃2
or the other way around. One could then replace 𝑃 with {𝑃1, 𝑃2} in P to create a tight partition Q with
deg∞ (Q) = deg∞ (P) + |𝔰 | > deg∞ (P). We now claim that it is even sufficient to consider partitions
Pwith the property that any set 𝑃 ∈ P★ contains only a single vertex. Indeed, assume that 𝑃 ∈ P★

contains more than one vertex. Then 𝑃 induces a subtree 𝑆 ⊆ 𝑇 that does not contain any 𝑢 ∈ L(𝑇), and
thus one has ∑︁

𝑒∈𝐾 (𝑇) ,𝑒⊆𝑃
deg∞ 𝔱(𝑒) + (#𝑃 − 1) |𝔰 | = |𝑆0

𝔢 |𝔰 > 0

by assumption. With a virtually identical argument one can assume that the partition P has the property
that there exists a finite number of node-disjoint subtrees 𝑆1, . . . , 𝑆𝑚 of 𝑇 for some 𝑚 ≥ 1 such that
for any 1 ≤ 𝑖 ≤ 𝑚 one has that 𝐿 (𝑆𝑖) ≠ #̸, such that 𝐿 (𝑇) = ⊔

𝑖≤𝑚 𝐿 (𝑆𝑖), and with the property that
𝑃★ =

⊔
𝑖≤𝑚 𝑁 (𝑆𝑖). We also assume that the number of trees are minimal, so that for any 𝑖 ≠ 𝑗 the subgraph

induced by the node set 𝑁 (𝑆𝑖) ⊔ 𝑁 (𝑆 𝑗 ) is not connected. It follows that 𝐾 (P) = 𝐾 (𝑇) \ ⊔
𝑖≤𝑚 𝐾 (𝑆𝑖).

A straightforward calculation shows that

8𝑇𝔫
𝔢 8𝔰 =

∑︁
𝑒∈𝐾 (𝑇)

deg∞ 𝔱(𝑒) +
∑︁

𝑢∈𝐿 (𝑇)
8𝔱(𝑢)8𝔰 +

∑︁
𝑢∈𝑁 (𝑇)

𝔫(𝑢) + #𝐾 (𝑇) |𝔰 | ,

and a similar identity holds for any the subtree 𝑆𝑖 for any 𝑖 ≤ 𝑚. Using the fact that #𝐾 (P) =

#𝐾 (𝑇) − ∑𝑚
𝑖=1 #𝐾 (𝑆𝑖) we get the identity

deg∞ (P) = 8𝑇𝔫
𝔢 8𝔰 −

∑︁
𝑖≤𝑚

8(𝑆𝑖)0
𝔢 8𝔰 − #𝐾 (P) |𝔰 | + (#P− 1) |𝔰 |.

Let 𝑄 := {𝑒↑ : 𝑒 ∈ 𝐾 (P)}, then our definitions show that

𝑄 =
(
{𝜌(𝑆𝑖) : 𝑖 ≤ 𝑚} ⊔P★

)
\ {𝜌𝑇 },

so that #𝐾 (P) = #𝑄 = 𝑚 + #P− 2, and thus

deg∞ (P) = 8𝑇𝔫
𝔢 8𝔰 −

∑︁
𝑖≤𝑚

8(𝑆𝑖)0
𝔢 8𝔰 − (𝑚 − 1) |𝔰 |.

We now use the assumptions of the lemma which imply on the one hand that 8𝑇𝔫
𝔢 8𝔰 ≤ 0 and on the other

hand that 8(𝑆𝑖)0
𝔢 8𝔰 ≥ − |𝔰 |

2 , from which it follows that

deg∞ (P) ≤ (1 − 𝑚

2
) |𝔰 | ≤ 0 , (4.16)

with equality if and only if 𝑚 = 2, 8𝜏8𝔰 = 0, and 8𝑆𝑖8𝔰 = − |𝔰 |
2 for any 𝑖 = 1, 2. By assumption, any tree

𝑆 ∈ Tsuch that 8𝑆8𝔰 = − |𝔰 |
2 is equal to some Ξ ∈ 𝔏−, so that #𝐿 (𝜏) = 2, and therefore 𝜏 ∈ V0.
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Assume now that 𝜏 = (𝑇𝔫,𝔬
𝔢 , 𝔱) ∈ TTT ex is such that L̂(𝜏) ≠ #̸. Since 8𝜏8+ ≤ 0, by [BHZ19, Lem. 5.25]

there exists a tree 𝜏 = (𝑇 �̄�
�̄�
, 𝔱) ∈ T−T−T− (that is, a tree with vanishing extended decoration such that 8𝜏8𝔰 ≤ 0),

a subforest F ∈ div(𝜏) (here div(𝜏) denotes the set of subforests F of 𝜏 with the property that any
connected component 𝑆 of F is of negative homogeneity; see Section A.1), and decorations 𝔫F and 𝔢F
as in (A.3) with the property that one has

𝜏 = ((𝑇/F)�̄�−𝔫F, [𝔬]F
�̄�+𝔢F , 𝔱).

(Note that necessarily 𝜏 has at least one divergent proper subtree, so that #𝐿 (𝜏) > 2. In particular, 𝜏 is
not the exceptional case from the first part of the proof.) We let 𝜑F

�̄�
: 𝑉 (𝑇) → 𝑉 (𝑇) be the map defined

in (A.1), and we write 𝜑 := 𝜑F
�̄�
|𝑁 ( �̄�) : 𝑁 (𝜏) → 𝑁 (𝜏) for the restriction of this map to the set of nodes

𝑁 (𝜏) ⊆ 𝑉 (𝜏).
Let now P be a tight partition of 𝑁 (𝑇), and write again 𝑃★ ∈ P for the element such that

L(𝜏) ∪ L̂(𝜏) ⊆ 𝑃★. We define a partition Q of 𝑁 (𝜏) by setting

Q := {𝜑−1 (𝑃) : 𝑃 ∈ P}.

SinceL(𝜏) ⊆ 𝜑−1 (𝑃∗), the partition Q is tight, and by the first part of the proof one has deg∞ Q < 0.
It thus remains to note that deg∞ P ≤ deg∞ Q, which follows from the definition of deg∞ P in (4.12),
the fact that one has 𝐾 (P) = 𝐾 (Q), #P = #Q and the fact that by definition

∑
𝑢∈𝑁 (𝜏) |𝔫(𝑢) |𝔰 =∑

𝑢∈𝑁 ( �̄�) |�̄�(𝑢) − 𝔫F(𝑢) |𝔰 .

Remark 4.22 The statement fails for trees 𝜏 ∈ V0. For such trees however one has Ῡ
[,𝜓

𝑅
𝜏 = Υ[𝜏 =

−𝑔[ (𝜏) = 0 for any [ ∈ 𝔐s
∞, where the first equality holds if 𝑅 = 0, and 𝜓 = 1 in a large enough

neighbourhood of the origin (compare Lemma 4.44), and the last equality holds by Assumption 5. Using
the homogeneity of the integration kernels, it is possible to find a sequence 𝑅𝑛 → �̂� − 𝐾 so that Ῡ[,𝜓

𝑅𝑛
vanished for any 𝑛, so that at least for this particular choice of 𝑅𝑛 and 𝜓 a statement analogue to (4.14)
holds. We will make use of this fact in the proof of Lemma 4.71 below.

The statement of Lemma 4.21 does clearly not hold in general for trees 𝜏 ∈ T with positive
homogeneity, if we only assumeL(𝜏) ⊆ LL (𝜏). Keeping track of the “location” of contracted subtrees
(and thus a sufficient criterion for the positions at which we have to attach legs) is the only reason
why we keep track of the extended decoration 𝔬 instead of working directly withT. As mentioned in
Lemma 4.21, this is irrelevant for trees 𝜏 such that 8𝜏8− ≤ 0, so that there is no need to keep the extended
decoration when working with the Hopf algebraT−. It will therefore be convenient for us to work with
the two spaces T̂ex

− (keeping the extended decoration) andT− (dropping the extended decoration), and
we will view the operator Δ− as acting between these space

Δ− : T̂ex
− → T− ⊗ T̂ex

−

by dropping the extended decoration on the left component.

4.3. An algebraic construction

We want to work with a Hopf subalgebra (resp. subalgebra) ofT− (resp. T̂ex
− ) generated by trees 𝜏 such

that Theorem 4.19 can be applied. In other words, we want to work with trees that contain enough legs
so that the large-scale evaluation is well-defined. Also, we would like to work with trees that are properly
legged, see Definition 4.23 below. Roughly speaking, we want every leg to have a unique “partner”.
For this we assume that we are given a type map i : L → 𝔏− × 𝔏− and an involution L ∋ l ↦→ l̄ ∈ L
that switches the components of i in the sense that if i(l) = (𝔱, 𝔱′), then i(l̄) = (𝔱′, 𝔱). To avoid case
distinctions, we also assume that l̄ ≠ l.
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With this notation, we make the following key definition. Recall the notation [·, ·] for multisets from
Section 2.1.

Definition 4.23 We call a tree 𝜏 ∈ TTT ex properly legged if 8𝜏8+ ≤ 0 and the following properties hold.
1. Any leg type appears at most once, i.e. one has [𝐿L (𝜏), 𝔱] ≤ 1.
2. For any noise type edge 𝑢 ∈ 𝐿 (𝜏) and any leg 𝑒 ∈ 𝐿L (𝜏) with 𝑒↓ = 𝑢↓ one has i1 (𝔱(𝑒)) = 𝔱(𝑢).
3. For any leg 𝑒 ∈ 𝐿L (𝜏) there exists a leg 𝑒 ∈ 𝐿L (𝜏), which we call the partner of 𝑒, with 𝔱(𝑒) = 𝔱(𝑒)
and one has 𝑒↓ ≠ 𝑒↓.

4. For any distinct 𝑢, �̄� ∈ L(𝜏) there exists a unique leg 𝑒 with 𝑒↓ = 𝑢 and 𝑒↓ = �̄�.
5. For any 𝑢 ∈ L̂(𝜏) and any �̄� ∈ L(𝜏)8 there exists9 a leg 𝑒 ∈ 𝐿L (𝜏) such that 𝑒↓ = 𝑢 and 𝑒↓ = �̄�.

Remark 4.24 The leg 𝑒 refered to in 5. in the previous definition is not assumed to be unique (as
opposed to 4.): Given a tree 𝜏 and a subtree 𝜎 ⊆ 𝜏, then after contracting 𝜎, we obtain a tree 𝜏 = 𝜏/𝜎.
Let 𝑤 ∈ L̂(𝜏) be the vertex generated by contracting 𝜎. For any 𝑢 ∈ L(𝜏)\L(𝜎) and any 𝑣 ∈ L(𝜎)
there will be a pair of legs 𝑒, 𝑒 in 𝜏 with 𝑒↓ = 𝑢 and 𝑒↓ = 𝑤.

Example 4.25 Consider the following example of a properly legged tree:

where straight lines denote kernel-type edges, circles denote noises (elements of L(𝜏)) and coloured
coiling edges denote legs. Here, we coloured legs which are partners with the same colour, but with
different wavy patterns to make them distinguishable. Note that we could remove only the gray edges
without loosing the property of being properly legged.

We will mainly work with algebrasTpl
− and T̂ex,pl

− formed by properly legged trees. But if we would
simply define these spaces as the algebras generated by properly legged trees, then they would not be
closed under the action of the coproduct Δ−. The main problem here is that the previous definition
enforces the existence of a partner for any leg 𝑒 ∈ 𝐿L (𝜏), and this property is not preserved under the
coproduct. To circumvent this problem, we will defineTpl

− and T̂ex,pl
− as subalgebras of factor algebras

T⊙
− and T̂ex,⊙

− , which are defined in the following way.

Definition 4.26 Let I ⊆ T− and Î ⊆ T̂ex
− denote the ideals generated by the set of trees 𝜏 ∈ T−

or 𝜏 ∈ T̂ex
− respectively such that there exists a leg 𝑒 ∈ 𝐿L (𝜏) without a partner. (Recall from 3 from

Definition 4.23 that 𝑒 ∈ 𝐿L (𝜏) is a partner of 𝑒 if 𝔱(𝑒) = 𝔱(𝑒) and 𝑒↓ ≠ 𝑒↓.) Then we define

T⊙
− := T−/I and T̂ex,⊙

− := T̂ex
− /Î,

and the canonical projections 𝑷⊙ : T− → T⊙
− and �̂�ex,⊙ : T̂ex

− → T̂ex,⊙
− .

ConcerningT⊙
− and T̂ex,⊙

− , we can now show the following Lemma.

Lemma 4.27 The ideal I forms a Hopf ideal in T−, so that in particular T⊙
− is a Hopf algebra, and

the factor algebra T̂ex,⊙
− forms a co-module over the factor Hopf algebra T⊙

− .

Proof. The lemma follows once we show the identities

Δ−I ⊆ I⊗ T− +T− ⊗ I (4.17)

Δ−Î ⊆ I⊗ T̂ex
− +T− ⊗ Î. (4.18)

8Recall that our assumptions implyL(𝜏) ∩ L̂(𝜏) = #̸, so that 𝑢 ≠ �̄�.
9Note that we do not impose uniqueness here.
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We only show (4.17) since (4.18) follows with almost the same proof. Let 𝜏 = 𝑇𝔫
𝔢 ∈ Ibe a tree and fix a leg

𝑒 ∈ 𝐿L (𝜏) such that all legs 𝑒 ∈ 𝐿L (𝜏) with the property that 𝔱(𝑒) = 𝔱(𝑒) satisfy 𝑒↓ = 𝑒↓. By (A.2) we are
left to show that for any forestF∈ div(𝜏) one has∏𝑆∈F𝑆

𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F ∈ I⊗T− +T− ⊗I

for any choice of decorations 𝔫F,𝔢F. For this we distinguish two cases. In the first case, writing F̄for
the set of connected components of F, there exist 𝑆 ∈ F̄such that 𝑒 ∈ 𝐸 (𝑆). From this it follows that
whenever 𝔱(𝑒) = 𝔱(𝑒) for some edge 𝑒 ∈ 𝐸 (𝑆), then one has 𝑒↓ = 𝑒↓ and thus 𝑆𝔫F+𝜋eF

𝔢 ∈ I. In the
second case, one has 𝑒 ∉ 𝐸 (F). In this case it suffices to note that whenever 𝑒 ∉ 𝐸 (F) is a leg with the
property that 𝑒↓ = 𝑒↓ in 𝑇 , then this identity remains true in 𝑇/Fas well, so that in this case one has
(𝑇/F)𝔫−𝔫F

𝔢+𝔢F, [𝔬]F ∈ I.

The canonical embedding 𝖎− : T− → T̂ex
− induces an embedding 𝖎− : T⊙

− → T̂ex,⊙
− . We denote by

𝖏⊙ : T⊙
− → T− and 𝖏⊙ : T̂ex,⊙

− → T̂ex
− the obvious embeddings, so that the range of 𝖏⊙ is the algebra

generated by trees with the property that any leg has at least one partner. We now have the following
analogue of [BHZ19, Prop. 6.5] in this setting.

Proposition 4.28 There exists a unique algebra homomorphism Ãex,pl
− : T⊙

− → T̂ex,⊙
− with the property

that the identity

M(Ãex,pl
− ⊗ Id)Δ−𝖎− = 1★ (4.19)

holds on T⊙
− . Moreover, in terms of the usual twisted antipode Ãex

− , this operator is uniquely determined
by the relation

Ãex,pl
− 𝑷⊙ = �̂�ex,⊙Ãex

− (4.20)

on T−, or equivalently by the relation

Ãex,pl
− = �̂�ex,⊙Ãex

− 𝖏⊙ (4.21)

on T⊙
− .

Proof. The fact that (4.19) determines a unique algebra homomorphism follows easily via induction in
the number of edges (see also the proof of [BHZ19, Prop. 6.5]). Since 𝑷⊙ is surjective, (4.20) defines a
unique operator Ãex,pl

− , so that we are left to show that this operator also satisfies (4.19). For this we use
the identities Δ− �̂�ex,⊙ = (𝑷⊙ ⊗ �̂�ex,⊙)Δ− on T̂ex,⊙

− and 𝖎−𝑷⊙ = �̂�ex,⊙𝖎−, from which it follows that

M(Ãex,pl
− ⊗ Id)Δ−𝖎−𝑷

⊙ = M(Ãex,pl
− 𝑷⊙ ⊗ �̂�ex,⊙)Δ−𝖎−

holds onT⊙
− . Using (4.20), we can rewrite the right-hand side of this identity as

�̂�ex,⊙
(
M(Ãex,pl

− ⊗ Id)Δ−𝖎−
)
= 1★,

and since �̂�ex,⊙ is a surjective homomorphism the statement follows. The equivalence with (4.21) follows
at once from the fact that 𝑷⊙𝖏⊙ = Id onT⊙

− .

Later on we will mostly work with subalgebrasTpl
− and T̂ex,pl

− ofT⊙
− and T̂ex,⊙

− which are generated
by properly legged trees.

Definition 4.29 We denote byTpl
− ⊆ T⊙

− and T̂ex,pl
− ⊆ T̂ex,⊙

− the subalgebras generated by properly
legged trees.

Remark 4.30 Note that by definition any tree 𝜏 ∈ T̂ex,pl
− satisfies 8𝜏8+ ≤ 0. By definition of 8𝜏8+ and

the coproduct Δ− one has Δ− : T̂ex,pl
− → Tpl

− ⊗ T̂ex,pl
− , so that T̂ex,pl

− is a comodule overTpl
− .
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One of the facts that motivate the definition of properly legged trees is that for any tree 𝜏 ∈ T̂ex,pl
−

there exists a one to one correspondence between forests F∈ div(𝜋𝜏) and forests G∈ div(𝜏) with the
property that Fand Ggive non-vanishing contributions to the coproduct, see (4.23) below. To state this
correspondence we introduce the following notation. Given a tree 𝜏 ∈ Tex and a forest F∈ div(𝜋𝜏), we
write F for the forest of 𝜏 induced by the edge set

𝐸 (F) := 𝐸 (F) ⊔
⊔
𝑆∈F̄

𝐿L (𝑆) (4.22)

with 𝐿L (𝑆) ⊆ 𝐿L (𝑇) defined as the set of legs 𝑒 ∈ 𝐿L (𝑇) with the property that 𝑒↓, 𝑒↓ ∈ 𝑁 (𝑆), where
𝑒 ∈ 𝐿L (𝑇) denotes the partner of 𝑒 in 𝑇 as before. Here and below we write F̄for the set of connected
components of F. We sometimes write F[𝜏] if we want to emphasise the tree 𝜏.
With this notation, we have the following lemma, the proof of which is postponed to Section A.2 below.

Lemma 4.31 The space Tpl
− forms a Hopf subalgebra of T⊙

− and T̂ex,pl
− forms a co-module over Tpl

− .
In particular, one has Ãex,pl

− : Tpl
− → T̂ex,pl

− . Moreover, one has that 𝖎− : Tpl
− → T̂ex,pl

− . Finally, the
coproduct Δ− : T̂ex,pl

− → Tpl
− ⊗ T̂ex,pl

− is explicitly given by

Δ−𝜏 =
∑︁

F∈div(𝜋𝜏)

∑︁
𝔫F,eF

1
eF!

(
𝔫

𝔫F

) ∏
𝑆∈F

𝑆
𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F , (4.23)

for any tree 𝜏 = 𝑇𝔫,𝔬
𝔢 ∈ T̂ex,pl

− .

We will work with embeddings ] : T− → Tpl
− with the property that any tree 𝜏 ∈ T− is mapped onto

a tree ]𝜏 ∈ Tpl
− with the property that 𝜋]𝜏 = 𝜏 and ]𝜏 is in some sense as simple as possible with this

property. There is some freedom how to construct such embeddings, and many of the statements below
do not depend on the choice of embedding, as long as certain conditions are met, which we summarise
in the following definition. We choose this way, rather than simply fixing such an embedding, since it
will be convenient in the proofs below to have some flexibility in this choice.

Definition 4.32 We call an algebra monomorphism ] : T− → Tpl
− an admissible embedding if all of the

following properties hold for any 𝜏 ∈ T−.
• The tree ]𝜏 is constructed by attaching legs to 𝜏, i.e. one has 𝜋] = Id on T−.
• There are only legs attached to nodes inL(𝜏), i.e. one hasLL (]𝜏) = L(]𝜏).
• The derivative decoration vanishes on legs, i.e. all legs 𝑒 ∈ 𝐿L (𝜏) satisfy 𝔢(𝑒) = 0.

We denote byTad
− the subalgebra ofTpl

− generated by all elements of the form ]𝜏 for some admissible
embedding ] and some 𝜏 ∈ T−. Note thatTad

− is not closed under the coproduct, so that in particular
Tad
− does not form a Hopf algebra. We will write T̂ex,ad

− ⊆ T̂ex,pl
− for the smallest subalgebra of T̂ex,pl

−

with the property that Δ−𝖎−Tad
− ⊆ Tpl

− ⊗ T̂ex,ad
− . It follows from the definition ofTad

− and (4.23) that
one actually has

Δ−𝖎− : Tad
− → Tad

− ⊗ T̂ex,ad
− .

Example 4.33 The following is an example of an admissible embedding:

↦→ .

The construction so far does not mirror the fact that noise types might appear multiple times on a given
tree. In such a situation the cumulants built between noises satisfy certain symmetry constraints, and we
want to mirror these symmetries at the level of the legs. To this end, we perform the following construction.
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Definition 4.34 We denote by 𝐺L the group of all permutations 𝜎 of L such that i is invariant under 𝜎
and with the property that 𝜎(l) = 𝜎(l̄) for any l ∈ L.

We will often abuse notation and view elements 𝜎 of𝐺L as maps 𝜎 : 𝔏⊔L→ 𝔏⊔L by extending 𝜎 as the
identity on 𝔏. There exists an action Sof 𝐺L ontoTpl

− and T̂ex,pl
− given by linearly and multiplicatively

extending the map (𝑔, (𝜏, 𝔱)) ↦→ S𝑔 (𝜏, 𝔱) := (𝜏,S𝑔𝔱), and this action has the property that S𝑔 is an
algebra automorphism on T̂ex,pl

− , and a Hopf algebra automorphism onTpl
− . It will be useful to denote

for l1, l2 ∈ L with i(l1) = i(l2) by l1 ↔ l2 ∈ 𝐺L the group element given by sending l1 to l2, l̄1 to
l̄2 (and vice versa), and letting (l1 ↔ l2) (𝔱) := 𝔱 for any 𝔱 ∈ L\{l1, l2, l̄1, l̄2}. Note that elements of
the form l1 ↔ l2 generate 𝐺L.

Example 4.35 As an example, with 𝑔 = ( ↔ ) one has

S𝑔 = .

With this notation we introduce the following definition.

Definition 4.36 We denote bySSS ⊆ Tpl
− and ŜSS ⊆ T̂ex,pl

− the ideals generated by all elements of the
form S𝑔𝜏 − 𝜏 for some 𝜏 ∈ Tpl

− and 𝜏 ∈ T̂ex,pl
− respectively, for some 𝑔 ∈ 𝐺L.

We then denote by
T̂ex,sym
− := T̂ex,pl

− /ŜSS and Tsym
− := Tpl

− /SSS

the factor algebras with the canonical projections 𝑷ex,sym : T̂ex,pl
− → T̂ex,sym

− and 𝑷sym : Tpl
− → Tsym

− .

As before, we define the natural embedding 𝖎sym
− : Tsym

− → T̂ex,sym
− induced by 𝖎−. We have the following

lemma.

Lemma 4.37 The ideal SSS ⊆ Tpl
− forms a Hopf ideal in Tpl

− , so that in particular the factor algebra
Tsym
− is a factor Hopf algebra. The algebra T̂ex,sym

− is a co-module over Tsym
− .

Proof. This follows from the fact that S𝑔 is a co-module and Hopf algebra automorphism on T̂ex,pl
− and

Tpl
− , respectively.

It will sometimes be convenient to view basis vectors 𝜏 ∈ Tsym
− (resp. 𝜏 ∈ T̂ex,sym

− ) as basis vectors
𝜏 ∈ Tpl

− (resp. 𝜏 ∈ Tpl
− ). For this we simply fix, once and for all, a right inverse 𝝓sym : Tsym

− → Tpl
−

(resp. 𝝓sym : T̂ex,sym
− → T̂ex,pl

− ) of the canonical projection, with the property that 𝝓sym maps trees onto
trees. Concerning the twisted antipode, we have the following analogue of Proposition 4.28.

Proposition 4.38 There exists a unique algebra homomorphism Ãsym
− : Tsym

− → T̂ex,sym
− such that the

identity

M(Ãsym
− ⊗ Id)Δ−𝖎− = 1★ (4.24)

holds on Tsym
− . Moreover, in terms of the operator Ãex,pl

− , this operator is uniquely determined by the
relation

Ãsym
− 𝑷sym = 𝑷ex,symÃex,pl

− (4.25)

on Tpl
− .

Proof. The proof is identical to the proof of Proposition 4.28.

Finally, we have the following result.
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Lemma 4.39 The map ]sym := 𝑷sym] : T− → Tsym
− is an algebra monomorphism and independent of

the choice of admissible embedding ] : T− → Tpl
− .

Proof. The fact that ]sym is independent of the admissible embedding follows directly from the definition.
By definition ]sym is a homomorphism of algebras, and the fact that ]sym is one to one follows from the
fact thatSSS ⊆ ker 𝜋.

4.3.1. Hopf algebra isomorphism
We will now factor out a final ideal fromTsym

− to obtain a factor Hopf algebraTsym
♠ which is isomorphic

as a Hopf algebra to T−. There are two reasons whyTsym
− is not already isomorphic to T−. The first is

that trees may contain more legs than needed to be properly legged, thus makingTsym
− larger than T−.

The second reason is that legs may have non-vanishing derivative decoration, thus the decoration of trees
inTsym

− is richer than in T−.
To tackle the first issue, we denote for any tree 𝜏 ∈ Tpl

− by Q𝜏 the tree obtained from 𝜏 by removing all
legs which are not needed in order for 𝜏 to be properly legged. More precisely, suppose that 𝜏 = (𝑇𝔫

𝔢 , 𝔱)
is a properly legged tree. Then there exists (by definition of properly legged trees) for any pair of distinct
vertices 𝑢, 𝑣 ∈ L(𝜏) a leg 𝑒 ∈ 𝐿L (𝜏) such that 𝑒↓ = 𝑢 and 𝑒↓ = 𝑣. We then call 𝑒 and 𝑒 essential legs,
since we can not remove them from 𝜏 if we want the resulting tree to be properly legged. On the other
hand, any leg 𝑒 ∈ 𝐿L (𝜏) such that either 𝑒↓ ∉ L(𝜏) or 𝑒↓ ∉ L(𝜏) is called superfluous, and we can
remove it, together with its partner, while remaining properly legged. We then set Q𝜏 := (𝑇𝔫

𝔢 , 𝔱), where
𝑇 ⊆ 𝑇 denotes the subtree of 𝑇 obtained by removing all superfluous legs, and we extend Q to a linear
and multiplicative map, so that Q : Tpl

− → Tad
− becomes an algebra homomorphism. (Note that Q acts

as the identity on the image of any admissible embedding ] : T− → Tpl
− .) Composed to the left with

the natural projectionTpl
− → Tsym

− and to the right with 𝝓sym : Tsym
− ↩→ Tpl

− , we obtain an algebra
homomorphism Q : Tsym

− → Tsym
− .

Similarly, we write P0 : Tpl
− → Tpl

− for the multiplicative projection that kills trees with non vanishing
derivative decoration on legs, formally given by

P0 (𝜏) :=
{
𝜏 if 𝔢(𝑒) = 0 for all 𝑒 ∈ 𝐿L (𝜏)
0 otherwise

for any tree 𝜏 ∈ Tpl
− . As before, we use the same symbol for the map P0 : Tsym

− → Tsym
− given by

composing P0 with the natural projection and the embedding 𝝓sym.
Finally, we denote by Q0 : Tpl

− → Tpl
− the multiplicative projection given by Q0 = QP0. (Note that

the order of the operators matters here.) With this notation we now have the following straightforward
result, the proof of which is postponed to Section A.2.

Lemma 4.40 The ideal ker Q0 ⊂ Tsym
− is a Hopf ideal, so that in particular Tsym

♠ = Tsym
− /ker Q0 is a

Hopf algebra.

We now recall the projection 𝜋 : T− → T− given on a tree 𝜏 by simply removing all legs from
𝜏, which we naturally view as a projection 𝜋 : Tsym

♠ → T−. Conversely, composing the embedding
]sym : T− → Tsym

− of Lemma 4.39 with the canonical projection Psym
♠ : Tsym

− → T
sym
♠ yields

an embedding T− → T
sym
♠ . The next lemma shows that these two maps are actually Hopf algebra

isomorphisms.

Lemma 4.41 The maps

𝜋 : Tsym
♠ → T− and 𝝋 := Psym

♠ ]sym : T− → T
sym
♠

are Hopf algebra isomorphisms and one has 𝝋 = 𝜋−1.
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Proof. By construction the map 𝜋𝝋 is the identity on T−. It is not hard to see that for any tree 𝜏 ∈ T− the
tree 𝝋𝜏 ∈ T

sym
♠ is the unique tree inTsym

♠ with the property that 𝜋𝜎 = 𝜏. Note for this that any tree
𝜎 ∈ T

sym
♠ with the property that 𝜋𝜎 = 𝜏 is the image of 𝜏 under an admissible embedding. The claim

then follows from Lemma 4.39. It follows that 𝜋 : Tsym
♠ → T− is an algebra isomorphism with inverse

given by 𝝋. The fact that these maps are Hopf algebra isomorphisms follows from the explicit formula
for the coproducts in (4.23) and (A.2), respectively.

It will be useful to introduce the notation P♠ := Psym
♠ 𝑷sym : Tpl

− → T
sym
♠ for the canonical projection.

Also, for later use we point out that the projection P0 is also well-defined on T̂ex,pl
− and T̂ex,sym

− . (Note
however that Q is not!) Note also that one actually has Q0 : Tpl

− → Tad
− , and Q0 is the identity onTad

− .

4.3.2. Evaluations and characters
We start by rephrasing the statement of Theorem 4.19 into a form that is more suited to our analysis
below. First we introduce the following terminology. We say that a typed set (𝐴, 𝔱) with 𝔱 : 𝐴 → L is
properly typed if 𝔱 is injective and such that every 𝑎 ∈ 𝐴 has a partner �̄� ∈ 𝐴 such that 𝔱(�̄�) = 𝔱(𝑎). We
also call a subset 𝐴 ⊆ L proper typed if for any l ∈ 𝐴 one has l̄ ∈ 𝐴. A multiset m with values in L
is properly typed if it is a properly typed set. Note that (𝐿L (𝜏), 𝔱) is properly typed for any properly
legged tree 𝜏. For the next definition we fix �̄� > max𝜏∈T− #𝐾 (𝜏), and fix an element �̄� ∈ Ψ such that
�̄�m(𝑥m) = 1 for any 𝑥m ∈ D̄d(m) such that |𝑥𝑝 − 𝑥𝑞 |𝔰 ≤ �̄� for any 𝑝, 𝑞 ∈ d(m).

Definition 4.42 We denote by 𝔑 the set of all families (𝜙l)l∈L of smooth functions with the property
that 𝜙l ∈ C∞

𝑐 (D̄/g) and 𝜙l = 𝜙l̄ (−·) for any l ∈ L. We also impose that 𝜙l is supported in a centred
scaled ball or radius �̄� around the origin. Any such family 𝜙 ∈ 𝔑 determines an element 𝜙 ∈ Ψ given by

𝜙𝐴(𝑥𝐴) := �̄�𝐴(𝑥𝐴)
∏

{l,l̄}⊆𝐴
𝜙l (𝑥l − 𝑥l̄), (4.26)

for properly typed set 𝐴 ⊆ L. We simply set 𝜙m := 0 ifm is not not properly typed.

In (4.26) there is one factor for leg-type l and its partner l̄. Note that the right-hand side is well-defined,
since 𝜙l = 𝜙l̄ (−·). Without the function 𝜓 one would not have 𝜙 ∈ Ψ, since 𝜙 would not be compactly
supported in the differences of its arguments. Note however that �̄� plays no role in the definition of the
evaluation Ῡ[, �̂�

𝑅
, since by (4.10) and (3.1) only the function

(𝑥𝑢)𝑢∈LL ↦→
∫

𝑑𝑥𝐿L (𝜏)𝜙(𝑥𝐿L (𝜏) )
∏

𝑒∈𝐿L (𝜏)
𝛿0 (𝑥𝑒 − 𝑥𝑒↓)

enters the definition of Ῡ[, �̂�
𝑅
, and by the support properties of 𝜙l this expression does not depend on the

choice of �̄� for any properly legged tree 𝜏. Finally, �̄� is chosen such that one can find a tuple 𝜙 ∈ 𝔑

with the property that (4.31) holds (recall that the truncated integration kernels 𝐾𝔱 are supported in the
centred ball of radius 1). We first have the following consequence of Theorem 4.19.

Corollary 4.43 Let 𝜏 ∈ Tex be a properly legged tree, and let 𝜙 ∈ 𝔑. Then for any [ ∈ 𝔐★
∞ the

evaluation 𝑅 ↦→ Ῡ
[, �̂�

𝑅
𝜏 extends continuously to K+

0 , and the evaluation ([, 𝑅) ↦→ Υ̂
[, �̂�

𝑅
𝜏 defined in

(4.14) extends continuously to the space 𝔐★
0 ×K+

0 .

We will abuse notation a bit and simply write Υ̂[,𝜙
𝑅

𝜏 := Υ̂
[, �̂�

𝑅
𝜏 and similarly for Ῡ[,𝜙

𝑅
, Ῡ𝜙

𝑅
and Ῡ𝜙.

Given a smooth noise [ ∈ 𝔐★
∞, an element 𝜙 ∈ 𝔑 and a large-scale kernel assignment 𝑅 ∈ K+

0 , we want
to define a character 𝒈𝜼,𝝓𝑹 onTpl

− which is defined analogously to the BPHZ character 𝑔
[
BPHZ, but where the

kernel assignment in the evaluations is replaced by 𝐾 + 𝑅, and where we introduce a cutoff according to 𝜙.
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To this end we first define a character on T̂ex,pl
− by linearly and multiplicatively extending the

evaluation Ῡ[,𝜙
𝑅
. We then define a character 𝒈𝜼,𝝓𝑹 onTpl

− via the identity

𝒈
𝜼,𝝓
𝑹 (𝜏) := Ῡ

[,𝜙

𝑅
Ãex,pl

− 𝜏. (4.27)

Let 𝔑sym be defined as the set of families 𝜙 ∈ 𝔑 which are invariant under 𝐺L in the sense that
𝜙𝑔 (l) = 𝜙l for any 𝑔 ∈ 𝐺L. This definition ensures that one has the identity

Ῡ
[,𝜙

𝑅
S𝑔 = Ῡ

[,𝜙

𝑅

for every 𝑔 ∈ 𝐺L, and hence the character Ῡ[,𝜙𝑅
vanishes on the ideal ŜSS which we used in Definition 4.36

to define the factor algebra T̂ex,sym
− . It follows that Ῡ[,𝜙

𝑅
is well-defined on T̂ex,sym

− for any 𝜙 ∈ 𝔑sym,
and thus we can define a character 𝒈𝜼,𝝓𝑹 onTsym

− via the identity

𝒈
𝜼,𝝓
𝑹 (𝜏) := Ῡ

[,𝜙

𝑅
Ãsym

− 𝜏. (4.28)

(Comparing this with (4.27) and Proposition 4.38 one has 𝒈𝜼,𝝓𝑹 𝑷sym = 𝒈
𝜼,𝝓
𝑹 onTpl

− .)
The following lemma shows the relation between the characters 𝒈𝜼,𝝓0 onTpl

− on the one hand, and the
usual BPHZ character 𝑔[BPHZ on T− on the other hand.

Lemma 4.44 Let 𝜙 ∈ 𝔑 and assume that for any l ∈ L one has that 𝜙l = 1 in a large enough
neighbourhood of the origin. Then for any [ ∈ 𝔐∞ one has the identity

𝒈
𝜼,𝝓
0 = 𝑔[𝜋𝑷0 and 𝒈

𝜼,𝝓
0 ] = 𝑔

[
BPHZ (4.29)

on Tpl
− and T−, respectively, for any admissible embedding ] : T− → Tpl

− .
Moreover, one has

Ῡ
[,𝜙

𝑅
𝑀𝑔[ 𝖏⊙ = Ῡ

[,𝜙

𝑅
𝑀𝒈

𝜼,𝝓
0 (4.30)

on T̂ex,pl
− . Here on the left hand side we view G− ⊆ G− as in Section 4.1.

Proof. Let 𝜙 ∈ 𝔑 be such that for any l ∈ L the test function 𝜙l is 1 in a neighbourhood of the origin
which is large enough so that one has for any smooth noise [ ∈ 𝔐∞ the identity

Ῡ
[,𝜙

0 𝜏 = Υ[𝜋𝜏 (4.31)

for any tree 𝜏 ∈ T̂ex,pl
− with the property that the derivative decoration 𝔢 vanishes on the set of legs 𝐿L (𝜏).

We first show (4.29). Note that with the same arguments that shows (4.31) it also follows that one
has Ῡ[,𝜙0 𝜏 = 0 for any tree 𝜏 ∈ T̂ex,pl

− with the property that the derivative decoration 𝔢 does not vanish
identically on the set of legs. Writing 𝑷0 : Tpl

− → Tpl
− and �̂�0 : T̂ex,pl

− → T̂ex,pl
− for the multiplicative

projections onto the respective subalgebra generated by trees 𝜏 ∈ Tpl
− and 𝜏 ∈ T̂ex,pl

− respectively,
with the property that the decoration 𝔢 vanishes identically on the set of legs of 𝜏, the two previous
observations are equivalent to the identity

Ῡ
[,𝜙

0 = Ῡ
[,𝜙

0 �̂�0 = Ῡ[𝜋�̂�0 (4.32)

on T̂ex,pl
− .
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Noting that one has 𝜋𝑷0] = Id on T−, we are left to show that 𝒈
𝜼,𝝓
0 = 𝑔[𝜋𝑷0 onTpl

− , which, with the
aid of (4.32) and the definition of the respective character, follows once we show the identity

𝜋�̂�0Ãex,pl
− = Ãex

− 𝜋𝑷
0

onTpl
− . In order to see this, apply the operator on either side of this identity to some tree 𝜏 and proceed

inductively in the number of edges of 𝜏. We then have the identities

Ãex
− 𝜋𝑷

0𝜏 = −M(Ãex
− ⊗ Id) (Δ−𝔦 − Id ⊗ 1)𝜋𝑷0𝜏

= −M(Ãex
− ⊗ Id) (𝜋𝑷0 ⊗ 𝜋�̂�0) (Δ−𝖎− − Id ⊗ 1)𝜏

= −𝜋�̂�0M(Ãex,pl
− ⊗ Id) (Δ−𝖎− − Id ⊗ 1)𝜏 = 𝜋�̂�0Ãex,pl

− 𝜏 ,

and the claim follows.
We now show (4.30). Denote by q : T− → T− the algebra homomorphism such that, for any tree

𝜏 ∈ T− one has q𝜏 = 𝜋𝜏 if 𝐿L (𝜏) = #̸ and q𝜏 = 0 otherwise. Let furthermore denote by Q : T− → T−

the multiplicative projection which on a tree 𝜏 ∈ T− acts by removing all legs 𝑒 ∈ 𝐿L (𝜏) without a
partner and such that 𝔢(𝑒) = 0, and set Q0 := �̂�ex,⊙Q. Then one has

Ῡ
[,𝜙

𝑅
𝑀𝑔[ 𝖏⊙ = (𝑔[q ⊗ Ῡ

[,𝜙

𝑅
)Δ−𝖏

⊙ = (𝑔[q ⊗ Ῡ
[,𝜙

𝑅
Q0)Δ−𝖏

⊙ (4.33)

on T̂ex,pl
− . The first equality is a consequence of the embedding G− ⊆ G−, compare in Section 4.1. The

second equality is a consequence of the fact that the only legs 𝑒 appearing in the right component of this
tensor product which do not have a partner are such that there exists a leg 𝑒 with 𝔱(𝑒) = 𝔱(𝑒) and 𝑒↓ = 𝑒↓.
Since 𝜙 = 1 in a neighbourhood of the origin, if the derivative decoration of these legs is zero they do
not contribute to the evaluation Ῡ[,𝜙

𝑅
, while in case that the derivative decoration does not vanish they

kill the evaluation Ῡ[,𝜙
𝑅
. Either way, inserting the projection Q0 does not change (4.33).

Next we note that one has

Ῡ
[,𝜙

𝑅
𝑀𝒈

𝜼,𝝓
0 = (𝑔[𝜋P0 ⊗ Ῡ

[,𝜙

𝑅
)Δ− (4.34)

on T̂ex,pl
− , where we used (4.29), and combining (4.33) and (4.34) we are left to show that

(q ⊗ Q0)Δ−𝖏
⊙ = (𝜋P0 ⊗ Id)Δ− (4.35)

on T̂ex,pl
− .
For this we use the forest expansion of Δ− on T̂ex

− given by (A.2) and on T̂ex,pl
− given by (4.23).

First, due to the projection q on the right hand side of (4.35) the first sum in (A.2) can be restricted to
F∈ div(𝜋𝜏). The sum over all polynomial decorations is already identical, but (A.2) include a sum over
edge decoration put on legs 𝑒 ∈ 𝐿L (F), where F is as in (4.22). Any term where 𝔢F does not vanish on
such legs gets killed by Q0, so that we can restrict the sum over 𝔢F in (A.2) to 𝔢F as in (4.23).
Now fix F∈ div(𝜋𝜏) and decorations 𝔫F and 𝔢F. We show that∏

𝑆∈F
𝑆
𝔫F+𝜋eF
𝔢 ⊗ Q0 (𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F =
∏
𝑆∈F

𝜋P0𝑆
𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F , (4.36)

which concludes the proof.
It there exists a leg 𝑒 ∈ 𝐿L (F) with 𝔢(𝑒) ≠ 0 then both sides of (4.36) vanish. On the other hand, if

𝔢(𝑒) = 0 for all legs 𝑒 ∈ 𝐿L (F), then one can remove the projection P0 from the right hand side of (4.36),
which then becomes ∏

𝑆∈F
𝑆
𝔫+𝜋eF
𝔢 ⊗ (𝑇/F)𝔫F−𝔫F, [𝔬]F

𝔢+𝔢F ,
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so that we are left to show that

Q0 (𝑇/F)𝔫−𝔫F, [𝔬]F
𝔢+𝔢F = (𝑇/F)𝔫F−𝔫F, [𝔬]F

𝔢+𝔢F ,

which is a consequence of the definition of Q0.

4.4. An analytic result

In this section we are going to show an analytic result, Proposition 4.49, which we will then use as a
black box in the next section. Our goal is to study how the evaluations Ῡ[,𝜙𝑅 𝜏 for 𝜙 ∈ 𝔑 behave when the
smooth functions 𝜙l for l ∈ L are rescaled to small scales. More concretely, assume that we are given a
degree assignment deg : L→ R− ∪ {◦} that is invariant under conjugation. For any family 𝜙 ∈ 𝔑 we
define a rescaled family 𝜙Y ∈ 𝔑 by setting

𝜙Yl :=

{
Y2 deg(l)S [Y ]𝜙l if deg(l) ∈ R−
𝜙l if deg(l) = ◦

(4.37)

for any l ∈ L and Y > 0. Here, we define the rescaling operatorS [Y ] by setting

(S [Y ]𝜑) (𝑥) := 𝜑(Y−𝔰𝑥)

for any 𝜑 ∈ C∞
𝑐 (D̄).

We will now describe a particular way to choose degree assignments deg : L→ R− ∪ {◦}. We fix an
arbitrary homogeneity assignment ||| · |||𝔰 on 𝔏− with the property that one has |Ξ|𝔰 < |||Ξ|||𝔰 < 8Ξ8𝔰 for
any noise type Ξ ∈ 𝔏−. For any set I ⊆ L of leg types which is closed under conjugation we define a
degree assignment degI : L→ R− ∪ {◦} by setting

degI (l) :=
1
2 ( |||i1 (l) |||𝔰 + |||i2 (l) |||𝔰)

− 1
2 +

√︃
1
4 + #I

if l ∈ I, (4.38)

and degI (l) := ◦ if l ∉ I. The factor in (4.38) is chosen in such a way that one has for any tree 𝜏 ∈ Tad
−

the identity ∑︁
l∈I

degI (l) =
∑︁

𝑒∈𝐿 (𝜏)
|||𝔱(𝑒) |||, (4.39)

with I = {𝔱(𝑒) : 𝑒 ∈ 𝐿L (𝜏)} the set of leg types appearing in 𝜏. Let us sketch the argument why (4.39) is
true. Since 𝜏 ∈ Tad

− there are no superfluous legs in 𝜏, so that #I = #𝐿 (𝜏) (#𝐿 (𝜏) − 1). It follows that
the denominator in (4.38) is simply given by #𝐿 (𝜏) − 1, which is equal to {𝑒 ∈ 𝐿L (𝜏) : 𝑒↓ = 𝑢} for any
𝑢 ∈ L(𝜏), and one has∑︁

l∈I
degI (l) =

∑︁
𝑢∈𝐿 (𝜏)

∑︁
𝑒∈𝐿L (𝜏):𝑒↓=𝑢↓

|||𝔱(𝑢) |||𝔰
#𝐿 (𝜏) − 1

=
∑︁

𝑒∈𝐿 (𝜏)
|||𝔱(𝑒) |||.

More generally, assume that we are given a system𝔓 of non-empty, disjoint subsets of L such that
each I ∈ 𝔓 is invariant under conjugation (we allow𝔓 = #̸, but we impose #̸ ∉ 𝔓). Then we define a
degree assignment deg𝔓 by setting

deg𝔓 :=
∑︁
I∈𝔓

degI, (4.40)
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with the convention that 𝛼+◦ := 𝛼 for any 𝛼 ∈ R−∪{◦}. We writeP for the set of all systems𝔓 as above.
We define for any𝔓 ∈ P, any smooth tuple 𝜙 ∈ 𝔑, and any large-scale kernel assignment 𝑅 ∈ K+

0 a
character ℎ𝜙

𝔓,𝑅
onTpl

− by setting

ℎ
𝜙

𝔓,𝑅
𝜏 := −

∑︁
I∈𝔓

Ῡ
𝜙

𝑅
𝑃I𝜏 (4.41)

for any tree 𝜏 ∈ Tpl
− , and extending this linearly and multiplicatively. Here, we introduce the linear (but

not multiplicative!) projections 𝑃I : Tpl
− → Tpl

− onto the subspace ofTpl
− spanned by all trees 𝜏 ∈ Tad

−

with the property that 𝔱(𝐿L (𝜏)) = I. In analogy to above we write ℎ𝜙𝔓 := ℎ𝜙
𝔓,�̂�−𝐾 .

Remark 4.45 We could make 𝑃I multiplicative without changing (4.41). However, we will later on
introduce the notation 𝑃𝔓, where 𝔓 is a system of subsets of L, in a similar way, projecting onto a
subspace spanned by products of trees, see (4.52). At this point we really want to consider the linear and
not multiplicative projection, so we choose the definition introduced above to be consistent.

The goal of the present section is to obtain bounds on the quantity

(ℎ𝜙
Y

𝔓
⊗ Ῡ𝜙

Y )Δ−𝜏

as Y → 0 for any 𝜏 ∈ Tad
− , where 𝜙Y is defined as in (4.37) for the degree assignment deg𝔓.

Example 4.46 Let 𝔓 := {{ , }, { , }} and consider the following example from the generalised KPZ
equation

(ℎ𝜙
Y

𝔓
⊗ Ῡ𝜙

Y )Δ− = Ῡ𝜙
Y − Ῡ𝜙

Y

Ῡ𝜙
Y

−
∑︁

e∈{ , , , }
Ῡ𝜙

Y

Ῡ𝜙
Y

𝐷e .

Here 𝐷 , etc., is a shortcut for putting a derivative decoration (0, 1) on the respective edge. We also
colour a node 𝑢 blue if it contains an 𝑋-decoration, i.e. 𝔫(𝑢) = (0, 1). One has #{ , } = 2 so that
(4.38) gives deg𝔓( ) = − |𝔰 |

2 − ^. It follows that

Ῡ𝜙
Y ≃ Y−1−2^ , Ῡ𝜙

Y ≃ Y−2^

as Y → 0. Note that the counter-terms cancel out precisely the subdivergence in the big tree. The fact
that one has { , } ∈ 𝔓 changes nothing, since there is no subtree of negative homogeneity in the image
of 𝑃{ , }.

There are some technical subtleties in the proof that require us to put certain assumptions on the test
tuple 𝜙 in order for good bounds to hold, and we summarise these assumptions in the following definition.

Definition 4.47 Given a system𝔓 ∈ P, and 𝛿 > 0, we define the set 𝔑(𝔓, 𝛿) ⊆ 𝔑 as the set of 𝜙 ∈ 𝔑

such that both of the following properties hold for any l ∈ L.
• If l ∉

⊔
𝔓, then one has that 𝜙l = 0 in the 𝛿-ball of the origin.

• If deg𝔓l ≤ − |𝔰 |
2 , then one has that

∫
𝜙l (𝑥)𝑑𝑥 = 0.

We write 𝔑(𝔓) for the union of 𝔑(𝔓, 𝛿) over 𝛿 > 0.



Forum of Mathematics, Pi 61

Let us briefly comment why these assumptions will play a role later on. The first assumption ensures
that under rescaling 𝜙 as in (4.37) all subtrees 𝜎 of a tree 𝜏 ∈ Tad

− that trigger a divergence have the
property that 𝔱(𝐿L (𝜎)) ∈ 𝔓. Without this assumption, one would have to consider additionally any
subtree 𝜎 with the property that 𝔱(𝐿L (𝜎)) can be written as 𝔱(𝐿L (𝜎)) =

⊔
𝑖≤𝑚 I𝑖 for some sets I𝑖 ∈ 𝔓.

In particular, this assumption means that we never have to deal with nested divergencies. The second
assumption above simply ensures that the test functions 𝜙Y converge to 0 in the distributional sense
under the rescaling (4.37). One always has 2 deg𝔍 l > −|𝔰 | − 1 for any l ∈ L, which follows from the
assumption that 8Ξ8𝔰 ≥ − |𝔰 |

2 for any Ξ ∈ 𝔏−.
In order to state the next result, we need a final piece of notation. Let 𝜏 ∈ Tad

− be a tree. Given
𝑀 ⊆ L(𝜏) we denote by L(𝜏, 𝑀) the set of leg types 𝔱(𝑒) ∈ L with 𝑒 ∈ 𝐿L (𝜏) such that both 𝑒 and 𝑒 are
incident to 𝑀 . (Note in particular that L(𝜏, 𝑀) is closed under conjugation.) We also write Λ(𝜏) for the
set of all systemsM of disjoint, non-empty subsets ofL(𝜏). (Note that one has #̸ ∈ Λ(𝜏), but for any
M ∈ Λ(𝜏) one has #̸ ∉ M.)

Definition 4.48 We write P(𝜏) for the set of all𝔓 ∈ P of the form

𝔓 = {L(𝜏, 𝑀) : 𝑀 ∈ M} (4.42)

for someM ∈ Λ(𝜏).

With these notations, we will show the following statement.

Proposition 4.49 Let 𝜏 ∈ Tad
− be an admissible tree, let 𝔓 ∈ P(𝜏), and let 𝜙 ∈ 𝔑(𝔓) be a tuple of

smooth functions. Define the rescaled family 𝜙Y as in (4.37) for the degree assignment deg𝔓 defined in
(4.40). Let finally 𝑅, 𝑅′ ∈ {0, �̂� − 𝐾} be large scale kernel assignments. Then, there exists 𝛽 > 0 such
that one has the bound �� (ℎ𝜙

𝔓,𝑅
⊗ Ῡ

𝜙Y

𝑅′
)
Δ−𝖎−𝜏

�� ≲ Y𝛽 (4.43)

uniformly over Y > 0.

We will show Proposition 4.49 by applying the results of [Hai18], which ultimately comes down to
comparing the character ℎ with the BPHZ character for a suitable space of Feynman diagrams. Since this
proof is largely technical, we postpone it to Appendix B.

4.5. The ideal J is a Hopf ideal

We will construct an idealJ inTpl
− that is related to the idealJgiven in Definition 3.3 via the projection

𝜋 (Lemma 4.58). We will work below with the space Vec𝔑 of formal linear combinations of elements
of 𝔑. The notation (4.26) can be linearly extended to an operator ·̂ : Vec𝔑 → Ψ, where Ψ is as in
Definition 4.16.

Remark 4.50 For a fixed properly typed set 𝐴 ⊆ L the set {𝜙𝐴 : 𝜙 ∈ Vec𝔑} is dense in C̄∞
𝑐 (D̄𝐴/g)

(say with respect to the topology of C𝑘 , for any 𝑘 > 0). Note however that the definition of 𝜙 puts non
trivial constraints between 𝜙𝐴 and 𝜙𝐵 whenever 𝐴 ⊆ 𝐵.

Definition 4.51 Given a linear combination 𝜙 ∈ Vec𝔑, say 𝜙 =
∑
𝑖≤𝑟 𝑐𝑖𝜙𝑖 with 𝑐𝑖 ∈ R and 𝜙𝑖 ∈ 𝔑, we

define the character Ῡ𝜙 on T̂ex,pl
− by setting

Ῡ𝜙𝜏 :=
∑︁
𝑖≤𝑟

𝑐𝑖Ῡ
𝜙𝑖𝜏,

for any tree 𝜏 ∈ T̂ex,pl
− , and extending this linearly and multiplicatively.
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We now fix a partitionP of the set of leg types L with the property that for any fixed 𝑃 ∈ P the noise
type 𝔱(𝑃) := i1 (l) ∈ 𝔏− does not depend on the representative l ∈ 𝑃. We then introduce the following
terminology.

Definition 4.52 We call a tree 𝜏 ∈ Tpl
− or 𝜏 ∈ T̂ex,pl

− good if there exists an injection Z : L(𝜏) → P
with the property that for any leg 𝑒 ∈ 𝐿L (𝜏) with 𝑒↓ ∈ L(𝜏) one has 𝔱(𝑒) ∈ Z (𝑒↓). We writeTpl

− [P]
and T̂ex,pl

− [P] for the subalgebras generated by good trees.

We can (and will) assume without loss of generality that L is large enough andP is such that there
exists an admissible embedding ] : T− → Tpl

− mapping any tree 𝜏 ∈ T− onto a good tree ]𝜏 ∈ Tpl
− . We

also note that these subalgebras are stable under the coproduct, namely one has

Δ− : Tpl
− [P] → Tpl

− [P] ⊗ Tpl
− [P]

and
Δ− : T̂ex,pl

− [P] → Tpl
− [P] ⊗ T̂ex,pl

− [P] .

Moreover, the following simple lemma will be helpful, which contains the motivation for the preceding
definition.

Lemma 4.53 Assume that 𝜏, 𝜏 ∈ Tad
− are good trees such that 𝔱(𝐿L (𝜏)) = 𝔱(𝐿L (𝜏)). Then P(𝜏) = P(𝜏),

where P(𝜏) is as in Definition 4.48.

Proof. Let Z : L(𝜏) → P and Z̄ : L(𝜏) → P be the injections used in the definition of good trees.
Observe that the condition of the lemma implies that Z and Z̄ have the same range, so that [ := Z̄−1 ◦ Z
defines a bijection fromL(𝜏) toL(𝜏). This induces a bijection from Λ(𝜏) to Λ(𝜏), and the result follows
immediately from Definition 4.48.

With this notation, we define the following ideals.

Definition 4.54 We defineJ⊆ Tpl
− as the ideal generated by all 𝜎 ∈ Tpl

− [P] with the property that

Ῡ𝜙Q0𝜎 = 0 , for any 𝜙 ∈ Vec𝔑, (4.44)

with Q0 as in Lemma 4.40. We also letJad ⊆ Tpl
− denote the ideal generated by all 𝜎 ∈ Tpl

− [P] ∩Tad
−

such that (4.44) is satisfied.
Finally, we define Ĵ⊆ T̂ex,pl

− as the ideal generated by all 𝜎 ∈ T̂ex,pl
− [P] with the property that

Ῡ𝜙𝜎 = 0 for any 𝜙 ∈ Vec𝔑. (4.45)

Note that these ideals depend onP , but we think ofP as fixed from now on and hide this dependence
in the notation. One has Q0J= Q0Jad, and since P♠ = P♠Q0 onTpl

− , one has the identity

J
sym
♠ := P♠J= P♠Jad (4.46)

as ideals onTsym
♠ .

Remark 4.55 We useQ0𝜎 instead of just 𝜎 in (4.44) to ensure that (4.46) holds. If Ῡ𝜙 (𝜏+𝜏) = 0 for two
trees 𝜏, 𝜏 and all 𝜙 ∈ Vec𝔑, we easily infer that 𝜏 and 𝜏 contain the same leg types (unless the evaluation
vanishes on both trees individually), but there is no reason for 𝜏 and 𝜏 to contain the same “essential leg
types” (i.e. the set of types of essential legs), so that there is no obvious relation between Q0𝜏 and Q0𝜏.
We cannot use Q0 in (4.45), since this projection is not well-defined on T̂ex,pl

− . In particular is does not
hold thatJ= p−Ĵ. However, if 𝜏 =

∑
𝑖 𝑐𝑖𝜏𝑖 ∈ Ĵ is a linear combination of trees with |𝜏𝑖 |− < 0, and we

know a priori that all the 𝜏𝑖 contain the same essential leg types, then we can conclude that p−𝜏 ∈ J.
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We use 𝜙 ∈ Vec𝔑 in the preceding definition rather than 𝜙 ∈ 𝔑 so that Lemma A.2 can be applied,
which ensures that the idealsJand Ĵare generated by linear combinations of trees, see Lemma 4.57.
Note that if 𝜎 ∈ Tpl

− or 𝜎 ∈ T̂ex,pl
− is a linear combination of trees, then (4.44) for all 𝜙 ∈ 𝔑 is equivalent

to (4.44) for all 𝜙 ∈ Vec𝔑. More generally, one has the following.

Lemma 4.56 Let 𝜎 ∈ T̂ex,pl
− (respectively 𝜎 ∈ Tpl

− ) be of the form

𝜎 =
∑︁
𝑖≤𝑟

𝑐𝑖

∏
𝑗≤𝑚

𝜏𝑖, 𝑗 (4.47)

for some collection of trees 𝜏𝑖, 𝑗 ∈ T̂ex,pl
− (respectively 𝜏𝑖, 𝑗 ∈ Tpl

− ) and some 𝑚, 𝑟 ≥ 1. Assume that the
multisets 𝔪𝑖, 𝑗 := [𝐿L (𝜏𝑖, 𝑗 ), 𝔱] of leg types have the following two properties.

1. For fixed 𝑗 ≤ 𝑚 the trees 𝜏𝑖, 𝑗 contain the same leg types for any 𝑖 ≤ 𝑟 , i.e. one has that 𝔪 𝑗 := 𝔪𝑖, 𝑗

is independent of 𝑖 ≤ 𝑟 .
2. Any leg type appears at most once, i.e. one has that

∑
𝑗≤𝑚𝔪 𝑗 ≤ 1 (in other words, the multisets 𝔪 𝑗

are really sets and one has 𝔪 𝑗 ∩𝔪𝑘 = #̸ for any 𝑗 ≠ 𝑘).
If (4.45) (resp. (4.44)) holds for 𝜎 for any 𝜙 ∈ 𝔑, then one has 𝜎 ∈ Ĵ (respectively 𝜎 ∈ J).

Proof. We only show the statement forJ, the one for Ĵfollows in the same way. Assume without loss of
generality that Q0𝜎 = 𝜎. Let 𝑙0 ≥ 1 and let 𝜙 =

∑
𝑙≤𝑙0 𝛾𝑙𝜙

𝑙 for some 𝛾𝑙 ∈ R and 𝜙𝑙 ∈ 𝔑 for any 𝑙 ≤ 𝑙0.
Given a finite sequence 𝛼 : [𝑚] → [𝑙0], we define the tuple 𝜙𝛼 ∈ 𝔑 by setting

𝜙𝛼l :=

{
𝜙
𝛼𝑗
l if l ∈ 𝔪 𝑗 , 𝑗 ≤ 𝑚

0 otherwise

for any l ∈ L. Note that this is well-defined, since it follows from point 2. of our assumptions that the
relation l ∈ 𝔪 𝑗 holds for at most one 𝑗 ≤ 𝑚. It follows from a simple application of the binomial
expansion and the representation (4.47) that one has the identity

Ῡ𝜙𝜎 =
∑︁
𝑖≤𝑟

𝑐𝑖

∏
𝑗≤𝑚

∑︁
𝑙≤𝑙0

𝛾𝑙Ῡ
𝜙𝑙𝜏𝑖, 𝑗 = ∑︁

𝑖≤𝑟
𝑐𝑖

∑︁
𝛼:[𝑚]→[𝑙0 ]

∏
𝑗≤𝑚

𝛾𝛼𝑗 Ῡ
𝜙
𝛼𝑗

𝜏𝑖, 𝑗 =
∑︁

𝛼:[𝑚]→[𝑙0 ]
Ῡ𝜙

𝛼

𝜎.

In the last equality we used that one has Ῡ𝜙
𝛼𝑗
𝜏𝑖, 𝑗 = Ῡ𝜙

𝛼

𝜏𝑖, 𝑗 for any 𝑖 ≤ 𝑟 and 𝑗 ≤ 𝑚.

The next lemma is crucial since it shows that the ideals J, Ĵ and Jad are generated by linear
combinations of trees.

Lemma 4.57 The ideals J (Ĵ, Jad) are generated by all 𝜎 ∈ Tpl
− [P] (𝜎 ∈ T̂ex,pl

− [P], 𝜎 ∈
Tpl
− [P] ∩Tad

− ), such that 𝜎 can be written as a linear combination of good trees and such that (4.44)
holds for any 𝜙 ∈ 𝔑.

Proof. This follows from Lemma A.2 applied to the algebrasTpl
− [P] (T̂ex,pl

− [P],Tpl
− [P] ∩Tad

− ).
Note that e.g. the set {Ῡ𝜙Q0 : 𝜙 ∈ Vec𝔑} is indeed a linear space of linear functionals when restricted
to Vec

(
T−T−T− ∩Tpl

− [P]
)
. This was the motivation for using Vec𝔑 in the definition of these ideals.

We now have the following lemma.

Lemma 4.58 Let Jbe the ideal defined in Definition 3.3. Then one has the identity

J= 𝜋J
sym
♠ = 𝜋Jad (4.48)
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Proof. Since 𝜋 is an algebra homomorphism and both ideals are generated by linear combinations of trees
(forJsym

♠ this follows from Lemma 4.58 and (4.46), for J this follows from Definition 3.3), it suffices to
show that for any linear combination of trees 𝜎 ∈ T

sym
♠ one has 𝜎 ∈ J

sym
♠ if and only if 𝜋𝜎 ∈ J.

Let first 𝜎 ∈ Tpl
− [P] ∩Tad

− be as in Lemma 4.57 a linear combination of good trees 𝜎 =
∑
𝑖∈𝐼 𝑐𝑖𝜎𝑖 ∈

Jad such that (4.44) holds. We assume without loss of generality that Q0𝜎 = 𝜎.
Wefirst claim that is suffices to consider𝜎 such that the set of leg-types 𝐿 := [𝐿L (𝜏𝑖), 𝔱] does not depend

on 𝑖 ∈ 𝐼. Indeed, assume that the claim holds for all 𝜎 with this property and let 𝜎 =
∑
𝑖∈𝐼 𝑐𝑖𝜎𝑖 ∈ Jad be

as above a linear combination of trees, but assume that [𝐿L (𝜏𝑖), 𝔱] is not independent of 𝑖 ∈ 𝐼. We claim
that there exists a proper non-empty subset 𝐽 ⊆ 𝐼 such that

∑
𝑗∈𝐽 𝑐 𝑗𝜎𝑗 ∈ Jad, from which the result

follows by induction. For this let l◦ ∈ L let 𝐽 := {𝑖 ∈ 𝐼 : l◦ ∈ 𝐿L (𝜎𝑖)}, and assume that 𝐼 ≠ 𝐽 ≠ #̸.
Consider for any family 𝜙 ∈ 𝔑 the family 𝜙_, _ > 0, defined by setting 𝜙_l◦ := _𝜙l◦ , 𝜙_l̄◦ := _𝜙l̄◦ and
𝜙_l := 𝜙l for any l ∈ L \ {l◦, l̄◦}. It follows that

Ῡ𝜙
_

𝜎𝑖 = Ῡ𝜙𝜎𝑖 , Ῡ𝜙
_

𝜎𝑗 → 0

as _ → 0, for any 𝑖 ∈ 𝐼 \ 𝐽 and 𝑗 ∈ 𝐽, which implies that ∑ 𝑗∈𝐽 𝑐 𝑗𝜎𝑗 ∈ Jad.
Hence, we also have that [𝐿 (𝜏𝑖), 𝔱] is independent if 𝑖 ∈ 𝐼. Let now Z𝑖 : L(𝜏𝑖) → P be the injection

as Definition 4.52, denote byQ its range (which is independent of 𝑖), and write as above 𝔱(𝑃) ∈ 𝔏− for
the “type” of 𝑃 ∈ P . Let 𝐻 ⊆ 𝐺L be the subgroup of those 𝑔 ∈ 𝐺L with the property that 𝑔(l) = l for
any l ∉ 𝐿. For l ∈ L let 𝑃(l) ∈ P be such that l ∈ 𝑃(l). One hasm = [Q, 𝔱], so that for any 𝜙 ∈ 𝔑

we can define a function 𝜓𝜙 ∈ C̄∞
𝑐 (D̄m/g) by

𝜓𝜙 (𝑥Q) :=
∑︁
𝑔∈𝐻

∏
l,l̄∈𝐿

𝜙𝑔 (l) (𝑥𝑃 (l) − 𝑥𝑃 (l̄) ). (4.49)

Recall that in the definition of multisets of the form [Q, 𝔱] we “forget” the domainQ, so that one has
indeed [Q, 𝔱] = [𝐿 (𝜏𝑖), 𝔱] for any 𝑖 ∈ 𝐼. Furthermore, 𝜓𝜙 is invariant under those perturbations ofQ
which leave the noise type 𝔱(𝑃) invariant for any 𝑃 ∈ Q. Hence, 𝜓𝜙 can indeed be viewed as having the
domain D̄m. Finally, in the product on the right-hand side of (4.49) we have one (and only one) factor
for each pair leg l and its partner l̄. Since by definition 𝑔 commutes with conjugation and 𝜙l = 𝜙l̄ (−·),
there is no ambiguity in this notation.
We claim that the linear space 𝑌 generated by functions of the form 𝜓𝜙 for some 𝜙 ∈ 𝔑 is dense in the

space 𝑋 of functions 𝜓 ∈ C̄∞
𝑐 (D̄m/g) which are supported in the set of 𝑥d(m) with |𝑥𝑝 − 𝑥𝑞 | ≤ �̄� for

any 𝑝, 𝑞 ∈ d(m) with respect to uniform convergence. Then 𝑌 is the linear space generated by functions
𝜓 ∈ 𝑋 such that there exist functions 𝜓Ξ,Ξ̃ ∈ C∞

𝑐 (D̄/g) with

𝜓(𝑥m) =
∏

(Ξ,𝑘) , (Ξ̃,𝑙) ∈d(m) , (Ξ,𝑘)≠(Ξ̃,𝑙)

𝜓Ξ,Ξ̃ (𝑥 (Ξ,𝑘) − 𝑥 (Ξ̃,𝑙) ).

The claim now follows from Arzelá and Ascoli’s theorem.
For any fixed compact 𝐾 ⊆ D̄m and any 𝜏 ∈ T− the evaluation 𝜓 ↦→ Υ̃𝜓𝜏 is continuous on the

subspace of those 𝜓 ∈ C̄∞
𝑐 (D̄m) with supp𝜓 ⊆ 𝐾 with respect to uniform convergence. This follows

from the second part Assumption 2, which implies a bound on the small scales, and Proposition 4.21 and
[Hai18, Sec. 4], which implies a bound on the large scales. It now suffices to show Υ̃𝜓

𝜙

𝜋𝜎 = 0 for any
𝜙 ∈ 𝔑. This however follows from

Υ̃𝜓
𝜙

𝜋𝜎 = Ῡ𝜙
∑︁
𝑔∈𝐻

S𝑔𝜎 = 0,

so that 𝜋𝜎 ∈ J.
The converse direction follows in almost the same way. Let 𝜎 =

∑
𝑖∈𝐼 𝑐𝑖𝜎𝑖 ∈ Jbe a linear combination

of trees and let ] : T− → Tpl
− be an admissible embedding taking values in the set of good trees. Assume



Forum of Mathematics, Pi 65

without loss of generality that the set of leg types 𝐿 := 𝐿L (]𝜎𝑖) does not depend on 𝑖, and let 𝐻 ⊆ 𝐺L be
as above. It then suffices to show that

Ῡ𝜙
∑︁
𝑔∈𝐻

S𝑔]𝜎 = 0

for any 𝜙 ∈ 𝔑. Reversing the above arguments, we see that

Ῡ𝜙
∑︁
𝑔∈𝐻

S𝑔]𝜎 = Ῡ𝜓
𝜙

𝜎 = 0,

which concludes the proof.

We want to use Proposition 4.49 from the previous section. For this we need the following technical
lemma, which shows that the idealsJand Ĵcan alternatively be defined by considering only 𝜙 ∈ 𝔑(𝔓)
for some𝔓 ∈ P, where 𝔑(𝔓) is as in Definition 4.47.

Lemma 4.59 Let 𝜏 ∈ Tpl
− [P] (𝜏 ∈ Tpl

− [P] ∩Tad
− , 𝜏 ∈ T̂ex,pl

− [P]), assume that 𝜏 can be written as
a linear combination of trees 𝜏 =

∑𝑟
𝑖=1 𝑐𝑖𝜏𝑖 with 𝑟 ≥ 1, 𝑐𝑖 ∈ R and trees 𝜏𝑖 such that I := [𝐿L (𝜏𝑖), 𝔱] is

independent of 𝑖 ≤ 𝑟 . Assume that there exists some system 𝔓 ∈ P such that Ῡ𝜙Q0𝜏 = 0 (resp. Ῡ𝜙𝜏 = 0
if 𝜏 ∈ T̂ex,pl

− [P]) for any 𝜙 ∈ 𝔑(𝔓). Then one has 𝜏 ∈ J (𝜏 ∈ Jad, 𝜏 ∈ Ĵ).

Proof. We only show the statement aboutJ.
By Lemma 4.56, we need to show that (4.44) holds for any 𝜙 ∈ 𝔑. For this we recall the definition of

Ῡ𝜙 (4.26), (4.10). It suffices to consider the case that the 𝜏𝑖’s contain only essential legs, and we naturally
identify the sets of legs 𝐿L (𝜏𝑖) with I for any 𝑖 ∈ 𝐼. This identification induces a natural identification of
the sets of noise type edges 𝐿 (𝜏𝑖) with a subsetQ ⊆ P as in the proof of Lemma 4.58. Then, for any
𝑃,𝑄 ∈ Q with 𝑃 ≠ 𝑄 there exists a unique leg type l(𝑃,𝑄) ∈ I such that l(𝑃,𝑄) ∈ 𝑃 and l̄(𝑃,𝑄) ∈ 𝑄.
Conversely, for any leg type l ∈ I there exists a unique 𝑃(l) ∈ Q such that l ∈ 𝑃(l).
For 𝜑 ∈ C̄∞

𝑐 (D̄I/g) let Π𝜑 ∈ C̄∞
𝑐 (D̄Q/g) be defined by setting

Π𝜑(𝑥Q) :=
∫

𝑑𝑥I𝜑(𝑥Q)
∏
l∈I

𝛿(𝑥l − 𝑥𝑃 (l) ).

It follows that
0 = Ῡ𝜙𝜏 = ⟨K�̂�𝜏, 𝐷

𝔢 |I𝜙I⟩ = ⟨K�̂�𝜋𝜏,Π𝐷
𝔢 |I𝜙I⟩.

for any 𝜙 ∈ 𝔑(𝔓). We need to show that this identity holds for any 𝜙 ∈ 𝔑.
Assume first that #I > 2. We first claim that one has ⟨K�̂�𝜋𝜏,Π𝜙I⟩ = 0 for any 𝜙 ∈ 𝔑(𝔓), that is,

one can get rid of the derivative decoration. Indeed, let 𝑅 > 0 be such that supp 𝜙l is included in the
centred ball of radius 𝑅 for any l ∈ I. Note that sinceK�̂�𝜋𝜏 is homogeneous we may assume that 𝑅 is
as small as we want, so that in particular, we may assume that 2𝑅 ≤ �̄�. Fixing l∗ ∈ I, we see that for any
𝜙 ∈ C∞

𝑐 (D̄/g) such that 𝜙 vanishes inside the ball of radius 2𝑅 one has Π𝐷𝔢 |I𝜙I = Π(𝐷𝔢 |I𝜙I + 𝜙∗I),
where 𝜙∗l∗ := 𝜙 and 𝜙∗l := 𝜙l for l ≠ l∗. Since any smooth function 𝜓 which is compactly supported
in the centred ball of radius 𝑅 agrees with a function of the form 𝐷𝔢 |I𝜙l + 𝜙 (for 𝜙 as above) inside
the ball of radius 2𝑅, the claim follows. With precisely the same argument we can remove the second
constrained coming from Definition 4.47, so that the equality ⟨K�̂�𝜋𝜏,Π𝜙I⟩ = 0 holds for any 𝜙 ∈ 𝔑

such that 𝜙l vanishes in a neighbourhood of the origin. At this point is remains to note thatK�̂�𝜋𝜏 is a
locally integrable function, so the condition that the 𝜙𝔩’s vanish around the origin can be removed by a
limit argument in 𝐿∞ (D̄).
The remaining case I = {l0, l̄0} ∈ 𝔓, so that deg𝔓l0 ≤ − |𝔰 |

2 , needs a slightly different argument.
Using a simple rescaling argument it is clear that it suffices to consider the case that 𝛼 := 8𝜏𝑖8𝔰 < 0 is
independent of 𝑖 ≤ 𝑟 . (Note that in case 𝛼 = 0 one has Ῡ𝜙𝜏 = 0 byAssumption 5, so that there is nothing to
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show.) Our integration kernels are homogeneous, so that we can write ⟨K�̂�𝜏, 𝐷
𝔢 |I𝜙I⟩ =

∫
�̃� (𝑥)𝜙𝔩0 (𝑥)𝑑𝑥

for some function �̃� ∈ C∞ (D̄ \ {0}) satisfying �̃� (_𝑥) = _𝛼𝐾 (𝑥) for all _ > 0, 𝑥 ∈ D̄ \ {0}. (Here we
removed the derivative decoration by an integration by parts.) Since 𝛼 > −|𝔰 | the function �̃� is locally
integrable and we remove the constraint that 𝜙l0 vanishes around the origin by a limit argument in
𝐿∞ (D̄). We still have the constraint

∫
𝜙l0 = 0 coming from Definition 4.47, which implies that �̃� is a

constant, and since 𝛼 < 0, this actually implies that �̃� = 0 as required.

With these preliminaries we can now show the following proposition, which is the main result of this
section.

Proposition 4.60 One has the identities

Δ−𝖎−Jad ⊆ (Jad ⊗ T̂ex,pl
− ) + (Tpl

− ⊗ Ĵ) (4.50)

Δ−Jad ⊆ (Jad ⊗ Tpl
− ) + (Tpl

− ⊗ J). (4.51)

Proof. Let 𝜏 =
∑𝑟
𝑖=1 𝑐𝑖𝜏𝑖 ∈ Jad be a linear combination of trees with 𝜏𝑖 ∈ Tpl

− [P] ∩Tad
− and 𝑐𝑖 ∈ R

for 𝑖 ≤ 𝑟 . As before we can assume without loss of generality that the trees 𝜏𝑖 are such that the set of leg
types 𝐿 := 𝔱(𝐿L (𝜏𝑖)) is independent of 𝑖 ≤ 𝑟, and thus so is P̄ := P(𝜏𝑖) (recall (4.42) for the definition
of this set). By definition of the coproduct Δ−, it follows that one has the identity

Δ−𝖎−𝜏 = (
∑︁
𝔓∈P̄

𝑃𝔓 ⊗ Id)Δ−𝖎−𝜏. (4.52)

Here 𝑃𝔓 is the linear (but not multiplicative) projection ofTpl
− onto the linear subspaceTpl

− [𝔓] spanned
by all products of trees of the form 𝜏 =

∏
I∈𝔓 𝜏I with 𝜏I ∈ rng 𝑃I (that is 𝔱(𝐿L (𝜏I)) = I). The projection

𝑃𝔓 is uniquely defined if we specify additionally that it diagonalises on the basis (in the sense of linear
spaces)B ⊆ Tpl

− containing 1 and all possible products of trees.
The crucial step is to show that for any fixed𝔓 ∈ P̄and any fixed 𝜙𝐿 ∈ 𝔑(𝔓) and 𝜙𝑅 ∈ 𝔑(𝔓) one has

𝔄𝜙𝐿 ,𝜙𝑅𝜏 := (Ῡ𝜙𝐿 ⊗ Ῡ𝜙
𝑅 ) (𝑃𝔓 ⊗ Id)Δ−𝖎−𝜏 = 0. (4.53)

Actually, since no leg type appears in both the left and the right factor of this tensor product simultaneously,
it is enough to show this claim for 𝜙𝐿 = 𝜙𝑅 ∈ 𝔑(𝔓).
More precisely: assume we have shown this special case. Then we construct a tuple 𝜙 ∈ 𝔑(𝔓) by

setting 𝜙l := 𝜙𝐿l if there exists 𝑃 ∈ 𝔓 such that one has l ∈ 𝑃, and 𝜙l := 𝜙𝑅l otherwise. It follows that
𝜙 ∈ 𝔑(𝔓) and one has the identity

𝔄𝜙𝜏 = 𝔄𝜙𝐿 ,𝜙𝑅𝜏,

where 𝔄𝜙 := 𝔄𝜙,𝜙 , so that (4.53) follows indeed from the special case 𝜙𝐿 = 𝜙𝑅. In order to continue we
fix a family 𝜙 ∈ 𝔑(𝔓). For Y > 0 we define a rescaled family 𝜙Y ∈ 𝔑(𝔓) as in (4.37) for the degree
assignment deg𝔓 defined as in (4.40). With this notation, we define a function 𝑓 : (0, 1] → R by setting

𝑓 (Y) := 𝔄𝜙Y𝜏

for any Y ∈ (0, 1]. The proof of (4.53) is finished once we show that 𝑓 (1) = 0.

Lemma 4.61 One has that

| 𝑓 (Y) | ≥ | 𝑓 (1) | (4.54)

for Y > 0 small enough.
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Proof. We first note that one can write

𝑓 (Y) = 𝔄𝜙Y ,𝜙𝜏.

This follows from the fact that there is a projection 𝑃𝔓 hitting the left component of (4.50), which ensures
that no leg type l ∈ ⋃

𝔓 appears in the right component, together with the definition of deg𝔓 in (4.40).
On the other hand, by a simple change of variables one can exploit the homogeneity of the kernels �̂�,
which implies that

Ῡ𝜙
Y

𝜎 = Y8𝜎8𝔰 Ῡ𝜙𝜎

for any fixed tree 𝜎 ∈ rng 𝑃I for any I ∈ 𝔓. This is a consequence of the definition of 𝑃I below
(4.41) and deg𝔓. As a consequence 𝑓 (Y) can be written as a finite sum of terms ∑ 𝑗≤𝐽 𝑓 𝑗 (Y) such that
𝑓 𝑗 (Y) = Y𝛾 𝑗 𝑓 𝑗 (1) for some 𝛾 𝑗 ≤ 0 and Y > 0, from which the statement of the lemma easily follows.

Wenowproceed to show (4.52) by induction over #𝔓. For #𝔓 = 0 one has the identity (𝑃𝔓⊗Id)Δ−𝖎−𝜏 =
1 ⊗ 𝖎−𝜏 so that (4.53) follows from the fact that 𝜏 ∈ Jad. Let now #𝔓 ≥ 1 and assume that (4.53) holds
for any𝔔 with𝔔 ⊊ 𝔓. Then, using the induction hypothesis, we can rewrite 𝑓 (Y) as

𝑓 (Y) =
∑︁
𝔔⊆𝔓

(−1)#𝔔 (Ῡ𝜙Y ⊗ Ῡ𝜙
Y ) (𝑃𝔔 ⊗ Id)Δ−𝖎−𝜏 = (ℎ𝜙

Y

𝔓
⊗ Ῡ𝜙

Y )Δ−𝖎−𝜏, (4.55)

where ℎ𝜙
Y

𝔓
denotes the character onTpl

− defined in (4.41), compare also (B.15). Since 𝜙 ∈ 𝔑(𝔓) by
assumption, we conclude from Proposition 4.49 that there exists 𝛽 > 0 such that one has the estimate

| 𝑓 (Y) | ≲ Y𝛽

uniformly over Y ∈ (0, 1). Comparing this with (4.54) it follows at once that one has 𝑓 (1) = 0, and this
concludes the proof of (4.53).
Since the left factor of (4.53) is an element ofTad

− one also has

(Ῡ𝜙𝐿Q0 ⊗ Ῡ𝜙
𝑅 ) (𝑃𝔓 ⊗ Id)Δ−𝖎−𝜏 = 0. (4.56)

In order to see (4.50), we draw on the following simple lemma.

Lemma 4.62 Let 𝑋 and 𝑌 be linear spaces and let ( 𝑓𝑖)𝑖∈𝐼 and (𝑔 𝑗 ) 𝑗∈𝐽 be families of linear functionals
on 𝑋 and 𝑌 respectively, for some index sets 𝐼 and 𝐽. Then one has⋂

𝑖, 𝑗

ker( 𝑓𝑖 ⊗ 𝑔 𝑗 ) =
(⋂
𝑖

ker 𝑓𝑖
)
⊗ 𝑌 + 𝑋 ⊗

(⋂
𝑗

ker 𝑔 𝑗
)

as subspaces of the algebraic tensor product 𝑋 ⊗ 𝑌 .

Proof. Denote the right and left-hand sides by 𝑅 and 𝐿, respectively. Let first 𝑧 ∈ 𝑅. Then by definition
we can write 𝑧 = 𝑧1 + 𝑧2 with ( 𝑓𝑖 ⊗ Id) (𝑧1) = (Id ⊗ 𝑔 𝑗 ) (𝑧2) = 0 for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽. It follows that
( 𝑓𝑖 ⊗ 𝑔 𝑗 ) (𝑧𝑘) = 0 for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑘 = 1, 2, and thus 𝑧 ∈ 𝐿.
Let now 𝑧 =

∑𝐾
𝑘=1 𝑥𝑘 ⊗ 𝑦𝑘 ∈ 𝐿. We proceed inductively in 𝐾 . For 𝐾 = 1 one has 𝑓𝑖 (𝑥1)𝑔 𝑗 (𝑦1) = 0 for

all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽. Thus either 𝑓𝑖 (𝑥1) = 0 for all 𝑖 ∈ 𝐼 or 𝑔 𝑗 (𝑦1) = 0 for all 𝑗 ∈ 𝐽, and hence 𝑥1 ⊗ 𝑦1 ∈ 𝑅.
For 𝐾 > 0 we can assume that 𝑥𝐾 ⊗ 𝑦𝐾 ∉ 𝐿. In particular, there exists 𝑖◦ ∈ 𝐼 such that 𝑓𝑖◦ (𝑥𝐾 ) ≠ 0.
Define 𝑏𝑘 := 𝑓𝑖◦ (𝑥𝑘 )

𝑓𝑖◦ (𝑥𝐾 )
, so that by assumption one has

𝐾∑︁
𝑘=1

𝑏𝑘𝑔 𝑗 (𝑦𝑘) = 0 for all 𝑗 ∈ 𝐽. (4.57)
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We can write

𝑧 =

𝐾−1∑︁
𝑘=1

(𝑥𝑘 − 𝑏𝑘𝑥𝐾 ) ⊗ 𝑦𝑘 + 𝑥𝐾 ⊗
( 𝐾∑︁
𝑘=1

𝑏𝑘𝑦𝑘

)
From (4.57) we deduce 𝑥𝐾 ⊗

( ∑𝐾
𝑘=1 𝑏𝑘𝑦𝑘

)
∈ 𝑅 ⊆ 𝐿, so that

∑𝐾−1
𝑘=1 (𝑥𝑘 − 𝑏𝑘𝑥𝐾 ) ⊗ 𝑦𝑘 ∈ 𝐿. We conclude

using the induction hypothesis.

Applying this lemma to the families of linear functionals onTpl
− and T̂ex,pl

− , given by Ῡ𝜙Q0 and Ῡ𝜙,
respectively, where 𝜙 ranges over 𝔑(𝔓) (and recalling Lemma 4.59), we conclude that (4.50) is a
consequence of (4.56).
In order to see (4.51) we now use the identity

Δ− = (Id ⊗ p−)Δ−𝖎−,

onTpl
− . We still fix𝔓 ∈ P̄. For l ∈ L denote by 𝑃(l) ∈ P the set such that l ∈ 𝑃(l) (recall from above

Definition 4.52 thatP is a partition of the set of leg types). Let L★ denote the set of leg types l ∈ 𝐿 with
the property that l, l̄ ∉

⋃
l′∈⋃𝔓 𝑃(l′). It follows that the right factor of (𝑃𝔓 ⊗ p−)Δ−𝖎−𝜏 takes values

in the algebra generated by trees 𝜎 such that the set of essential leg types of 𝜎 is given by L★. Letting
𝜙 → 𝜙Y , where we rescale 𝜙 as in (4.37) for the degree assignment degL

★

, shows that(
Ῡ𝜙 ⊗ Ῡ𝜙

)
(Q0𝑃𝔓 ⊗ p−)Δ−𝖎−𝜏 = 0 (4.58)

for any 𝜙 ∈ 𝔑.
Finally, letting 𝜙l → 1 for any l ∈ I := L \ (L★ ∪ ⋃

𝔓) we can show that(
Ῡ𝜙 ⊗ Ῡ𝜙

)
(Q0𝑃𝔓 ⊗ Q0p−)Δ−𝖎−𝜏 = 0. (4.59)

Indeed, recall that Q0 = QP0. From Assumption 2 it follows that divergent subtrees 𝜎 never touch noise
type edges 𝑒, that is one has either 𝑒 ∈ 𝐿 (𝜎) or 𝑒↓ ∉ 𝑁 (𝜎). It follows from this that the coproduct never
produces a derivative decoration on noise type edges. In precisely the same way we see that the coproduct
does not produce a derivative decoration on essential legs on the right-hand side. Hence every tree on the
right-hand side of (𝑃𝔓 ⊗ (Id − P0)p−)Δ−𝖎−𝜏 contains at least one non-essential leg 𝑒 such that 𝔢(𝑒) > 0.
Assume now that 𝜙l ≡ 1 in a neighbourhood of the origin for l ∈ I, and define 𝜙Y,𝑁l := 𝜙Yl (𝑁−1·) for
l ∈ I and 𝜙Y,𝑁l := 𝜙Yl for l ∈ L\I. we see that(

Ῡ𝜙
Y,𝑁 ⊗ Ῡ𝜙

Y,𝑁
)
(Q0𝑃𝔓 ⊗ (Id − P0)p−)Δ−𝖎−𝜏 → 0 as 𝑁 → ∞.

In exactly the same way we see that(
Ῡ𝜙

Y,𝑁 ⊗ Ῡ𝜙
Y,𝑁

)
(Q0𝑃𝔓 ⊗ (Id − Q)P0p−)Δ−𝖎−𝜏 → 0.

On the other hand, the quantity (
Ῡ𝜙

Y,𝑁 ⊗ Ῡ𝜙
Y,𝑁

)
(Q0𝑃𝔓 ⊗ 𝑨p−)Δ−𝖎−𝜏

for 𝑨 ∈ {Id,Q0} is independent of 𝑁 ∈ N (for 𝑨 = Id this quantity vanishes by (4.58), for 𝑨 = Q0
independence of 𝑁 follows since the projection Q0 removes non-essential legs on the right factor, but
these are the only one that come with a type which we rescale). This concludes the proof.

Finally, the key result of this section is the following corollary, which finishes the proof of Assumption 7.
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Corollary 4.63 The ideal J is a Hopf ideal in T−.

Proof. By Lemma 4.58 is suffices to show thatJsym
♠ is a Hopf ideal inTsym

♠ . This in turn follows from
(4.51) and the identity (4.46).

4.6. Rigidities between renormalisation constants

In this section we are going to prove Assumption 8. We first build for any smooth shifted noise [ ∈ 𝔐∞
characters �̂�[ ∈ H and 𝑓 [ ∈ G− such that 𝑔[ = 𝑓 [ ◦ �̂�[ . Recall thatH is the annihilator of the ideal J
defined in Definition 3.3. We also recall for this the notation introduced in Section 4.2, which we will use
heavily in this section. As above, we always set deg∞ 𝔱 := 8𝔱8𝔰 − |𝔰 | for any kernel type 𝔱 ∈ 𝔏+, and we
fix from now on the homogeneous large-scale kernel assignment 𝑅𝔱 := �̂�𝔱 − 𝐾𝔱 for any 𝔱 ∈ 𝔏+. Recall
that with this definition one has (𝑅𝔱)𝔱∈𝔏+ ∈ K+

0 .
Furthermore, we fix a smooth, symmetric under g, compactly supported function 𝜑 ∈ C∞

𝑐 (D̄/g)
such that 𝜑 ≡ 1 in a neighbourhood of the origin. Given this function 𝜑 we build an element 𝜙 ∈ 𝔑sym
by setting 𝜙l = 𝜑 for any l ∈ L.
With this notation we introduce for any smooth noise [ ∈ 𝔐∞ a character �̂�[ ∈ G− by setting

�̂�[ := 𝒈
𝜼,𝝓
𝑹 ]sym,

where 𝒈𝜼,𝝓𝑹 is the character onTsym
− defined in (4.28), and we define 𝑓 [ ∈ G− by

𝑔[ = 𝑓 [ ◦ �̂�[ . (4.60)

One has the identity �̂�[ = 𝒈
𝜼,𝝓
𝑹 ] where 𝒈𝜼,𝝓𝑹 is as in (4.27) for any admissible embedding ] : T− → Tpl

− .
We assume that 𝜑 ≡ 1 holds in a large enough neighbourhood of the origin so that Lemma 4.44 applies.

Lemma 4.64 For any smooth shifted noise [ ∈ 𝔐s
∞ one has that �̂�[ ∈ H, where H denotes the

annihilator of J, see Definition 3.3.

Proof. Fix an admissible embedding ] : T− → Tpl
− . We have to show that �̂�[ = 𝒈

𝜼,𝝓
𝑹 ] vanishes on J,

so that is suffices to show that 𝒈𝜼,𝝓𝑹 vanishes on ]J ⊆ Tpl
− . Recalling that J = 𝜋P♠Jad we see that

𝑷sym]J= 𝑷symJad, and since the character 𝒈
𝜼,𝝓
𝑹 is invariant under the symmetry group 𝐺L, it suffices to

show that 𝒈𝜼,𝝓𝑹 vanishes onJad. For this we use the fact that Ãex,pl
− Jad ⊆ Ĵ (c.f. Proposition 4.60), and

the fact that by definition the character Ῡ[,𝜙
𝑅
vanishes on Ĵ.

We are left to show that the map [ ↦→ 𝑓 [ extends continuously to [ ∈ 𝔐s
0. A possible approach to

show such a statement would be to use an inductive argument in the number of edges of a tree 𝜏 ∈ T−,
and to use the fact that we can re-write the definition of 𝑓 [ in (4.60) as

𝑓 [𝜏 = 𝑔[𝜏 − ( 𝑓 [ ⊗ �̂�[) (Δ− − Id ⊗ 1)𝜏. (4.61)

One could then exploit the properties of the coproduct from which it follows that the character 𝑓 [ on the
right-hand side of (4.61) gets only hit by trees that have strictly fewer edges then 𝜏, so that one could
try to match the diverging terms coming from 𝑔[ and �̂�[ on the right-hand side. At this point however,
this approach leads to relatively complicated expressions, and our arguments are greatly simplified by
bounding the linearised expression and using an integration argument.
We first recast the problem into a problem of characters acting onTsym

− .

Lemma 4.65 For [ ∈ 𝔐s
∞ let 𝒇𝜼 be the character of Tsym

− defined by

𝒇
𝜼 ◦ 𝒈

𝜼,𝝓
0 = 𝒈

𝜼,𝝓
𝑹 . (4.62)
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If the map [ ↦→ 𝒇
𝜼 extends continuously to 𝔐s

0, then so does the map [ ↦→ 𝑓 [ .

Proof. For [ ∈ 𝔐s
∞ let 𝑓 [ := ( 𝑓 [)−1, where the inverse is taken in the character group G− of T−. The

operation of taking inverses is a homeomorphism of G−, so that is suffices to show that 𝑓 [ extends
continuously to 𝔐s

0. We claim that one has 𝒇
𝜼
]sym = 𝑓 [ , which concludes the proof, since the map

Gsym
− → G−, 𝒈 ↦→ 𝒈]sym is continuous. To see this claim, we are left to show that 𝒇𝜼 ]sym ◦ 𝑔[ = �̂�[ .
Recall that one has

𝑓 [ ◦ 𝑔[ = �̂�[ and �̂�[ = 𝒈
𝜼,𝝓
𝑹 ]sym , 𝑔[ = 𝒈

𝜼,𝝓
0 ]sym (4.63)

so that we are left to show that

( 𝒇𝜼 ⊗ 𝒈
𝜼,𝝓
0 ) (]sym ⊗ ]sym)Δ− = ( 𝒇𝜼 ⊗ 𝒈

𝜼,𝝓
0 )Δ−]

sym. (4.64)

Note that the previous identity does not follow immediately, since ]sym is not a Hopf algebra
homomorphism. However, using Lemma 4.40 and Lemma 4.41, we can show that

Δ−]
sym ∈ (]sym ⊗ ]sym)Δ− + ker Q0 ⊗ Tsym

− +Tsym
− ⊗ ker Q0. (4.65)

Indeed, note first that ker Q0 = ker Psym
♠ , so that with Lemma 4.62 we are left to show that (Psym

♠ ⊗
Psym
♠ ) (Δ−]sym − (]sym ⊗ ]sym)Δ−) = 0 onTsym

− . By Lemma 4.41 the map Psym
♠ ]sym is a Hopf isomorphism

and by Lemma 4.40 and the definition of a Hopf factor algebra one has (Psym
♠ ⊗ Psym

♠ )Δ− = Δ−Psym
♠ on

Tsym
− , hence (4.65) follows.
We now show (4.64), which concludes the proof. By the definition of admissible embeddings, the

definition of Δ− and Q0 one has (Q0 ⊗ Id)Δ−]sym = Δ−]sym on T−, so that we deduce from (4.65) the
stronger inclusion Δ−]sym ∈ (]sym ⊗ ]sym)Δ− +Tsym

− ⊗ ker Q0. It remains to note that ker Q0 ⊆ ker 𝒈𝜼,𝝓0 ,
which follows since we chose 𝜙 = 1 in a large neighbourhood of the origin, compare Lemma 4.44.

In order to continue, we define for 𝑟 > 0 the family of large-scale integration kernels 𝑅 (𝑟) = (𝑅 (𝑟)
𝔱

)𝔱∈𝔏+
by setting

𝑅
(𝑟)
𝔱

(𝑥) := �̂�𝔱𝜙((𝑟 + 1)−𝔰 ·) − 𝐾𝔱

for any 𝔱 ∈ 𝔏+, where 𝜙 is as in Section 2.2.2. This particular way of removing the cutoff has the advantage
that 𝑅 (𝑟)

𝔱
+ 𝐾𝔱 = �̂�𝔱𝜙((𝑟 + 1)−𝔰 ·) for any 𝑟 > 0, which will be helpful in the proof of Lemma 4.71 below.

We also denote by 𝒈𝜼𝒓 the character ofTsym
− defined by

𝒈
𝜼
𝒓 := 𝒈

𝜼,𝝓

𝑹 (𝒓) .

Note that one has lim𝑟→0 𝑅
(𝑟) = 0 and lim𝑟→∞ 𝑅 (𝑟) = 𝑅, so that it follows from Corollary 4.43 that one

has 𝒈𝜼𝒓 → 𝒈
𝜼
𝑹 as 𝑟 → ∞ for any fixed [ ∈ 𝔐∞. We define the character 𝒇

𝜼
𝒓 analogue to above via the

identity 𝒇
𝜼
𝒓 ◦ 𝒈

𝜼
0 = 𝒈

𝜼
𝒓 . It follows from the continuity of the group operation that one has 𝒇

𝜼
0 = 1★ and

𝒇
𝜼
𝒓 → 𝒇𝜼 as 𝑟 → ∞. Moreover, it follows easily from the fact both 𝑅𝔱 and 𝜙 are smooth that the maps
𝑟 ↦→ 𝒈

𝜼
𝒓 and 𝑟 ↦→ 𝒇

𝜼
𝒓 are smooth functions in 𝑟 > 0 for any fixed smooth noises [ ∈ 𝔐s

∞. We are going to
study a differential equation that 𝒇𝜼𝒓 satisfies for 𝑟 > 0. To this end we introduce the following notation.

Definition 4.66 We call a linear map 𝑘 : Tsym
− → R an infinitesimal character if for any 𝜏1, 𝜏2 ∈ Tsym

−

one has 𝑘 (𝜏1𝜏2) = 1∗ (𝜏1)𝑘 (𝜏2) + 𝑘 (𝜏1)1∗ (𝜏2).

Note that an infinitesimal character 𝑘 vanishes on elements which are not linear combination of trees. In
particular, one has 𝑘 (1) = 0, where 1 is the unity for multiplication. We extend the operation ◦ to act on
any pair of linear maps 𝑔, ℎ : Tsym

− → R by setting 𝑔 ◦ ℎ := (𝑔 ⊗ ℎ)Δ, where Δ denotes the coproduct of
the Hopf algebraTsym

− . With this definition 𝑔 ◦ ℎ is in particular well-defined whenever 𝑔 and ℎ are
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characters or infinitesimal characters, and in case both are infinitesimal characters, then 𝑔 ◦ ℎ − ℎ ◦ 𝑔 is
again an infinitesimal character. The following is well-known.

Lemma 4.67 Let 𝔤 denote the space of infinitesimal characters of Tsym
− and define the bi-linear map

[·, ·] : 𝔤×𝔤 → 𝔤 by [𝑘, 𝑙] := 𝑘 ◦ 𝑙 − 𝑙 ◦ 𝑘. Then 𝔤 is the Lie algebra of the character group Gsym
− of Tsym

− .

Proof. See for instance [BDS18, Thm. 3.9].

It is well known that the Lie algebra 𝔤 is naturally isomorphic to the tangent space 𝑇1★G
sym
− of Gsym

− at
the co-unit 1★ ∈ Gsym

− and for fixed ℎ ∈ Gsym
− both right and left translations 𝑘 ↦→ 𝑘 ◦ ℎ and 𝑘 ↦→ ℎ ◦ 𝑘

induce isomorphisms between 𝔤 and the tangent space of Gsym
− at ℎ. We are going to study the differential

equation

𝜕𝑟 𝒇
𝜼
𝒓 = 𝒌

𝜼
𝒓 ◦ 𝒇

𝜼
𝒓 , for 𝑟 > 0, (4.66)

with initial condition 𝒇
𝜼
0 := 1★. Note that the identity (4.66) defines an infinitesimal character 𝒌𝜼𝒓 ∈ 𝖌sym

− .
The reason for studying equation (4.66) is the following Lemma.

Lemma 4.68 Assume that for any fixed [ ∈ 𝔐s
∞ the map 𝑟 ↦→ 𝒌

𝜼
𝒓 is an element of 𝐿1 (0,∞), and assume

that this map extends to a continuous map [ ↦→ 𝒌
𝜼
· from 𝔐s

0 into 𝐿1 (0,∞). Then the map [ ↦→ 𝒇𝜼

extends continuously to 𝔐s
0.

Proof. Let ∥ · ∥ denote a norm on 𝔤 and let 𝑑 (·, ·) be the induced metric onTsym
− . Then one has for any

[, [̃ ∈ 𝔐∞ the estimate

𝑑 ( 𝒇𝜼 , 𝒇 �̃�) ≤ exp
( ∫ ∞

0
∥𝒌𝜼𝒓 − 𝒌

�̃�
𝒓 ∥𝑑𝑟

)
,

from which the statement follows immediately from the assumption of the lemma.

Fix from now on a rough noise [ ∈ 𝔐s
0 and let [

Y ∈ 𝔐s
∞ be any sequence such that [Y → [ in𝔐s

0 as
Y → 0. We will use the simplified notation 𝒈𝜺𝒓 := 𝒈

𝜼𝜺 ,𝝓
𝒓 , 𝒌𝜺𝒓 := 𝒌

𝜼𝜺

𝒓 , and similar for the other characters.
By Lebesgue’s theorem it is sufficient to show that the sequence 𝒌𝜺𝒓 converges as Y → 0 for any fixed
𝑟 > 0, as well as the estimate

∫ ∞
0 supY>0 ∥𝒌𝜺𝒓 ∥𝑛×𝑛𝑑𝑟 < ∞. This is equivalent to showing that there exist

infinitesimal characters 𝒌𝒓 ∈ 𝖌sym
− such that one has

∀𝑟 > 0 : 𝒌𝜺𝒓 (𝜏) → 𝒌𝒓 (𝜏) as Y → 0 , and
∫ ∞

0
sup
Y>0

|𝒌𝜺𝒓 (𝜏) |𝑑𝑟 < ∞ (4.67)

for all 𝜏 ∈ Tsym
− . In the remainder of this section we show (4.67), which completes the proof. For

simplicity, we are going to write
=

ΥY𝑟 := Ῡ
[Y ,𝜙

𝑅 (𝑟 )

for the character on T̂ex,sym
− from now on. With this notation, we have the following representation of the

infinitesimal character 𝒌𝜺𝒓 .

Lemma 4.69 One has the identity

𝒌𝜺𝒓 (𝜏) = −(𝒌𝜺𝒓 ⊗
=

ΥY𝑟 𝑀
𝒈𝜺𝒓 ) (Δ−𝖎− − Id ⊗ 1)𝜏 − (𝒈𝜺𝒓 ⊗ 𝜕𝑟

=

ΥY𝑟 )Δ−𝖎−𝜏

for any tree 𝜏 ∈ Tsym
− .

Remark 4.70 The significance of this formula is that the right-hand side only depends on the character
𝒌𝜺𝝉 on proper subtrees of 𝜏. This identity is thus well adapted to an inductive argument, see the proofs of
(4.69) and (4.70) below.
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Proof. The key point is that by definition of the character 𝒈𝜺𝒓 inTsym
− and the definition of the twisted

antipode Ãsym
− one has that

=

ΥY𝑟 𝑀
𝒈𝜺𝒓 𝖎sym

− = 0 (4.68)

onTsym
− for any 𝑟 > 0, where we use the usual notation 𝑀𝑔 := (𝑔 ⊗ Id)Δex

− on T̂ex,sym
− for any character

𝑔 ofTsym
− . Differentiating (4.68) with respect to 𝑟 , one obtains

0 = 𝜕𝑟 (
=

ΥY𝑟 𝑀
𝒈𝜺𝒓 𝖎sym

− )
= (𝜕𝑟 𝒈𝜺𝒓 ⊗

=

ΥY𝑟 )Δ−𝖎− + (𝒈𝜺𝒓 ⊗ 𝜕𝑟
=

ΥY𝑟 )Δ−𝖎−

= (𝒌𝜺𝒓 ⊗
=

ΥY𝑟 𝑀
𝒈𝜺𝒓 )Δ−𝖎− + (𝒈𝜺𝒓 ⊗ 𝜕𝑟

=

ΥY𝑟 )Δ−𝖎−

onTsym
− . In the last equality we used that

𝜕𝑟 𝒈
𝜺
𝒓 = 𝜕𝑟 ( 𝒇 𝜺𝒓 ◦ 𝒈𝜺0) = 𝒌𝜺𝒓 ◦ 𝒇 𝜺𝒓 ◦ 𝒈𝜺0 = 𝒌𝜺𝒓 ◦ 𝒈𝜺𝒓 .

As a consequence, we have the following sufficient condition for (4.67) to hold.

Lemma 4.71 Let 𝜏 ∈ Tsym
− be a tree and assume that (4.67) holds on the Hopf subalgebra Tsym

− [𝜏]
generated by all trees 𝜎 ∈ Tsym

− with strictly less edges than 𝜏. Then one has that

(𝒈𝜺𝒓 ⊗ 𝜕𝑟
=

ΥY𝑟 )Δ−𝖎−𝜏 (4.69)

converges to a finite limit Y → 0 for any 𝑟 > 0, and its supremum over Y ∈ (0, 1) is moreover bounded in
𝐿1 (0,∞) as a function in 𝑟. Furthermore, for any properly legged tree 𝜎 ∈ T̂ex,sym

− with |𝜎 |+ < 0 and
with strictly less edges than 𝜏 one has that

=

ΥY𝑟 𝑀
𝒈𝜺𝒓 𝜎 (4.70)

converges to a finite limit as Y → 0, and is moreover bounded uniformly in 𝑟 > 0 and Y ∈ (0, 1). In
particular, (4.67) holds for 𝜏.

Remark 4.72 The relative simplicity of (4.69) and (4.70) over the corresponding expressions one would
get in the strategy outline in (4.61) is the main motivation for choosing this approach.

Proof. Using Lemma 4.69, it is clear that (4.69) and (4.70) imply (4.67). Note that in (4.70) it is sufficient
to consider 𝜎 with strictly less edges than 𝜏, since 𝒌𝜺𝒓 is an infinitesimal character and vanishes on the
unit element 1.
In order to see the converse, we first show (4.70). Recall that the large scale integration kernels 𝐾 (𝑟)

converge to �̂� − 𝐾 inK+
0 as 𝑟 → ∞ and the smooth noises [Y converge to [ in𝔐s

0 as Y → 0. Since 𝜎 is
properly legged by assumption, the convergence of the expression

lim
Y→0

=

ΥY𝑟 𝑀
𝒈𝜺0𝜎

and the uniform boundedness of
=

ΥY𝑟 𝑀
𝒈𝜺0𝜎 in Y > 0 and 𝑟 > 0 are a consequence of Theorem 4.19,

Lemma 4.21 and (4.30). (If 𝜎 ∈ V0, then this expression vanishes for any Y, 𝑟 > 0.) The remaining
obstacle is therefore the presence of the character 𝒈𝜺𝒓 instead of 𝒈𝜺0 in (4.70). However, by definition one
has 𝒇 𝜺𝒓 ◦ 𝒈𝜺0 = 𝒈𝜺𝒓 , so that it suffices to show that the character 𝒇 𝜺𝒓 restricted toTsym

− [𝜏] is uniformly
bounded in Y, 𝑟 > 0 and converges as Y → 0 to a finite limit. This is a consequence of (4.67), which
holds onTsym

− [𝜏] by assumption.
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In order to derive the bound (4.69) we make the following construction. Consider the extended set of
kernel types �̄�+ := 𝔏+ ⊔ 𝜕𝔏+ where 𝜕𝔏+ := {𝜕𝔱 : 𝔱 ∈ 𝔏+} is a disjoint copy of 𝔏+. We let |𝜕𝔱 |𝔰 := |𝔱 |𝔰 for
any 𝔱 ∈ 𝔏+, and we extend the rule 𝑅 to a rule �̄� by allowing any kernel-type 𝔱 to be replaced by 𝜕𝔱. We
denote byTex,Tsym

− , and T̂ex,sym
− the respective spaces constructed in Section 4.2 starting from the

rule �̄�. Finally, we introduce a linear operator D : Tex → Tex by setting for any tree 𝜏 = (𝑇𝔫,𝔬
𝔢 , 𝔱)

D𝜏 :=
∑︁

𝑒∈𝐾 (𝑇)
(𝑇𝔫,𝔬

𝔢 , 𝜕𝑒𝔱)

where 𝜕𝑒𝔱 : 𝐾 (𝑇) ⊔ 𝐿 (𝑇) → �̄�+ ⊔ 𝔏− is defined by setting (𝜕𝑒𝔱) 𝑓 := 𝔱 𝑓 for any 𝑓 ∈ 𝐾 (𝑇)\{𝑒} ⊔ 𝐿 (𝑇),
and (𝜕𝑒𝔱)𝑒 := 𝜕𝔱𝑒. We extend this to a linear operator D : T̂ex,sym

− → T̂ex,sym
− by imposing that the

Leibnitz rule D(𝜏𝜎) = D(𝜏)𝜎 + 𝜏D(𝜎) holds.
Finally, we define the kernel assignments 𝐾𝜕𝔱 = 0 and 𝑅 (𝑟)

𝜕𝔱
:= 𝜕𝑟𝑅 (𝑟)

𝔱
for any 𝔱 ∈ 𝔏+, and we write

again
=

ΥY𝑟 := Ῡ
[Y ,𝜙

𝑅 (𝑟 ) for the character on T̂ex,sym
− . It follows that (4.69) is equal to

=

ΥY𝑟 𝑀
𝒈𝜺𝒓 D𝜏,

where we view 𝒈𝜺𝒓 as a character onTsym
− by setting 𝒈𝜺𝒓 (𝜏) := 0 for any tree 𝜏 ∈ Tsym

− which contains an
edge 𝑒 ∈ 𝐾 (𝜏) such that 𝔱(𝑒) ∈ 𝜕𝔏+.
Using the induction hypothesis and an argument identical to before (using the identity 𝒇 𝜺𝒓 ◦ 𝒈𝜺0 = 𝒈𝜺𝒓

and the fact that by (4.67) the sequence 𝒇 𝜺𝒓 is bounded), it is now sufficient to bound
=

ΥY𝑟 𝑀
𝒈𝜺0 D𝜏,

which is again bounded uniformly in Y > 0 and 𝑟 > 0 as a consequence of Theorem 4.19. It remains
to show that this expression is absolutely integrable over 𝑟 ∈ (0,∞) and that this integral is uniformly
bounded in Y > 0. For this note that D𝜏 satisfies the conditions of Theorem 4.19 with the degree
assignment deg∞ 𝜕𝔱 := deg∞ 𝔱 := |𝔱 |𝔰 − |𝔰 | = 8𝔱8𝔰 − |𝔰 | − ^ for 𝔱 ∈ 𝔏+. With this degree assignment
however it follows that one has ∥𝑅 (𝑟)

𝜕𝔱
∥K+ ,𝜕𝔱 ≲ 𝑟

−^−1 ∧ 1 uniformly in 𝑟 > 0, and we conclude with (4.15).

5. The construction of the shift

We fix a character ℎ ∈ 𝑓 b ◦ H, and we finally construct a sequence Z𝛿 ∈ 𝔐s
∞ for 𝛿 > 0 such that (3.5)

and (3.6) hold. Let us first motivate the construction below. The convergence in (3.5) requires us to
choose Z𝛿 in such a way that for any 𝔱 ∈ 𝔏− one has

b𝔱 + (Z𝛿)𝔱 → 0 (5.1)

in𝔐s
0. This could simply be accomplished by setting (Z𝛿)𝔱 = −b 𝛿

𝔱
, where b 𝛿 is a 𝛿-regularisation of b.

However, with this choice there is no hope of satisfying (3.6) as well. At this point wemake the observation
that introducing a perturbation of −b 𝛿

𝔱
, which lives on scales much smaller than 𝛿, may not destroy the

convergence (5.1). On the other hand, such small-scale perturbations of −b 𝛿
𝔱
generate resonances in

expressions of the type (3.6), and the fact that a tree 𝜏 has negative homogeneity implies that perturbations
weak enough not to destroy (5.1) might at the same time give non-vanishing contributions to (3.6).
Let us briefly compare this idea to the strategy used in [CF18] to show a support theorem for the 2D

multiplicative heat equation with purely spatial white noise, known as the 2D-PAM equation. Although
the set-up in their paper differs slightly from ours (they use the theory of paracontrolled distributions
rather than regularity structures and hard cutoffs of the noise in Fourier space rather than regularisations
via convolution) the spirit of the two approaches are similar. At this stage the authors of [CF18] use
deterministic perturbations of −b 𝛿 at a fixed frequency in order to generate the required resonances.
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Deterministic perturbations do not fall in our setting, since we assume our noises to be stationary and
centred (one could of course use randomly shifted oscillations at a fixed frequency, but this does not
seem to generalise well). There are two major reasons why we prefer to use perturbations which are
random instead of deterministic.
The first reason concerns the type of expression one gets when calculating expected values of the form

(3.6). By considering random stationary shifts, we ensure that these expressions are constant (as opposed
to space-time dependent). Moreover, by choosing the shift to be non-Gaussian we have a freedom to
control the cumulants built between the original noise and the shift. This will be crucial in order to
control the expected value of all 𝜏 ∈ 𝔗− (see Definition 3.18) simultaneously.
The second reason concerns the bound of variances of the shifted model, once the expectation can

be controlled. This argument was carried out in Proposition 3.20. The proof of this proposition uses
crucially the results from [CH16], which in turn requires the shift to be stationary and centred.
Both of these points were carried out in [CF18] by hand, and the success of this strategy seems to rely

heavily on the fact that the corresponding regularity structure is relatively simple (in particular the set
𝔗− contains only a single tree).

5.1. Enlarging the regularity structure

Following the discussion above, we will choose the shift Z𝛿 = −b 𝛿 + 𝑘 𝛿 for some random perturbation
𝑘 𝛿 living on scales much smaller than 𝛿. The random smooth function 𝑘 𝛿 in turn will be written as a
sum over functions 𝑘 𝛿(Ξ,𝜏) , where (Ξ, 𝜏) runs over all pairs of noise types Ξ ∈ 𝔏− and trees 𝜏 ∈ 𝔗− with
the property that Ξ ∈ 𝔱(𝐿 (𝜏)). In order to keep the notation clean, we will introduce an extended set of
noise types as follows. For any type Ξ ∈ 𝔏− we let Ξ̃ be a new symbol such that Ξ̃ ∉ 𝔏−. We then define
for any type Ξ ∈ 𝔏− the set (recall that 𝔏− ⊆ J if one identifies elements of 𝔏− with elements of T−, see
Definition 3.3, so that 𝜏 ∈ 𝔗− implies |𝐿 (𝜏) | ≥ 2)

𝕷− [Ξ] := {Ξ, Ξ̃} ∪ {(Ξ, 𝜏) : 𝜏 ∈ 𝔗− such that ∃𝑢 ∈ 𝐿 (𝜏) with 𝔱(𝑢) = Ξ} . (5.2)

Consider then the construction given in [CCHS20, Sec. 5], in particular the class of natural transfor-
mations considered in Remark 5.18, the direct sum decompositions of Section 5.3, and the construction
of regularity structures and associated spaces in Sections 5.5–5.8. Recall that the purpose of this con-
struction is the following. Take a set of types 𝔏 and a rule 𝑅 as above, as well as a “space assignment” 𝑉 ,
namely a collection of finite-dimensional vector spaces 𝑉Ξ, one for every type Ξ ∈ 𝔏. Then, [CCHS20,
Sec. 5.6] describes a way of using this data to build regularity structures T, Tex, spaces T+, T−, etc
which is analogous to the construction of [BHZ19], but with a copy of 𝑉Ξ “attached” to every edge of
type Ξ, so that a tree 𝜏 now isn’t a basis vector of T, but defines a subspace T[𝜏] that is isomorphic to a
suitable symmetrisation of

⊗
𝑒∈𝐸 𝑉𝔱 (𝑒) , where 𝐸 denotes the edge set of 𝜏 and 𝔱(𝑒) is the type of an

edge 𝑒. (Symmetrisation is needed for example for 𝜏 = Ξ2 which is isomorphic to the symmetric tensor
product 𝑉Ξ ⊗𝑠 𝑉Ξ.) The “classical” construction of these spaces is then obtained as the special case of the
space assignment R which simply assigns R to every type.
The construction is functorial in the sense that one constructs “abstract” counterparts T, T+, etc

of the spaces T, T+, etc as well as of the various linear maps Δ, Δ+, etc between them as objects and
morphisms of a monoidal category of “symmetric structures”. Every space assignment 𝑉 then yields a
functor F𝑉 mapping the abstract objects to their “concrete” counterparts. Furthermore, given two vector
space assignments 𝑉 and𝑊 , as well as a collection of linear maps 𝐴Ξ : 𝑉Ξ → 𝑊Ξ, [CCHS20, Rem. 5.18]
yields a natural transformation from F𝑉 to F𝑊 . In other words, for any “abstract” spaceA, 𝐴 determines
a linear map 𝐴 : F𝑉 (A) → F𝑊 (A) (note the symbol overload here) intertwining F𝑉 ( 𝑓 ) and F𝑊 ( 𝑓 ) for
any morphism 𝑓 : A1 → A2.
Note now that (5.2) yields a vector space assignment𝑉 by setting𝑉Ξ = R𝕷− [Ξ] for Ξ ∈ 𝔏− and𝑉Ξ = R

for Ξ ∈ 𝔏+. We henceforth use the convention thatT = F𝑉 (T) and similarly forT−,Tex, etc. For every
Ξ ∈ 𝔏−, we have a natural embedding ]Ξ : R → 𝑉Ξ mapping 1 to Ξ, so that the natural transformation of
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[CCHS20, Rem. 5.18] mentioned above yields natural embeddings ] : T→ T, etc, which we henceforth
simply write as T⊂ T, etc. We also write ]∗

Ξ
: 𝑉Ξ → R for the “adjoint” obtained by mapping Ξ to 1

and all elements of 𝕷− [Ξ] \ {Ξ} to 0. Similarly, this yields projections ]∗ : T→ T, etc. In particular, ]∗
yields an embedding G− ↩→ G− obtained by mapping any G− ∋ ℓ : T− → R to ℓ ◦ ]∗ ∈ G−.
One important remark is given by the “direct sum decomposition” verified in [CCHS20, Sec. 5.3].

When combined with the construction of [CCHS20, Sec. 5.5–5.6], it yields a canonical identification ofT
(andT−,Tex, etc) with the regularity structure built from the set of symbols 𝕷− =

⊔
Ξ∈𝔏 𝕷− [Ξ] with the

rule 𝑹 obtained from 𝑅 by allowing to replace any given instance of Ξ by an arbitrary element of 𝕷− [Ξ].
Our construction comes with a natural “summation map”SΞ : R → 𝑉Ξ given by

SΞ1 =
∑︁

𝕷− [Ξ] , (5.3)

which yields linear mapsS : T→ T, etc that also commute with all the operations built in [CCHS20,
Sec. 5.5–5.6], so for example

(S ⊗ S )Δ = ΔS , (S ⊗ S )Δ− = Δ−S , (5.4)

etc. Similarly, we have its “adjoint”S ∗ : T→ Tdefined from the linear mapsS ∗
Ξ

: 𝑉Ξ → R mapping
every element of 𝕷− [Ξ] to 1. It will be convenient to writeS [𝜏] for the collection of those canonical
basis vectors 𝜏 ∈ T such thatS ∗𝜏 = 𝜏.
We denote by 𝕸s

∞ := 𝔐s
∞ (𝕷−) the set of smooth noises as in Definitions 2.13 and 2.20, and

𝕸s
0 := 𝔐s

0 (𝕷−) for its closure under the norm (2.21). Since Vec(𝕷−) ≃
⊕

Ξ∈𝔏 𝑉Ξ, we can define
S ∗ : 𝕸s

∞ → 𝔐∞ byS ∗[ = [ ◦ S , and similarly for ]∗.
The following lemma connects the construction of this section to the discussion of the last section.

Lemma 5.1 Let b ∈ 𝔐∞ be a smooth noise, let [ ∈ 𝕸s
∞ be a smooth noise extending b in the sense that

]∗[ = b, and let Z ∈ 𝔐∞ be defined by Z := S ∗[ − b. Then one has for any 𝜏 ∈ T

(𝑇Z �̂�b )𝜏 = 𝚷b+Z𝑀𝑔b 𝜏 = 𝚷[S𝑀𝑔b 𝜏. (5.5)

Proof. This follows from Theorem 2.4.

We will show that there exists a double sequence [Y, 𝛿 ∈ 𝕸s
∞, Y, 𝛿 > 0, of smooth, random noises

with the property that [Y, 𝛿 extends b Y , one hasS ∗[Y, 𝛿 → 0 in𝕸s
0 in the limit Y → 0 and 𝛿 → 0, and

one has lim𝛿→0 limY→0 Υ
[Y,𝛿𝑀𝑔YS 𝜏 = ℎ(𝜏) for any 𝜏 ∈ 𝔗−. Setting Z := S ∗[ − b then concludes the

proof of Proposition 3.20.
We now identify those trees 𝜎 ∈ S [𝜏] that have the property that their expected value depends

linearly on the shift. They will give the dominating contribution to Υ[Y,𝛿𝑀𝑔YS 𝜏.

Definition 5.2 For any 𝜏 ∈ 𝔗− we defineS ↑[𝜏] as the set of 𝜎 ∈ S [𝜏] such that there exists a noise
type edge 𝑢 ∈ 𝐿 (𝜎) such that

• one has 𝔱(𝑢) = (Ξ, 𝜏) for some Ξ ∈ 𝔏− and 𝜏 ∈ 𝔗− with 𝜏 ∼ 𝜏, and
• for any noise type edge 𝑣 ∈ 𝐿 (𝜎)\{𝑢} one has 𝔱(𝑣) ∈ 𝔏−.

Recall Definition 3.17 for the definition of the equivalence relation ∼ used here. We also setS ↓[𝜏] :=
S [𝜏]\(S ↑[𝜏] ⊔ {𝜏}). With this notation, we define

S ↑𝜏 :=
∑︁

𝜎∈S ↑ [𝜏 ]
𝜎 and S ↓𝜏 :=

∑︁
𝜎∈S ↓ [𝜏 ]

𝜎.

Note that one has the identityS = S ↑ + S ↓ + Id.
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Example 5.3 We visualise this construction on the example of the tree from the generalised KPZ

equation. Here the set S [ ] is given by

, , , , , , , , , ,

, , , , ,

Here a leave drawn as square is a placeholder for an element in 𝕷− [ ]\{ }, and similar for and .
Hence every tree drawn above (except the first one) is really a placeholder for a finite family of trees. The

set S ↑[ ] is then given by

, , , ,

where now only runs over extended noise types 𝚵 ∈ 𝕷− [ ] of the form 𝚵 = ( , 𝜏), where 𝜏 ∈ 𝔗− is a
tree with exactly 2 noises of type and 2 noises of type (and no other noises); and similar for and

5.2. Construction of the shift as Wiener chaos

We will choose the perturbation [Y, 𝛿(Ξ,𝜏) in a homogeneous Wiener chaos of fixed order, so that [
Y, 𝛿

(Ξ,𝜏) is
determined by specifying a kernel 𝐾 Y, 𝛿(Ξ,𝜏) . (To clarify the idea behind the construction below, consider
Example 1.20 in the introduction).
The kernels will be constructed by fixing a smooth, compactly supported function and rescaling it to

scales much smaller than 𝛿 at some homogeneity 𝖘(Ξ), see (5.8), (5.9). It will be crucial that we choose
this homogeneity 𝖘(Ξ) carefully in such a way that shifted trees 𝜎 as in Example 1.20 (i.e. where exactly
one noise Ξ of some tree 𝜏 ∈ 𝔗− is replaced by (Ξ, 𝜏)) have just slightly negative homogeneity. For this,
we fix ¯̂ > 0 small enough and we define a homogeneity assignment 𝖘 : 𝕷 → R in the following way:

Definition 5.4 Set 𝖘(Ξ) := 𝖘(Ξ̃) := 𝔰(Ξ) for any noise type Ξ ∈ 𝔏−, and 𝖘(𝔱) := 𝔰(𝔱) for any kernel-type
𝔱 ∈ 𝔏+. For any noise type of the form (Ξ, 𝜏) ∈ 𝕷−, set

𝖘(Ξ, 𝜏) := 𝔰(Ξ) − 8𝜏8𝔰 − ¯̂.

We now have two homogeneity assignments 𝔰 and 𝖘 with 𝖘 ≥ 𝔰 − ¯̂ on 𝕷−. For any Y > 0 and 𝛿 > 0
we are going to define a random smooth noise [Y, 𝛿 ∈ 𝕸s

∞ satisfying the following.
• For any noise type Ξ ∈ 𝔏− one has that [Y, 𝛿Ξ

= b Y
Ξ
and [Y, 𝛿

Ξ̃
= −b 𝛿

Ξ
.

• For any noise type 𝚵 ∈ 𝕷−\𝔏− the noise [Y, 𝛿𝚵 is independent of Y.
• For any noise type of the form (Ξ, 𝜏) the noise [Y, 𝛿(Ξ,𝜏) is a random centred stationary smooth
function that takes values in them(Ξ, 𝜏)-th homogeneous Wiener chaos with respect to b, where
m(Ξ, 𝜏) := [𝐿 (𝜏), 𝔱]\{Ξ}. (Note that [𝐿 (𝜏), 𝔱]\{Ξ} denotes the multiset where exactly one
instance of Ξ is removed from [𝐿 (𝜏), 𝔱].)
We also writem(Ξ) = m(Ξ̃) := {Ξ} for any Ξ ∈ 𝔏−. We now define for any (Ξ, 𝜏) ∈ 𝕷− a smooth

kernel 𝐾 𝛿(Ξ,𝜏) ∈ Y
𝑚(𝜏)
∞ , where 𝑚(𝜏) := #𝐿 (𝜏) − 1, depending only on 𝛿 > 0 (compare (2.13) for the

notation used here). We define 𝐾 𝛿(Ξ,𝜏) by rescaling a fixed kernel Φ(Ξ,𝜏) ∈ Y
𝑚(𝜏)
∞ , independent of 𝛿 > 0,

which will be determined in Lemma 5.10 below. In order to avoid case distinctions, we also define for
any noise type Ξ ∈ 𝔏− the kernels

ΦΞ := 𝜌, ΦΞ̃ := −𝜌,
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so that ΦΞ,ΦΞ̃ ∈ Y1
∞. Recall that 𝜌 is a compactly supported smooth cut-off function integrating to one.

Before we choose the kernels Φ(Ξ,𝜏) , we describe how we rescale them in order to obtain the kernels
𝐾 𝛿(Ξ,𝜏) . Let us first define for any 𝑛 ≥ 1, any scale _ > 0 and any homogeneity 𝛼 ∈ R the rescaling
operator S(_, 𝛼) : Y𝑛

∞ → Y𝑛
∞ by

S(_, 𝛼) (𝐾0 ⊗ . . . ⊗ 𝐾𝑛) := _𝛼−|𝔰 | (𝐾0 (_−𝔰 ·) ⊗ . . . ⊗ 𝐾𝑛 (_−𝔰 ·)). (5.6)

Note that U𝐾 transforms as

(US(_, 𝛼)𝐾) (𝑥1, . . . , 𝑥𝑛) = _𝛼 (U𝐾) (_−𝔰𝑥1, . . . , _
−𝔰𝑥𝑛)

for any 𝐾 ∈ Y𝑛
∞.

The correct homogeneity to rescale a kernel Φ(Ξ,𝜏) so that the random variable [Y, 𝛿(Ξ,𝜏) is of order 1 for
the homogeneity 𝖘(Ξ, 𝜏) is given by

𝛼(Ξ,𝜏) := 𝖘(Ξ, 𝜏) − 𝑚(𝜏) |𝔰 |
2

(5.7)

for any (Ξ, 𝜏) ∈ 𝕷−. (Recall that 𝑚(𝜏) = #𝐿 (𝜏) − 1.) This follows from the fact that the covariance of
[
Y, 𝛿

(Ξ,𝜏) is given by |E[[Y, 𝛿(Ξ,𝜏) (𝑧)[
Y, 𝛿

(Ξ,𝜏) (𝑧)] | = |
∫
𝑑𝑥𝐾 𝛿(Ξ,𝜏) (𝑧, 𝑥)𝐾

𝛿
(Ξ,𝜏) (𝑧, 𝑥) | ≲ |𝑧 − 𝑧 |2𝛼(Ξ,𝜏)+𝑚(𝜏) |𝔰 | . We

will later on choose for any 𝛿 > 0 and any tree 𝜏 ∈ 𝔗− a scale _𝛿𝜏 ∈ (0, 1) and a real constant 𝑎 𝛿𝜏 ∈ R.
Let A := R𝔗− and denote by Λ̃† the set of scales _ ∈ (0, 1)𝔗−⊔{★,†} such that _𝜏 depends only on the
equivalence class [𝜏]∼ of 𝜏. (This property will be useful in the proof of Lemma 5.10 below.) For fixed
scales _𝜏 ∈ Λ̃ and constants 𝑎𝜏 ∈ Λ̃† we now make the following definition.

Definition 5.5 For any (𝑎, _) ∈ A × Λ̃† and any (Ξ, 𝜏) ∈ 𝕷− with 8𝜏8𝔰 < 0, we define the kernel

𝐾
𝑎,_

(Ξ,𝜏) := 𝑎𝜏S(_𝜏 , 𝛼(Ξ,𝜏) )Φ(Ξ,𝜏) . (5.8)

For 8𝜏8𝔰 = 0 we use a slightly different definition

𝐾
𝑎,_

(Ξ,𝜏) := 𝑎𝜏
1
𝑁_𝜏

𝑁_𝜏 −1∑︁
𝑘=0

2− ¯̂𝑘S(2−𝑘_𝜏 , 𝛼(Ξ,𝜏) )Φ(Ξ,𝜏) , (5.9)

where 𝑁_𝜏 is the smallest integer larger then (_𝜏)−1.

We also set

𝐾
𝑎,_

Ξ
:= S(Y,−|𝔰 |)𝜌 and 𝐾

𝑎,_

Ξ̃
:= S(𝛿,−|𝔰 |)𝜌, (5.10)

where we write 𝛿 := _★ and Y := _†.

Remark 5.6 We include Y and 𝛿 into the data _ in order to avoid case distinctions in some expressions
below. Sometimes it will be useful to make Y explicit. In these cases we write [Y,𝑎,_ and 𝐾 Y,𝑎,_ with
𝑎 ∈ A and _ ∈ Λ̃ := (0, 1)𝔗−⊔{★}.

Example 5.7 To understand (5.9), consider first a tree 𝜏 ∈ 𝔗− with 8𝜏8𝔰 < 0 and assume for simplicity
that 𝜏 does not contain any divergent proper subtree. Consider two trees 𝜏, 𝜏 ∈ S [𝜏], where in 𝜏 (resp.
𝜏) exactly one noise type Ξ (resp. two noise types Ξ, Ξ̃) are replaced by (Ξ, 𝜏) (resp. (Ξ, 𝜏), (Ξ̃, 𝜏)), so
that in the notation of Definition 5.2 one has 𝜏 ∈ S ↑[𝜏] and 𝜏 ∈ S ↓[𝜏]. It then follows from a simple
scaling argument and (5.8) that one has

|Υ[Y,𝑎,_𝜏 | ≃ 𝑎𝜏_− ¯̂
𝜏 and |Υ[Y,𝑎,_𝜏 | ≲ 𝑎2

𝜏 . (5.11)
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The second bound follows from the fact that |𝜏 |𝖘 > 0. We will choose 𝑎𝜏 such that Υ[Y,𝑎,_𝜏 is of order 1
as _𝜏 → 0, hence 𝑎𝜏 ≃ _ ¯̂

𝜏 . Thus, one has Υ[Y,𝑎,_𝜏 → 0.
This argument used crucially that |𝜏 |𝖘 > 0, which fails in case 8𝜏8𝔰 = 0 where one has 8𝜏8𝖘 = − ¯̂ and

8𝜏8𝖘 = −2 ¯̂. It follows that if we simply defined 𝐾𝑎,_(Ξ,𝜏) via (5.8) in this case, we would get that |Υ[Y,𝑎,_𝜏 |
is order 1. In order to continue, we “spread out” the kernel 𝐾𝑎,_(Ξ,𝜏) in frequency space via (5.9). One can
readily check that the first relation in (5.11) still holds, while for the second relation essentially only the
resonant terms contribute (compare the proof of Lemma 5.23, where this is made precise), and we obtain
the bound

|Υ[Y,𝑎,_𝜏 | ≲ 𝑎2
𝜏

(𝑁_𝜏 )2

𝑁_𝜏 −1∑︁
𝑘=0

2−2 ¯̂𝑘 (22 ¯̂𝑘_2
𝜏) ≲ (𝑁_𝜏 )−1,

which converges to 0 as 𝑁_𝜏 → ∞.

We are now given a family of kernels 𝐾𝑎,_𝚵 ∈ Y
𝑚(𝚵)
∞ and a multisetm(𝚵) for any noise type 𝚵 ∈ 𝕷−,

where 𝑚(𝚵) := #m(𝚵). (Think ofm(𝚵) = m(Ξ, 𝜏) as being defined as discussed after Definition 5.4.)
With this notation we now make the following definition, for which we recall Definition 2.13.

Definition 5.8 Let 𝔎𝑎,_ ∈ 𝔜𝑁∞ be defined by setting (𝔎𝑎,_)𝚵m := 𝐾𝑎,_𝚵 Im=m(𝚵) for any multiset 𝚵 with
values in 𝔏− and any 𝚵 ∈ 𝕷−. We then define the smooth noises [𝑎,_ ∈ 𝕸s

∞ by setting, for any noise type
𝚵 ∈ 𝕷−,

[
𝑎,_

𝚵 := 𝐽 (𝔎𝑎,_). (5.12)

From (2.20) it follows that [𝑎,_𝚵 = 𝐽m(𝚵) (U𝐾𝑎,_𝚵 ). Recall (2.16) that the operator U is given by

U𝐾 (𝑥1, . . . , 𝑥𝑛) =
∫

D̄
𝑑𝑦𝐾0 (𝑦)𝐾1 (𝑥1 − 𝑦) . . . 𝐾𝑛 (𝑥𝑛 − 𝑦). (5.13)

The following is then a simple consequence of this definition.

Lemma 5.9 For any (𝑎, _) ∈ Λ̃† and any Ξ ∈ 𝔏− one has [𝑎,_
Ξ

= b Y
Ξ

and [𝑎,_
Ξ̃

= −b 𝛿
Ξ

.

In order to determine our shift, we are left to choose for any (Ξ, 𝜏) ∈ 𝕷− a compactly supported kernel
Φ(Ξ,𝜏) , and for any 𝛿 > Y > 0 a choice of parameters (𝑎, _) ∈ A × Λ̃† with _† = Y and _★ = 𝛿.
The following lemma determines a choice of smooth kernels Φ(Ξ,𝔱) .

Lemma 5.10 Let S ↑ be the operator from Definition 5.2 and let 𝑔Y be the BPHZ character for the
noise b Y as in Section 2.2.3, which we view as an element of G− as in Section 5.1. Then, there exists
a choice of kernels Φ(Ξ,𝜏) ∈ Y

s,𝑚(𝜏)
∞,★ for any (Ξ, 𝜏) ∈ 𝕷− such that the following holds. For any tree

𝜏 ∈ 𝔗− and any 𝐶 > 0 one has the identity

lim
Y→0

Υ[
Y,𝑎,_

𝑀𝑔YS ↑𝜏 = 𝑎𝜏 (_𝜏)− ¯̂ + 𝑜((_𝜏)− ¯̂ ).

where the 𝑜((_𝛿𝜏 )− ¯̂ ) constant is such that

(_𝛿𝜏 ) ¯̂𝑜((_𝛿𝜏 )− ¯̂ ) → 0

as _𝜏 → 0 uniformly over _ ∈ Λ̃ and 𝑎 ∈ A with |𝑎 |∞ < 𝐶.
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Proof. Fix for the entire proof an equivalence class Θ ∈ 𝔗−/∼. Let 𝜏 ∈ Θ and 𝜎 = (𝑆𝔫𝔢 , 𝔱) ∈ S ↑[𝜏], and
let 𝑤 ∈ 𝐿 (𝜎) be the unique noise type edge such that 𝔱(𝑤) = (Ξ, 𝜏) for some Ξ ∈ 𝔏− and some 𝜏 ∈ Θ. It
follows that

Υ[
Y,𝑎,_

𝑀𝑔Y𝜎 = Υ[
Y,𝑎,_

𝜎

=

∫
D̄𝐿 (𝜏)

𝑑𝑥
(
K𝐾𝜏

)
((𝑥𝑢)𝑢∈𝐿 (𝜏) )E𝑐 [((b Y𝔱 (𝑢) (𝑥𝑢))𝑢∈𝐿 (𝜏)\{𝑤 }, [

Y,𝑎,_

(Ξ, �̃�) (𝑥𝑤))] .

(Both equalities are consequences of the fact that [Y,𝑎,_
𝔱 (𝑤) is in a homogeneous Wiener chaos of order

𝑚(𝜏) = #𝐿 (𝜏) − 1.) In the limit Y → 0 we obtain∫
D̄𝐿 (𝜏)

𝑑𝑥
(
K𝐾𝜏

)
((𝑥𝑢)𝑢∈𝐿 (𝜏) )E𝑐 [(b𝔱 (𝑢) (𝑥𝑢))𝑢∈𝐿 (𝜏)\{𝑤 }, 𝐼m(Ξ,𝜏) (U𝐾 (Ξ, 𝜏)𝑎,_ (𝑥𝑤 , ·))] .

For 8𝜏8 < 0 this expression is equal to

𝑎 �̃�Z𝜏,Ξ

∫
D̄𝐿 (𝜏)

𝑑𝑥
(
K𝐾𝜏

)
(𝑥)S(_𝜏 , 𝛼(Ξ,𝜏) )UΦ(Ξ, �̃�) (𝑥𝑤; 𝑥 ◦ 𝜙−1), (5.14)

where we used that _𝜏 = _ �̃� and 𝛼(Ξ,𝜏) = 𝛼(Ξ, �̃�) , where Z𝜏,Ξ ∈ N denotes a symmetry factor, and where
𝜙 : 𝐿 (𝜏)\{𝑤} → d(m(Ξ, 𝜏)) denotes an arbitrary bijection with the property that 𝔱(𝑢) = 𝜙1 (𝑢) for
any 𝑢 ∈ 𝐿 (𝜏)\{𝑤}. It follows from the definition ofm(Ξ, 𝜏) that such a bijection exists and from the
symmetry properties of Φ(Ξ, �̃�) that the integral is independent of this choice. (Here we assume without
loss of generality that Φ(Ξ,𝜏) is symmetric under all permutations of [𝑚(𝜏)] which leave the noise-type 𝔱
invariant, where 𝔱 : [𝑚(𝜏)] → 𝔏− is the unique order preserving map such that [[𝑚(𝜏)], 𝔱] = m(Ξ, 𝜏).)
Recall now the definition of 𝛼(Ξ,𝜏) from (5.7), and note that after a change of integration 𝑥 → _𝔰𝜏𝑥 we
obtain the expression

𝑎 �̃�Z𝜏,Ξ (_𝜏)− ¯̂
∫

D̄𝐿 (𝜏)
𝑑𝑥

(
K𝐾 (𝑅) 𝜏

)
(𝑥)UΦ(Ξ, �̃�) (𝑥𝑤; 𝑥 ◦ 𝜙−1) ,

where 𝑅 = (_𝜏)−1 and the assignment 𝐾 (𝑅) is given by 𝐾 (𝑅)
𝔱

(𝑥) = 𝑅 |𝔰 |− |𝔱 |𝔰𝐾𝔱 (𝑅−𝔰𝑥) for any 𝔱 ∈ 𝔏+.
As _𝜏 → 0 the integral in the last expression converges to∫

D̄𝐿 (𝜏)
𝑑𝑥

(
K�̂�𝜏

)
(𝑥)UΦ(Ξ, �̃�) (𝑥𝑤; 𝑥 ◦ 𝜙−1). (5.15)

(The integrand is absolutely integrable. The fact that this integral is finite on small scales is easy to
see, the bound on large scales follows from the assumption that UΦ(Ξ, �̃�) is compactly supported and
Lemma 4.21. One could also see this directly from a simple power counting argument, or equivalently
from [Hai18, Thm. 4.3].)
For 8𝜏8 = 0 equation (5.15) follows almost identically. Indeed, in this case (5.14) should be replaced by

𝑎 �̃�Z𝜏,Ξ
1
𝑁_𝜏

𝑁_𝜏 −1∑︁
𝑘=0

2− ¯̂𝑘
∫

D̄𝐿 (𝜏)
𝑑𝑥

(
K𝐾𝜏

)
(𝑥)S(2−𝑘_𝜏 , 𝛼(Ξ,𝜏) )UΦ(Ξ, �̃�) (𝑥𝑤; 𝑥 ◦ 𝜙−1), (5.16)

which as above gives 𝑎 �̃�Z𝜏,Ξ (_𝜏)− ¯̂ times an integral expression which converges to

1
𝑁_𝜏

𝑁_𝜏 −1∑︁
𝑘=0

2− ¯̂𝑘2 ¯̂𝑘
∫

D̄𝐿 (𝜏)
𝑑𝑥

(
K�̂�𝜏

)
(𝑥)UΦ(Ξ, �̃�) (𝑥𝑤; 𝑥 ◦ 𝜙−1), (5.17)

so that we recover (5.15).
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It remains to argue that there exists a choice of Φ(Ξ,𝜏) ∈ Y
s,𝑚(𝜏)
∞,★ for any (Ξ, 𝜏) ∈ 𝕷− such that for any

𝜏, 𝜏 ∈ 𝔗− with 𝜏 ∼ 𝜏 the expression in (5.15) is equal to Z−1
𝜏,Ξ
𝛿𝜏, �̃� . For this we recall thatJ∩Vec𝔗− = {0}

by Definition 3.18. Moreover, the space of functions of the form UΦ ∈ C̄∞
𝑐 (D̄m) for Φ ∈ Y

s,𝑚(𝜏)
∞,★

which is symmetric under permutations of [𝑚] which preserve the noise-type in the same sense as above
are dense in C̄∞

𝑐 (D̄m/g). The claim now follows from the definition of the idealJ in Definition 3.3.

Finally, we want to bound the norm ∥[𝑎,_∥�̃� for homogeneity assignments �̃� : 𝕷− → R−, compare
(2.21). As long as �̃� ≤ 𝖘, with 𝖘 as in Definition 5.4, we obtain a bound uniformly in _ ∈ Λ̃†. If this
condition is violated a uniform bound of this form is in general not true. However, it is still possible to
derive a bound on this quantity in terms of the scales _𝜏 in the following way.

Lemma 5.11 Let �̃� : 𝕷− → R− be a homogeneity assignment. For any scale _ ∈ Λ̃† we define the quantity

_(�̃�) :=min{_𝚵 : 𝚵 ∈ 𝕷− , �̃�(𝚵) > 𝖘(𝚵)} ∧ 1.

For any natural number 𝑁 ∈ N and any _ > 0 there exists a constant 𝐶𝑁 (_) > 0 such that the following
holds. For any 𝐴 > 0 one has the bound

∥[𝑎,_∥�̃� ≤ 𝐶𝑁 (_(�̃�)) (5.18)

uniformly _ ∈ Λ̃† and 𝑎𝜏 ∈ R with the property that |𝑎 |∞ < 𝐴.
In particular, the convergence (3.5) holds provided that 𝑎 (𝛿)𝜏 → 0 as 𝛿 → 0 for any 𝜏 ∈ 𝔗−.

Proof. We have to bound ∥𝐾𝑎,_𝚵 ∥�̃� (𝚵)−𝑚(𝚵) |𝔰 |
2
for any 𝚵 ∈ 𝕷−, and ∥𝔎𝑎,_∥var, compare (2.18). Fix

𝚵 = (Ξ, 𝜏) ∈ 𝕷− and assume first that 8𝜏8𝔰 < 0. We only treat the slightly more difficult case 𝑚(𝜏) ≥ 2
in detail. We show bounds uniform in �̄� as in (2.14), so that �̄�𝑖 ∈ R−, 𝑖 = 0, . . . , 𝑚(𝚵) is such that
�̄�0 > −|𝔰 | − 1, �̄�𝑖 > −|𝔰 | and ∑

𝑖≥0 �̄�𝑖 = �̃�(𝚵) − 𝑚(𝚵) |𝔰 |2 − |𝔰 |. For the purpose of this proof we assume
for notational simplicity that Φ(Ξ,𝜏) is a simple tensor product (in general, it is a linear combination
of such terms, but since the number of summands does not change under rescaling one can repeat the
argument given here for each summand individually). Write Φ(Ξ,𝜏) := Φ0 ⊗ . . . ⊗ Φ𝑛, so that

𝐾
𝑎,_

𝚵 = 𝑎𝜏_
𝛼(Ξ,𝜏)−|𝔰 |
𝜏 Φ0 (_−𝔰 ·) ⊗ . . . ⊗ Φ𝑛 (_−𝔰 ·).

Since
∫
(Φ𝑎,_𝚵 )0 = 0 by definition one has ∥(𝐾𝑎,_𝚵 )0∥ �̄�0 ≲ _

−�̄�0 and for 𝑖 ≥ 1 one has ∥(𝐾𝑎,_𝚵 )0∥ �̄�𝑖 ≲ _−�̄�𝑖 ,
both uniformly over all �̄� as above. It follows that

∥𝐾𝑎,_𝚵 ∥�̃� (𝚵)−𝑚(𝜏) |𝔰 |
2
≲ _

−�̃� (𝚵)+𝑚(𝜏) |𝔰 |
2 +|𝔰 |+𝛼(Ξ,𝜏)−|𝔰 |

𝜏 = _
𝖘 (Ξ,𝜏)−�̃� (Ξ,𝜏)
𝜏 .

Since 𝖘(Ξ, 𝜏) − �̃�(Ξ, 𝜏) < 0 implies _𝜏 > _(�̃�), the required bound follows.
In case that 8𝜏8𝔰 = 0 one proceeds in the same way, using the fact that

∑
𝑘≥0 2−^𝑘 is finite.

Finally, bounding the “variances” (2.19) is a simple exercise using the fact (Φ𝑎,_𝚵 )0 integrates to zero
and 2𝖘 ≥ −|𝔰 | − 2^ − 2 ¯̂ > −|𝔰 | − 1.

5.3. A recursive strategy for choosing _Y, 𝛿
𝔱

Our shift Z𝛿 is defined up to specifying a sequence of constants 𝑎 𝛿 ∈ A and a sequence of scales _𝛿 ∈ Λ̃

with _𝛿★ = 𝛿 for any 𝛿 > 0.
The constants 𝑎 𝛿𝜏 will be chosen in the subsequent section as solutions to a fixed-point problem which

we will show has a solution provided that the scales _𝛿𝜏 are chosen in a good way.We will choose the scales
_𝛿𝜏 only depending on the homogeneity 8𝜏8𝔰 and the number of leaves of 𝜏. (In particular the scale only
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depends on the equivalence class [𝜏]∼ of 𝜏, so that _𝛿 ∈ Λ̃). To this end we write i(𝜏) :=
(
8𝜏8𝔰 , #𝐿 (𝜏)

)
,

and we define the set

I :=
{
i(𝜏) : 𝜏 ∈ 𝔗−

}
,

On Iwe define the total order

(𝛾, 𝑙) ≤ (𝛽, 𝑟),

if and only if either 𝛾 < 𝛽, or 𝛾 = 𝛽 and 𝑙 ≥ 𝑟 . (Note the reversed direction of the second inequality!)

Example 5.12 Consider as an example the KPZ equation, where one has

T− = { , , , , , , }.

By definition of Jone has 𝔗− = { , , , }, and I= {(−1, 2), (− 1
2 , 3), (0, 4)}.

It will also be convenient to introduce the set I★ := I∪ {★}, where we extend the total order ≤ to I★
by setting i ≤ ★ for any i ∈ I. As above we always set _𝛿★ := 𝛿 for any 𝛿 > 0.
The arguments showing the existence of a solution to the fixed point problem we will be looking at

(c.f. (5.25)) will in general only hold if one chooses the scales _𝛿
i(𝜏) such that _

𝛿
(𝛾,𝑙) is “small enough”

compared to _𝛿(𝛽,𝑟) whenever (𝛾, 𝑙) ≤ (𝛽, 𝑟). In order to make the arguments below more systematic, we
introduce the set

Λ := {_ ∈ (0, 1)I★ : i < j implies _i < _j}. (5.19)

We will view Λ as a subset of Λ̃ by setting _𝜏 := _i(𝜏) for any 𝜏 ∈ 𝔗− and any _ ∈ Λ.

Remark 5.13 It follows that in our notation we have _𝛿𝜏 = _𝛿(Ξ,𝜏) = _
𝛿
i(𝜏) for any 𝜏 ∈ 𝔗− and any Ξ ∈ 𝔏−

such that (Ξ, 𝜏) ∈ 𝕷−.

We also introduce a bit of notation for general finite totally ordered sets (𝐼, ≤). For notational convenience
we formulate out statements for (𝐼, ≤) = ( [𝑀], ≤), where 𝑀 ∈ N is the given by 𝑀 = #𝐼.

Definition 5.14 Let ( [𝑀], ≤) be a finite totally ordered set and let 𝑆 = 𝑆(_) be any statement depending
on _ ∈ (0, 1)𝑀 . We define recursively in the number of elements 𝑀 the notion of an attainable statement.
If 𝑀 = 1, then we call 𝑆 an attainable statement if there exists _̄1 > 0 such that 𝑆(_1) holds for any
_1 ∈ (0, _̄1). For 𝑀 ≥ 2 and any fixed _𝑀 > 0 we denote by (𝑆 |_𝑀 ) (_𝑖1 , . . . , _𝑀−1) the statement
depending on _1, . . . , _𝑀−1 defined by

(𝑆 |_𝑀 ) (_1, . . . , _𝑀−1) ⇐⇒ 𝑆(_1, . . . , _𝑀 ).

We then call the statement 𝑆 attainable if there exists _̄𝑀 > 0 such that for any _𝑀 < _̄𝑀 the statement
(𝑆 |_𝑀 ) is attainable.

We will often use the following lemma, which is a direct consequence of the definition of attainable
statements.

Lemma 5.15 Let 𝐼 be a finite, totally ordered set and let 𝑅, 𝑆 be attainable statements on 𝐼. Then the
conjunction 𝑅 ∧ 𝑆 is attainable.
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The strategy of the following sections will be as follows. We will show various lemmas whose
statements are attainable statements for the family _ ∈ (0, 1)I★ . These (finitely many) statements in
conjunction imply that (5.25) can be solved, so that the existence of a solution is an attainable statement.
This in particular implies that there exists a choice of scales _𝛿 ∈ Λ for any 𝛿 > 0 small enough such
that the statement holds true, and this concludes the proof.

5.4. A fixed point argument

Our goal is to find a family (𝑎 𝛿 , _𝛿) ∈ A × Λ for 𝛿 > 0, converging to 0 as 𝛿 → 0, such that

lim
𝛿→0

lim
Y→0

Υ[
Y (𝑎𝛿 ,_𝛿 )𝑀𝑔YS 𝜏 = ℎ(𝜏)

for any 𝜏 ∈ 𝔗−. Here and below we write [Y (𝑎, _) := [Y,𝑎,_ in order to make some expressions more
readable. For 𝜏 ∈ T− we introduce the function 𝐹𝜏 : A × Λ → R by setting

𝐹𝜏 (𝑎, _) := lim
Y→0

Υ[
Y (𝑎,_)𝑀𝑔YS 𝜏. (5.20)

Note that restricted to 𝜏 ∈ 𝔗− we obtain a map

𝐹 : A × Λ → A.

We also define the functions 𝐹↑ and 𝐹↓ in the same way withS replaced byS ↑ andS ↓ respectively, see
Definition 5.2. SinceS = S ↑ + S ↓ + Id and Υ[Y (𝑎,_)𝑀𝑔Y𝜏 = 0 for any 𝜏 ∈ T− one has 𝐹 = 𝐹↑ + 𝐹↓.

Remark 5.16 For fixed (𝑎, _) ∈ A × Λ̃ the noise [Y𝚵 (𝑎, _) is independent of Y unless 𝚵 ∈ 𝔏−. On the
other hand, the expression 𝑀𝑔YS 𝜏 coincides with the BPHZ renormalisation, if the homogeneity of
the noise types 𝚵 ∈ 𝕷− \ 𝔏− are viewed as zero (or more precisely as −^ for some ^ small enough,
compare Lemma 5.21 below for a precise statement). In this sense the right-hand side of (5.20) is just the
expectation of 𝚷𝜏(0), where 𝚷 denotes the BPHZ renormalised (in the sense of the previous sentence)
canonical lift of [Y (𝑎, _). It follows in particular that the right-hand side of (5.20) is indeed convergent.
Note however that this expression does not vanish. This is not a contradiction to the characterisation

[BHZ19, Eq. 6.25] of the BPHZ character, since with respect to the homogeneity constructed in the
previous paragraph, S does not leave homogeneity invariant. In fact, any tree 𝜎 ∈ S [𝜏]\{𝜏} is of
positive homogeneity in this sense. The identity [BHZ19, Eq. 6.25] on the other hand is only guaranteed
to hold for trees of negative homogeneity.

Our intuition behind this definition is that 𝐹↓
𝜏 should be small compared to 𝐹

↑
𝜏 , in the sense that a

statement of the form 𝐹
↓
𝜏 (𝑎, _) ≪ 𝐹

↑
𝜏 (𝑎, _) is an attainable statement. It turns out that this is not quite

true, since in general there will be sub-divergencies of 𝜏 that cause 𝐹↓
𝜏 to become dominant. However,

assuming that we have good bounds on these sub-divergencies, this statement becomes attainable. More
precisely, we have the following result.

Lemma 5.17 For any 𝜏 ∈ 𝔗− there exists a smooth function 𝐺𝜏 : R𝔗− × RT ≺𝜏
− × Λ → R such that

𝐺𝜏 (𝑎, (𝐹�̃� (𝑎, _)) �̃�∈T ≺𝜏
− , _) = 𝐹↓

𝜏 (𝑎, _), (5.21)

for any (𝑎, _) ∈ A × Λ, and such that for any fixed 𝜌 > 0 and 𝛽 > 0 the following bound is attainable:
One has

|𝐺𝜏 (𝑎, 𝑏, _) | ≤ 𝛽_− ¯̂
i(𝜏) (5.22)

uniformly over all (𝑎, 𝑏) ∈ A × RT ≺𝜏
− such that max�̃�∈𝔗− |𝑎 �̃� | ∨ max�̃�∈T ≺𝜏

− |𝑏 �̃� | ≤ 𝜌.
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Before we prove Lemma 5.17, we show how to use this in order to finish the proof of Proposition 3.20.
We first argue that one can strengthen the statement of this lemma.

Lemma 5.18 For any 𝜏 ∈ 𝔗− and 𝜌 > 0 there exists a continuous function �̃�𝜏 : A × R𝔗≺𝜏
− × Λ → R

such that

�̃�𝜏 (𝑎, (𝐹�̃� (𝑎, _)) �̃�∈𝔗≺𝜏
− , _) = 𝐹

↓
𝜏 (𝑎, _), (5.23)

holds for any (𝑎, _) ∈ A ×Λ with sup�̃�∈𝔗− |𝑎 �̃� | ∨ sup�̃�∈𝔗≺𝜏
−

|𝐹�̃� (𝑎, _) | ≤ 𝜌, and for any 𝛽 > 0 the bound

|�̃�𝜏 (𝑎, 𝑏, _) | ≤ 𝛽_− ¯̂
i(𝜏) (5.24)

uniformly over (𝑎, 𝑏) ∈ A × R𝔗≺𝜏
− such that max�̃�∈𝔗− |𝑎 �̃� | ∨ max�̃�∈𝔗≺𝜏

− |𝑏 �̃� | ≤ 𝜌 is attainable.

Proof. Let 𝐴𝜌 denote the set of 𝑎 ∈ A such that sup�̃�∈𝔗− |𝑎 �̃� | ∨ sup�̃�∈𝔗≺𝜏
−

|𝐹�̃� (𝑎, _) | ≤ 𝜌. We first argue
that there exists 𝑅 > 0 such that one has |𝐹�̃� (𝑎, _) | ≤ 𝑅 for any 𝜏 ∈ T ≺𝜏

− and any (𝑎, _) ∈ 𝐴𝜌 ×Λ. Once
this is shown, it is not hard to see that the function

�̃�𝜏 (𝑎, 𝑏, _) := 𝐺𝜏 (𝑎, (𝑏 �̄�) �̄�∈𝔗≺𝜏
− ⊔ (𝐹�̄� (𝑎, _) ∧ 𝑅) �̄�∈T ≺𝜏

− \𝔗≺𝜏
− , _)

has all the properties we were looking for.
We denote by 𝒈𝜺 = 𝒈𝜺 (𝑎, _) ∈ G− the BPHZ-character for the noise [Y (𝑎, _) and we define

𝒉𝜺 = 𝒉𝜺 (𝑎, _) ∈ G− via the identity 𝒉𝜺 ◦ 𝒈𝜺 = 𝑔Y , so that one has

𝐹�̃� (𝑎, _) = lim
Y→0

Υ[
Y

𝑀𝒈𝜺𝑀𝒉𝜺
S 𝜏

for any 𝜏 ∈ T−, where we suppress the dependence on (𝑎, _) in the notation on the right-hand side. By
Lemma 5.11 the noise [Y (𝑎, _) is uniformly bounded with respect to ∥ · ∥𝔰− ¯̂ over (𝑎, _) ∈ 𝐴𝜌 × Λ and
Y > 0, and it follows from [CH16] that

|Υ[Y𝑀𝒈𝜺𝜎 | ≲ 1

for any 𝜎 ∈ T uniformly over (𝑎, _) ∈ 𝐴𝜌 × Λ and Y > 0. We recall at this point (Lemma 5.4) thatS
commutes with the coproduct, so that it remains to show that 𝒉𝜺S 𝜏 is bounded for any 𝜏 ∈ T− uniformly
over (𝑎, _) ∈ 𝐴𝜌 × Λ and Y > 0. We denote by ℎY, 𝛿 ∈ G− the character from Proposition 3.21 for the
shift Z𝛿 := S ∗[Y (𝑎, _) − b Y , and we claim that one has 𝒉𝜺S = ℎY, 𝛿 on T−. Indeed, one has

M(𝒈𝜺S ⊗ Υb
Y+Z𝛿 )Δ−𝔦 = M(𝒈𝜺 ⊗ Υ[

Y )Δ−𝔦S = 1★S = 1★

on T−, and since this relation characterizes the BPHZ character, one has 𝒈𝜺S = 𝑔Y, 𝛿 . It remains to
argue that

𝒉𝜺S ◦ 𝑔Y, 𝛿 = 𝒉𝜺S ◦ 𝒈𝜺S = (𝒉𝜺 ◦ 𝒈𝜺)S = 𝑔YS = 𝑔Y

on T−. We can now argue inductively with respect to ≺ in the same way as in the proof of (3.8). The only
difference is that in (3.8) we showed convergence based on the assumption that 𝐹�̃� (𝑎, _) converges for
𝜏 ∈ 𝔗≺𝜏

− , now we show boundedness based on the assumption that these quantities are bounded.

With this we can finish the proof of Proposition 3.20. We recall at this point that we fixed ℎ ∈ 𝑓 b ◦H
at the beginning of Section 3.3, see also (3.6) in Proposition 3.20.

Proposition 5.19 For any 𝛿 > 0 the following is an attainable statement: there exists a family of
constants 𝑎 ∈ R𝔗− such that sup𝜏∈𝔗− |𝑎𝜏 | ≤ 𝛿 and such that

𝐹𝜏 (𝑎, _) = ℎ(𝜏) (5.25)
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for any 𝜏 ∈ 𝔗−.
In particular, one can choose a sequence of scales _𝛿 ∈ Λ and a sequence of constants 𝑎 𝛿 ∈ A, both

converging to 0 as 𝛿 → 0, such that the statement of Proposition 3.20 holds for the corresponding shift
Z𝛿 = S ∗[Y (𝑎, _) − b Y .

Proof. The key step is to find a solution 𝑎 ∈ A with max𝜏∈𝔗− |𝑎𝜏 | < 𝛿 to the system of equations

𝐹
↑
𝜏 (𝑎, _) + �̃�𝜏

(
𝑎, (ℎ(𝜏)) �̃�∈𝔗≺𝜏

− , _
)
= ℎ(𝜏) , 𝜏 ∈ 𝔗−, (5.26)

where �̃�𝜏 is as in Lemma 5.18 for 𝜌 := 2 max𝜏∈𝔗− ℎ(𝜏) ∧ 2𝛿. We then argue inductively: Fixing 𝜏 ∈ 𝔗−
and assuming that 𝐹�̃� (𝑎, _) = ℎ(𝜏) for any 𝜏 ∈ 𝔗≺𝜏

− , then the assumptions of (5.23) are met for 𝜏, so
that the left-hand side of (5.26) is equal to 𝐹𝜏 (𝑎, _).
We rephrase (5.26) slightly into a fixed-point problem. Define the function 𝑔 : A × Λ → A by

𝑔𝜏 (𝑎, _) := −_ ¯̂
i(𝜏)

(
𝐹
↑
𝜏 (𝑎, _) + �̃�𝜏

(
𝑎, (ℎ(𝜏)) �̃�∈𝔗≺𝜏

− , _
)
− ℎ(𝜏)

)
+ 𝑎𝜏 (5.27)

for any 𝜏 ∈ 𝔗−. Then 𝑎 ∈ A with max𝜏∈𝔗− |𝑎𝜏 | < 𝛿 is a fixed point of 𝑔(·, _) if and only if (𝑎, _) is a
solution to (5.25). It follows from Lemma 5.10 that −_ ¯̂

i(𝜏)𝐹
↑
𝜏 (𝑎, _) + 𝑎𝜏 → 0 as _ → 0 uniformly over

𝑎 ∈ A as above, and from Lemma 5.18 that for any 𝛽 > 0 the bound���_ ¯̂
i(𝜏)�̃�𝜏

(
𝑎, (ℎ(𝜏)) �̃�∈𝔗≺𝜏

− , _
) ��� ≤ 𝛽

for any 𝑎 ∈ A as above is an attainable statement.
It follows that the statement

max
𝜏∈𝔗−

|𝑎𝜏 | ≤ 𝛿 implies max
𝜏∈𝔗−

|𝑔𝜏 (𝑎, _) | ≤ 𝛿

is attainable, and by Schauder’s fixed point theorem there exists a solution 𝑎 to (5.27) in the 𝛿-neighborhood
of the origin.

It remains to show Lemma 5.17. We fix 𝜿 > 0with the property that ¯̂ > 𝜿 and such that |𝜏 |𝖘 > − |𝔰 |
2 +𝜿

for any tree 𝜏 ∈ Twith #𝐾 (𝜏) ≥ 1. For fixed i0 ∈ Iwe introduce a homogeneity assignment 𝖘i0 on 𝕷−
which treats noises regularised on scales larger than _i0 as smooth. More precisely, we set 𝖘i0 (Ξ) := 𝖘(Ξ)
and 𝖘i0 (Ξ̃) := −𝜿 for any Ξ ∈ 𝔏−, and we define

𝖘i0 (Ξ, 𝜏) :=
{
𝖘(Ξ, 𝜏) if i(𝜏) ≤ i0

−𝜿 if i(𝜏) > i0

for any noise type (Ξ, 𝜏) ∈ 𝕷−. Here we use the total order ≤ on I introduced in Section 5.3.

Lemma 5.20 Let i ∈ I and let i↑ := min{j ∈ I★ : j > i}. For any 𝐴 > 0 there exists a constant
𝐶𝑁 (_i↑) > 0, such that for any 𝑁 ∈ N the bound

∥[Y (𝑎, _)∥𝖘i0 ≤ 𝐶𝑁 (_i↑)

holds uniformly over all families _ ∈ Λ and 𝑎 ∈ A with max𝜏∈𝔗− |𝑎𝜏 | < 𝐴.

Proof. This follows directly from Lemma 5.11.

We denote byTi ⊆ T− the unital subalgebra generated by trees of negative | · |𝖘i-homogeneity. Note
that 𝜿 was chosen small enough so that for any tree 𝜏 ∈ T− one has 𝜏 ∈ Ti if and only if for any noise
type edge 𝑒 ∈ 𝐿 (𝜏) on has either 𝔱(𝑒) ∈ 𝔏− or 𝔱(𝑒) = (Ξ, 𝜏) with i(𝜏) ≤ i0. We denote by pi

− the
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multiplicative projection ofT− ontoTi, and we define 𝒈𝜺i := 𝒈𝜺pi
− (we usually suppress the dependence

of (𝑎, _) in this notation).
It follows that 𝒈𝜺

i
restricted to Ti is just the BPHZ-character for the homogeneity assignment 𝖘i

and the evaluation [Y . Applying the results of [CH16] to the homogeneity assignment 𝖘i we obtain the
following estimate.

Lemma 5.21 For any i ∈ I there exists a constant 𝐶𝑁 (_i↑) > 0 such that for any 𝜏 ∈ T̂− the bound

|Υ[Y𝑀𝒈𝜺
i𝜏 | ≤ 𝐶𝑁 (_i↑)

holds uniformly over all families _ ∈ Λ and 𝑎 ∈ A with max𝜏∈𝔗− |𝑎𝜏 | < 𝐴.
Moreover, one has

g𝑖 (𝑎, _)𝜏 := lim
Y→0

Υ[
Y

𝑀𝒈𝜺
i𝜏

exists and is a continuous function in (𝑎, _).

Proof. Both statements follow from Lemma 5.20 and [CH16, Thm. 2.31].

We are finally in the position to prove Lemma 5.17.

Proof of Lemma 5.17. We fix from now on a tree 𝜏 ∈ 𝔗− and assume that the statement of Lemma 5.17
holds for any 𝜏 ∈ 𝔗≺𝜏

− . We set j := i(𝜏) and we define a character 𝒌𝜺
j
∈ G− by

𝒌𝜺j ◦ 𝒈𝜺j = 𝑔Y . (5.28)

It then follows that for any 𝜏 ∈ T ≺𝜏
− one has

Υ[
Y

𝑀𝑔YS 𝜏 = (𝒌𝜺j ⊗ Υ[
Y

𝑀
𝒈𝜺
j)Δ−𝔦S 𝜏

= (𝒌𝜺jS ⊗ Υ[
Y

𝑀
𝒈𝜺
jS ) (Δ−𝔦 − Id ⊗ 1)𝜏 + 𝒌𝜺jS 𝜏.

It follows from this identity and the definition of the coproduct that there exists a fixed polynomial 𝑃 �̃� in
T ⪯ �̃�

− × T variables such that

𝒌𝜺jS 𝜏 = Υ[
Y

𝑀𝑔YS 𝜏 + 𝑃 �̃�
(
𝒌𝜺jS 𝜏 , Υ[

Y

𝑀
𝒈𝜺
jS 𝜏 : 𝜏 ∈ T ⪯ �̃�

− , 𝜏 ∈ T
)
. (5.29)

We prove inductively in ≺ that for any 𝜏 ∈ T ≺𝜏
− there exists a continuous function

f(·, ·, ·)𝜏 : A × RT ≺𝜏
− × Λ → R (5.30)

such that f(𝑎, (𝐹�̂� (𝑎, _)) �̂�∈T ≺𝜏
− , _)𝜏 is equal to (5.29) in the limit Y → 0 for any (𝑎, _) ∈ A × Λ, and

such that for any 𝐶 > 0 the estimate

|f(𝑎, 𝑏, _)𝜏 | ≲ 𝐶𝑁 (_j↑)

holds uniformly over all (𝑎, 𝑏) ∈ A × RT ≺𝜏
− such that sup�̄�∈𝔗− |𝑎 �̄� | ∨ sup�̄�∈T ≺𝜏

−
|𝑏 �̄� | < 𝐶 and Y > 0

small enough (where “small enough” may depend on (𝑎, 𝑏)). We can write

lim
Y→0

𝒌𝜺jS 𝜏 = 𝐹�̃� (𝑎, _) + 𝑃 �̃�
(
f(𝑎, (𝐹�̂� (𝑎, _)) �̂�∈T ≺𝜏

− , _)𝜏 , g𝑗 (𝑎, _)𝜏 : 𝜏 ∈ T ⪯ �̃�
− , 𝜏 ∈ T

)
=: f(𝑎, (𝐹�̂� (𝑎, _)) �̂�∈T ≺𝜏

− , _)𝜏,
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which is bounded in the required way by Lemma 5.21 and the induction hypothesis. In order to continue,
we now make the claim that for any tree 𝜏 ∈ T− one has 𝒌𝜺j𝜏 = 0 if at least one of the following three
properties is satisfied.
1. One has 𝜏 ∈ T−.
2. For any partition 𝜋 ∈ P(𝐿 (𝜏)) one has∏

𝑃∈𝜋
E𝑐 [([Y

𝑡 (𝑒) (𝑥𝑒))𝑒∈𝑃] = 0 (5.31)

for any (𝑥𝑒)𝑒∈𝐿 ( �̃�) ∈ (D̄)𝐿 ( �̃�) , where 𝔱 : 𝐿 (𝜏) → 𝕷− denotes the type map of 𝜏.
3. One has |𝜏 |𝖘j > 0.
The first claim follows from the fact that T− is a Hopf subalgebra ofT− and on T− the characters 𝑔Y
and 𝒈𝜺

j
agree. For the second claim we denote by I ⊆ T− the ideal inT− generated by all trees 𝜏 ∈ T−

with the property that (5.31) holds. Then I forms a Hopf ideal, and by definition of the BPHZ character
it follows that both 𝑔Y and 𝒈𝜺

j
vanish on I. The claim now follows from the fact that the annihilator

of any Hopf ideal forms a subgroup of G−. The third claim follows similarly, noting that Δ− preserves
the | · |𝖘j-homogeneity, in the sense that |Δ−𝜏 |𝖘j = |𝜏 |𝖘j, where on the left-hand side we add up the
homogeneities of products of trees. It follows that the ideal I+

j
inT− generated by trees 𝜏 ∈ T− such that

|𝜏 |𝖘j > 0 is a Hopf ideal. Since moreover one has that 𝒈𝜺
j
and 𝑔Y vanish on I+

i
, the claim follows again

from the fact that annihilators of Hopf ideals are subgroups.
As a corollary, we obtain the identity

(𝒌𝜺j ⊗ Υ[
Y

𝑀
𝒈𝜺
j) (Δ−𝔦 − Id ⊗ 1) (S ↑ + Id)𝜏 = 0. (5.32)

Indeed, let 𝜏 ∈ S ↑[𝜏]. Then there exists a unique noise type edge 𝑒 ∈ 𝐿 (𝜏) such that 𝔱(𝑒) ∉ 𝔏−, and for
this edge [Y

𝔱 (𝑒) is an element of the 𝑚(𝜏)-th homogeneous Wiener chaos. It follows that whenever 𝜏 ≠ 1
is a proper subtree of 𝜏, so that in particular 𝐿 (𝜏) ⊊ 𝐿 (𝜏), then either the first or the second point above
are satisfied. The claim then follows, since on the one hand Υ[Y𝑀𝒈𝜺

j𝑋 𝑘 = 0 for any 𝑘 ∈ N𝑑\{0}, and on
the other hand |𝜏 |𝖘j < 0 implies that Υ[Y𝑀𝒈𝜺

j𝜏 = 0. Here we use that 𝖘j was chosen in such a way that
|𝜏 |𝖘j ≤ ¯̂ < 0 for any 𝜏 ∈ S ↑[𝜏].
As a second corollary, we get that if 𝜏 is such that 8𝜏8𝔰 < 0, then

𝒌𝜺jS ↓𝜏 = 0. (5.33)

To see this, let 𝜏 ∈ S ↓[𝜏]. It is clear that whenever there exists 𝑒 ∈ 𝐿 (𝜏) such that either 𝔱(𝑒) = Ξ̃ for
some Ξ ∈ 𝔏−, or 𝔱(𝑒) = (Ξ, 𝜏) with i(𝜏) > j, then one has |𝜏 |𝖘j > 0, and by the third point above it
follows that 𝒌𝜺

j
𝜏 = 0. Thus, we can assume that 𝔱(𝑒) ∈ 𝔏− or 𝔱(𝑒) = (Ξ, 𝜏) with i(𝜏) ≤ jfor all 𝑒 ∈ 𝐿 (𝜏).

Assume now that in addition there are two distinct 𝑒, 𝑓 ∈ 𝐿 (𝜏) such that 𝔱(𝑒), 𝔱( 𝑓 ) ∉ 𝔏−, say
𝔱(𝑒) = (Ξ̄, 𝜏) and 𝔱( 𝑓 ) = (Ξ̂, 𝜏). Then the assumption i(𝜏) ∨ i(𝜏) ≤ j implies that 8𝜏8𝔰 ∨ 8𝜏8𝔰 ≤ 8𝜏8𝔰 .
Upon choosing ¯̂ small enough, one has

|𝜏 |𝖘j ≥ |𝜏 |𝔰 − (8𝜏8𝔰 + ¯̂) − (8𝜏8𝔰 + ¯̂)
≥ |𝜏 |𝔰 − 2(8𝜏8𝔰 + ¯̂) > 0.

(5.34)

In the remaining case there exists a unique 𝑒 ∈ 𝐿 (𝜏) such that 𝔱(𝑒) ∉ 𝔏−, say 𝔱(𝑒) = (Ξ̄, 𝜏). We
distinguish the case 8𝜏8𝔰 = 8𝜏8𝔰 and 8𝜏8𝔰 < 8𝜏8𝔰 (by the discussion above we have i(𝜏) ≤ j, so that the
case 8𝜏8𝔰 > 8𝜏8𝔰 is ruled out). In the first case, we have by definition of ≤ andS ↓ that #𝐿 (𝜏) > #𝐿 (𝜏),
so that [Y

𝔱 (𝑒) takes values in a homogeneous Wiener chaos of order strictly greater than 𝑚(𝜏), so that the
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second point above applies. In the second case it follows similarly to before that

|𝜏 |𝖘j ≥ |𝜏 |𝔰 − 8𝜏8𝔰 − ¯̂ > 0,

so that the third point above applies, and this finishes the proof of the claim.
We now conclude that in case 8𝜏8𝔰 < 0, it follows from (5.32) and (5.33) that

𝐹
↓
𝜏 (𝑎, _) = lim

Y→0
(𝒌𝜺j ⊗ Υ[

Y

𝑀
𝒈𝜺
j) (Δ−𝔦 − Id ⊗ 1)S ↓𝜏 + 𝒌𝜺jS ↓𝜏

= lim
Y→0

(𝒌𝜺jS ⊗ Υ[
Y

𝑀
𝒈𝜺
jS ) (Δ−𝔦 − Id ⊗ 1)𝜏,

and using the definition off in (5.30) together with Lemma 5.21 this can be re-written as

𝐹
↓
𝜏 (𝑎, _) = (f(𝑎, (𝐹�̃�)𝜏∈T ≺𝜏

− (𝑎), _) ⊗ g(𝑎, _)) (Δ−𝔦 − Id ⊗ 1)𝜏

so that
𝐺𝜏 (𝑎, 𝑏, _) := (f(𝑎, 𝑏, _) ⊗ g(𝑎, _)) (Δ−𝔦 − Id ⊗ 1)𝜏

has the desired form (5.21).
It remains to treat the case 8𝜏8𝔰 = 0, where the estimate (5.34) fails in general. However, we will show

that a slightly weaker statement than (5.33) still holds, namely there exists a constant 𝐶𝑁 (_j↑) such that

|𝒌𝜺jS ↓𝜏 | ≤ 𝐶𝑁 (_j↑). (5.35)

Proceeding identically to above, this suffices to finish the proof of Lemma 5.17.
To show (5.35) we recall that by Assumption 5 one has for any 𝜏 ∈ V and any 𝜏 ∈ S [𝜏] that

𝑔Y𝜏 = 𝒈𝜺
j
𝜏 = 0. It follows from this, (5.28) and the fact that the unital algebra generated by

⋃
𝜏∈VS [𝜏]

is a Hopf subalgebra ofT− that one also has 𝒌𝜺j𝜏 = 0 for any 𝜏 ∈ S [𝜏] and any 𝜏 ∈ V. In particular

0 = 𝑔YS ↓𝜏 = (𝒌𝜺j ⊗ 𝒈𝜺j)Δ−S ↓𝜏 = 𝒌𝜺jS ↓𝜏 + 𝒈𝜺jS ↓𝜏.

The estimate (5.35) now follows from (5.36) below, using the fact that one has the identity 𝒈𝜺
j
𝜏 = 𝒈𝜺𝜏

for any tree 𝜏 ∈ T− such that 𝒈𝜺j𝜏 ≠ 0.

Remark 5.22 The last step of the previous proof, relating 𝒌𝜺
j
S ↓𝜏 and 𝒈𝜺

j
S ↓𝜏, does not need Assump-

tion 5, although the argument is greatly simplified. The assumption is however needed in the proof of
(5.36) below.

Lemma 5.23 Let 𝜏 ∈ T− satisfy 8𝜏8𝔰 = 0, and let 𝜏 ∈ S ↓[𝜏] be such that 8𝜏8𝖘 ≤ 0. Then for any noise
type edge 𝑒 ∈ 𝐿 (𝜏) one has 𝔱(𝑒) = Ξ or 𝔱(𝑒) = Ξ̃ for some Ξ ∈ 𝔏−, or 𝔱(𝑒) = (Ξ, 𝜏) with 𝜏 ∈ 𝔗− such
that 8𝜏8𝔰 = 0.

Moreover, setting j := i(𝜏), for any 𝜌 > 0 the bound

|𝒈𝜺𝜏 | ≤ 𝐶 (_j↑), (5.36)

uniformly over 𝑎 ∈ A with max𝜏∈𝔗− |𝑎𝜏 | < 𝜌 is attainable.

Proof. The first statement follows directly from the definition. For (5.36) we distinguish three cases.
First case.There exists 𝑒 ∈ 𝐿 (𝜏) with _(𝔱(𝑒)) > _j; that is, one has either 𝔱(𝑒) = Ξ̃ ∈ �̃�− or 𝔱(𝑒) = (Ξ, 𝜏)
with 8𝜏8𝔰 = 0 and #𝐿 (𝜏) < #𝐿 (𝜏). In this case consider the homogeneity assignment �̃� given by

�̃�(𝔱) := 𝖘(𝔱) + \I𝔱=𝔱 (𝑒) ,
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for any 𝔱 ∈ 𝕷− where \ := −|𝜏 |𝖘 + ^. Then, one has |𝜏 |�̃� > 0. Let �̃�𝜺 be the BPHZ character for this
homogeneity assignment and the noise [Y . From Assumption 5 it follows that

𝒈𝜺 (𝜏) = (𝒈𝜺 ⊗ Υ[
Y ) (Δ−𝔦 − Id ⊗ 1)𝜏 = ( �̃�𝜺 ⊗ Υ[

Y )Δ−𝔦𝜏 =

Υ[
Y

𝑀 �̃�𝜺𝜏 ≲ _(𝔱(𝑒))8�̃�8�̃� ≤ 𝐶 (_j↑). (5.37)

Here we used that by construction �̃�𝜺𝜏 = 0. We also used that whenever 𝜏𝔫𝔢 ⊆ 𝜏 is a proper subtree such
that for some polynomial decoration �̃� one has 8𝜏�̃�𝔢 8𝖘 = 0 and 𝔱(𝑒) ∈ 𝔱(𝐿 (𝜏)), then |𝜏�̃�𝔢 |�̃� > 0, so that
�̃�𝜺𝜏 = 0. On the other hand, by Assumption 5 one also has 𝒈𝜺𝜏�̃�𝔢 = 0.
Second case. There exists a unique noise type edge 𝑒 ∈ 𝐿 (𝜏) with 𝔢(𝑒) ∉ 𝔏−. We only need to consider the
case that 𝔱(𝑒) is of the form (Ξ, 𝜏) for some 𝜏 ∈ T− with 8𝜏8𝔰 = 0 and #𝐿 (𝜏) > #𝐿 (𝜏); otherwise either
the first case above applies, or 𝜏 ∈ S ↑[𝜏]. In this case however we recall that [Y(Ξ, �̄�) takes values in the
(#𝐿 (𝜏) − 1)-th Wiener chaos, and since #𝐿 (𝜏) − 1 ≥ #𝐿 (𝜏) and all other noise type edges (there are only
#𝐿 (𝜏) − 1 such edges) carry Gaussian noises, there is no non-vanishing cumulant, and one has 𝒈𝜺 (𝜏) = 0.
Third case. In the final case there exist 𝑟 ≥ 2 distinct noise type edges 𝑒1, . . . , 𝑒𝑟 ∈ 𝐿 (𝜏) with
𝔱(𝑒𝑖) = (Ξ̄𝑖 , 𝜏𝑖), and one has 8𝜏𝑖8𝔰 = 0 and #𝐿 (𝜏𝑖) ≥ #𝐿 (𝜏). At this point we recall the definition (5.9)
of 𝐾 (Ξ̄𝑖 , �̄�𝑖) from which it follows that these two kernels are sums over 𝑁𝑖 := 𝑁 �̄�𝑖 kernels respectively,
and we write

𝐾 (Ξ̄𝑖 , �̄�𝑖) =
𝑎 �̄�𝑖

𝑁𝑖
_− ¯̂
𝜏𝑖

𝑁𝑖−1∑︁
𝑚=0

𝐾𝑚𝑖

with (recall that 𝛼(Ξ̄𝑖 , �̄�𝑖) = −#𝐿 (𝜏𝑖) |𝔰 |2 − ¯̂)

𝐾𝑚𝑖 := _− ¯̂𝑚S
(
2−𝑚_𝜏𝑖 , #𝐿 (𝜏𝑖)

|𝔰 |
2

)
Φ(Ξ̄𝑖 , �̄�𝑖) .

In order to simplify the argument below, we assume that the noise types (Ξ̄𝑖 , 𝜏𝑖) are all different. (If
this is not the case, extend the regularity structure at this point by introducing sufficiently many distinct
copies of the noise types (Ξ̄𝑖 , 𝜏𝑖), and extend [Y such that it acts identically on each copy of any given
noise type. The argument below can then be applied to the extended regularity structure and the extended
set of noise types.)
Given 𝑛 = (𝑛1, . . . 𝑛𝑟 ) with 𝑛𝑖 ∈ {0, . . . , 𝑁𝑖 − 1}, we write [Y𝑛 for the noise defined by (5.12) but with

𝐾 (Ξ̄𝑖 , �̄�𝑖) replaced by 𝐾
𝑛𝑖
𝑖
and we write 𝒈𝜺𝒏 for the BPHZ character for the noise [Y𝑛 . It follows that with

𝑎 = 𝑎 �̄�1 · · · 𝑎 �̄�𝑛 one has

𝒈𝜺 (𝜏) = 𝑎
_− ¯̂
𝜏1 . . . _

− ¯̂
𝜏𝑟

𝑁1 . . . 𝑁𝑟

𝑁1−1∑︁
𝑛1=0

· · ·
𝑁𝑟−1∑︁
𝑛𝑟=0

𝒈𝜺𝒏 (𝜏). (5.38)

By Corollary A.24 there exists \ > 0 such that

|𝒈𝜺𝒏 (𝜏) | ≲
( min𝑖 2−𝑛𝑖_𝜏𝑖
max𝑖 2−𝑛𝑖_𝜏𝑖

) \
(5.39)

We can assume that _1 ≤ _2 ≤ · · · ≤ _𝑟 and hence also 𝑁1 ≥ 𝑁2 ≥ · · · ≥ 𝑁𝑟 . At this point we recall that
the scales are “well separated”, and in particular there is no loss of generality to assume that whenever
_𝜏𝑖 > _𝜏 𝑗 one also has 2−𝑁𝑖_𝜏𝑖 > _𝜏 𝑗 . Then one has the bound

|𝒈𝜺 (𝜏) | ≲
_−𝑟 ¯̂

1
𝑁1 . . . 𝑁𝑟

𝑁1−1∑︁
𝑛1=0

· · ·
𝑁𝑟−1∑︁
𝑛𝑟=0

2−\ (max𝑖 𝑛𝑖−min𝑖 𝑛𝑖) . (5.40)
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Up to a combinatorial factor we can restrict the sum to the regime 𝑛1 ≥ . . . ≥ 𝑛𝑟 . Changing variables in
the sum so that 𝑘 = (max𝑖 𝑛𝑖) − (min𝑖 𝑛𝑖) = 𝑛1 − 𝑛𝑟 , we obtain the bound

𝑁1−1∑︁
𝑛1=0

· · ·
𝑁𝑟−1∑︁
𝑛𝑟=0

2−\ (max𝑖 𝑛𝑖−min𝑖 𝑛𝑖) ≲
∑︁
𝑘

𝑁2−1∑︁
𝑛2=0

· · ·
𝑁𝑟−1∑︁
𝑛𝑟=0

2−\𝑘 ≲ 𝑁2 . . . 𝑁𝑟 .

With (5.40) we obtain

|𝒈𝜺 (𝜏) | ≲ 𝑁−1
1 _−𝑟 ¯̂

1 ,

and recalling that 𝑁1 ∼ _−1
1 it remains to choose ¯̂ small enough so that 𝑟 ¯̂ < 1, where 𝑟 denotes the

maximal number of noise type edges appearing in any tree 𝜏 ∈ T−.

A. Technical proofs and notations

A.1. The coproduct via forests

In some of the arguments we are going to perform a construction for which it will be important to first
derive certain identities involving the co-product. The proofs of some of these statements are relatively
straightforward but turn out to be a bit fiddly, and these arguments are going to get more clear using
some notation that we introduce in this section.

Definition A.1 For a rooted, typed tree (𝑇, 𝔱) way say that F is a sub-forest of 𝑇 if F is a subgraph of 𝜏
without isolated vertices. We call Fa subtree if F is non-empty and connected. We write 𝑇/Ffor the
rooted, typed tree obtained by contracting any connected component of 𝑇 to a single vertex.

We write F̄for the set of the connected components ofF. In a natural way one can view any connected
component of 𝑆 ∈ F̄again as a rooted, typed tree (𝑆, 𝔱) where the type 𝔱 is simply taken over from 𝑇 .
The set of vertices 𝑉 (𝑇/F) can now be naturally identified with the set (𝑉 (𝑇)\𝑉 (F)) ⊔ {𝑢𝐴 : 𝐴 ∈ F̄},
where 𝑢𝐴 ∈ 𝑉 (𝑇/F) denotes the vertex obtained by contracting the subtree 𝐴 of 𝑇 . It follows that there
exists a map 𝜑F

𝑇
: 𝑉 (𝑇) → 𝑉 (F/𝑇) defined by

𝜑F𝑇 (𝑢) :=

{
𝑢𝐴 if 𝑢 ∈ 𝑉 (𝐴) with 𝐴 ∈ F̄

𝑢 if 𝑢 ∈ 𝑉 (𝑇)\𝑉 (F).
(A.1)

Given a tree 𝜏 ∈ Tex then 𝜏 is of the form 𝜏 = 𝑇𝔫,𝔬
𝔢 for some rooted, typed tree 𝑇 , and we say that F is a

sub-forest of 𝜏 if F is a sub-forest of 𝑇 .
Given a tree 𝜏 = 𝑇𝔫,𝔬

𝔢 ∈ Tex we write div(𝜏) for the set of sub-forests Fof 𝜏 with the property that
for any 𝑆 ∈ F̄one has |𝑆0

𝔢 |𝔰 < 0. We write 𝜕F𝐸 (𝜏) ⊆ 𝐸 (𝜏) for the set of 𝑒 ∈ 𝐸 (𝜏) with the property
that 𝑒 ∉ 𝐸 (F) but 𝑒↓ ∈ 𝑁 (F). For a map ē : 𝐸 (𝜏) → Z𝑑 ⊕ Z(𝔏) we write 𝜋 ē : 𝑁 (𝜏) → Z𝑑 ⊕ Z(𝔏)
for the map defined by

𝜋 ē(𝑢) :=
∑︁

𝑒∈𝐸 (𝜏) ,𝑒↓=𝑢
ē(𝑒).

Finally, if𝔪 : 𝑁 (𝜏) → Z𝑑 ⊕Z(𝔏) the we define𝔪/F : 𝑁 (𝜏/F) → Z𝑑 ⊕Z(𝔏) by setting (𝔪/F) (𝑢) :=
𝔪(𝑢) of 𝑢 ∈ 𝑁 (𝜏)\𝑁 (F) and

(𝔪/F) (𝑢) :=
∑︁

𝑣∈𝑁 (𝑆)
𝔪(𝑣)
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if 𝑢 ∈ 𝑁 (𝜏/F) was generated by contracting the subtree 𝑆 ∈ F̄. With this notation we have the following
formula for the coproduct Δ− : Tex → T− ⊗ Tex from [BHZ19, Def. 3.3,Def. 3.18]:

Δ−𝜏 =
∑︁

F∈div(𝜏)

∑︁
𝔫F,eF

1
eF!

(
𝔫

𝔫F

) ∏
𝑆∈F

𝑆
𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F , (A.2)

where [𝔬]F := (𝔬 + 𝔫F + 𝜋(eF − 𝔢|F + 𝔱 |𝐸 (F) )/F. Here we use the same convention as in [BHZ19,
Def. 3.3]: Given a typed tree 𝜏 and a subforest Fof 𝜏, then the notations 𝔫F and eF always denote
decorations 𝔫F : 𝑁 (𝜏) → N𝑑 and eF : 𝐸 (𝜏) → N𝑑 with the property that

supp 𝔫F ⊆ 𝑁 (F) and supp𝔢F ⊆ 𝜕F𝐸 (𝜏). (A.3)

We furthermore use the convention that a sum over 𝔫F and 𝔢F ranges over all decorations satisfying (A.3).

A.2. Some technical proofs

Proof of Lemma 4.31. Note first that for an undecorated tree 𝑆 one has that 𝑆𝔫𝔢 ∈ Iholds either for all
choices of decorations 𝔫,𝔢 or for no choice of decoration, and for the purpose of this proof we write
𝑆 ∈ I★ in the first case.
In order to see that (4.23) holds, we only need to show that for any forest F∈ div(𝜏) which is not of

the form G for some G∈ div(𝜋𝜏) one has∏
𝑆∈F

𝑆
𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F ∈ I⊗ T̂ex
− +T− ⊗ Î. (A.4)

If there exists 𝑆 ∈ F̄ such that 𝐸 (𝑆) = 𝐿L (𝑆) (i.e. such that 𝑆 consists only of the root with a finite
number of legs attached to it), then (A.4) follows at once. Otherwise, we write 𝜋Ffor the sub forest of F
given by removing all legs, i.e. 𝜋F is the subgraph of 𝜋𝜏 induced by the edge set

𝐸 (𝜋F) := 𝐸 (F)\𝐿L (𝜏).

Then one has 𝜋F ∈ div(𝜋𝜏), and since F≠ 𝜋Fby assumption, there exists 𝑆 ∈ Fwith the property
such that 𝐿L (𝑆) ≠ 𝐿L (𝜋𝑆). Assume first that 𝐿L (𝑆) contains a leg 𝑒 with the property that 𝑒 ∉ 𝐿L (𝜋𝑆).
Then, since 𝜏 is properly legged, the leg 𝑒 has a unique partner 𝑒 ∈ 𝐿L (𝑇) in 𝑇 and one has 𝑒↓ ∉ 𝑁 (𝑆)
(since otherwise one would have 𝑒↓, 𝑒↓ ∈ 𝑁 (𝑆) and hence 𝑒, 𝑒 ∈ 𝐿L (𝜋𝑆) by definition of 𝜋𝑆). Thus, 𝑒
does not have a partner in 𝑆 and hence 𝑆 ∈ I★. Otherwise, 𝐿L (𝑆) ⊊ 𝐿L (𝜋𝑆). Then, there exists legs
𝑒, 𝑒 ∈ 𝐿L (𝜋𝑆) such that {𝔱(𝑒), 𝔱(𝑒)} ∈ L, and such that at least one of these two legs is not an element of
𝐿L (𝑆). If 𝑒 ∈ 𝐿L (𝑆) but 𝑒 ∉ 𝐿L (𝑆) (or the other way round), then one has 𝑆 ∈ I★. If 𝑒, 𝑒 ∉ 𝐿L (𝑆) then
one has 𝑒↓ = 𝑒↓ in 𝑇/F(since the vertices 𝑒↓ and 𝑒↓ in 𝑇 belong to the same connected component of
F) and thus 𝑇/F∈ Î★.
We now show that Tpl

− is a Hopf subalgebra, the claim that T̂ex,pl
− is a co-module follows very

similarly. We need to show that Δ−Tpl
− ⊆ Tpl

− ⊗ Tpl
− . For this it is sufficient to show that Δ−𝑷⊙𝜏 =

(𝑷⊙ ⊗ 𝑷⊙)Δ−𝜏 ∈ Tpl
− ⊗ Tpl

− for any properly legged tree 𝜏 = 𝑇𝔫
𝔢 ∈ T−, which in turn follows once we

show that any sub-forest F= G for some G∈ div(𝜋𝜏) has the property that the trees 𝑆 ∈ F̄and the tree
𝑇/Fare all properly legged.
It follows from the definition of the coproduct that if 𝜏 is properly legged, then point 1. in Definition 4.23

carries over to any subtree 𝑆 ∈ Fand also to 𝑇/F. Moreover, point 2. also immediately carries over
to subtrees 𝑆 ∈ F. To see that point 2. is inherited also by 𝑇/F, we note that by assumption on the
regularity structure it follows that whenever 𝑆 is a subtree of 𝜋𝜏 with 8𝑆0

𝔢8𝔰 < 0, then for any 𝑢 ∈ 𝐿 (𝜏)
one has 𝑢 ∈ 𝐿 (𝑆) if and only of 𝑢↓ ∈ 𝑁 (𝑆). Applying this to fact to the trees 𝑆 ∈ G, it follows that
one has L(𝜏/F) = L(𝜏)\𝑁 (F) and moreover, for any 𝑢 ∈ L(𝜏/F) one has that the sets 𝐸 (𝑢, 𝜏/F)
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and 𝐸 (𝑢, 𝜏), given respectively as the sets containing all edges 𝑒 ∈ 𝐸 (𝜏/F) and 𝑒 ∈ 𝐸 (𝜏) with 𝑒↓ = 𝑢,
coincide, which together imply that 2. holds with i = i|L(𝜏/F) .
The fact that points 4. and 3. of Definition 4.23 hold for any 𝑆 ∈ F̄ follow from the definition of

F= G. The fact that 4. holds for 𝑇/F follows from the fact that 𝐸 (𝑢, 𝜏) = 𝐸 (𝑢, 𝜏/F) for any 𝑢 ∈ L(𝜏).
A very similar argument shows that 3 holds also for 𝑇/F. Finally, note that 5. holds trivially for the left
component of Δex

− 𝜏 since this component does not contain coloured vertices by definition. The fact that 5.
holds for 𝑇/Fcan be argued very similarly to 4.

Proof of Lemma 4.40. Using Lemma 4.62, it suffices to show that Δ− ker Q0 ⊆ ker(Q0 ⊗ Q0), which
follows once we show that (Q0 ⊗ Q0)Δ− = (Q0 ⊗ Q0)Δ−Q0. This in turn is a consequence of

(P0 ⊗ P0)Δ−𝜏 = (P0 ⊗ P0)Δ−Q0𝜏 (A.5)

for any 𝜏 ∈ Tpl
− . Since both sides are linear and multiplicative, it suffices to show this for trees 𝜏 ∈ Tpl

− .
In the case that the derivative decoration 𝔢 of 𝜏 does not vanish identically on legs, identity (A.5)

follows directly from the fact that the coproduct Δ− never decreases the decoration 𝔢, so that either the
right or the left component of Δ−𝜏 contains at least one leg with non-vanishing derivative decoration.
Hence, both sides in (A.5) vanish.
In the remaining case one has 𝔢|𝐿L (𝜏) = 0 and thus Q0𝜏 = Q𝜏. Recall that one has Δ− = (Id⊗p−)Δ−𝖎−

onTpl
− . We then note that one has 𝜋𝜏 = 𝜋Q𝜏, so that from (4.23) we infer

Δ−𝖎−Q𝜏 =
∑︁

F∈div(𝜋𝜏)

∑︁
𝔫F,eF

1
eF!

(
𝔫

𝔫F

) ∏
𝑆∈F

𝑆
𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F ,

where F= F[Q𝜏]. If we compare the second sum in this identity to the corresponding sum in (4.23),
we see that they only differ by the range of the decoration 𝔢F, since the sum above puts derivatives also
on superfluous legs. If we write 𝐿∗L (𝜏) ⊆ 𝐿L (𝜏) for the set of superfluous legs of 𝜏, it follows that one
has the idenity

Δ−𝖎−Q𝜏 =
∑︁

F∈div(𝜋𝜏)

∑︁
𝔫F,eF

𝔢F|𝐿∗L (𝜏)=0

1
eF!

(
𝔫

𝔫F

) ∏
𝑆∈F

Q𝑆
𝔫F+𝜋eF
𝔢 ⊗ Q(𝑇/F)𝔫−𝔫F, [𝔬]F

𝔢+𝔢F ,

where this time F= F[𝜏]. Since any term on the right-hand side of (4.23) with 𝔢F non vanishing on
𝐿∗L (𝜏) yields an element ofTpl

− ⊗ ker P0, the claim follows.

Lemma A.2 Let Abe the symmetric algebra of a finite-dimensional vector space B, and let Φ ⊆ B∗ be
a linear subspace of the dual space B∗ of B. For any 𝑓 ∈ B∗, denote by 𝑓∗ ∈ A∗ the unique character
of Aextending 𝑓 . Finally, for any 𝐶 ⊆ A, write J(𝐶) for the ideal in Agenerated by 𝐶.

Then, one has I := J
( ⋂

𝜑∈Φ ker 𝜑
)
=

⋂
𝜑∈Φ ker 𝜑∗ =: Ī.

Proof. The inclusion I ⊆ Ī is trivial so we only need to show that Ī ⊆ I.
Define Φ⊥ ⊆ B by Φ⊥ :=

⋂
𝜑∈Φ ker 𝜑, Let 𝑋 be a basis of Φ⊥, let 𝑌 be a basis of a complement of

Φ⊥ inB, and observe that 𝑋 ∪ 𝑌 generates A freely as a commutative, unital algebra. So, for any 𝑎 ∈ A

there exist 𝑟 ≥ 0, 𝑐𝑖 ∈ R and 𝑏𝑖 : 𝑋 ∪ 𝑌 → N such that

𝑎 =
∑︁
𝑖≤𝑟

𝑐𝑖

∏
𝑥∈𝑋

𝑥𝑏𝑖 (𝑥)
∏
𝑦∈𝑌

𝑦𝑏𝑖 (𝑦) . (A.6)

We will always assume that this sum is minimal in the sense that 𝑐𝑖 ≠ 0 and 𝑖 ≠ 𝑗 ⇒ 𝑏𝑖 ≠ 𝑏 𝑗 , which
makes the representation unique, modulo a permutation of the index set {1, . . . , 𝑟}.
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The ideal I consists precisely of those elements 𝑎 ∈ A such that in the representation (A.6) one has
𝑏𝑖↾𝑋 ≠ 0 for all 𝑖. For 𝑎 ∈ Ī, we can therefore write 𝑎 = 𝑎0 + 𝑎1 with 𝑎1 ∈ I and 𝑎0 belonging to the
subalgebra A𝑌 ⊂ Agenerated by 𝑌 . Assuming by contradiction that 𝑎0 ≠ 0, one can find a character 𝜑 of
A𝑌 such that 𝜙(𝑎0) ≠ 0. If we extend 𝜑 to all of Aby setting 𝜑(𝑥) = 0 for 𝑥 ∈ 𝑋 , then 𝜑 ∈ (Φ⊥)⊥ = Φ,
so that 𝜑(𝑎0) = 0 and therefore 𝜑(𝑎) ≠ 0 in contradiction with the assumption that 𝑎 ∈ Ī.

A.3. Feynman diagrams

We state and sketch the proof of (a slight generalisation) of [Hai18, Thm. 3.1, Thm. 4.3]. Let for this
L★ be a non-empty set of types and let L := L★ ⊔ {𝛿}. In analogy to [Hai18, Def. 2.1] we make the
following definition.

Definition A.3 A Feynman diagram is a finite directed graph Γ = (𝑉, 𝐸) endowed with the following
additional data

• An ordered set of distinct vertices �̄� = {[1], . . . , [𝑘]} ⊆ 𝑉 such that each [𝑖] has exactly one
outgoing edge called “leg” and no incoming edge and such the each connected component of Γ
contains at least one leg. We write 𝑉★ := 𝑉 \ �̄� and 𝐸★ ⊆ 𝐸 for the set of internal edges, i.e. edges
which are not legs. For each [𝑖] ∈ �̄� we denote by 𝑖★ the vertex such that ( [𝑖], 𝑖★) ∈ 𝐸 .

• For every connected component Γ̃ of Γ we choose a distinguished vertex 𝑣★(Γ̃). For any 𝑢 ∈ 𝑉 we
write 𝑢★ for the distinguished vertex 𝑣★(Γ̃) of the connected component Γ̃ which contains 𝑢.

• Decorations 𝔱 : 𝐸 → L such that 𝔱(𝑒) = 𝛿 if and only if 𝑒 is a leg, 𝔢 : 𝐸 → N𝑑 and 𝔫 : 𝑉★ → N𝑑 .
We write Γ𝔫

𝔢 whenever we want to make the decorations explicit.

This definition differs slightly from [Hai18, Def. 2.1] since we include a polynomial decoration 𝔫.
As in [Hai18, Def. 2.7] we define a vacuum diagram as a Feynman diagram Γ such that each connected

component contains exactly one leg. We write D for the linear space generated by all Feynman diagrams,
and we write D̂− for the algebra of all vacuum diagrams such that each connected component contains at
least one internal edge. As in [Hai18] we factor out a subspace (resp. an ideal) on which the valuation
(which we will define below) vanishes. We define 𝜕D (resp. 𝜕 D̂−) as the smallest subspace of D (resp.
the smallest ideal in D̂−) which contains the expressions [Hai18, Eq. 2.16, 2.17, 2.18] for any connected
Feynman diagram, and we set

H := D/𝜕D and Ĥ− := D̂−/𝜕 D̂−.

Degree assignments
In [Hai18] it was assumed that we are given a degree assignment deg : L→ R− and for any 𝐶 > 0
bounds were derived uniformly in kernel assignments 𝐾 such that ∥𝐾𝔱 ∥deg 𝔱 < 𝐶 for any 𝔱 ∈ L. We will
generalise this setting slightly to allow some of the kernels to ”exchange” homogeneity. This is possible
due to the fact that the bounds we are interested in only depend on the product

∏
𝑒∈𝐸 (Γ) ∥𝐾𝔱 (𝑒) ∥deg 𝔱 (𝑒) .

Example A.4 As a typical example, consider two edges 𝑒, 𝑓 ∈ 𝐸 (Γ) and two smooth, compactly
supported functions 𝜑, 𝜓, and assume that

𝐾𝔱 (𝑒) (𝑥) := _𝛼𝜑(_−𝔰𝑥) and 𝐾𝔱 ( 𝑓 ) (𝑥) := _𝛽𝜓(_−𝔰𝑥)

for some 𝛼, 𝛽 < 0 and _ ∈ (0, 1). While deg 𝔱(𝑒) = 𝛼 and deg 𝔱( 𝑓 ) = 𝛽 seems the most natural choice, if
we are interested in bounds uniformly in _ > 0 we could make any choice of the form deg 𝔱(𝑒) = 𝛼 − \
and deg 𝔱( 𝑓 ) = 𝛽 + \ for some \ ∈ R (as long as 𝛼 − \ < 0 and 𝛽 + \ < 0).

Tweaking the degrees in this way may alter the renormalisation structure (i.e. the degree of a sub
diagram may cross a non-positive integer), so that one could try and find a degree assignment which
minimises the number of sub-diagrams that need to be renormalised. Unfortunately, in the situations
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we are interested in, this turns out to be impossible: Given any “tweaked” choice of degrees, there are
always sub graphs which appear divergent, but are actually completely fine.
To overcome this issue we consider the following construction. Assume that we are given a partition

L =
⊔

l∈L Ll of the set of types. We then call a type 𝔱 ∈ L strong if {𝔱} = 𝔏l for some l ∈ L, and weak
otherwise, and we writeLs andLw for the subsets of strong and weak types, respectively. We always
assume that 𝛿 is a strong type.

Definition A.5 A Feynman diagram Γ is called admissible if any weak type 𝔱 appears at most once in Γ,
and for any l ∈ L with 𝔱(𝐸 (Γ)) ∩ Ll ≠ #̸ one has Ll ⊆ 𝔱(𝐸 (Γ)) and there exists a vertex 𝑢 with the
property that all 𝑒 ∈ 𝐸 (Γ) with type 𝔱(𝑒) ∈ Ll are connected to 𝑢.

The last part of the previous definition rules out the possibility that for some l ∈ L there are two non-
overlapping subgraphs which contain the edges 𝑒 ∈ 𝐸 (Γ) with 𝔱(𝑒) ∈ Ll (in which case we may be able
to avoid either sub-divergence, but possibly not both at the same time).

Example A.6 A typical example to which we apply this setting is given by a Feynman diagram where the
“strong” edges are the kernels-type edges of an underlying tree 𝜏 ∈ Tand the “weak edges” represent
kernels of noises living in fixed homogeneous Wiener chaoses. For instance, one could look at the
following Feynman diagram:

Here, we draw bold lines for strong edges, dotted lines for weak edges, and we colour weak edges
according to the partition

⊔
l∈L Ll.

We assume we are given a degree assignment Deg : L → R−, such that Deg(𝛿) = −|𝔰 |. Here and below
we write Deg(𝔱) := Deg(l) if 𝔱 ∈ Ls is a strong type such thatLl = {𝔱}. Finally, we assume we are given
a homogeneity assignment deg : L→ R− such that deg𝔱 := Deg 𝔱 for any strong type 𝔱 ∈ Ls. We then
write

Deg := {deg : L→ R− : deg ≥ deg and for all l ∈ L one has
∑︁
𝔱∈Ll

deg 𝔱 = Deg l},

and for any Feynman diagram Γ𝔫
𝔢 we define the quantity

Deg Γ := sup
deg∈Deg

∑︁
𝑒∈𝐸 (Γ)

(deg 𝔱(𝑒) − |𝔢(𝑒) |𝔰) +
∑︁

𝑢∈𝑉 (Γ)
|𝔫(𝑢) |𝔰 + |𝔰 | (#𝑉 (Γ) − 1).

(Note that the expression inside the sup does not depend on deg ∈ Deg for admissible Feynman diagrams.)

Example A.7 Consider two non-admissible, overlapping (but not nested) sub-diagrams Γ̃1, Γ̃2 with
Deg Γ̃𝑖 > 0. Consider furthermore a spanning tree T such that Γ̃1 collapses for T (i.e. for some interior
node ` of T one has that 𝑉 (Γ̃1) is given by the set of 𝑢 ∈ 𝑉 (Γ) such that 𝑢 ≥ ` with respect to the tree
order). By definition we can find a degree assignment deg ∈ Deg such that Γ̃1 is of positive degree, and
since Γ̃2 is overlapping with Γ̃1 it does not collapse. Consequently, neither of these two sub-diagrams
need to be renormalised. An identical argument works in the case that Γ̃2 is collapsing. However, there
might not exist a fixed degree assignment deg ∈ Deg such that both statements are true at the same time.

Finally, we fix another degree assignment deg∞ : L→ [−∞, 0] with deg∞ (𝛿) := −∞.
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Kernel assignments and valuations
We write C1 for the space of smooth functions 𝜙 ∈ C∞

𝑐 (D̄) supported in the 𝔰-unit ball of radius 1. We
then writeK−

∞ for the set kernel assignments (𝐾𝔱)𝔱∈L such that 𝐾𝔱 ∈ C1 for any 𝔱 ∈ L, andK+
∞ for the

set of kernel assignments (𝑅𝔱)𝔱∈L such that 𝑅𝔱 ∈ C∞
𝑐 (D̄) for any 𝔱 ∈ L and 𝑅𝔱 := 0 for any weak type

𝔱 ∈ Lw. We also let 𝑙𝑖 := 𝔢( [𝑖], 𝑖★) for 𝑖 = 1, . . . , 𝑘 , and with this notation we define an valuation Π𝐾,𝑅
onHby setting

(Π𝐾,𝑅Γ) (𝜑) :=
∫

D̄𝑉★

∏
𝑒∈𝐸★

𝐷𝔢(𝑒) (𝐾 + 𝑅)𝔱 (𝑒) (𝑥𝑒+ − 𝑥𝑒− )∏
𝑢∈𝑉★

(𝑥𝑢 − 𝑥𝑢★)𝔫 (𝑢) (𝐷
𝑙1
1 . . . 𝐷

𝑙𝑘
𝑘
𝜑) (𝑥𝑣1 , . . . , 𝑥𝑣𝑘 )𝑑𝑥,

for any (𝐾, 𝑅) ∈ K−
∞ ×K+

∞.
Recall that we want to allow types 𝔱, 𝔱 ∈ Ll to “exchange homogeneity”, and as consequence there is

no natural norm onK−
∞ which we can use. Instead we are forced to work with tensor products, which is

very similar to Definition 2.7. For any l ∈ L we define the space

K̃
l,−
∞ :=

⊗
𝔱∈Ll

C1

together with the norm

|||𝐾 |||Deg l := sup
deg∈Deg

∏
𝔱∈Ll

∥𝐾𝔱 ∥deg 𝔱, (A.7)

where ∥ · ∥deg 𝔱 is as in (2.11), (2.12), and we define K̃l,−
0 as the closure of K̃l,−

∞ under this norm. We also
write

K̃−
∞ :=

⊕
l∈L

K̃
l,−
∞ and K̃−

0 :=
⊕
l∈L

K̃
l,−
0 .

We next note that, for admissible Feynman diagrams Γ, one can define Π𝐾,𝑅Γ for any (𝐾, 𝑅) ∈
K̃−

∞ ×K+
∞ in a canonical way by imposing this to be linear on each component K̃

l,−
∞ . To be more precise,

for fixed 𝐾 ∈ K−
∞ define �̃� ∈ K̃−

∞ by setting

�̃�l :=
⊗
𝔱∈Ll

𝐾𝔱 (A.8)

for any l ∈ L. Then, if Γ is admissible, the quantity

Π�̃� ,𝑅Γ := Π𝐾,𝑅Γ

is well defined (recall that 𝑅𝔱 = 0 for any weak type 𝔱 ∈ Lw) and can be linearly extended to �̃� ∈ K̃−
∞.

We finally defineK+
0 analogously to [Hai18, Sec. 4] as the closure ofK

+
∞ under the norm ∥𝑅∥∞,deg∞

given by the smallest constant such that

|𝐷𝑘𝑅𝔱 (𝑥) | ≤ ∥𝑅∥∞,deg∞ (1 + |𝑥 |)deg∞ 𝔱

for all 𝔱 ∈ L, 𝑥 ∈ D̄ and |𝑘 |𝔰 < 𝑟.

Renormalisation
We denote byH− the algebras of Feynman vacuum diagrams defined as in [Hai18, below Rem. 2.9]. Recall
thatH− can be identified with the factor algebra Ĥ−/J+, where J+ ⊆ Ĥ− denotes the ideal generated by
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connected vacuum diagrams of positive Deg-degree. We introduce a co-product Δ− : X→ H− ⊗ X for
X ∈ {H, Ĥ−,H−} in analogue to [Hai18, Eq. 2.19, 2.24] by setting

Δ−Γ
𝔫
𝔢 =

∑̃︁
Γ⊆Γ

∑̃︁
𝔢,�̃�

(−1) | out �̃� |

�̃�!

(
𝔫

�̃�

)
Γ̃�̃�+𝜋�̃�
𝔢 ⊗ (Γ/Γ̃)𝔫−�̃�[�̃�]+𝔢 (A.9)

where we use the convention that the first sum runs over full subgraphs10 Γ̃ of Γ with the property that
any connected component of Γ̃0

𝔢 is of negative degree, and the second sum runs over all decorations
�̃� : 𝜕Γ̃𝐸 (Γ) → N𝑑 and �̃� : 𝑉 (Γ) → N𝑑 such that supp �̃� ⊆ 𝑉 (Γ̃). Here, we write 𝜕Γ̃𝐸 (Γ) for the set of
half-edges (𝑒, 𝑣) with 𝑒 ∈ 𝐸 (Γ)\𝐸 (Γ̃) and 𝑣 ∈ 𝑒 ∩𝑉 (Γ̃), and we write [�̃�] (𝑒) :=

∑
𝑢∈𝑒 �̃�(𝑒, 𝑢). We call a

subgraph Γ̄ of Γ full if it has the property that 𝐸 (Γ̄) is given by the set of all 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (Γ) such that
{𝑢, 𝑣} ⊆ 𝑉 (Γ̄). This definition agrees (apart form the fact the we restrict to full subgraphs) with [Hai18,
Eq. 2.24] in case X ∈ {Ĥ−,H−} and is a slight generalisation of [Hai18, Eq. 2.19] in case X= H since
we include polynomial decorations.
We moreover write Δ̃− for the coproducts acting between the same spaces, which are defined

similarly to (A.9), but where Γ̄ ranges also over subgraphs which are not necessarily full. We define
the twisted antipode Â : H− → Ĥ− as in [Hai18, Eq. 2.28] as the unique multiplicative map satisfying
M(Â⊗ Id)Δ−Γ = 0 for any Γ ∈ Ĥ− such that Deg Γ < 0, and we write Ã : H− → Ĥ− for the operator
that satisfies the same identity with Δ− replaced by Δ̃−. It follows with arguments identical to those carried
out in [Hai18] that the spacesH− and Ĥ− equipped with the full coproduct Δ− form a Hopf algebra and
a co-module, respectively. When we refer toH− as a Hopf algebra, and in particular when we refer to the
group product in the character group ofH−, it is always the full coproduct Δ− that we have in mind.
Finally, given a smooth kernel assignment 𝐾 ∈ K−

∞, we write 𝑔(𝐾) and 𝑔full (𝐾) for the respective
BPHZ characters, defined as characters on the Hopf algebraH− via the identities

𝑔(𝐾) := Π𝐾 Â and �̃�(𝐾) := Π𝐾 Ã.

It then follows from [Hai18, Prop. 3.11] that one has

Π̂𝐾 := (𝑔(𝐾) ⊗ Π𝐾 )Δ− = (�̃�(𝐾) ⊗ Π𝐾 )Δ̃− (A.10)

onH. We first show a simple lemma that extends (A.10) to the situation where one has non-vanishing
large-scale kernel assignments.

Lemma A.8 Assume that 𝑅 is a smooth, compactly supported large-scale kernel assignment as in
[Hai18, Sec. 4] and assume that Γ ∈ Ĥ− is a connected vacuum diagram with the following property.
Whenever Γ̃ ⊆ Γ is a connected subgraph such that Deg Γ̃ < 0, then for any 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (Γ)\𝐸 (Γ̃)
with {𝑢, 𝑣} ⊆ 𝑉 (Γ̃) one has 𝑅𝔱 (𝑒) = 0. Then one has

Π̂𝐾,𝑅Γ := (𝑔(𝐾) ⊗ Π𝐾,𝑅)Δ−Γ = (�̃�(𝐾) ⊗ Π𝐾,𝑅)Δ̃−Γ.

Proof. We only sketch how to adapt the proof of [Hai18, Prop. 3.11] to our situation. In the notation of
[Hai18, Prop. 3.11], the difference to our case is that in [Hai18, Eqn. 3.16] the evaluations Π− and Π
are build on different kernel assignments (since the former ignores the large scale kernel assignment).
Without the extra assumption made in the statement of our lemma, [Hai18, Eqn. 3.16] is not independent
ofBwhenever there is an element 𝛾cl ∈ Bwhich is a root of the forest F𝑝 ∪ F

𝑓 𝑢𝑙𝑙
⋄ ∪ B. By definition,

𝛾cl is the closure of some root 𝛾 if F𝑝 . Thanks to the additional assumption made in our lemma, the two
evaluations Π𝐾 and Π𝐾,𝑅 act identically when applied to an edge 𝑒 ∈ 𝐸 (𝛾cl)\𝐸 (𝛾), and the proof can
be finished as in [Hai18, Prop. 3.11].

10Recall [Hai18, pg. 7] that by definition a subgraph does not contain legs or isolated vertices
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Finally, note that as before, for admissible Feynman diagrams Γ, the quantity Π̂𝐾,𝑅Γ is well-defined for
𝐾 ∈ K̃−

∞ by linear extension.

Remark A.9 The character 𝑔(𝐾) is in general not well defined for 𝐾 ∈ K̃−
∞. This is because divergent

subgraphs Γ̃ of an admissible Feynman diagram Γ need not be admissible. However, the map 𝐾 ↦→
(𝑔(𝐾) ⊗ Π𝐾,𝑅)Δ−Γ, for 𝐾 ∈ K−

∞, has the multi-linearity property described above, and can therefore be
extended uniquely to K̃−

∞ by linearity.

A slight generalisation of [Hai18]
We now state a generalisation of the results of [Hai18]. For this we recall that for any Feynman diagram
Γ with legs 1★, . . . , 𝑘★, we call a partitionP of 𝑉★ tight if #P ≥ 2 and all legs are contained in the same
element, i.e. there exists 𝑃★ ∈ P such that for all 1 ≤ 𝑖 ≤ 𝑘 one has 𝑖★ ∈ 𝑃★. For any such partition we
introduce the notation 𝐸P for the set of edges 𝑒 ∈ 𝐸★ such that 𝑒 is not subset of any 𝑃 ∈ P, and the
notation 𝑉P for the set of vertices 𝑢 ∈ 𝑉★ such that {𝑢, 𝑢★} is not subset of any 𝑃 ∈ P. We then define

deg∞ P :=
∑︁
𝑒∈𝐸P

deg∞ 𝔱(𝑒) − |𝔢(𝑒) |𝔰 +
∑︁
𝑢∈𝑉P

|𝔫(𝑢) | + |𝔰 | (#P− 1).

This differs slightly from [Hai18, pg. 43] since we include polynomial decorations.

Theorem A.10 Let Γ be an admissible Feynman diagram such that deg∞ P < 0 for any tight partition
of 𝑉 . Then, for fixed 𝐾 ∈ K̃−

0 the map 𝑅 ↦→ Π𝐾,𝑅Γ extends continuously to the space K+
0 and the map

(𝐾, 𝑅) ↦→ Π̂𝐾,𝑅Γ extends continuously to the space K̃−
0 ×K+

0 .

Proof. We only sketch the difference to [Hai18]. Let us first discuss the bound on small scales, i.e. the
continuous extension of 𝐾 ↦→ Π̂𝐾,0Γ to K̃−

0 . There are two differences to the case treated in [Hai18,
Sec. 3]. One is that we allow Γ to have polynomial decoration 𝔫 and the other is the presence of weak types.
It is straightforward to convince oneself that the proof given in [Hai18] works without any changed

for non-vanishing the polynomial decoration. To see that weak edges cause no problem, we recall a few
pieces of notation. We write𝔉−

Γ
for the set of all forests Fof Γ. Recall [Hai18, Sec. 3.1] that a forest F

is a family of divergent subgraphs of Γ such that any two elements of Fare non-overlapping (i.e. either
node-disjoint or nested). Recall further that a forest interval M is a subset of𝔉−

Γ
with the property that

there existsM,M ∈ 𝔉−
Γ
such thatM contains exactly those forests F∈ 𝔉−

Γ
such thatM ⊆ F⊆ M. The

bound in [Hai18] is then obtained by fixing a Hepp sector T [Hai18, Def. 3.5], which allows to partition
the set of forests into a family of forests intervals indexed by safe-forests for T. The main step of the proof
[Hai18, Eqs 3.9, 3.10, Lem. 3.7, Lem. 3.8] is then performed for each of these forest intervals separately.
The only difference to the present setup is that we have a set Deg of possible degree assignments to
choose from. By our definitions, a subgraph Γ̃ is divergent if and only if deg Γ̃ < 0 for any deg ∈ Deg,
so that the definition of the set of forests 𝔉−

Γ
does not depend on a choice deg ∈ Deg. Neither do the

notions of forest interval and save forest. We can then use exactly the same proof as in [Hai18]. The
only difference is that we first fix a Hepp sector T and a safe forest F𝑠 = M. Only afterwards do we
choose deg ∈ Deg in such a way to make sure that for any subgraph Γ̃ of Γ which is unsafe for F𝑠 one
has deg Γ̃ = Deg Γ̃. This is always possible, since by definition, for any weak type l, all edges 𝑒 ∈ 𝐸 (Γ)
of type 𝔱(𝑒) ∈ Ll are connected to the same vertex. If we denote by 𝐸l ⊆ 𝐸 (Γ) the set of these edges and
a𝑒 ∈

◦
T the node of the spanning tree at which 𝑒 collapses, then the fact that all 𝑒 ∈ 𝐸l have a vertex in

common implies that {a𝑒 : 𝑒 ∈ 𝐸l} is a totally ordered set with respect to the tree order. It follows that
one can recursively choose deg ∈ Deg to optimise the degree of subdiagrams containing edges 𝑒 ∈ 𝐸l.
We finally discuss the bound on large scales. In [Hai18, Sec. 4] the analogue statement was shown

again without polynomial decorations and weak types. It is again easy to convince oneself that polynomial
decorations pose no problems. Furthermore, the proof of [Hai18, Thm. 4.3] uses the bound on small
scales (i.e. the continuous extension of Π̂𝐾,0 to 𝐾 ∈ K̃−

0 ) as a black box, otherwise only the a-priori
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bounds on the large-scale kernel assignments are used. It remains to point out that since 𝑅𝔱 = 0 for weak
types 𝔱 ∈ Lw it suffices to consider in [Hai18, pg. 45] subsets �̃� of the set of edges 𝐸 such that each
𝑒 ∈ �̃� has a strong type, and for such sets U(Γ, �̃�) constructed in [Hai18, pg. 45] is again an admissible
Feynman diagram.

An important application of the previous theorem is the proof of Theorem 4.19, see the end of
Section A.3.1 below.

A scale dependent bound
We also show that one can infer a scale dependent bound from [Hai18] (even though this is not explicitly
stated in this paper). Given a Feynman diagram Γ ∈ Hwe write �̄�−

Γ
⊆ 𝔉−

Γ
for the set of all forests

F ∈ 𝔉−
Γ
of Γ such that Γ ∉ F. To any forest intervalM we associate a linear combination of Feyman

diagrams R̂MΓ as in [Hai18, Eq. 3.7].

Remark A.11 A reader who is not familiar with [Hai18] should think of R̂MΓ as a sum over all possible
ways of “pulling out and contracting” the divergent sub-diagrams in M, with the restriction that any
element ofM is always pulled out, and adjusting the sign according to the number of sub-diagrams which
are pulled out. One specify property of R̂M is that we view the vertex set of every Feynman diagrams
that we sum over in R̂MΓ as equal to 𝑉 (Γ). This can be obtained by “reattaching” one vertex of the
pulled-out sub-diagram to the vertex which has been created by contracting it. (This is not canonical, but
depends on a choice of distinct vertex in the pulled-out diagram. The ambiguity can be removed by fixing
an arbitrary total order on 𝑉 (Γ).) Note that this last property forces us to abstain from viewing R̂M as an
operator acting on the algebraH (the operator viewed in this way is denoted byRM in [Hai18]).

We then write R̂ :=
∑

M∈P R̂M where P is some partition of �̄�−
Γ
into forest intervals (the definition of

R̂ is independent of this choice), and we write W𝐾 for the map defined below [Hai18, Eq. 3.7], so that

W𝐾Γ ∈ C∞
𝑐 (D̄𝑉 (Γ) )

for any 𝐾 ∈ K−
∞. The function W𝐾Γ should be thought of as introducing for every edge 𝑒 ∈ 𝐸 (Γ) a factor

𝐷𝔢(𝑒)𝐾𝔱 (𝑒) evaluated between its endpoints. Note that by definition of R̂Γ, one hasW𝐾R̂Γ ∈ C∞
𝑐 (D̄𝑉 (Γ) ).

It follows as in [Hai18, Lem. 3.4] that one has

𝑔full (𝐾)Γ =

∫
D̄𝑉 (Γ)

𝑑𝑥𝛿(𝑥𝑣★) (W𝐾R̂Γ) (𝑥) (A.11)

if deg Γ ≤ 0, while in case that deg Γ > 0 the right-hand side of (A.11) is equal to Π̂𝐾BPHZΓ. We define the
“scale” 𝔪(𝑥) of 𝑥 ∈ D̄\{0} as the largest integer smaller than − ln2 ( |𝑥 |𝔰) (so that |𝑥 |𝔰 is of order 2−𝔪 (𝑥) ),
and we set

Y𝐾,Γ
𝑛 :=

∫
D̄𝑉 (Γ)

𝑑𝑥 𝛿(𝑥𝑣★)W𝐾R̂Γ(𝑥) I{ min
𝑢,𝑣∈𝑉 (Γ)

𝔪( |𝑥𝑢 − 𝑥𝑣 |) = 𝑛}. (A.12)

The indicator function ensures that we only integrate over point configurations 𝑥 such that the maximal
distance |𝑥𝑢 − 𝑥𝑣 | for 𝑢, 𝑣 ∈ 𝑉 (Γ) is of order 2−𝑛, and the sum∑︁

𝑛≥0
Y𝐾,Γ
𝑛

is equal to the right-hand side of (A.11). The following result follows as in [Hai18].
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Theorem A.12 Let Γ be an admissible Feynman diagram. Then one has the bound

|Y𝐾,Γ
𝑛 | ≲

( ∏
𝑒∈𝐸 (Γ)

∥𝐾𝔱 (𝑒) ∥deg 𝔱 (𝑒)
)
2−𝑛 Deg Γ (A.13)

for any deg ∈ Deg. (Note that the right-hand side does not depend on deg ∈ Deg.) Here, the implicit
constant only depends on Γ and Deg, but is uniform in 𝑛 and 𝐾 ∈ K̃−

∞.

Proof. Given a decorated spanning tree (T, n) for 𝑉 (Γ) with n :
◦
T → N, we denote by 𝐷 (T,n) ⊆ D̄𝑉 (Γ)

the Hepp sector associated to (T, n) defined via [Hai18, Eq. 2.10], and for 𝑛 ∈ N we write 𝐷T,𝑛 :=⋃
n:n(𝜌T)=𝑛 𝐷 (T,n) . Given furthermore a forest intervalM of �̄�−

Γ
, we write Ȳ𝐾,Γ,M

T,𝑛 for the constant given
by

Ȳ
𝐾,Γ,M
T,𝑛 :=

∫
𝐷T,𝑛

|𝑑𝑥 𝛿(𝑥𝑣★)W𝐾R̂MΓ(𝑥) |, (A.14)

so that it follows from the definitions that

|Y𝐾,Γ
𝑛 | ≲

∑︁
T

∑︁
M∈PT

𝑛+𝑛0∑︁
𝑚=𝑛−𝑛0

Ȳ
𝐾,Γ,M
T,𝑚 ,

where 𝑛0 ∈ N depends only on the choice of 𝐶 in [Hai18, Eq. 2.10]. Here PT is the partition of �̄�−
Γ

defined as in [Hai18, p. 29]. It suffices to show the bound (A.13) for Ȳ𝐾,Γ,M
T,𝑚 for any spanning tree T,

any 𝑚 ∈ N and anyM ∈ �̄�−
Γ
separately.

We now choose a degree assignment deg ∈ Deg with the property for that any sub graph Γ̃ of Γ which
collapses for T one has ⌈deg Γ̃⌉ = ⌈Deg Γ̃⌉. Identically to [Hai18, Eq. 3.9] we obtain the bound

Ȳ
𝐾,Γ,M
T,𝑚 ≲

∑︁
𝑖∈𝐼

∑︁
𝔫:𝔫 (𝜌T)=𝑚

∏
𝑣∈

◦
T

2−[𝑖 (𝑣)𝔫𝑣

where [𝑖 (𝑣) is defined as in [Hai18, Eq. 3.17] for the degree assignment deg. We can show [Hai18,
Eq. 3.10] for any 𝑣 ∈

◦
T\{𝜌T} exactly as in [Hai18, p. 34], and it follows that

Ȳ
𝐾,Γ,M
T,𝑚 ≲

∑︁
𝑖∈𝐼

∏
𝑣∈

◦
T

2−[𝑖 (𝑣)𝑚 ≲ 2−Deg Γ𝑚,

where we used that
∑
𝑣∈

◦
T
[𝑖 (𝑣) = Deg Γ for any 𝑖 ∈ 𝐼.

One application is the following corollary which shows the absence of logarithmic divergencies in
certain situations. Before we state the next definition, we introduce a piece of notation. Given a Feynman
diagram Γ𝔫

𝔢 and a subgraph Γ̃ ⊆ Γ, we want to identify all polynomial decorations �̃� : 𝑉 (Γ̃) → N𝑑 such
that Γ̃�̃�

𝔢 appears on the right-hand side of the coproduct Δ− applied to Γ𝔫
𝔢 . For this we writeN(Γ̃) for the

set of decorations �̃� : 𝑉 (Γ̃) → N𝑑 such that for any 𝑢 ∈ 𝑉 (Γ̃) with the property that there does not exist
𝑒 ∈ 𝐸 (Γ) \ 𝐸 (Γ̃) with 𝑢 ∈ 𝑒 one has �̃�(𝑢) ≤ 𝔫(𝑢).

Definition A.13 Let Γ = Γ𝔫
𝔢 be an admissible Feynman diagram such that Deg Γ𝔫

𝔢 = 0 and let l ∈ L. We
say that a kernel assignment 𝐾 ∈ K̃−

∞ is log-avoiding for Γ and l, ifLl ⊆ 𝔱(𝐸 (Γ)) and for any proper
subgraph Γ̃ ⊆ Γ withLl ∩ 𝔱(𝐸 (Γ̃)) ≠ #̸ and any polynomial decoration �̃� ∈ N(Γ̃) such that Deg Γ̃�̃�

𝔢 = 0
one has 𝑔(𝐾)Γ̃�̃�

𝔢 = 0.

Given l ∈ L and \ > 0 we also introduce the seminorm

|𝐾 |l, \ := |||𝐾l |||Deg l+\ |||𝐾l |||Deg l−\
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for 𝐾 ∈ K̃−
0 . We then have the following statement.

Corollary A.14 In the setting above, let Γ be an admissible Feynman diagram, let l◦ ∈ L and let 𝐾 ∈ K̃−
∞

be a kernel assignment which is log-avoiding for Γ and l◦. Then for all \ > 0 small enough one has

|𝑔(𝐾)Γ | ≲ ∥𝐾 ∥K̃−
0
+ |𝐾 |l◦ , \ (A.15)

uniformly over all 𝐾 ∈ K̃−
∞.

Moreover, if l1 ∈ L is such that 𝐾 is also log-avoiding for Γ and l1, then for all \ > 0 small enough
one has

|𝑔(𝐾)Γ | ≲ |||𝐾l◦ |||Deg l◦+\ |||𝐾l1 |||Deg l1−\ (A.16)

uniformly over 𝐾 ∈ K̃−
∞ such that ∥𝐾 ∥K̃−

0
≲ 1.

Proof. First note that (A.15) is a consequence of (A.16) with l◦ = l1. We consider two degree assignments
Deg+ and Deg− on L such that Deg+ l = Deg l except for l = l◦ and Deg− l = Deg l except for l = l1,
which are defined by Deg+ l◦ := Deg l◦ + \ and Deg− l1 := Deg l1 − \. If we denote by 𝑔+ (𝐾) and 𝑔− (𝐾)
the BPHZ characters for 𝐾 and the degree assignments Deg+ and Deg−, respectively, then it is not hard
to see that for \ > 0 small enough one has

𝑔− (𝐾)Γ𝔫
𝔢 = 𝑔(𝐾)Γ𝔫

𝔢 = Π𝐾𝑀𝑔+ (𝐾)Γ𝔫
𝔢 .

Indeed, the first identity follows from the fact that ⌈Deg Γ̃⌉ = ⌈Deg− Γ̃⌉ for any Feynman diagram
Γ̃ and for any \ > 0 small enough. The second identity is a bit more subtle, since in general the
“divergence structure” of Γ is not the same for the homogeneity assignments Deg and Deg+. But writing
ΔDeg
− and ΔDeg+− for the coproducts obtained from the respective homogeneity assignments, one has

Δ
Deg+− = (p ⊗ Id)ΔDeg

− with p the projection onto the algebra generated by diagrams of non-positive
Deg+-degree, so that it suffices to show that 𝑔+ (𝐾)pΓ̃�̃�

𝔢 = 𝑔(𝐾)Γ̃�̃�
𝔢 for any sub diagram Γ̃ of Γ such that

Deg Γ̃�̃�
𝔢 ≤ 0. If we assume inductively that this is true for all proper sub diagrams of Γ̃, then we observe

that if \ > 0 is small enough then Deg+ Γ̃�̃�
𝔢 > 0 implies Deg Γ̃�̃�

𝔢 = 0, and hence also 𝑔(𝐾)Γ̃�̃�
𝔢 = 0 (by

assumption), and otherwise

𝑔(𝐾)Γ̃�̃�
𝔢 = −(𝑔(𝐾) ⊗ Id) (ΔDeg

− − Id ⊗ 1)Γ̃�̃�
𝔢 = −(𝑔+ (𝐾) ⊗ Id) (ΔDeg+− − Id ⊗ 1)Γ̃�̃�

𝔢

= 𝑔+ (𝐾)Γ̃�̃�
𝔢 ,

which proves the claim.
Let now _ > 0 be such that |||𝐾l◦ |||Deg l◦+\ = _

−\ , so that one also has |||𝐾l1 |||Deg l1−\ ≤ 𝐶 (\)_\ , where
𝐶 (\) denote the right-hand side of (A.16). Let moreover 𝑚 ∈ N such that 2−𝑚−1 ≤ _ < 2𝑚. We estimate
the sum over large scales using (A.13) for the degree assignment Deg− so that∑︁

𝑛≤𝑚
|Y𝐾,Γ
𝑛 | ≲ 2𝑚\_\ ≃ 𝐶 (\)

and the sum over small scales using (A.13) for the degree assignment Deg+ so that∑︁
𝑛≥𝑚

|Y𝐾,Γ
𝑛 | ≲ 2−𝑚\_−\ ≃ 1,

where both estimates hold uniformly over 𝐾 ∈ K̃−
∞ such that ∥𝐾 ∥K̃−

0
≤ 𝐶.
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A.3.1. Application to trees
We want to apply the result of Section A.3 to models obtained from smooth noises [ ∈ 𝔐∞, see
Section 2.4. In Sections 4 and 5 we consider two different enlargements of the regularity structure (by
including legs and by enlarging the set of noise types, respectively). We want to use the construction
carried out in this section in both cases, so we simply formulate our results on the regularity structure
which is enlarged in both ways. We write 𝕷− for the enlarged set of noise types (not including leg
types) and L for the set of leg types, and we write 𝕷− := 𝕷− ⊔ L. We then use the notationT etc. as in
Section 4.1 with 𝔏− replaced by 𝕷−. (Note that this is not really a generalisation, since all assumptions
which Section 4 puts on 𝔏− and Tare satisfied for the enlargement 𝕷− andT as well.)
Moreover, in order not to overcomplicate the presentation of the current section, we assume that for

any 𝚵 ∈ 𝕷− we are given a multi-set m𝚵 with values in 𝔏−, and we write 𝔜𝑁∞ (𝕷−,m) for the set of
kernels 𝔎 ∈ 𝔜𝑁∞ (𝕷−) such that for any 𝚵 ∈ 𝕷− one has 𝔎𝚵

m = 0 unlessm = m𝚵. For 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m)
we simply write 𝔎𝚵 := 𝔎𝚵

m𝚵
. We set 𝑚𝚵 := #m𝚵.

Define the set of labels

L★ := 𝔏+ ⊔ L̃ := 𝔏+ ⊔ {(𝚵, 𝑘) : I𝑚𝚵=1 ≤ 𝑘 ≤ 𝑚𝚵, 𝚵 ∈ 𝕷−},

and we writeH for the linear space of Feynman diagrams as above. We also define the partition L ofL
given by

L :=
{
{𝔩} : 𝔩 ∈ 𝔏+

}
⊔

{
l𝚵 : 𝚵 ∈ 𝕷−,

}
, (A.17)

where l𝚵 := {(𝚵, 𝑘) : 0 ≤ 𝑘 ≤ 𝑚𝚵} if 𝑚𝚵 > 1 and l𝚵 := {(𝚵, 1)} if 𝑚𝚵 = 1.
Trees 𝜏 ∈ T contain a finite number of legs 𝑒 ∈ 𝐿L (𝜏) and a finite number of noise type edges

𝑓 ∈ 𝐿 (𝜏). The formulation of this section will be cleaner by focusing on trees 𝜏 ∈ Twith the property
that any leg type l and any noise type 𝚵 appears at most once in 𝜏, so that [𝐿L (𝜏), 𝔱] and [𝐿 (𝜏), 𝔱] are
proper sets. We writeT★ ⊆ T for the subspace generated by such trees. We will also work the Hopf
subalgebraT★

− ⊆ T− generated by such trees. We also fix an arbitrary total order ≤ on L and we note
that ≤ induces an order ≤ on 𝐿L (𝜏) for any tree 𝜏 ∈ T★.
Given 𝔎 ∈ 𝔜𝑁∞ (see Definition 2.11) we always write [ := 𝐽𝔎 for ease of notation. We first construct

continuous linear operators

W : T★ → H and 𝐿 : 𝔜𝑁∞ (𝕷−,m) → K̃−
∞ (L̃)

with the property that, for any tree 𝜏 ∈ T★, W𝜏 takes values in the span of Feynman diagrams Γ with
exactly 𝑘 (𝜏) := #𝐿L (𝜏) legs, and such

(Π𝐿𝔎,𝑅W𝜏) (𝜓𝜏) = Ῡ
[,𝜓

𝑅
𝜏 (A.18)

for any 𝜏 ∈ T★, 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m) and 𝜓 ∈ Ψ. Here, we write 𝜓𝜏 = 𝜓 (𝑘 (𝜏) ,𝔱𝜏 ) ∈ C∞
𝑐 (D̄𝑘 (𝜏) ), where

𝔱𝜏 : 𝑘 (𝜏) → 𝔱(𝐿L (𝜏)) denotes the unique order preserving map.
Fix a tree 𝜏 ∈ T★ and denote the legs of 𝜏 by 𝑒1, . . . , 𝑒𝑘 (𝜏) in increasing order. Let Λ := {(𝑢, 𝑘) :

𝑢 ∈ 𝐿 (𝜏), 1 ≤ 𝑘 ≤ 𝑚(𝔱(𝑢))}.

Definition A.15 Wedenote byP the set of pairings 𝑃 ofΛwith the property that for any {(𝑢, 𝑘), (𝑣, 𝑙)} ∈
𝑃 one has 𝑢 ≠ 𝑣 andm𝔱 (𝑢) [𝑘] = m𝔱 (𝑣) [𝑙]. For 𝑢 ∈ 𝐿 (𝜏) and 𝑃 ∈ Pwe write 𝑃[𝑢] ⊆ 𝑃 for all elements
of the form {(𝑢, 𝑘), (𝑣, 𝑙)} ∈ 𝑃 for some 𝑣 ∈ 𝐿 (𝜏) and 𝑘, 𝑙 ∈ N.

For any pairing 𝑃 ∈ P we now construct a connected, direct graph Γ𝑃𝜏 = (𝑉𝑃𝜏 , 𝐸𝑃𝜏 ). Let 𝐿>1 (𝜏)
denote the set of noise-type edges 𝑢 ∈ 𝐿 (𝜏) such that 𝑚(𝔱(𝑢)) > 1 and 𝐿=1 (𝜏) := 𝐿 (𝜏) \ 𝐿>1. We first set

𝑉𝑃𝜏 := 𝑁 (𝜏) ⊔ 𝑃 ⊔ {𝑢∗ : 𝑢 ∈ 𝐿>1 (𝜏)} ⊔ {[1], . . . , [𝑘 (𝜏)]}.
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We define for any 𝑢 ∈ 𝐿>1 (𝜏) the set 𝐸𝑢 := {(𝑞, 𝑢∗) : 𝑞 ∈ 𝑃[𝑢]} ⊔ {(𝑢∗, 𝑢↓)}, while for 𝑢 ∈ 𝐿=1 (𝜏) we
simply set 𝐸𝑢 := {(𝑞, 𝑢↓) : 𝑞 ∈ 𝑃[𝑢]}. To avoid case distinctions, we also set 𝑢∗ := 𝑢↓ for any 𝑢 ∈ 𝐿=1 (𝜏).
(As always, 𝑢↓ ∈ 𝑁 (𝜏) denotes the unique node to which the noise type edge 𝑢 is connected.) We then set

𝐸𝑃𝜏 := 𝐾 (𝜏) ⊔
⊔

𝑢∈𝐿 (𝜏)
𝐸𝑢 ⊔ {([𝑖], 𝑒↓

𝑖
) : 1 ≤ 𝑖 ≤ 𝑘 (𝜏)}.

We also fix an edge decoration 𝔢 : 𝐸𝑃𝜏 → N𝑑 and a node decoration 𝔫 : 𝑉𝑃𝜏 → N𝑑 by extending the
corresponding decorations coming from 𝜏 by setting them to zero everywhere else. We choose as “special”
vertex the root 𝑢★(Γ𝑃𝜏 ) := 𝜌𝜏 ∈ 𝑁 (𝜏).

Example A.16 To illustrate this construction, we take the following tree as an example, where nodes
𝑢 ∈ 𝐿 (𝜏) are coloured, and legs are drawn as short thick grey edges

.

We then have 𝑘 (𝜏) = 4, and we assume that 𝑚( ) = 𝑚( ) = 1 and 𝑚( ) = 𝑚( ) = 3. In particular we
have 𝐿>1 (𝜏) = { ∗, ∗}, and for the current example we will write := ∗ and := ∗. Finally, lets fix
a pairing

𝑃 :=
{
{( , 1), ( , 1)}, {( , 1), ( , 1)}, {( , 2), ( , 2)}, {( , 3), ( , 3)}

}
.

The resulting diagram Γ𝑃𝜏 can then visualised as

.

It remains to specify a type map 𝔱 : (𝐸𝑃𝜏 )★ → L to obtain an element ofH. On 𝐾 (𝜏) we define 𝔱 to be
equal to the type map of 𝜏. On edges (𝑞, 𝑢∗) ∈ 𝐸𝑢 for 𝑢 ∈ 𝐿 (𝜏) and 𝑞 ∈ 𝑃[𝑢] we set 𝔱(𝑞, 𝑢∗) := (𝔱(𝑢), 𝑘),
where 𝑘 ≤ 𝑚(𝔱(𝑢)) is the unique integer such that (𝑢, 𝑘) ∈ 𝑞. Finally, we define 𝔱(𝑢∗, 𝑢↓) := (𝔱(𝑢), 0)
for any 𝑢 ∈ 𝐿>1 (𝜏).
We then set

W𝜏 :=
∑︁
𝑃∈P

Γ𝑃𝜏 , (A.19)

and we extend W to a linear operator W : T★ → H.
Next we define a kernel assignment 𝐿𝔎 ∈ K̃−

∞ (L̃) for any 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m). For this we set for any
𝚵 ∈ 𝕷− with 𝑚(𝚵) > 1

(𝐿𝔎)l𝚵 := 𝔎𝚵,

where we identify {0, . . . , 𝑚(𝚵)} with {(𝚵, 0), . . . , (𝚵, 𝑚𝚵)}, so that the space (A.8) with l𝚵 is naturally
isomorphic to (2.13) with 𝑛 = 𝑚𝚵. For 𝚵 ∈ 𝕷− with 𝑚(𝚵) = 1 we set (𝐿𝔎)l𝚵 := 𝔎𝚵

0 ★𝔎𝚵
1 . We extend

any element 𝐾 ∈ K̃−
∞ (L̃) to a kernel assignment 𝐾 ∈ K̃−

∞ (L) by defining 𝐾𝔱 to agree with the truncated
integration kernel (see Section 2.2.2). Finally, we fix a degree assignment deg∞ : L→ [−∞, 0] such that
deg∞ 𝔱 := −∞ for any 𝔱 ∈ L̃. It then follows directly from the definition that one has the following identity.

Lemma A.17 One has
(Π𝐿𝔎,𝑅W𝜏) (𝜓𝜏) = Ῡ

[,𝜓

𝑅
𝜏

for any 𝜏 ∈ T★, any 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m), any 𝑅 ∈ K+
∞ and 𝜓 ∈ Ψ. Here 𝜓𝜏 is as in (A.18). Here we write

as above [ := 𝐽𝔎.
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Proof. This follows almost directly from the definition. See the proof of Lemma B.5 below for a very
similar statement.

Our next goal is to show that a similar identity holds for the BPHZ renormalised evaluations. (Actually,
this will only be true modulo an order one change in renormalisation, see below). As in Section 2.4 we
fix a homogeneity 𝖘 : 𝕷− → R− with 𝖘(𝚵) ≥ − |𝔰 |

2 − ^ (for some ^ > 0 small enough), and we define a
degree assignment Deg : L → R− by setting

Deg 𝔱 := −|𝔰 | + |𝔱 |𝔰 , Deg l𝚵 := 𝖘(𝚵) − 𝑚𝚵
|𝔰 |
2

− |𝔰 |I𝑚𝚵>1 (A.20)

for any 𝔱 ∈ 𝔏+ and 𝚵 ∈ 𝕷−. We also set deg(𝚵, 0) := −|𝔰 | − 1 + ^ and deg(𝚵, 𝑘) := −|𝔰 | for any 𝑘 ≥ 1.
The degree assignments Deg and deg give us a natural norm on K̃l,−

∞ as in (A.7), and we respect to this
norm and (2.18) the map 𝐿 : 𝔐∞ (𝕷−,m) → K̃

l,−
∞ (L̃) constructed becomes a bounded linear map. We

extend 𝖘 to 𝕷− by setting 𝖘(l) := 0 for any leg type l ∈ L. Then, a quick computation shows the following.

Lemma A.18 For any tree 𝜏 ∈ T★ any pairing 𝑃 ∈ P one has Deg Γ𝑃𝜏 = |𝜏 |𝖘 and Γ𝑃𝜏 is an admissible
Feynman diagram.

We still fix a tree 𝜏 ∈ T★ and a pairing 𝑃 ∈ P.

Definition A.19 We call a subtree 𝜎 ⊆ 𝜏 closed for 𝑃 if for any {(𝑢, 𝑘), (𝑣, 𝑙)} ∈ 𝑃 one has either
{𝑢, 𝑣} ⊆ 𝐿 (𝜎) or {𝑢, 𝑣} ∩ 𝐿 (𝜎) = #̸.

Let 𝜎 ⊆ 𝜏 be a closed subtree. Then we denote by Γ𝑃𝜏 (𝜎) ⊆ Γ the full connected subgraph of Γ𝑃𝜏
which is induced by the vertex set

𝑉 (Γ𝑃𝜏 (𝜎)) := 𝑁 (𝜎) ⊔ {𝑢∗ : 𝑢 ∈ 𝐿>1 (𝜎)} ⊔ {𝑞 : 𝑞 ∈ 𝑃[𝑢], 𝑢 ∈ 𝐿 (𝜎)}.

We show next that divergent subgraphs Γ̃ of Γ𝑃𝜏 correspond (almost) to closed divergent subtrees 𝜎 of 𝜏.

Lemma A.20 Let 𝑃 ∈ P and let 𝜎 ⊆ 𝜏 be a closed subtree of 𝜏. Then one has |𝜎0
𝔢 |�̃� = Deg(Γ𝑃𝜏 (𝜎))0

𝔢 .
Conversely, if Γ̃ ⊆ Γ𝑃𝜏 is a connected full subgraph such that Deg Γ̃0

𝔢 ≤ 0, then either Γ̃ = Γ𝑃𝜏 (𝜎) for a
closed subtree 𝜎 ⊆ 𝜏, or there does not exists an edge 𝑒 ∈ 𝐸 (Γ̃) with 𝔱(𝑒) ∈ 𝔏+.

Proof. The first statement follows from Lemma A.18. For the second statement, let 𝐸trees denote
the set of edges 𝑒 ∈ �̃� := 𝐸 (Γ̃) with 𝔱(𝑒) ∈ 𝔏+, and assume that 𝐸trees ≠ #̸. Let moreover 𝐸𝜓
(resp. 𝐸noise) denote the set of edges 𝑒 ∈ 𝐸 (Γ̃) with 𝔱(𝑒) = (𝚵, 0) (resp. 𝔱(𝑒) = (𝚵, 𝑘), 𝑘 ≥ 1) for
some 𝚵 ∈ 𝕷−. Let also �̃� := 𝑉 (Γ̃). The set �̃� induces a subforest 𝜎 ⊆ 𝜏 with 𝑁 (𝜎) := �̃� ∩ 𝑁 (𝜏),
𝐾 (𝜎) := {𝑒 ∈ 𝐾 (𝜏) : 𝑒 ⊆ 𝑁 (𝜎)}, and 𝐿 (𝜎) := {𝑢 ∈ 𝐿 (𝜏) : 𝑢↓ ∈ �̃�}. We also set 𝐿L (𝜎) := #̸.
Special case.Assume that 𝐸𝜓 contains all edge 𝑒 ∈ 𝐸 with 𝔱(𝑒) = (𝚵, 0) for some 𝚵 ∈ 𝕷− and 𝑒∩�̃� ≠ #̸.
Let 𝑁 ≥ 1 denote the number of connected components of 𝜎. Let furthermore 𝐻 ⊆ 𝐸noise denote the

set of edges 𝑒 ∈ 𝐸noise which are “hanging” in the following sense. Since 𝑒 ∈ 𝐸noise one has 𝑒 = (𝑞, 𝑢∗)
for some 𝑢 ∈ 𝐿 (𝜏) and 𝑞 ∈ 𝑃[𝑢], say 𝑞 = {(𝑢, 𝑘), (𝑣, 𝑙)}. Consequently (𝑞, 𝑣∗) ∈ 𝐸 (Γ𝑃𝜏 ), and we let
𝑒 ∈ 𝐻 if (𝑞, 𝑣∗) ∉ 𝐸noise. Let finally 𝑄 ⊆ 𝐿 (𝜎) denote the set of noise type edges 𝑢 ∈ 𝐿 (𝜎) such that
𝑢↓ ∈ �̃� but there exists 𝑞 ∈ 𝑃[𝑢] such that (𝑞, 𝑢∗) ∉ 𝐸noise. The proof of the first step is finished if we
can show that 𝑁 = 1 and 𝐻 = 𝑄 = #̸. We have the bound

Deg Γ̃0
𝔢 ≥

∑︁
𝑒∈𝐸trees

deg(𝑒) +
∑︁

𝑢∈𝐿 (𝜎)
𝖘(𝔱(𝑢)) + |𝔰 |

2
#𝐻 + |𝖘 | (#𝑁 (𝜎) − 1)

= |𝜎 |𝖘 +
|𝔰 |
2

#𝐻 + |𝔰 | (𝑁 − 1),
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where |𝜎 |𝖘 denotes the sum of the homogeneities of each connected component �̂� of 𝜎. Since
|�̂� |𝖘 ≥ − |𝔰 |

2 − ^ for any tree �̂� ∈ T one has |𝜎 |𝖘 ≥ − |𝔰 |
2 𝑁 − ^𝑁 , so that, provided ^ and ^◦ are small

enough, one has has 𝑁 = 1, since the left hand side is non-positive by assumption. It follows that 𝜎 is a
tree, and since 𝜎 contains at least one kernel-type edge by assumption, one has |𝜎 |𝖘 > − |𝔰 |

2 . Hence one
has #𝐻 = 0.
Let now denote by 𝑎 ≥ 0 the number of edges of the form (𝑞, 𝑢∗) for some 𝑢 ∈ 𝑄 and 𝑞 ∈ 𝑃[𝑢] such

that (𝑞, 𝑢∗) ∉ 𝐸noise. Then we have the bound

Deg Γ̃0
𝔢 ≥

∑︁
𝑒∈𝐸trees

deg(𝑒) +
∑︁

𝑢∈𝐿 (𝜎)\𝑄
𝖘(𝔱(𝑢)) + |𝔰 |

2
𝑎 + |𝖘 | (#𝑁 (𝜎) − 1)

≥ |𝜎 |𝖘 +
|𝔰 |
2
𝑎,

so that with the same argument as above one has 𝑎 = 0 and hence 𝑄 = #̸.

General case. Define Γ̂ ⊆ Γ𝑃𝜏 as the subgraph induced by the edge set

𝐸 (Γ̂) := 𝐸 (Γ̃) ∪ {𝑒 ∈ 𝐸 (Γ𝑃𝜏 ) : 𝔱(𝑒) = (𝚵, 0) for some 𝚵 ∈ 𝕷− and 𝑒 ∩ �̃� ≠ #̸}.

Then Γ̂ is a connected subgraph of Γ and one has Deg Γ̂ ≤ Deg Γ̃. Hence Γ̂ satisfies the conditions
of the special case above, so that in particular Γ̂ = Γ𝑃𝜏 (𝜎) for some closed subtree 𝜎 ⊆ 𝜏. Let now
𝑒 ∈ 𝐸 (Γ̂) \ 𝐸 (Γ̃). Then necessarily 𝔱(𝑒) = (𝚵, 0) for some 𝚵 ∈ 𝕷− and from the definition we infer
deg l𝚵 < −|𝔰 |. The first part of the proof shows that 𝑒 ⊆ 𝑉 (Γ̃), hence Deg Γ̃ > Deg Γ̂ + |𝔰 | > 0, in
contradiction to the assumption. Hence we must have Γ̂ = Γ̃, and this concludes the proof.

We denote by 𝑔(𝐿𝔎) BPHZ characters on H− and by 𝑔𝐽𝔎 ∈ G− the BPHZ character on T−. We
introduce furthermore a character 𝑔trees (𝐿𝔎) on H− which corresponds to 𝑔[ . For this we introduce
the canonical projection p− : Ĥ− → H−. We write i : H− → Ĥ− for the embedding which is a right
inverse of p− such that the range of i is given by the subalgebra of Ĥ− generated by Feynman diagrams
of non-positive homogeneity. Furthermore, we write Htrees

− for the unital subalgebra of H− generated
by connected vacuum Feynman diagrams Γ such that there exists an edge 𝑒 ∈ 𝐸 (Γ) with 𝔱(𝑒) ∈ 𝔏+,
and we denote by Jnoise andHnoise

− (resp. Ĵnoise and Ĥnoise
− ) the ideal and unital subalgebra ofH− (resp.

Ĥ−) generated by Feynman vacuum diagrams Γ with the property 𝔱(𝑒) ∈ L̃ for any edge 𝑒 ∈ 𝐸 (Γ).
Finally, we define ptrees : H− → Htrees

− as the multiplicative projection which is the identity on Htrees
−

and annihilates Jnoise.
With this notation we define 𝑔trees (𝐿𝔎) as the unique character onH− which satisfies the two relations

(𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎)Δ−i = 0 onHtrees (A.21)
𝑔trees (𝐿𝔎) = 0 on Jnoise. (A.22)

Let finally ℎ(𝐿𝔎) be the character defined by

ℎ(𝐿𝔎) ◦ 𝑔trees (𝐿𝔎) = 𝑔(𝐿𝔎).

We would like to show that ℎ is bounded in the character group uniformly over 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m) such
that ∥𝔎∥𝖘 ≤ 𝐶. This is not quite true, however it is true if ℎ is restricted to the Hopf subalgebraHs

− ⊆ H−
generated by all connected vacuum diagrams of the form Γ𝑃𝜏 for some 𝜏 ∈ T★ and some 𝑃 ∈ P.

Lemma A.21 Let Γ ∈ Hnoise
− ∩Hs

− be a connected vacuum diagram. Then either Γ contains exectly one
edge 𝑒, and one has 𝔱(𝑒) = (𝚵, 1) for any 𝚵 ∈ 𝕷− with 𝑚𝚵 = 1, or Γ “represents a covariance” in the
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sense that Γ is of the form

Γ = . (A.23)

Here we coloured edges 𝑒 with weak types 𝔱(𝑒) belong to the same element of the partition Ll in the
same colour.

Proof. Let 𝜏 ∈ T★ and fix a pairing 𝑃 ∈ P. Assume that we are given a family 𝐿 = (𝐿𝑖)𝑖≤𝑛 of
disjoint subsets 𝐿𝑖 ⊆ 𝐿 (𝜏), 𝑖 = 1, . . . , 𝑛 such that each 𝐿𝑖 is “closed” under 𝑃 in the sense that whenever
{(𝑢, 𝑘), (𝑣, 𝑙)} ∈ 𝑃 for any𝑢 ∈ 𝐿𝑖 and 𝑘, 𝑙 ∈ N, then one has 𝑣 ∈ 𝐿𝑖 aswell. Each set 𝐿𝑖 defines a connected
subgraph Γ𝑖 ⊆ Γ𝑃𝜏 , 𝑖 = 1, . . . , 𝑛, induced by the vertex set 𝑉 (Γ𝑖) := {𝑢∗, 𝑢↓, 𝑞 : 𝑢 ∈ 𝐿𝑖 , 𝑞 ∈ 𝑃[𝑢]}. Then
we define the “contraction” Γ𝑃𝜏 |𝐿 ∈ Htrees

− by contracting each subdiagrams 𝐿𝑖 to a single vertex.
We claim that the unital algebra H̃s

− ⊆ H− generated by connected vacuum diagrams of the form Γ𝑃𝜏 |𝐿
where 𝐿 is as a (possible empty) family as above and (A.23) forms a Hopf algebra. This immediately
concludes the proof.
Fix 𝜏 ∈ T★ and 𝑃 ∈ P and let Fbe a forest of Γ𝑃𝜏 , i.e. F is a collection of node-disjoint subgraphs

Γ̃ ⊆ Γ𝑃𝜏 such that Deg Γ̃0
𝔢 ≤ 0. We first show that for any Γ̃ ∈ F and any polynomial decoration

𝔫 : 𝑉 (Γ̃) → N𝑑 one has Γ̃𝔫
𝔢 ∈ H̃s

−. First it follows with the same arguments as in the proof of
Lemma A.20 that Γ̃ is admissible. If Γ̃ ∈ Htrees

− then Γ̃ = Γ𝑃𝜏 (𝜎) for some subtree 𝜎 ⊆ 𝜏 by Lemma A.20,
and the latter is element of H̃s

− by definition. Otherwise there exists L̃ ⊆ L such that 𝔱(𝐸 (Γ̃)) = ⊔
l∈L̃ Ll,

and it follows that

Deg Γ̃ ≥ −𝑛( |𝔰 |
2

+ ^) + (𝑛 − 1) |𝔰 |,

where 𝑛 := #L̃. This can only be negative if 𝑛 ≤ 2. If 𝑛 = 1, say L̃ = {l𝚵}, then Deg Γ̃ = 𝖘(𝚵) + 𝑚𝚵
|𝔰 |
2 ,

so that 𝑚𝚵 = 1 and hence Γ contains a single leg. Otherwise 𝑛 = 2 and hence Γ is of the form (A.23).
Now let Γ̂ be the Feynman diagram generated by contracting each graph Γ̃ ∈ Fto a single vertex. Since

the operation of contracting node disjoint subgraphs is commutative, we can first contract those elements
Γ̃ ofFfor which Γ̃ ∈ Htrees

− . By Lemma A.20 for any such Γ̃ there exists a closed subtree 𝜎(Γ̃) ⊆ 𝜏 such
that Γ̃ = Γ𝑃𝜏 (𝜎(Γ̃)). The Feynman diagram resulting from this contractions is then again of the form
Γ�̂�
�̂�
, where 𝜏 ∈ T★ is the tree obtained by contracting each 𝜎(Γ̃) to a single vertex and �̂� is the pairing

induced by 𝑃. To proceed we can hence assume that each connected component Γ̃ of F is an element of
Hnoise

− . Then each Γ̃ induces a subset 𝐿 (Γ̃) ⊆ 𝐿 (𝜏) by setting 𝐿 (Γ̃) := {𝑢 ∈ 𝐿 (𝜏) : 𝑢↓ ∈ 𝑉 (Γ̃)} and thus
Γ̂ = Γ𝑃𝜏 |𝐿 and this concludes the proof.

The next lemma shows that when restricted toHs
− the character ℎ is uniformly bounded.

Lemma A.22 For any 𝐶 > 0 the character ℎ(𝐿𝔎) restricted to the Hopf subalgebra Hs
− is bounded

uniformly over all noises 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m) with ∥𝔎∥𝖘 ≤ 𝐶

Proof. By definition of the BPHZ character 𝑔(𝐿𝔎) one has

0 =
(
𝑔(𝐿𝔎) ⊗ Π𝐿𝔎

)
Δ−i =

(
ℎ ⊗ 𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎

)
(Δ− ⊗ Id)Δ−i

=
(
ℎ ⊗ (𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎)Δ−

)
Δ−i .

Since (𝑔trees (𝐿𝔎) ⊗Π𝐿𝔎)Δ− = Π𝐿𝔎 on Ĥnoise
− , it follows that ℎ = 𝑔 onHnoise

− . The fact that |𝑔(𝐿𝔎)Γ | ≲ 1
for any Γ ∈ Hnoise

− ∩ Hs
− is straightforward from the definitions.
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We now show inductively in the number of edges of connected Feynman diagrams Γ, and in the
quantity

∑
𝑢∈𝑁 (Γ) |𝔫(𝑢) |𝔰 , that one has ℎ(𝐿𝔎)Γ = 0 for any Γ ∈ Htrees

− . Indeed, one has

ℎ(𝐿𝔎)Γ = −
(
ℎ(𝐿𝔎) ⊗ (𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎)Δ−) (Δ− − Id ⊗ 1)iΓ (A.24)

= −
(
ℎ(𝐿𝔎)pnoise ⊗ (𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎)Δ−) (Δ− − Id ⊗ 1)iΓ, (A.25)

where we used the induction hypothesis in order to get the projection pnoise ontoHnoise
− in the last line.

One has

(pnoise ⊗ Id) (Δ− − Id ⊗ 1)iΓ ⊆ Hnoise
− ⊗ Ĥtrees

− . (A.26)

(Note that the second component contains an edge 𝑒 of type 𝔱(𝑒) ∈ 𝔏+, otherwise such an edge would be
in the left component and thus the term would be killed by the projection.) Since (𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎)Δ−i
vanishes onHtrees

− by definition, it remains to show that the right component of (A.26) is of non-positive
degree. But this follows for ^ > 0 small enough, since from the fact that any connected diagram Γ ∈ Htrees

−
satisfies Deg Γ ≥ −𝑛^ where 𝑛 > 0 denotes the number of nodes 𝑤 ∈ 𝑉 (Γ) of the form 𝑤 = 𝑢∗ for some
𝑢 ∈ 𝐿 (𝜏). (We omit the details of this argument which are very similar to the one carried out in the proof
of Lemma A.20.)

Finally, we have the following relation between the renormalised valuations onH andT★.

Proposition A.23 One has the identity

𝑔trees (𝐿𝔎)Wq = 𝑔[ (A.27)

on T★
− . Here q : T★

− → T− denote the projection which kills trees 𝜏 ∈ T★
− such that 𝐿L (𝜏) ≠ #̸, and

we write as above [ := 𝐽𝔎. Moreover, one has

(Π𝐿𝔎,𝑅𝑀𝑔trees (𝐿𝔎) W𝜏) (𝜓𝜏) = Ῡ
[,𝜓

𝑅
𝑀𝑔[𝜏 (A.28)

for any 𝜏 ∈ T★, any 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m), any 𝑅 ∈ K+
∞ and 𝜓 ∈ Ψ. Here 𝜓𝜏 is as in (A.18).

Proof. We show (A.27). The character 𝑔[ when viewed as a character of the Hopf algebra T★
− is

determined by the relations

(𝑔[ ⊗ Υ[)Δ−𝔦 = 0 onT−

𝑔[ = 0 onJ★
legs

where J★
legs ⊆ T★

− denote the ideal generated by trees 𝜏 ∈ T★
− that contain legs. The second identity

holds for the character 𝑔trees (𝐿𝔎)Wq by definition of q. To see the first one, note that

(𝑔trees (𝐿𝔎)Wq ⊗ Υ[)Δ−𝔦 = (𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎) (Wq ⊗ W)Δ−𝔦

onT−. From Lemma A.20 and the definition of the respective coproducts we infer that

(Wq ⊗ W)Δ−𝔦 = (ptrees ⊗ Id)Δ−iW

onT−, which together with (A.21) concludes the proof.
The proof for (A.28) is very similar. One has

Ῡ
[,𝜓

𝑅
𝑀𝑔[𝜏 = (𝑔trees (𝐿𝔎)Wq ⊗ Π𝐿𝔎W)Δ−
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onT★, where we used (A.18) and (A.27). Using the identity

(Wq ⊗ W)Δ− = (ptrees ⊗ Id)Δ−W

onT★ concludes the proof.

As an important application of this construction we proof Theorem 4.19

Proof of Theorem 4.19. We fix a tree 𝜏 ∈ T and assume without loss of generality that leg types and
noise types are unique in 𝜏, so that 𝜏 ∈ T★.
By Lemma A.17 the continuous extension of 𝑅 ↦→ Ῡ

[,𝜓

𝑅
toK+

0 is a consequence of the continuous
extension of the evaluation 𝑅 ↦→ ΠW[,𝑅 which in turn is the content of the first part of Theorem A.10.
The continuous extension of the map ([, 𝑅) ↦→ Υ̂

[,𝜓

𝑅
𝜏 to the space𝔐★

0 × K+
0 is a consequence of

(A.28), Lemma A.22 and the second part of Theorem A.10.

Another consequence is the following corollary for which we assume as in Section 2.4 that we are
given a set of types 𝕷− such that 𝔏− ⊆ 𝕷− and a homogeneity assignment 𝖘 : 𝕷− → R−.

Corollary A.24 Assume that Assumption 5 holds. Let 𝑁 ∈ N and let 𝔎 = (𝔎𝚵
m) ∈ 𝔜𝑁∞ , and assume that

• one has 𝔎𝚵
m ∈ Y

s,#m
∞,★ for any 𝚵 ∈ 𝕷− \𝔏− and any mulitset m (see Definition 2.19 for the definition

of this space), and
• one has 𝔎Ξ

m = 0 for any Ξ ∈ 𝔏− and multiset m with #m > 1.
Fix 𝜏 ∈ T such that 8𝜏8𝖘 = 0 and let 𝕷◦

− := (𝕷− \𝔏−) ∩ 𝔱(𝐿 (𝜏)). Let finally [ := 𝐽 (𝔎) ∈ 𝔐∞ and denote
by 𝑔[ ∈ G− the BPHZ character for [. Then for any 𝚵, �̃� ∈ 𝕷◦

− there exists \ > 0 such that one has

|𝑔[𝜏 | ≲ suppm,m̃ ∥𝔎𝚵
m∥𝛽𝚵m+\ ∥𝔎�̃�

m∥
𝛽�̃�
m̃
−\ (A.29)

uniformly over all 𝔎 as above such that ∥𝔎∥𝖘 ≤ 𝐶. Here the supremum runs over all multisets m, m̃

with values in 𝔏− and such that #m∨ #m̃ ≤ 𝑁 . (See Definition 2.11 for the definition of 𝛽𝚵m.)

Proof. Fix a tree 𝜏 ∈ T. We can assume that any noise type 𝚵 ∈ 𝔱(𝐿 (𝜏)) is unique, so that 𝔱(𝐿 (𝜏)) is
a proper set. Note that 𝔎 can be written as a finite sum 𝔎 =

∑
m[𝔎]m, where the sum runs over all

familiesm = (m𝚵), 𝚵 ∈ 𝕷−, of multisetsm𝚵 with values in 𝔏− and such that #m𝚵 ≤ 𝑁 , and where
[𝔎]m ∈ 𝔜𝑁∞ (𝕷−,m) (see Section A.3.1). Since one has 𝑔[𝜏 = ∑

m 𝑔 [[ ]m𝜏, where [[]m := 𝐽 ( [𝔎]m),
it suffices to assume that 𝔎 ∈ 𝔜𝑁∞ (𝕷−,m). By (A.27) it then suffices to bound 𝑔trees (𝐿𝔎)W𝜏, and by
definition of W in (A.19) is suffices to fix a pairing 𝑃 ∈ P and bound 𝑔trees (𝐿𝔎)Γ𝑃𝜏 .
We want to use the second statement of Corollary A.14, which is formulated in terms of 𝑔(𝐿𝔎) rather

than 𝑔trees (𝐿𝔎). We recall that one has

𝑔trees (𝐿𝔎) = ℎ(𝐿𝔎)−1 ◦ 𝑔(𝐿𝔎),

and by Lemma A.22 the character ℎ(𝐿𝔎) is uniformly bounded when restricted toHs
−. It follows from

the proof of Lemma A.22 that ℎ(𝐿𝔎) vanishes onHtrees
− ∩Hs

−. Moreover, ℎ(𝐿𝔎)Γ̃ = 0 for any subgraph
Γ̃ ∈ Hs

−∩Hnoise
− which contains a type l𝚵 ∈ Lwith𝚵 ∈ 𝕷− \𝔏−. To see this, recall from Lemma A.21 that

Γ̃ represents a variance as in (A.23), so that Γ̃ has no proper subdivergences, and 𝑔(Γ̃) = 0 = 𝑔trees (Γ̃),
where the first equality follows from 𝔎𝚵

m𝚵
∈ Y

s,#m𝚵
∞,★ and the second equality follows from (A.22). It

follows that the only subgraphs Γ̃ of Γ𝑃𝜏 on which ℎ(𝐿𝔎)Γ̃�̃�
𝔢 does not vanish have the property that

every edge 𝑒 ∈ 𝐸 (Γ̃) is of type 𝔱(𝑒) = (0,Ξ) for some Ξ ∈ 𝔏−. We denote by E ⊆ 𝐸 (Γ𝑃𝜏 ) the set of
edges 𝑒 ∈ 𝐸 (Γ𝑃𝜏 ) with the property, such that {𝔱(𝑒)} = (Ξ, 0) with Ξ ∈ 𝔏−, and we write 𝐴(𝜏, 𝑃) for the
collection of diagrams of the form Γ𝜏

𝑃
| Ẽwhich are obtained from Γ𝜏

𝑃
by fixing Ẽ ⊆ E and contracting

each edge in Ẽ to one vertex. Then, this paragraph implies in particular that one has

(ℎ(𝐿𝔎) ⊗ Id)Δ− Vec 𝐴(𝜏, 𝑃) ⊆ Vec 𝐴(𝜏, 𝑃). (A.30)
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It now remains to show that for any fixed Γ ∈ 𝐴(𝜏, 𝑃) one has that 𝑔(𝐿𝔎)Γ is bounded by the right-
hand side of (A.29). For this we note first that ∥𝐿𝔎∥K̃−

0
≲ ∥𝔎∥𝖘 ≲ 1. Fix now 𝚵, �̃� ∈ 𝕷◦

− and let l◦ := l𝚵
and l1 := l�̃�, see (A.17). Then, one has Deg l◦ = 𝛽𝚵m − |𝔰 | and Deg l1 = 𝛽�̃�m − |𝔰 | and by definition (A.7)
and (2.15) one has

||| (𝐿𝔎)l◦ |||Deg l◦+\ = ∥𝔎𝚵
m𝚵

∥𝛽𝚵m𝚵
+\ and ||| (𝐿𝔎)l1 |||Deg l1−\ = ∥𝔎�̃�

m�̃�
∥
𝛽�̃�m�̃�

−\ .

It remains to show that 𝐿𝔎 is log-avoiding for Γ and l𝚵 ∈ L for any 𝚵 ∈ 𝕷◦
−. First note that

Deg Γ = Deg Γ𝑃𝜏 = 8𝜏8𝖘 = 0. (In the first equality we used that Deg 𝔱(𝑒) = −|𝔰 | for any 𝑒 ∈ E, the
second equality holds by construction and the third by assumption.) Fix a type 𝚵 ∈ 𝕷◦

− and let Γ̃ ⊆ Γ be
a subgraph with 𝔱(𝐸 (Γ̃)) ∩Ll𝚵 ≠ #̸ and let �̃� ∈ N(Γ̃) be a polynomial decoration such that Deg Γ̃�̃�

𝔢 = 0.
We have to show that 𝑔(𝐿𝔎)Γ̃�̃�

𝔢 = 0. If Γ̃ ∈ Hs
−∩Hnoise

− , then 𝑔(Γ̃�̃�
𝔢 ) = 0with the same argument as above.

Otherwise, note that Γ̃ can be written as Γ̂ | ( Ẽ∩ 𝐸 (Γ̂)) for some subdiagram Γ̂ of Γ𝑃𝜏 and Ẽas above,
where 𝐸 (Γ̂) := 𝐸 (Γ̃) ⊔ {𝑒 ∈ Ẽ : 𝑒 ⊆ 𝑉 (Γ̃)}. By Lemma A.20 there exists a closed subtree 𝜎 ⊆ 𝜏 such
that Γ̂ = Γ𝑃𝜏 (𝜎), and it follows that Γ̃�̃�

𝔢 ∈ 𝐴(𝜎�̃�
𝔢 , 𝑃). We can assume that 𝜎 is connected to its complement

in 𝜏 with at least two nodes (otherwise one has 𝑔(𝐿𝔎)Γ = 0 and there is nothing to show). By (A.30) it
suffices to show that 𝑔trees (𝐿𝔎) vanishes on 𝐴(𝜎�̃�

𝔢 , 𝑃). By (A.27) one has 𝑔trees (𝐿𝔎)Γ̂�̃�
𝔢 = 𝑔[𝜎�̃�

𝔢 = 0,
where the last equality follows from Assumption 5, which shows the required identity for Ẽ = #̸. In
general, we obtain the identity via a limit argument. Let Ê := Ẽ∩ 𝐸 (Γ̂) and let 𝔎Y be defined by setting,
for any Ξ ∈ 𝔏− such that (Ξ, 0) ∈ 𝔱( Ẽ),

(𝔎Y)ΞmΞ
:= 𝜌Y ,

where 𝜌Y → 𝛿0 as Y → 0 (note that #mΞ = 1 by assumption). For any 𝚵 ∈ 𝕷− which is not of this type
we set (𝔎Y)𝚵m𝚵

:= 𝔎𝚵
m𝚵
. Then one has

𝑔trees (𝐿𝔎Y)Γ̂�̃�
𝔢 = 𝑔[

Y

𝜎�̃�
𝔢 = 0

for any Y > 0, where [Y := 𝐽 (𝔎Y), and on the other hand one has

𝑔trees (𝐿𝔎Y)Γ̂�̃�
𝔢 → 𝑔trees (𝐿𝔎)Γ̂�̃�

𝔢 | Ê, as Y → 0,

which concludes the proof.

B. Proof of Proposition 4.49

We will work with Proposition 4.49, although this proposition is not formulated in the most natural way
and not well adapted to the proof we will give below. We will now state a more general (but essentially
equivalent) formulation. For this we start with the following definition.

Definition B.1 Given a system𝔓 ∈ P, a compact set𝐾 ⊆ D̄, and 𝛿 > 0we define the set𝔑(𝔓, 𝐾, 𝛿) ⊆ 𝔑

as the set of 𝜙 ∈ 𝔑(𝔓, 𝛿) such that additionally one has supp 𝜙l ⊆ 𝐾 for any l ∈ L. On the space
𝔑(𝔓, 𝐾, 𝛿) we introduce the norm ∥ · ∥𝔓 given as the smallest constant such that

|𝐷𝑘𝜙l (𝑥) | ≤ ∥𝜙∥𝔓 |𝑥 |deg𝔓l−|𝑘 |𝔰
𝔰 (B.1)

for any l ∈ L, 𝑘 ∈ N𝑑 with |𝑘 |𝔰 < 𝑟, and 𝑥 ∈ D̄.

With this notation, we will show below the following proposition.
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Proposition B.2 Let 𝜏 ∈ Tad
− , let 𝔓 ∈ P(𝜏), let 𝐾 ⊆ D̄ be a compact set, let 𝛿 > 0, and let deg𝔓 be the

degree assignment defined in (4.40). Then one has for any 𝐶 > 0 the bound�� (ℎ𝜙
𝔓,𝑅

⊗ Ῡ
𝜙

�̃�

)
Δ−𝖎−𝜏

�� ≲ 1 (B.2)

uniformly over 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿) and 𝑅, �̃� ∈ K+
0 with ∥𝜙∥𝔓 ∨ ∥𝑅∥K+ ∨ ∥ �̃�∥K+ < 𝐶.

The proof of this proposition is the content for the next three sections, see in particular Section B.3
below. We end this section by showing that Proposition 4.49 follows from Proposition B.2.

Proof of Proposition 4.49. We apply Proposition B.2 for ||| · ||| (𝛽)𝔰 := ||| · |||𝔰 − 𝛽, where 𝛽 > 0 is small
enough so that one still has |||Ξ||| (𝛽)𝔰 > |Ξ|𝔰 for any Ξ ∈ 𝔏−. We denote by deg𝔓,𝛽 : L→ R− ∪ {0} the
degree assignment defined as in (4.38) and (4.40) but with ||| · |||𝔰 replaced by ||| · |||

(𝛽)
𝔰 , and we write ∥𝜙∥𝔓,𝛽

for the norm defined as in (B.1) with deg𝔓 replaced by deg𝔓,𝛽 . We choose a compact set 𝐾 ⊆ D̄ that
supports the functions 𝜙Yl for any l ∈ L and Y > 0, so that one has 𝜙Y ∈ 𝔑(𝔓, 𝐾, 𝛿) for any Y ∈ (0, 1].
Let now l̃ ∈ L be such that l̃ ∈ 𝔱(𝐿L (𝜏)) and l̃ ∈ I ∈ 𝔓, and define for 0 < Y ≤ 1 the tuple

𝜙Y ∈ 𝔑(𝔓, 𝐾, 𝛿) by setting 𝜙Y
l̃

:= Y−
𝛽

2 𝜙Y
l̃
and 𝜙Yl := 𝜙Yl for any l ∈ L\{l̃}. It follows that ∥𝜙Y ∥𝔓,𝛽 ≲ 1.

Since moreover deg∞ was chosen in such a way that ∥�̂� −𝐾 ∥K+ is finite, it follows from (B.2) that one has�� (ℎ𝜙Y
𝔓,𝑅

⊗ Ῡ�̃�
Y )
Δ−𝖎−𝜏

�� ≲ 1, (B.3)

for 𝑅 ∈ {0, �̂� − 𝐾}.
It remains to show that the left-hand side of (B.3) is equal to Y−

𝛽

2 times the left-hand side of (4.43). For
this letFbe a subforest of 𝜏 and choose decorations 𝔫F and eF as in (A.3). We then distinguish two cases.
In the first case, one has l̃ ∈ 𝔱(𝐿L (𝑇/F)), and it follows that Ῡ�̃�Y (𝑇/F)𝔫−𝔫F

𝔢+𝔢F = Y−
𝛽

2 Ῡ𝜙
Y (𝑇/F)𝔫−𝔫F

𝔢+𝔢F .
In the second case, there exists 𝑆 ∈ F̄ such that l̃ ∈ 𝔱(𝐿L (𝑆)), and in this case it follows that
ℎ
𝜙Y

𝔓,𝑅
𝑆
𝔫F
𝔢F

= Y−
𝛽

2 ℎ
𝜙Y

𝔓,𝑅
𝑆
𝔫F
𝔢F
.

B.1. Feynman diagrams

We are going to show Proposition B.2 by applying the results of [Hai18]. To this end we recall the notation
of Section A.3 about Feynman diagrams, which we are going to apply to the type setL := M⊔𝔏+, where
we define M as the set of all (l, l̄) ∈ L × L with l < l̄. Fix a system 𝔓 ∈ P. We then define a degree
assignment deg𝔓 onL by setting deg𝔓(l, l̄) := 2deg𝔓(l) for (l, l̄) ∈ M and deg𝔓𝔱 := |𝔱 |𝔰 − |𝔰 | for any
kernel type 𝔱 ∈ 𝔏+.
Given an element 𝜙 ∈ 𝔑 and a large-scale kernel assignment 𝑅 ∈ K+

0 we define

K𝔱 :=

{
𝐾𝔱 if 𝔱 ∈ 𝔏+
𝜙l if 𝔱 = (l, l̄) ∈ M

and R𝔱 :=

{
𝑅𝔱 if 𝔱 ∈ 𝔏+
0 if 𝔱 ∈ M,

(B.4)

In the notation of PropositionB.2, letK= K(𝜙) be defined as in (B.4) from some tuple 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿),
and letR and R̃ be the large scale kernel assignments defined as in (B.4) from 𝑅 and �̃�. Then we have
the following result, which is an immediate Corollary of [Hai18, Thm. 4.3].

Theorem B.3 Assume that Γ ∈ Ĥ− is a connected vacuum diagram that has the property described in
Lemma A.8 and let K= K(𝜙) be as above. Then for any 𝐶 > 0 one has the bound

| (𝑔full (K) ⊗ ΠK,R̃)Δfull
− Γ | ≲ 1 (B.5)

uniformly over 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿) and R̃ ∈ K+
∞ with ∥𝜙∥𝔓 ∨ ∥R̃∥K+ ≤ 𝐶.
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Proof. Comparing this formulation to [Hai18, Thm. 4.3], we only need to note that one has ∥K(𝜙)∥K− ≲
∥𝜙∥𝔓 uniformly over all 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿), where the norm ∥ · ∥K− is defined as the smallest constant such
that

|𝐷𝑘K𝔱 (𝑥) | ≤ ∥K∥K− |𝑥 |deg𝔍 𝔱−|𝑘 |𝔰

for any 𝔱 ∈ L and 𝑘 ∈ N𝑑+1 with |𝑘 |𝔰 < 𝑟 (c.f. [Hai18, Eq. 2.2]).

B.2. Embedding the tree algebra into the Feynman diagram algebra

We now construct for any properly legged tree 𝜏 ∈ T̂ex,pl
− a Feynman vacuum diagram Γ(𝜏) :=

(𝑉Γ (𝜏), 𝐸Γ (𝜏)) together with the necessary decorations 𝔩 : 𝐸Γ (𝜏) → L and 𝔫 : 𝑉Γ (𝜏) → N𝑑 . To this
end, we first introduce the notation that for 𝑒 ∈ 𝐸Γ (𝜏) we write 𝑒+, 𝑒− ∈ 𝑉Γ (𝜏) for the two vertices such
that 𝑒 is an edge from 𝑒− to 𝑒+11. The total order ≤ on L induces a total order ≤ on 𝐿L (𝜏), and we define
EL (𝜏) as the set of all ordered pairs (𝑒, 𝑒) with 𝑒 ≤ 𝑒 (recall that 𝑒 denotes the partner of 𝑒). We interpret
any (𝑒, 𝑒) ∈ EL (𝜏) as an edge by setting (𝑒, 𝑒)− := 𝑒↓ and (𝑒, 𝑒)+ := 𝑒↓, and with this notation we set

𝑉Γ (𝜏) := 𝑁 (𝜏) and 𝐸Γ (𝜏) := EL (𝜏) ⊔ 𝐾 (𝜏).

The decoration 𝔫 is then taken over from 𝜏, and the decoration 𝔩 : 𝐸Γ (𝜏) → L is defined by setting
𝔩(𝑒) := 𝔱(𝑒) (𝔢(𝑒)) for any 𝑒 ∈ 𝐾 (𝜏) and 𝔩(𝑒, 𝑒) := (𝔱(𝑒), 𝔱(𝑒)) (𝔢(𝑒)+𝔢(�̄�)) for any (𝑒, 𝑒) ∈ EL (𝜏). We
finally specify that the distinguished vertex in 𝑉Γ (𝜏) is given by 𝑣★ := 𝜌(𝜏) ∈ 𝑉Γ (𝜏). This specifies a
Feynman vacuum diagram, and we summarise this in the following lemma.

Lemma B.4 For any properly legged tree 𝜏 ∈ T̂ex,pl
− the vacuum diagram Γ(𝜏) = (Γ(𝜏), 𝔫, 𝔩, 𝑣★) is a

connected vacuum diagram and element of the algebra Ĥ−.

In plain words, we can view Γ(𝜏) as the Feynman diagram obtained from 𝜏 by killing the noise types
edge 𝑒 ∈ 𝐿 (𝜏) an marrying each leg of 𝜏 with its respective partner. We also set

V𝜏 := (−1)𝑚(𝜏)Γ(𝜏) (B.6)

where we define for any properly legged tree 𝜏 ∈ T̂ex,pl
− the quantity

𝑚(𝜏) :=
∑︁

(𝑒,�̄�) ∈EL (𝜏)
𝔢(𝑒).

If we extend Vmultiplicatively to a map on T̂ex,pl
− , we obtain an algebra monomorphism

V : T̂ex,pl
− → Ĥ−.

We now have the following relation between the evaluations Π on Ĥ− and Ῡ on T̂ex,pl
− , respectively.

Lemma B.5 For any 𝜙 ∈ 𝔑 and any large-scale kernel assignment 𝑅 ∈ K+
∞, one has the identity

ΠK,RV= Ῡ
𝜙

𝑅
, (B.7)

on T̂ex,pl
− , where Kand R are constructed from 𝜙 and 𝑅 as in (B.4).

Proof. Let 𝜏 ∈ T̂ex,pl
− be a tree. We have to compare the definition of Ῡ1,𝜙

𝑅
𝜏 in (4.10) with 𝜓 given

by (4.26) to the definition of ΠK,RV𝜏 in [Hai18, Eqs 2.15, 4.3]. We re-write the integrand in [Hai18,

11We do not identify an edge 𝑒 with the pair (𝑒− , 𝑒+) , since we will have to consider multiple edges between the same pair of vertices.
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Eqs 2.15, 4.3] as

(−1)𝑚(𝜏)𝛿0 (𝑥𝜌)
∏

𝑒∈𝐾 (𝜏)
𝐷𝔢(𝑒) (𝐾 + 𝑅)𝔱 (𝑒) (𝑥𝑒+ − 𝑥𝑒− )∏

𝑒,�̄�∈EL (𝜏)
𝐷𝔢(𝑒)+𝔢(�̄�)𝜙𝔱 (𝑒) (𝑥𝑒↓ − 𝑥�̄�↓)

∏
𝑢∈𝑁 (𝜏)

𝑥
𝔫 (𝑢)
𝑢 . (B.8)

Moreover, we have the identity∏
𝑒,�̄�∈EL (𝜏)

𝐷𝔢(𝑒)+𝔢(�̄�)𝜙𝔱 (𝑒) (𝑥𝑣↓ − 𝑥𝑢↓)

= (−1)𝑚(𝜏)
∫
𝐿L (𝜏)

𝑑𝑥
∏

𝑒∈𝐿L (𝜏)
𝐷𝔢(𝑒)𝛿0 (𝑥𝑢↓ − 𝑥𝑢)𝜙𝐿L (𝜏) (𝑥𝐿L (𝜏) ) (B.9)

where 𝜙𝐿L (𝜏) is as in (4.26). Comparing this with (4.26) the lemma follows at once.

In a the next step we would like to understand the relation between the coproducts Δ− and Δ− on
T̂ex,pl
− and Ĥ−, respectively. This in general quite messy, as for general trees 𝜏 ∈ T̂ex,pl

− there is no
obvious relation between the homogeneity |𝜏 |𝔰 and the degree degIΓ(𝜏) for subtrees 𝜏 of 𝜏. However,
the situation is much nicer for trees of the form 𝖎−𝜏 for some 𝜏 ∈ Tad

− with the property that𝔓 ∈ P(𝜏).

Lemma B.6 Let 𝜏 = 𝑇𝔫
𝔢 ∈ Tad

− , let 𝔓 ∈ P(𝜏), and let (Γ, 𝔫, 𝔩) := Γ(𝜏). Then, the set of full, connected
subgraphs Γ̃ of Γ with deg𝔓Γ̃0

𝔢 < 0 coincides with the set of subgraphs Γ̃ of Γ that satisfy one of the
following two criteria.

1. There exists a subtree 𝜏 = 𝑇0
𝔢 of 𝜏 with |𝜏 |𝔰 < 0 such that Γ̃ is the full subgraph of Γ induced by 𝑁 (𝜏).

2. The graph Γ̃ contains a single edge 𝑒 with the property that 𝔩(𝑒) = l(𝑘) for some l ∈ M and 𝑘 ∈ N𝑑 .
In the first case one has |||𝑇0

𝔢 |||𝔰 = deg𝔓VΓ̃0
𝔢 and Γ̃ = Γ(𝜋𝜏), where 𝜋 is as above the projection that

removes legs and 𝜋𝜏 is as in (4.22). Finally, there exists M̄ ⊆ M such that L(𝜏) = ⊔
M̄, where M is as

in (4.42) for 𝔓.

Proof. Let Γ̃ be a connected, full subgraph of Γ(𝜏) such that deg𝔓Γ̃0
𝔢 < 0, and let 𝜏 be the subgraph

of 𝜏 induced by the edge set 𝐸 (𝜏) := 𝐾 (𝜏) ∩ 𝐸 (Γ̃). We first argue that either 𝜏 is a subtree of 𝜏, or
point 2. above applies. For this we denote by 𝜏1, . . . , 𝜏𝑚 for some 𝑚 ≥ 1 the connected components
of 𝜏, so that 𝜏𝑖 is a subtree of 𝜏 for any 𝑖 ≤ 𝑚. We obtain another tree 𝜏𝑖 from 𝜏𝑖 by adding all
noise type edges 𝑒 ∈ 𝐿 (𝜏) incident to 𝜏𝑖 , so that 𝜏𝑖 is the subtree of 𝜏 induced by the edge set
𝐸 (𝜏𝑖) := 𝐸 (𝜏𝑖) ⊔ {𝑒 ∈ 𝐿 (𝜏) : 𝑒↓ ∈ 𝑁 (𝜏𝑖)}. It now follows from a counting argument identical to (4.39)
that deg𝔓Γ̃0

𝔢 is given by

𝑚∑︁
𝑖=1

∑︁
𝑒∈𝐾 ( �̂�𝑖)

( |𝔱(𝑒) |𝔰 − |𝔢(𝑒) |𝔰) + (𝑚 − 1) |𝔰 |

+
∑︁

(𝑒,�̄�) ∈EL (𝜏)∩𝐸 (Γ̂)

deg𝔓(𝔱(𝑒)) + deg𝔓(𝔱(𝑒)) +
∑︁

𝑢∈𝑉 (Γ̃)

|𝔫(𝑢) |𝔰

≥
𝑚∑︁
𝑖=1

||| (𝜏𝑖)0
𝔢 |||𝔰 + (𝑚 − 1) |𝔰 |, (B.10)

Now, by our assumption on the regularity structure one has ||| (𝜏𝑖)0
𝔢 |||𝔰 > − |𝔰 |

2 unless 𝜏𝑖 = Ξ for some
Ξ ∈ 𝔏− with 8Ξ8𝔰 = − |𝔰 |

2 . It follows that this expression can only be negative for 𝑚 = 1 or for 𝑚 = 2, and
in the second case one has necessarily that 𝜏𝑖 is the trivial tree for 𝑖 = 1, 2, so that point 2 above applies.
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Assume for the rest of the proof that 𝑚 = 1 and hence 𝜏 is a subtree of 𝜏. It then follows that Γ̃ is the
full subgraph of Γ induced by set 𝑁 (𝜏) of nodes of 𝜏. Moreover, from (B.10) we infer that |||𝜏0

𝔢 |||𝔰 < 0.
We are left to show thatL(𝜏) can be written as a disjoint union of some M̄ ⊆ M. Assume this does not
hold. We distinguish two cases. In the first case there exists 𝑢 ∈ L(𝜏) such that one has 𝑢 ∉

⊔
M. Let

𝑒 ∈ 𝐿L (𝜏) be the noise type edge with 𝑒↓ = 𝑢, and observe that one gets similarly to (B.10) the estimate

deg𝔓Γ̃0
𝔢 ≥ |||𝜏0

𝔢 |||𝔰 − |||𝔱(𝑒) |||𝔰 > 0.

The last inequality follows again from the assumptions made on the regularity structure. In the second
case there exists 𝑀 ∈ M such that 𝑀 ∩L(𝜏) ≠ #̸, but 𝑀 ⊈ L(𝜏). Then we set 𝛼 := max{|||𝔱(𝑒) |||𝔰 : 𝑒 ∈
𝐿 (𝜏), 𝑒↓ ∈ 𝑀 ∩L(𝜏)} and we have similar to (B.10) the estimate

deg𝔓Γ̃0
𝔢 ≥ |||𝜏0

𝔢 |||𝔰 −
∑︁

𝑒∈𝐿 ( �̃�) ,𝑒↓∈𝑀∩L( �̃�)

#𝑀 − #(𝑀 ∩L(𝜏))
#𝑀 − 1

|||𝔱(𝑒) |||𝔰 (B.11)

≥ |||𝜏0
𝔢 |||𝔰 −

#𝑀 − #(𝑀 ∩L(𝜏))
#𝑀 − 1

#(𝑀 ∩L(𝜏))𝛼. (B.12)

Since 1 ≤ #(𝑀 ∩L(𝜏)) ≤ #𝑀 − 1 we can bound this expression by

|||𝜏0
𝔢 |||𝔰 − 𝛼 ≥ 0.

The last inequality follows again from the assumption on the regularity structure and the fact that there
exists a noise type edge 𝑒 ∈ 𝐿 (𝜏) such that |||𝔱(𝑒) |||𝔰 = 𝛼.

We are now in a position to show an identity between the coproduct on the respective spaces. For this
we introduce the canonical projection p− : Ĥ− → H−, and we define the projection ptrees : H− → H−
as the multiplicative projection onto the subalgebra of H− generated by connected vacuum diagrams
(Γ𝔫

𝔢 , 𝔩) ∈ Hwith the property that there exists an edge 𝑒 ∈ 𝐸 (Γ) such that 𝔩(𝑒) ∈ 𝔏+. With this notation,
we have the following lemma.

Lemma B.7 One has the identity

(p−V⊗ V)Δex
− 𝖎− = (ptrees ⊗ Id)Δ−V𝖎− (B.13)

on Tad
− .

Proof. Since the expression on both sides are multiplicative and linear, it suffices to show this identity
for trees, and we fix for the entire proof a tree 𝜏 = 𝑇𝔫

𝔢 ∈ Tad
− . We start with the expression given by

applying the right-hand side of (B.13) to 𝜏 and transform it into the left-hand side.
By definition one has

Δ−V𝖎−𝜏 = (−1)𝑚(𝜏)
∑̃︁
Γ

∑̃︁
𝔢,�̃�

(−1) | out �̃� |

�̃�!

(
𝔫

�̃�

)
Γ̃�̃�+𝜋�̃�
𝔢 ⊗ (Γ/Γ̂)𝔫−�̃�[�̃�]+𝔢

where we use the convention that the first sum runs over subgraphs Γ̃ of Γ𝔫
𝔢 := V𝜏 with the property

that any connected component of Γ̃0
𝔢 is divergent, and the second sum runs over all decorations

�̃� : 𝜕Γ̃𝐸 (Γ) → N𝑑 and �̃� : 𝑉 (Γ) → N𝑑 such that supp �̃� ⊆ 𝑉 (Γ̃). Here, we write 𝜕Γ̃𝐸 (Γ) for the set of
half-edges (𝑒, 𝑣) with 𝑒 ∈ 𝐸 (Γ)\𝐸 (Γ̃) and 𝑣 ∈ 𝑒 ∩𝑉 (Γ̃), and we write [�̃�] (𝑒) :=

∑
𝑢∈𝑒 �̃�(𝑒, 𝑢).

After applying ptrees ⊗ Id to this identity, we restrict the first sum to those subgraphs Γ̃ with the property
that each connected component of Γ̃ is of the first type in Lemma B.6. In this case we can write this
graph in the form Γ̃ =

∏
𝑆∈F̄Γ(𝑆) for some forest F∈ div★(𝜋𝜏), where we write div★(𝜋𝜏) ⊆ div(𝜋𝜏)
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for the set of forests F∈ div(𝜋𝜏) with the property that each tree 𝑆 ∈ F̄satisfies the first condition of
Lemma B.6. We can now write

(ptrees ⊗ Id)Δ−V𝖎−𝜏

= (−1)𝑚(𝜏)
∑︁

F∈div★ (𝜋𝜏)

∑︁
𝔢F,𝔫F

(−1) ⟨𝔢F⟩
𝔢F!

(
𝔫

𝔫F

)
Γ(F)𝔫F+𝜋𝔢F

𝔢 ⊗ (Γ(𝑇/F))𝔫−𝔫F

𝔢F+𝔢

=
∑︁

F∈div★ (𝜋𝜏)

∑︁
𝔢F,𝔫F

1
𝔢F!

(
𝔫

𝔫F

)
V(F)𝔫F+𝜋𝔢F

𝔢 ⊗ (V(𝑇/F))𝔫−𝔫F

𝔢F+𝔢 ,

where ⟨𝔢F⟩ := |∑(𝑢,𝑣) ∈EL (𝜏) 𝔢F(𝑢) |. The sums here run over all decorations 𝔫F and eF satisfying
the condition that deg Γ(𝑆)𝔫F+𝜋𝔢F

𝔢 < 0 for any 𝑆 ∈ F̄, which, due to Lemma B.6, is equivalent to
|𝑆𝔫F+𝜋𝔢F

𝔢 |𝔰 < 0. Moreover, again with Lemma B.6, it follows that this condition is violated for any
F∈ div(𝜏)\ div★(𝜏) for any choice of decoration, so that we can re-write this expression further into

(ptrees ⊗ Id)Δ−V𝖎−𝜏 = (p−V⊗ V)
∑︁

F∈div 𝜏

∑︁
𝔢F,𝔫F

1
𝔢F!

(
𝔫

𝔫F

)
F

𝔫F+𝜋𝔢F
𝔢 ⊗ (𝑇/F)𝔫−𝔫F

𝔢F+𝔢 .

Comparing this with the definition of the coproduct Δex
− in (4.23), and noting that the extended 𝔬-

decoration is irrelevant due to the definition of the operator V, concludes the proof.

We now construct a character ℎ(K,R) onH− in an analogous way to (4.41). Given a set I ⊆ L which
is closed under conjugation, we writeHI− ⊆ H− and ĤI− ⊆ Ĥ− for the linear sub-space ofH− and Ĥ−
respectively, spanned by all connected Feynman diagrams Γ = (V, E) with the property that for any
𝑒 ∈ Eone has either 𝔱(𝑒) ∈ 𝔏+ or 𝔱(𝑒) = (l, l̄) ∈ L/− with l ∈ I, and we write 𝑃I : H− → HI− for the
canonical projection.
With this notation we define a character ℎ(K,R) onH− by setting

ℎ(K,R)Γ := −
∑︁
I∈𝔓

ΠK,R𝑃IΓ (B.14)

for any connected vacuum Feynman diagram Γ, and extending this linearly and multiplicatively. We
leave the set𝔓 implicit in this notation, since it is fixed for the entire proof anyway.
Before we state the next Lemma, let us give an equivalent definition of the characters ℎ(𝔍, 𝜙, 𝑅) and

ℎ(K,R) defined in (4.41) and (B.14).
First note that we introduced linear projections 𝑃I : Tpl

− → Tpl
− and 𝑃I : H− → H−. We generalise

this notation to systems𝔔 ∈ P in the following way. We writeTpl
− [𝔔] ⊆ Tpl

− (resp.H𝔔
− ⊆ H−) for the

linear subspaces spanned by all products of trees
∏
I∈𝔔 𝜏I (resp. vacuum diagrams

∏
I∈𝔔 Γ𝔔) with the

property that 𝔱(𝐿L (𝜏I)) = I (resp. ΓI ∈ HI− ) for any I ∈ 𝔔. We then write 𝑃𝔔 for the linear projection
ontoTpl

− [𝔔] andH𝔔
− , respectively. We overload the notation 𝑃𝔔 here since these projections are closely

related, compare (B.18) below. With this notation, we have the following identities:

ℎ
𝜙

𝔓,𝑅
:=

∑︁
𝔔⊆𝔓

(−1)#𝔔Ῡ
1,𝜙
𝑅 𝑃𝔔 (B.15)

ℎ(K,R) :=
∑︁
𝔔⊆𝔓

(−1)#𝔔ΠK,R𝑃𝔔 (B.16)

onTpl
− andH−, respectively.
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Lemma B.8 Let K, R and R̃ be constructed from 𝜙, 𝑅 and �̃� as in (B.4). Then one has the identity

(ℎ𝜙
𝔓,𝑅

⊗ Ῡ
𝜙

�̃�
)Δ−𝖎− = (ℎ(K,R) ⊗ ΠK,R̃)Δfull

− V𝖎− (B.17)

on Tad
− .

Proof. We first claim that one has the identity

𝑃𝔔 V= V𝑃𝔔 (B.18)

onTad
− for any𝔔 ⊆ 𝔓. By definition of 𝑃𝔔 it is clear that it is enough to show this identity for𝔔 = {I}

for any I ∈ 𝔓. Let now 𝜏 ∈ Tad
− be a tree, and observe that one has 𝜏 ∈ rng 𝑃I if and only if 𝔱(𝐿L (𝜏)) = I.

This implies in particular that V𝜏 ∈ HI− , so that

𝑃IV𝜏 = V𝑃I𝜏 = V𝜏.

Conversely, assume that 𝔱(𝐿L (𝜏)) ≠ I. Then this implies in particular that V𝜏 ∉ HI− by construction, so
that both sides of the claimed identity vanish.
Now, using the expression (B.15) for ℎ(𝔓, 𝜙, 𝑅) we can re-write the left-hand side of (B.17) into∑︁

𝔔⊆𝔓
(−1)#𝔔

(
Ῡ
𝜙

𝑅
𝑃𝔔 ⊗ Ῡ

𝜙

�̃�

)
Δex
− 𝖎−.

Using Lemma B.5 and Lemma B.7, we can re-write this into∑︁
𝔔⊆𝔓

(−1)#𝔔
(
ΠK,R𝑃𝔔p−V⊗ ΠK,R̃V

)
Δex
− 𝖎−

=
∑︁
𝔔⊆𝔓

(−1)#𝔔
(
ΠK,R𝑃𝔔ptrees ⊗ ΠK,R̃

)
Δfull
− V𝖎−. (B.19)

We now note that the projection ptrees on the right-hand side is irrelevant, since the only divergent
connected subgraphs of V]𝜏 that get killed by ptrees are of type 2 in Lemma B.6 and thus get killed
by ΠK,R anyway. Using (B.16) we see that this expression is equal to the right-hand side of (B.17) as
required.

B.3. Proof of Proposition B.2

For Y > 0 let (�̄� Y
𝔱
)𝔱∈𝔏+ be a kernel assignment such that �̄� Y𝔱 ∈ C∞

𝑐 (D̄\{0}) for any 𝔱 ∈ 𝔏+ and Y > 0,
and auch that �̄� Y

𝔱
is equal to �̂� Y

𝔱
in some neighbourhood of the origin, but compactly supported in a ball

of radius 𝛿
𝑀
around the origin, where 𝛿 is as in Proposition 4.49 and 𝑀 is the maximal number of edges

appearing in some tree 𝜏 ∈ T−. Let also K̄be defined as in (B.4) with 𝐾 replaced by �̄�. We first have
the following Lemma.

Lemma B.9 Under the assumptions of Proposition 4.49, one has

(𝑔full (K̄) ⊗ ΠK̄,R)Δfull
− V𝖎− = (ℎ(K̄, 0) ⊗ ΠK̄,R)Δfull

− V𝖎−

on Tad
− .

Proof. Let Γ := V𝖎−𝜏. It is sufficient to show that

𝑔full (K̄)Γ̃�̃�
𝔢 = ℎ(K̄, 0)Γ̃�̃�

𝔢 (B.20)



114 Martin Hairer and Philipp Schönbauer

for any connected, full subgraph Γ̃ of Γ and any node decoration �̃� with the property that deg𝔓Γ̃�̃�
𝔢 < 0.

Assume first that Γ̃ satisfies point 2. of Lemma B.6 and let 𝑒 be the unique edge of Γ̃. Then ℎ(K̄, 0)
vanishes by definition, and one has

𝑔full (K̄)Γ̃ = −ΠK̄Γ̃ = −
∫

𝜙𝔩 (𝑒) (𝑥)𝑑𝑥 = 0,

where the last equality follows from the definition of 𝔑(𝔓, 𝛿). Otherwise, one has that Γ̃ satisfies 1. in
Lemma B.6, and we denote by 𝜏 be the subtree of 𝜏 such that Γ̃ is induced as a full subgraph of Γ by
𝑁 (𝜏). Then one hasL(𝜏) = ⊔

M̄ for some M̄ ⊆ Mwith #M ≥ 1. In case #M̄ = 1 one has that all full
subgraphs Γ̂ of Γ̃ of negative degree are of type 2 in Lemma B.6, so that (B.20) follows from

𝑔full (K̄)Γ̃�̃�
𝔢 = −(𝑔full (K̄) ⊗ ΠK̄)

∑̂︁
Γ⊊Γ̃

∑̂︁
𝔢,�̂�

(−1) | out �̂� |

�̂�!

(
𝔫

�̂�

)
Γ̂�̂�+𝜋�̂�
𝔢 ⊗ Γ𝔫−�̂�

�̂�
/(Γ̂, 𝜋�̂�)

= −ΠK̄Γ̃�̃�
𝔢 = ℎ(K̄, 0)Γ̃�̃�

𝔢 .

In case #M̄ ≥ 2 one has ℎ(K̄, 0)Γ̃�̃�
𝔢 = 0 by definition. On the other hand, there exists distinct 𝑀, 𝑁 ∈ M̄

with 𝑀 ≠ 𝑁 , and we can choose elements 𝑢 ∈ 𝑀 and 𝑣 ∈ N. There exists a unique edge 𝑒 ∈ 𝐸 (Γ̃)
connecting 𝑢 and 𝑣. By definition ofM (c.f. (4.42)) one has 𝔩(𝑒) ∉ ⊔

𝔓/−, and by definition of 𝔑(𝔓, 𝛿)
one has 𝜙𝔩 (𝑒) = 0 in a 𝛿-neighbourhood of the origin. Combined with the support properties of the kernel
assignment �̄�, we infer that one has ΠK̄Γ̃�̃�

𝔢 = 0. The same reasoning applies to any other Feynman
diagram containing the edge of type 𝔩(𝑒). It follows thus from the definition of the coproduct that one
has 𝑔full (K̄)Γ̂�̂�

�̂�
= 0.

With this lemma, comparing (B.5) and the right-hand side of (B.17), we are left to compare the
characters

ℎ(K,R) = ℎ(K̄, R̄) and ℎ(K̄, 0),

where we define R̄ := R − K̄+K. We first claim that for any 𝜏 ∈ Tad
− one has

( 𝑓 ◦ ℎ(K̄, 0)) (V𝜏) = 𝑓 (V𝜏) + ℎ(K̄, 0) (V𝜏)

for any character 𝑓 in the character group ofH−. This can been seen in a way very similar to the last step
of the proof of Lemma B.9, since whenever Γ̃ is a non-empty, proper subgraph of Γ = V𝜏 of negative
homogeneity then there exists an edge 𝑒 ∈ 𝐸 (Γ/Γ̃) with 𝔩(𝑒) ∉

⊔
𝔓/−, so that ℎ(�̄�, 0) (Γ𝔫

𝔢 /(Γ̃, �̃�))
vanishes for any such subdiagram.
It remains to show that the expression

𝑓 (K̄, R̄)Γ := ℎ(K̄, R̄)Γ − ℎ(K̄, 0)Γ

is bounded by a constant uniformly over 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿) and R̄ ∈ K+
0 such that ∥𝜙∥𝔓 ∨ ∥R̄∥K+ ≤ 𝐶 for

any Γ ∈ H−. By definition, it is sufficient to show this for connected Feynman diagrams Γ ∈ H𝐼
− for any

𝐼 ∈ 𝔓. In this case one has

𝑓 (K̄, R̄)Γ = (ΠK̄,R̄ − ΠK̄,0)Γ,

and since Γ does not contain any sub-divergencies in this case, this expression is bounded in the required
way as a consequence of [Hai18, Sec. 4] and Lemma 4.21.
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C. Applications

C.1. The Φ4
3 equation

We show that our support theorem applies to the solution to Φ4
3 started at any deterministic initial

condition 𝑢0 ∈ C[ (T3) with [ > − 2
3 , which then concludes the proof of Theorem 1.12. While it is

known that 𝑢 is a Markov process which can be started from a deterministic initial condition and is a
continuous function in time (see [Hai14, Sec. 9.4]), none of these statements follow immediately from
[BCCH17]. In case of Φ4

3, the process S
− (b) = limY→0 S

−
Y (b) is the stationary solution to the stochastic

heat equation on T3, so that S−
Y (b) (0, ·) is (in law) a smooth approximation of the Gaussian free field. In

order to see that one can start the equation at a deterministic initial condition, one has to use the fact
that the critical regularity for the initial condition is − 2

3 , see [Hai14, Eqn. 9.13], and hence lower than
the regularity of the Gaussian free field. One can now choose the initial condition for the remainder
Y-dependent of the form 𝑣 (0) − S−

Y (b) (0, ·), use the fact that this converges in probability in C− 2
3+^ (T3)

for any ^ < 1
6 , and argue with the fact that the solution constructed in [BCCH17, Thm. 2.13] is almost

surely continuous as a functional of the initial condition. The last statement follows from the second
bullet in [BCCH17, Thm. 2.13] with Cireg := C[ (T3) and [ ∈ (− 3

2 ,−
1
2 ).

While this procedure provides a robust interpretation of what we mean by a solution to Φ4
3 starting

from a deterministic initial condition 𝑣 (0) ∈ Cireg, the process defined in this way fails to be a continuous
function of the model. Note that while S−

Y (b) is a continuous function of the model with values in
C
− 1

2−^
𝔰 (D), evaluating at a fixed time is not well defined on this space, so that S−

Y (b) (0, ·) fails to be a
continuous function of the model.
To overcome this difficulty we work with a slightly stronger topology on the space of models, compare

[Hai14, Prop. 9.8], generated by the system of pseudo-metrics

8𝑍, �̃�8𝛾,𝑇 := |||𝑍, �̃� |||𝛾, [−𝑇,𝑇 ]×T3 + ∥𝐾 ★𝚷𝑍Ξ − 𝐾 ★𝚷�̃�Ξ∥C( [−𝑇,𝑇 ],Cireg)

for any 𝑇 > 0. Here |||𝑍, �̃� |||𝛾, [−𝑇,𝑇 ]×T3 denotes the usual metric on the model space as in [Hai14,
Eqn. 2.17]. With respect to this topology it is clear that S−

Y (b) (0, ·) = (𝐾 ★𝚷�̂� YΞ) (0, ·) is a continuous
function of the model with values in Cireg. The fact that the BPHZ renormalised model converges in
this stronger topology follows from [Hai14, Prop. 9.5]. To show that our support theorem holds for
Φ4

3 it remains to argue that the proof of the support theorem for random models also applies in this
stronger topology. For this we first note that once Proposition 3.8 is proved, the arguments carried out in
Section 3.2 only use the fact that the shift operator and the renormalisation group act continuously on the
space of models, which is still true in this stronger topology. As in 𝑑 = 2, Assumptions 7 and 8 are trivial
in this case, so that Section 4 is not needed.

Remark C.1 We outline the proof that J is the ideal generated by Ξ. Recall that J is generated
by linear combinations of trees with same number of leaves. From this we already infer that the

only possible generated of J other than must be a linear combination of and . We can
rule out that such a linear combination is element of J by choosing a sequence of test functions
𝜓Y (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

∏
1≤𝑖< 𝑗≤4 𝜓𝑖, 𝑗 , Y (𝑥𝑖 − 𝑥 𝑗 ) for smooth symmetric functions 𝜓𝑖, 𝑗 , where we set

𝜓𝑖, 𝑗 , Y := 𝜓 (Y)
𝑖, 𝑗
if {𝑖, 𝑗} ∈ {{1, 2}, {3, 4}} and 𝜓𝑖, 𝑗 , Y = 𝜓𝑖, 𝑗 otherwise. The divergence structure of the

two trees in question then implies the asymptotic behaviour

⟨K�̂� , 𝜓Y⟩ ≃ Y−2 and ⟨K�̂� , 𝜓Y⟩ ≃ Y−1.

Section 5 is formulated entirely at the level of the space of noises𝔐0 and never refers to the topology
on the model space. The remaining caveat is Section 3.3. The topology on the model space enters



116 Martin Hairer and Philipp Schönbauer

explicitly in the final step of the proof of Proposition 3.21 via the identity

lim
𝛿→0

lim
Y→0

R𝑔Y,𝛿 𝑍c (b Y + Z𝛿) = 𝑍c (0) ,

so we need to show that this convergence holds also with respect to the stronger topology defined above.
Using [Hai14, Prop. 9.5], which shows that 𝐾 ★ b Y → 𝐾 ★ b in C( [−𝑇,𝑇], Cireg) almost surely, we
need to provide an additional argument showing that

𝐾 ★ Z𝛿 → 0 in C( [−𝑇,𝑇], Cireg)

as 𝛿 → 0 in probability. This can be shown with an argument very similar to the proof of [Hai14,
Eqn. 9.15]. Indeed, setting X := C

˜̂
2 ( [−𝑇,𝑇], C[+ ˜̂ (T3)), where [ ∈ (− 3

2 ,−
1
2 ) is as above and ˜̂ > 0 is

small enough such that [ + 2 ˜̂ < − 1
2 , it suffices to bound 𝐾 ★ Z𝛿 uniformly in X. Write 𝐾 =

∑
𝑛≥0 𝐾𝑛,

where 𝐾𝑛 is supported in an annulus of order 2−𝑛 as in [Hai14, Ass. 5.1]. By Kolmogorov’s continuity
criterion and the fact that, since Z𝛿 belongs to a Wiener chaos of fixed order and therefore enjoys
equivalence of moments, it suffices to show that for some 𝑟 > 0 one has

E
( ∫

𝜓_ (𝑥) (𝐾𝑛 ∗ Z𝛿 (𝑥, 𝑡) − 𝐾𝑛 ∗ Z𝛿 (𝑥, 0))𝑑𝑥
)2
≲ 2−𝑟𝑛 |𝑡 | ˜̂+𝑟_2[+2 ˜̂+𝑟 . (C.1)

This expression is of the form [Hai14, Eqn. 9.17] with white noise b replaced by Z𝛿 . For the proof we can
now proceed along the same lines as in [Hai14], noting that by definition Z𝛿 is linear combination (with
uniformly bounded coefficients) of random stationary smooth functions [𝛿(Ξ,𝜏) with the property that

𝜌𝛿(Ξ,𝜏) (𝑥, 𝑡) := E[𝛿(Ξ,𝜏) (𝑥, 𝑡)[
𝛿
(Ξ,𝜏) (0, 0)

satisfies the scaling relation

𝜌𝛿(Ξ,𝜏) = (_𝛿(Ξ,𝜏) )
−28𝜏8𝔰−2 ¯̂ (𝜌1

(Ξ,𝜏) )
(_𝛿(Ξ,𝜏) ) .

The proof is now straightforward in case that 8𝜏8𝔰 < 0, where the right hand side can be estimated by an
approximate 𝛿0. In case 8𝜏8𝔰 = 0 the fact that these covariances integrate to zero comes to rescue in the
same way as in the proof of (2.19).

C.2. The Φ4
4−^ equation

The Φ4
4−^ with ^ irrational satisfies all our assumptions, except that the noise is not white. Recall that the

space-time scaling is given by 𝔰 = (2, 1, 1, 1, 1) with |𝔰 | = 6. We assume that b = 𝑃★ b̃, where b̃ is space-
time white noise on T4 × R, the symbol ★ denotes spatial convolution, and 𝑃 ∈ C∞

𝑐 (R4\{0}) is some
integration kernel on R4 which is homogeneous on small scales 𝑃(_𝑥) = _−4+^𝑃(𝑥) for any _ ∈ (0, 1)
and 𝑥 ∈ R4 with |𝑥 | ≤ 1

2 (say). Here we assume that ^ > 0 is irrational (in order to avoid log-divergencies,
which could destroy Assumption 5). There exists a unique homogeneous kernel �̂� : T4\{0} → R such
that �̂� = 𝑃 in a neighbourhood of the origin. We denote by �̂� the heat-kernel and we assume that �̂� is
such that �̂� ★ �̂� can be decomposed as in Section 2.2.2. (This is certainly possible for �̂�(𝑥) = |𝑥 |−4+^ ,
which is a natural choice.)
We fix a set of two kernel types 𝔏+ := {𝔱, 𝔱′} representing heat kernel �̂� and the convolution �̂� ★ �̂�

respectively, with 8𝔱𝐾8 := 2 and 8𝔱𝑃8 := 2 + ^, and we fix a single noise type 𝔏− := {Ξ} representing
white noise with 8Ξ8 = −3 and |Ξ| = −3 − ¯̂ for some ¯̂ > 0 small enough. A rule 𝑅 is given by the
completion of �̄�, defined by setting

�̄�(𝔱) := {#̸, [𝔱1], [𝔱1, 𝔱2], [𝔱1, 𝔱2, 𝔱3] : 𝔱𝑖 ∈ {𝔱, 𝔱′}} and �̄�(𝔱′) := {#̸, [Ξ]}.
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Provided that ¯̂ < ^, the rule �̄� (and hence 𝑅) is subcritical (see [BHZ19, Def. 5.14]). We fix a truncation
𝐾𝔱 and 𝐾𝔱′ of �̂� and �̂� ★ �̂� as in Section 2.2.2, we denote by �̂� Y the BPHZ-renormalised canonical lift
of the regularised white noise b Y , and we write �̂� := limY→0 �̂�

Y . The existence of this limit follows from
[CH16] (see also [CMW19]). Moreover, the solution to Φ4

4−^ equation is path-wise continuous in �̂� .
We now argue why Assumptions 1 to 6 hold, which finalises the proof that Theorem 3.14 can be

applied to �̂� . Assumptions 1 to 3 are shown in [BCCH17, Sec. 2.8.2]. The heat kernel is homogeneous,
so that Assumption 4 is satisfied. Finally, for irrational ^ there are no trees of integer degree (and in
particular no tree of zero degree), hence Assumptions 5 and 6 hold.

C.3. Proof of Theorem 1.15

Recall that we are interested in characterising the support of the solutions, in the sense of [BGHZ19,
Thm 1.2], to

𝜕𝑡𝑢
𝑖 = 𝜕2

𝑥𝑢
𝑖 + Γ𝑖𝑗 ,𝑘 (𝑢)𝜕𝑥𝑢

𝑗𝜕𝑥𝑢
𝑘 + ℎ𝑖 (𝑢) + 𝜎𝑖` (𝑢)b` . (C.2)

As before, 𝑖, 𝑗 , 𝑘 = 1, . . . , 𝑛, ` = 1, . . . , 𝑚, and Einstein’s convention is used. We also denote as in (1.16)
by ∇ the connection on R𝑛 given by Γ.
We first show that the generalised KPZ equation (C.2) satisfies Assumptions 2 to 6. Assumption 2

was shown in [BGHZ19], Assumptions 3 and 4 are clear. To see Assumption 5 we choose g := g2 and
we note that

V=
{

, , , , , ,
}
.

Here, thin black lines denote the heat kernel, while thick grey lines denote its spatial derivative. We write
for an instance of white noise and polynomial label 𝔫( ) = (0, 0), for a node with white noise and
polynomial label 𝔫( ) = (0, 1), and for a node without noise and polynomial label 𝔫( ) = (0, 1). In
the notation we drop the type decoration from the noises for simplicity, so that any tree in V should
be thought of as a finite collection of trees. It is easy to see that the kernels K̂𝜏 for 𝜏 ∈ V are all
anti-symmetric under the transformation (𝑡, 𝑥) ↦→ (𝑡,−𝑥), and since the covariance of a shifted noise is
symmetric under this transformation, one has E𝚷[𝜏(0) = 0, as required. Assumption 6 is then trivially
satisfied since in this example one has V0 = V.
Write now Sgeo ⊂ Vec T− for the linear subspace of dimension 15 generated by the “geometric”

counterterms, as defined in [BGHZ19, Def. 3.2] and characterised in [BGHZ19, Prop. 6.11 & Rem. 6.17].
We also write ΥΓ,𝜎 : Sgeo → C∞ (R𝑛,R𝑛) for the evaluation map defined in [BGHZ19, Eq. 2.6] (but
note also the remark just before Eq. 6.2 in that article). We can interpret (Sgeo, +) as a subgroup of the
renormalisation group G− and its action on the space of right hand sides for (C.2) is given by 𝜏 ↦→ ΥΓ,𝜎𝜏.
As in [BGHZ19, Rem. 2.9], it will be convenient to introduce on T− (and therefore also on Sgeo) an inner
product by specifying that any two trees are orthogonal and their norm squared is given by their symmetry
factor. We will use the suggestive notation of [BGHZ19] for elements of Sgeo, so that for example

ΥΓ,𝜎∇ =
∑̀︁

∇𝜎`𝜎` .

We are now in a position to apply Theorem 1.7. First, we have the following result.

Lemma C.2 Let Hbe the subspace of Vec T− defined in Theorem 1.7. Then one has H ⊆ Sgeo.

Remark C.3 The renormalisation group for the generalised KPZ equation is naturally isomorphic to
(Vec T−

∗, +), so that it is more convenient to work with the linear space Vec T− instead of the full
algebra T−. The scalar product introduced above provides an isomorphism Vec T− ≃ Vec T−

∗ via Riesz
identification. In the statement of the Lemma we made the slight abuse of notation and identifyHwith a
subset of Vec T− given by the Riesz identification of the setHviewed as a subspace of Vec T−

∗.
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Proof. Let 𝜎𝑖
𝑙
and Γ𝑖

𝑗 ,𝑘
be smooth functions on R𝑚 for 𝑖, 𝑗 , 𝑘 ≤ 𝑚 and 𝑙 ≤ 𝑛. Let furthermore

𝜑 : R𝑚 → R𝑚 be a diffeomorphism, and define 𝜑 ·Γ and 𝜑 ·𝑇 for any tensor𝑇 by the usual transformation
rules for Christoffel symbols and tensors under the diffeomorphism 𝜑, see [BGHZ19, Eq. 1.6]. By
[BGHZ19, Thm 1.2] there exists a sequence of elements 𝑔Y ∈ Sgeo such that 𝑔Y − 𝑔YBPHZ converges to a
finite limit 𝑓◦ ∈ Vec T− as Y → 0. We let �̂� Y := R𝑔Y𝑍c (b Y) and �̂� := limY→0 �̂�

Y .
Fix ℎ ∈ 𝑓◦+ 𝑓 b+H, where 𝑓 b is the character defined inAssumption 8 (which holds by Proposition 4.1).

It suffices to show that ℎ ∈ Sgeo (note that this proves furthermore that 𝑓◦ + 𝑓 b ∈ Sgeo), which by [BGHZ19,
Def. 3.2] is equivalent to the property that Υ𝜑 ·Γ,𝜑 ·𝜎ℎ = 𝜑 · ΥΓ,𝜎ℎ for any Γ, 𝜎 and 𝜑 as above. Fix an
initial condition 𝑣0 ∈ C

1
2
−
(T) and let 𝑣 and 𝑤 denote the images of the modelZ(ℎ) under the solution

maps for (Γ, 𝜎) and (𝜑 · Γ, 𝜑 ·𝜎), respectively, with initial condition 𝑣(0) = 𝑣0 and 𝑤(0) = 𝑤0 := 𝜑(𝑣0),
so that

𝜕𝑡𝑣 = 𝜕
2
𝑥𝑣 + Γ(𝑣)𝜕𝑥𝑣𝜕𝑥𝑣 + (ΥΓ,𝜎ℎ) (𝑣) , (C.3)

𝜕𝑡𝑤 = 𝜕2
𝑥𝑤 + (𝜑 · Γ) (𝑤)𝜕𝑥𝑤𝜕𝑥𝑤 + (Υ𝜑 ·Γ,𝜑 ·𝜎ℎ) (𝑤) . (C.4)

(Here we omit the indices for simplicity.) Note that 𝜑(𝑣) satisfies an equation analogous to (C.4) but
with counterterm given by 𝜑 · ΥΓ,𝜎ℎ, so that, by a simple special case of [BGHZ19, Thm 3.5], the
proof is complete if we can show that 𝑤 = 𝜑(𝑣). By Proposition 3.21 there exists a sequence of smooth
random functions Z𝛿 such that 𝑍 Y, 𝛿 := 𝑇Z𝛿 �̂�

Y → Z(ℎ) as Y → 0 and 𝛿 → 0. Similar to above,
denote by 𝑣Y, 𝛿 and 𝑤Y, 𝛿 the images of the (random) model 𝑍 Y, 𝛿 under the solution map for the data
(Γ, 𝜎) and (𝜑 · Γ, 𝜑 · 𝜎), so that 𝑣Y, 𝛿 → 𝑣 and 𝑤Y, 𝛿 → 𝑤 in probability. But since 𝑔Y ∈ Sgeo, one has
𝑤Y, 𝛿 = 𝜑(𝑣Y, 𝛿), and this concludes the proof.

Write Moll ⊂ C∞
0 (R2) for the collection of test functions that are supported in the unit ball and

integrate to 1. It then follows from [BGHZ19, Thm 1.2] that there exists 𝜏★ ∈ Sgeo as well as maps
Moll ∋ 𝜌 ↦→ 𝜏𝜌 ∈ Sgeo and Moll ∋ 𝜌 ↦→ 𝐶𝜌 ∈ R such that, for every mollifier 𝜌 ∈ Moll and for
b
`
Y = 𝜌Y ★ b

`, one has 𝑢 = limY→0 𝑢Y with

𝜕𝑡𝑢Y = 𝜕
2
𝑥𝑢Y + Γ(𝑢Y) (𝜕𝑥𝑢Y , 𝜕𝑥𝑢Y) + ℎ(𝑢Y) + 𝜎` (𝑢Y)b`Y (C.5)

+ (ΥΓ,𝜎𝜏𝜌) (𝑢Y) + (ΥΓ,𝜎𝜏★) (𝑢Y) log Y +
𝐶𝜌

Y
(ΥΓ,𝜎∇ )(𝑢Y) .

Combining this with Theorem 1.6 and Remark 1.10 we conclude that there exists 𝜏 ∈ Sgeo such that the
support 𝑆𝑢 of the law of 𝑢 is given by the closure in C𝛼 of all solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢Y) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + ℎ(𝑢) + 𝜎` (𝑢)[`

+ (ΥΓ,𝜎𝜏) (𝑢Y) + 𝐾★(ΥΓ,𝜎𝜏★) (𝑢Y) + 𝐾0 (ΥΓ,𝜎∇ )(𝑢Y) ,

for arbitrary smooth controls [` and arbitrary constants 𝐾★ and 𝐾0. Note that ΥΓ,𝜎∇ is nothing but
the vector field 𝑉 in Theorem 1.15 while ΥΓ,𝜎𝜏★ = 𝑉★. We also write 𝜏 ∈ Sgeo for the element such that
ΥΓ,𝜎𝜏 = �̂� with �̂� as in Theorem 1.15, so that

𝜏 = ∇∇ ∇ .

We also introduce the following notation. Given two collections A, Ā ⊂ C∞ (R𝑛,R𝑛) and 𝐻 ∈
C∞ (R𝑛,R𝑛), we write U(𝐻,A, Ā) for the closure in C𝛼 of all solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢Y) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + 𝐻 (𝑢) +

∑︁
𝐴∈A

[𝐴𝐴 +
∑︁
𝐵∈Ā

𝐾𝐵𝐵 ,
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where the [𝐴 are arbitrary smooth functions and the 𝐾𝐵 are arbitrary real constants. An important remark
is that one has the identity

U(𝐻,A, Ā) = U(𝐻 + �̄�,A, Ā∪ B) (C.6)

for any �̄� ∈ Vec (A∪ Ā) and anyB ⊂ Vec A.
To complete the proof of Theorem 1.15, it then remains to show that, for any 𝜏 ∈ Sgeo there exists 𝑐

such that
U(ℎ + 𝜏, {𝜎`}, {𝜏★,∇ }) = U(ℎ + 𝑐𝜏, {𝜎`}, {𝜏★,∇ }) , (C.7)

thus reducing the dimensionality of the unknown quantity from 15 to 1. Here, we implicitly identify
elements of Sgeo with elements of C∞ (R𝑛,R𝑛) via ΥΓ,𝜎 to shorten notations. To show (C.7), we will
make extensive use of the following result.

Lemma C.4 Let �̂� : R+ × T × R𝑛 → R𝑛, 𝐴, 𝐵 : R𝑛 → R𝑛, and Z, Ẑ , [, [̂ : R+ × T → R be smooth
functions and let 𝐶 ∈ R. Then there exist 𝐶Y ∈ R and smooth functions [Y , [̂Y : R+ ×T → R𝑚 such that
the solution to

𝜕𝑡𝑢Y = 𝜕
2
𝑥𝑢Y + Γ(𝑢Y) (𝜕𝑥𝑢Y , 𝜕𝑥𝑢Y) + �̂� (𝑡, 𝑥, 𝑢Y)
+ 𝐴(𝑢Y)[Y + 𝐵(𝑢Y)[̂Y + 𝐶Y

(
∇𝐴𝐴

)
(𝑢Y) ,

(C.8)

converges in C𝛼 as Y → 0 to the solution 𝑢 to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + �̂� (𝑡, 𝑥, 𝑢)
+ 𝐴(𝑢)[ + 𝐵(𝑢)[̂ +

(
∇𝐴𝐵

)
(𝑢)Z +

(
∇𝐵𝐴

)
(𝑢) Ẑ + 𝐶

(
∇𝐴𝐴

)
(𝑢) .

Proof. We consider the singular SPDE given by

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + �̂� (𝑡, 𝑥, 𝑢)
+ 𝐴(𝑢)[ + 𝐵(𝑢)[̂ +

(
∇𝐴𝐵

)
(𝑢)Z +

(
∇𝐵𝐴

)
(𝑢) Ẑ + 𝐶

(
∇𝐴𝐴

)
(𝑢)

+ 𝐴(𝑢)b̃Y + 𝐵(𝑢)
(
Z · bY + Ẑ · b̂Y

)
,

driven by the three “noises” bY ∈ C^−1, b̂Y ∈ C^−1 and b̃Y ∈ C−1−3^ . If we choose ^ sufficiently small,
the only symbols of negative degree appearing in the corresponding regularity structure (besides those
representing the noises themselves and the one representing the product of bY with the spatial coordinate)
are

, , , , , , , ,

where we denote the symbol representing b̃Y by , the one representing bY by and the one representing
b̂Y by . Thin lines represent the heat kernel and thick lines its spatial derivative as usual.
One then proceeds as follows: choose first a symmetric function �̃� ∈ C∞

0 such that
∫
( �̃�★�̃�) (𝑧)𝑃(𝑧) 𝑑𝑧 =

1 for 𝑃 the heat kernel on the whole space and 𝑧 = (𝑡, 𝑥) ∈ R2 and set b̃Y = Y−1−2^ �̃�Y ★ b, where b is
space-time white noise and �̃�Y (𝑡, 𝑥) = �̃�(𝑡/Y2, 𝑥/Y). One then fixes two asymmetric C∞

0 functions 𝜌 and
�̂� such that the following identities hold:∫

𝑃(𝑧) ( �̃� ★ 𝜌) (𝑧) 𝑑𝑧 = 1 ,
∫

𝑃(−𝑧) ( �̃� ★ 𝜌) (𝑧) 𝑑𝑧 = 0 ,∫
𝑃(𝑧) ( �̃� ★ �̂�) (𝑧) 𝑑𝑧 = 0 ,

∫
𝑃(−𝑧) ( �̃� ★ �̂�) (𝑧) 𝑑𝑧 = 1 .

(C.9)

With this choice, we then set

bY = Y
2^−1𝜌Y ★ b , b̂Y = Y

2^−1 �̂�Y ★ b .
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Since all of these noises weakly converge to 0, it is immediate from [CH16] (but in this case this is also a
simple exercise along the lines of the examples treated in [Hai14]) that the BPHZ model associated to
this choice converges to the canonical lift of 0.
Furthermore, as a consequence of (C.9), the scaling of the noise, and the identity

𝜕𝑥𝑃 ★ 𝜕𝑥 �̄� =
1
2
(𝑃 + �̄�) ,

where �̄�(𝑧) = 𝑃(−𝑧), the BPHZ character 𝑔Y for our choice of “noise” is given by

𝑔Y ( ) = 𝑔Y ( ) = −Y−4^ , 𝑔Y ( ) = 𝑔Y ( ) = −1 ,
𝑔Y ( ) = 𝑔Y ( ) = 0 , 𝑔Y ( ) = 𝑔Y ( ) = − 1

2 .

It then suffices to apply the results of [Hai14, BCCH17] to conclude that the BPHZ renormalised equation
solves (C.8) with the choice [̂Y = [̂ + Z · bY + Ẑ · b̂Y and [Y = [ + b̃Y , so that the claim follows.

Corollary C.5 One has the identity

U(𝐻,A, Ā) = U(𝐻,A∪ {∇𝐴𝐵,∇𝐵𝐴}, Ā) ,

for any 𝐴, 𝐵 ∈ A such that ∇𝐴𝐴 ∈ �̄�.

Define now a sequence of collections of vector fields A𝑘 by setting (for 𝑘 ≥ 1)

A1 = {𝜎` | ` = 1, . . . , 𝑚} , A𝑘+1 = {∇𝐴𝐵,∇𝐵𝐴 | 𝐴 ∈ A1, 𝐵 ∈ A𝑘} .

It now follows for the same reason as in Lemma C.4 that for any two of the noises appearing in (C.2)
(denote them by and , say) one has

2 − − ∈ J ,

while the kernels associated to and are linearly independent. This shows in particular that{
+ 1

2 , + 1
2

}
= {∇ ,∇ } ∈ H ,

so that first applying Theorem 1.7 (combined with Definition 3.3) and then Corollary C.5 implies that,
for any vector field 𝐻 and any finite collection of vector fieldsB, one has

U(𝐻, {𝜎`},B∪ {∇ }) = U(𝐻, {𝜎`},B∪ {∇ } ∪ A2)
= U(𝐻, {𝜎`} ∪ A2 ∪ A4,B∪ A2) .

(C.10)

(We could have added any of the A𝑘’s to the right hand side, but only A2 and A4 matter for the sequel.)
Setting

S★geo = {𝜏 ∈ Sgeo : ΥΓ,𝜎𝜏 ∈ Vec (A2 ∪ A4)}

and combining the description of Sgeo given in [BGHZ19, Eq. 1.8] with the definition of the A𝑖 we see
that one has the decomposition

Sgeo = S★geo ⊕ Vec
{
∇∇ ∇ ,∇∇ ∇ ,∇∇ ∇

}
.

Similarly, it follows from [BGHZ19, Eq. 3.22] that there exists a constant 𝑐 such that

𝜏★ − 𝑐
(
2∇∇ ∇ − ∇∇ ∇

)
∈ S★geo .
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Setting 𝜏 = ∇∇ ∇ and combining this with (C.6) and (C.10), we conclude that there exist constants 𝑐0
and 𝑐 such that the support of 𝑢 is given by

U(ℎ + 𝜏, {𝜎`}, {𝜏★,∇ }) = U(ℎ + 𝑐0𝜏 + 𝑐𝜏, {𝜎`} ∪ A2 ∪ A4, {𝜏★} ∪ A2) .

In order to eliminate 𝜏 we note that, as a consequence of [BGHZ19, Eq. 6.19], setting

𝜎1 = , 𝜎2 = ,

and writing 𝜋 : Sgeo → Vec{𝜎1, 𝜎2} for the orthogonal projection, we have

𝜋S★geo = 0 , 𝜋𝜏 = 𝜎1 , 𝜋𝜏 = 𝜋𝜏★ = 𝜎2 .

Since furthermore 𝜎1 ∉ J by Definition 3.3, there exists �̃� ∈ Hwith ⟨�̃�, 𝜎1⟩ ≠ 0 and therefore, by
Lemma C.2, ⟨�̃�, 𝜏⟩ ≠ 0. We conclude that there exists 𝑐 such that the support of 𝑢 is given by

U(ℎ + 𝜏, {𝜎`}, {𝜏★,∇ }) = U(ℎ + 𝜏, {𝜎`}, {𝜏★,∇ , �̃�})
= U(ℎ + 𝑐𝜏, {𝜎`} ∪ A2 ∪ A4, {𝜏★, �̃�} ∪ A2) = U(ℎ + 𝑐𝜏, {𝜎`}, {𝜏★,∇ }) ,

thus concluding the proof of Theorem 1.15. Here, the last identity follows from the fact that the preceding
sequence of identities holds for any choice of ℎ.

D. Symbolic index

Here, we collect some of the most used symbols of the article, together with their meaning and the page
where they were first introduced.

Symb. Meaning P.

| · |𝔰 Homogeneity used to construct the regularity structure 19
8 · 8𝔰 “True” homogeneity of the noise 19
∼ Equivalence relation on T− 36
⪯ Total order on T− 37
[𝐼, 𝜑] Multi-set, [𝐼, 𝜑]𝑎 = #{𝑖 ∈ 𝐼 : 𝜑(𝑖) = 𝑎} 18
𝖘𝔠 Cumulant homogeneity consistent with 𝖘 25
𝛼(Ξ,𝜏) 𝖘(Ξ, 𝜏) − 𝑚(𝜏) |𝔰 |2 77
C̄∞
𝑐 Functions invariant under translation of all arguments 17
d(m) Set canonically associated to a multisetm 18
D Domain of definition of the noise 17
D̄ Whole space extension of D 17
Δ− Coproduct 19
degI Degree assignment on L 59
deg𝔓 Degree assignment on L 59
div(𝜏) Set of divergent subforests of 𝜏 50
𝑓 [ Character depending continuously on [ 33
Z𝛿 Shift of the noise 36
G− Renormalisation group, character group of T− 3
G− Renormalisation group, character group ofT− 47
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Symb. Meaning P.

g Spatial symmetries of the equation 29
𝑔[ BPHZ character 20
�̂�[ “Tweaked” BPHZ character ( 𝑓 [)−1 ◦ 𝑔[ 33
𝒈
𝜼,𝝓
𝑹 Character onTpl

− andTsym
− 57

𝐺L Group of permutations of L consistent with i and ·̄ 54
H Annihilator of J 32
ℎ
𝜙

𝔓,𝑅
Character onTpl

− 60
𝐼m(ℎ) Stochastic integration 23
i Type map on L 50
𝖎− Canonical embeddingT− ↩→ T̂ex

− andTpl
− ↩→ T̂ex,pl

− 52
𝖎sym
− Canonical embeddingTsym

− ↩→ T̂ex,sym
− 54

] Admissible embedding T− → Tpl
− 53

]sym Admissible embedding T− → Tsym
− 55

J̃ Ideal in T−, kernel of Υ̃ 32
J Ideal in T− generated by J̃and trees with odd number of noises 32
𝐽m(ℎ) Stationary process inmth Wiener chaos with kernel ℎ 23
K𝑛 Space of smooth simple kernels in 𝑛 variables 24
𝐾 (𝜏) Kernel-type edges 19
K𝐺𝜏 “Kernel” D̄𝐿 (𝜏) → R associated to 𝜏 31
K+

∞ Compactly supported large-scale kernel assignments 47
K+

0 Large-scale kernel assignments 47
𝐿 (𝜏) Edges of noise type 19
𝐿L (𝜏) Edges of leg type 46
L(𝜏) Nodes touching edges of noise type 46
L̂(𝜏) Nodes with non-vanishing extended decoration 46
D Space-time domain 17
Λ Set of possible scales 81
Λ(𝜏) System of disjoint, non-empty subsets ofL(𝜏) 61
L Set of leg types 46
𝕷− Enlarged set of noise types 74
[𝑀] Integers from 1 to 𝑀 17
M∞ Space of smooth admissible models 20
m̃ Map m̃ : [#m] → 𝐴 associated to multisetm 18
M0 Space of admissible models 20
𝑀𝑔 Matrix acting on T 21
𝔐∞ Space of smooth noises 25
𝔐0 Space of singular noises 25
𝔐s

∞ Space of shifted smooth noises 30
𝔐s

0 Space of shifted singular noises 30
𝕸s

∞ Space of smooth noises for 𝕷− 75
m(Ξ, 𝜏) [𝐿 (𝜏), 𝔱] \ {Ξ} 76
LL (𝜏) Nodes of 𝜏 touching legs 46
𝔑 Families of smooth functions indexed by leg types 56
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Symb. Meaning P.

𝔑(𝔓) Elements of 𝔑 satisfying a constraint depending on𝔓 60
P0 Projection onTpl

− killing trees with non vanishing 𝔢 on legs 55
Q Projection onTpl

− removing superfluous legs 55
Q0 Projection onTpl

− , Q0 = QP0 55
𝑃I Projection onTpl

− onto trees 𝜏 with 𝔱(𝐿L (𝜏)) = I 60
Ψ̃ Set of families of test functions indexed by multisets 32
𝜋 Projection that removes legs 47
𝜌 Smooth mollifier 22
R𝑔 Action of G− ontoM0 21
𝔰 Scaling on D 18
𝖘 Homogeneity assignment on 𝕷− 76
S Shift operatorS : T→ T 75
S ↑ “Dominating” part of the shift operatorS ↑ : T→ T 75
S ↓ “Non-dominating” part of the shift operatorS ↓ : T→ T 75
S(_, 𝛼) Rescaling operator 77
Tex Extended regularity structure 74
T Reduced regularity structure 19
Tex
− Extended Hopf algebra 19

T− Reduced Hopf algebra 19
T̂ex
− Algebra of extended trees 19

T̂− Algebra of reduced trees 19
Tex Extended regularity structure with legs 46
T Reduced regularity structure with legs 46
Tex
− Extended Hopf algebra with legs 46

T− Reduced Hopf algebra with legs 46
T̂ex
− Algebra of extended trees with legs 46

T⊙
− Auxiliary Hopf algebraT−/I 51

T̂ex,⊙
− Auxiliary algebra T̂ex

− /Î 51
Tpl
− Hopf algebra of properly legged trees 52

T̂ex,pl
− Algebra of properly legged trees 52

Tad
− Algebra of admissible trees 53

Tsym
− Symmetrised Hopf algebra of properly legged trees 54

T̂ex,sym
− Symmetrised algebra of properly legged trees 54

T
sym
♠ Hopf algebra isomorphic to T− 55

Tex Enlarged regularity structure 74
T Set of trees 19
T− Set of trees of negative homogeneity 19
T−T−T− Set of trees of negative homogeneity with legs 46
𝔗− Subset of T− 37
𝑇ℎ Shift operator 21
V Set of trees appearing in Assumption 5 30
V0 Set of 𝜏 ∈ T− with 8𝜏8𝔰 = 0 and #𝐿 (𝜏) = 2 30
Ψ Set of functions indexed by typed sets 47
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Symb. Meaning P.

Υ[𝜏 E(𝚷[𝜏) (0) 20
Υ̃
[,𝜓

𝑅
𝜏 Evaluation using large-scale kernel assignment 𝑅 41

Ῡ
[,𝜓

𝑅
𝜏 Like Υ̃[,𝜓

𝑅
𝜏, acting on trees with legs 47

Υ̂
[,𝜓

𝑅
𝜏 Renormalised evaluation acting on trees with legs 47

𝝋 Hopf isomorphism T− → T
sym
♠ 55

Z(𝚷) Model constructed from 𝚷 20
𝑍c ( 𝑓 ) Canonical lift of 𝑓 to an admissible model 20
Z (𝑔) R𝑔𝑍 (0) 33
Ω∞ Space of smooth deterministic noises 20
Ω Space of rough deterministic noises 22

E. Overview of Assumptions

# Summary P.

1 Ensures that the general theory of [BCCH17] applies 5
2 Assumption necessary for the BPHZ theorem [CH16] 20
3 Rules out derivatives hitting noises, as well as direct products of noises 20
4 The integration kernels are homogeneous 20
5 BPHZ character vanishes on zero-degree subtrees of zero-degree trees 30
6 BPHZ character vanishes on zero-degree trees with only two leaves 30
7 The ideal J is a Hopf ideal 33
8 The BPHZ character is “almost” an element ofH 33

Assumptions 1, 2 and 3 are needed for the results from [BCCH17] and [CH16] to apply. Assumption 4
on the scale-invariance of kernels is crucial for our argument in Lemma 5.10 which gives lower bounds
on the blow-up of the certain renormalisation constants. Assumption 5 is needed for a technical argument
in Lemma 5.23. Finally, we show in Section 4 that Assumption 6 implies Assumptions 7 and 8. We
believe that the latter two assumptions are satisfied for all naturally occurring classes of SPDEs.
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